
Chapter 1

Introduction and Background

In today’s competitive world, the need to develop a vehicle in the most

efficient manner is of utmost importance. In particular, the need exists

for robust and efficient optimisation algorithms for determining the optimal

spring and damper characteristics of a vehicle for both ride comfort and

handling. This optimisation is difficult to perform because of two reasons.

First of all the objective and constraint functions used in the optimisation are

determined via computationally expensive numerical simulations. Secondly,

due to the need to include non-linear effects in the numerical model to

accurately simulate reality, serious numerical noise may be present in the

objective function. Both these factors, namely computational expense and

the presence of noise, have seriously inhibited the general use of mathematical

programming methods in the optimal design of mechanical systems. This

research aims to provide the reader with an efficient methodology for

optimising an off-road vehicle’s suspension characteristics for ride comfort

and handling.

1.1 Ride Comfort vs. Handling

Throughout the history of the modern motor vehicle, the suspension system

design has been a compromise between ride comfort, handling and driver

control. In newer passenger vehicles this compromise has been reduced by

the addition of stiff anti-roll-bars, this allows for a soft suspension setup for

vertical motion, associated with ride comfort, and a stiff suspension for roll
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motion, typically handling manœuvres. Off-road vehicles and sports utility

vehicles (SUV’s) inherently have soft suspension characteristics, for good

off-road manœuvrability, with the spin-off being good ride comfort, however,

they are very unstable when handling is considered. Stiff anti-roll-bars

are generally infeasible as they result in limited wheel travel, affecting the

off-road manœuvrability.

Els (2006) investigated this compromise between ride comfort and handling

in off-road vehicles. A four state semi-active suspension system, to be known

as 4S4, was developed and tested. The unique feature of this system is

that it can switch not only between different damper characteristics but

also different spring characteristics. Els developed a control algorithm for

this unique system that has the ability to automatically switch from the

ride comfort mode to the handling mode, using no physical input from

the driver. A prototype vehicle was fitted with the 4S4 system. Large

improvements were achieved in terms of handling over the baseline vehicle,

with large improvements in ride comfort when in the ride comfort setting,

over the handling mode setting. This system thus eliminates the traditional

compromise between ride comfort and handling, as it operates in ride comfort

mode when driving in a relatively straight line, but should the driver begin

a handling type manœuvre the system switches to the handling suspension

mode. The handling mode’s suspension characteristics are optimised for

optimal handling and the ride comfort mode’s suspension characteristics

for optimal ride comfort, thereby eliminating the compromise associated

with traditional suspension systems. The work presented in this document,

discusses the optimisation of the suspension settings of the 4S4 system.

1.2 Development of the 4S4

The suspension unit currently under development, has the unique feature

that it incorporates two damper packs (fitted with bypass valves) and two gas

accumulators, effectively giving two damper characteristics and two spring

characteristics in a single suspension unit. This unit will be referred to as
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the ‘4-State Semi-Active Suspension System’, or 4S4 (Theron and Els 2005).

The suspension consists of two settings, namely ride comfort and handling.

The handling spring setting is achieved by the compression of a small gas

volume, resulting in a stiff spring stiffness. The ride comfort spring setting

is achieved by the compression of both the small gas volume and a larger gas

volume resulting in a soft overall spring stiffness. In addition to the variable

spring settings, the damping can be varied for each spring setting. The low

damping setting, desirable for ride comfort, is achieved by the pressure drop,

as a result of the flow through the by-pass valves to the spring accumulators.

High damping is achieved, with the by-pass valves in the closed position, by

the pressure drop, as a result of the oil flow through the damper pack for the

desired spring.

Switching between the two spring and damper characteristics is achieved

by solenoid valves as illustrated in Figure 1.1. Valve switching times vary

between 50 and 100 milliseconds depending on system pressure. Spring and

damper characteristics can be taken as design variables, to be optimised

for both ride comfort and handling respectively. It is assumed that the

suspension system will switch between the ride comfort and handling option,

to suite the operating conditions, provided an intelligent control system can

distinguish between the two different operating conditions, and switch the

suspension system to the correct setting. Each operating setting is expected

to have different optimum values for the spring and damper characteristics.

This suspension has the ability to eliminate the traditional ride comfort vs.

handling compromise.

1.3 The need for Optimisation

With the off-road vehicle’s suspension system already a complex compromise

between ride comfort and handling, the addition of additional complexity in

the form of variable spring settings and damper settings, with associated

control, the use of a few hit-and-miss hand calculations will not permit

 
 
 



CHAPTER 1. INTRODUCTION AND BACKGROUND 5

Gas
Gas

Solenoid valve

Damper Pack

Spring accumulator

oil

Gas

Figure 1.1: 4S4 Suspension Unit

the developed suspension system to live up to it’s perceived qualities. To

accurately model the vehicle for analysis purposes, of the new suspension

system, requires the modelling of many highly non-linear components, like

suspension characteristics, bushings, bump and rebound stops, and most

importantly a very non-linear tyre. As a result of this complexity necessary

to obtain accurate models, the design space that is to be investigated is

dramatically large, non-linear and noisy. Where numerical noise in this thesis

will be defined as: for small perturbations in the design variables sent to the

full simulation model in MSC.ADAMS relatively large perturbations in the

objective function values are noted. It has however also been suggested that

this could be referred to as high sensitivity.

To accurately define the damper and spring characteristics for front and

rear suspension setups requires at least 14 design variables. With such a

large number of design variables, it is impossible to visualise the effect of

each design variable on the ride comfort or handling, to select the optimal
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configuration. Additionally, the vehicle can travel at various speeds, over

various terrains, and under various load conditions. The only way to take

all these aspects into account is to make use of mathematical optimisation

techniques. However, due to the sheer complexity of the problem to be solved,

there are many aspects that need to be considered before mathematical

optimisation will successfully determine the optimal suspension characteristics

for the vehicle in question. The primary aim of this work is to

propose a methodology for the efficient implementation of gradient-based

mathematical optimisation for the optimisation of the off-road vehicle’s

suspension system.

1.4 Summary

In the author’s masters degree dissertation (Thoresson 2003) the use of SQP

and Dynamic-Q were investigated for vehicle suspension optimisation. It was

found that the use of central finite differencing as opposed to forward finite

differencing for the determination of gradient information for use within the

Dynamic-Q optimisation algorithm, resulted in an improved optimisation

convergence history. This is as a result of the central finite differences

helping to reduce the undesirable effects of numerical noise on gradient

determination. However, this came at the cost of additional expensive

objective and constraint function evaluations per iteration. These additional

expensive objective and constraint function evaluations result in a

prohibitively expensive optimisation process when more design variables are

considered.

The main aim of this work is the use gradient-based optimisation to efficiently

optimise the off-road vehicle’s suspension system for ride comfort and

handling. In order to do this many steps have to be completed along the way.

This document describes the use of mathematical optimisation for vehicle

suspension design, a summary into the investigation of the SQP and

Dynamic-Q methods, followed by the advantages achieved when using central
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finite differences for gradient information, the development of accurate models

to describe the vehicle dynamics, the validation of simplified models for

gradient information, implementation of the simplified models for 2 and

4 variable optimisation, complications encountered with numerous design

variables, a proposed automatic scaling of design variables, application

of the process to 14 design variable optimisation of ride comfort and handling,

and the optimisation of the compromise suspension setup.

The following original contributions to the application of gradient-based

optimisation for vehicle suspension design are presented in this Thesis. Firstly

the application of multi-fidelity optimisation to vehicle suspension design, in

which a detailed simulation model is used for the evaluation of the objective

and constraint functions and simplified models for the evaluation of the finite

difference gradients. Secondly automatic scaling of the design variables with

respect to the topology of the objective functions, to improve the convergence

of the optimisation algorithm for the problems considered here. Thirdly the

development of a robust steering driver model based on the nonlinear Pacejka

Magic Formula for the description of the steering gain factors.

 
 
 



Chapter 2

Mathematical Optimisation

In this chapter, the use of mathematical optimisation for vehicle suspension

characteristics is discussed. The general properties of gradient-based and

stochastic algorithms are evaluated. The optimisation algorithms that were

selected for the investigation of the problem at hand are defined, and

a methodology for their implementation is defined.

2.1 The Use of Mathematical Optimisation

The use of mathematical optimisation techniques for the improvement of

the engineering design process, is rapidly gaining acceptance. There is great

debate in the optimisation world as to whether gradient-based approximation

techniques or stochastic-based methods, like genetic algorithms, are more

efficient and suited to engineering design. Stochastic techniques generally

require a large starting population, in order to achieve a sufficiently feasible

solution. This makes the stochastic methods computationally expensive,

when expensive numerical models, of the physical system are to be optimised.

Most researchers have to utilise costly multiple processing systems, as the

desktop computer can take days or even weeks to arrive at a solution. On

the other hand, gradient-based optimisation techniques tend to be heavily

dependent on the initial starting point, and require accurate gradient

information for the iterative approximation of the design space. The

determination of this gradient information, is costly when many

design variables are considered. The gradient calculation is also severely
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affected by numerical noise that is normally inherent in complex numerical

simulation models, e.g. full vehicle models. Research, with reference to

vehicle suspension optimisation, is now briefly discussed.

Dahlberg (1977, 1979), investigated the optimisation of a vehicle’s suspension

system for ride comfort and working space, subject to a random road input.

A 1-degree of freedom (dof) model, was optimised using the Sequential

Unconstrained Minimisation Technique (SUMT) (Fiacco and McCormick

1968). This was then expanded to a linear 2-dof model, to investigate the

speed dependence of the optimal suspension settings. It was found that for

a small suspension working space, the optimal spring and damper settings

are heavily dependent on vehicle speed, while for a large working space the

optimum is not really dependant on vehicle speed. It is suggested that active

suspension systems be considered when small suspension working spaces are

available.

Eberhard et al. (1995) successfully used a gradient based optimisation method

(a sequential quadratic programming, or SQP, algorithm) to optimise a

simple pitch-plane vehicle model’s non-linear damper characteristics for ride

comfort. The non-linear damper characteristic is modelled with piecewise

Hermite splines. The Hermite splines, however, require difficult to handle

constraints in order to ensure feasibility of the optimised damper

characteristic. Nevertheless, satisfactory results were obtained. Boggs and

Tolle (2000) provide an introduction to the SQP method and discuss recent

developments for large scale non-linear applications.

Etman et al. (2002) designed a stroke dependent damper, for the front

axle of a truck, using Sequential Linear Programming (SLP), a gradient

based optimisation algorithm. They use a 2-dof quarter car model, for

the initial investigation of the desired non-linear damper characteristics.

Ride comfort is optimised using discrete road obstacles. The non-linear

damper characteristics are modelled using an empirical piecewise quadratic

approximation. Finally a full vehicle model is used for the ride comfort
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optimisation, for one discrete road obstacle. Bump-stop contact is ignored, to

remove numerical noise and lessen computational expense. Difficulties were

experienced due to poor finite difference approximations of the gradients,

and with multiple feasible optima being found.

Naudé and Snyman (2003a, 2003b) and Naudé (2001) make use of a pitch-

plane vehicle model to optimise the piecewise linear damper characteristics

of an off-road military vehicle, for ride comfort. The ‘Leap-Frog’ (LFOPC)

optimisation algorithm (Snyman 2000) was used, and although taking many

iterations to reach the optimum, the optimisation was completed within a

few seconds, because the vehicle model code was specially written for the

vehicle being investigated.

Baumal et al. (1998) compared the efficiency of a Genetic Algorithm (GA)

to a gradient-based optimisation method (gradient projection method) for

a pitch-plane vehicle model, that was computationally efficient. The GA

converged to an optimum that was only a 4% improvement over the gradient

based method, but, required thousands more objective function evaluations.

Eberhard et al. (1999) investigate the use of a stochastic optimiser (simulated

annealing) and a gradient-based (deterministic) optimiser (a SQP algorithm)

for the optimisation of a full linear vehicle model’s ride comfort. The four

design variables considered are the linear spring and damper coefficients,

the distance of the body center of gravity (cg) between the axles and the

track width of the wheels. They conclude that deterministic optimisation

approaches offer rapidly converging algorithms that often get stuck in local

minima, when optimising multi-body dynamic systems. Nevertheless, the

global optimum may be obtained by these methods if used within a multi-start

strategy. They also find that simulated annealing is useful in avoiding local

minima. It does, however, require substantially more function evaluations

in order to locate the global optimum. Thus both methods are successful in

locating the global optimum. They consequently suggest a hybrid combination

of stochastic and deterministic algorithms for optimisation. They state,
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however, that the switching strategy is and will continue to be a challenging

task.

Eriksson and Friberg (2000) optimised the linear spring and damper

characteristics of the engine mounting system on a city bus, for ride comfort.

Use was made of a linear finite element method (FEM) model to simulate

the response of the bus to a given road input, with three passenger positions

used for the ride comfort objective function. A 7 % improvement in ride

comfort was achieved and it was found that the local minima, to which the

gradient based algorithm (form of SQP algorithm, with gradients determined

by forward finite differencing) converged to, were heavily dependent on the

initial starting point. Eriksson and Arora (2002) investigated the use of three

continuous global optimisation methods for the ride comfort optimisation of

the city bus. It was found that the modified zooming method in terms of

number of objective function evaluations (464) is most efficient in locating

the global optimum.

Gobbi et. al. (1999, 1999) use a back-propagated Artificial Neural Network

(ANN) of the full vehicle simulation model, coupled with a genetic algorithm

for the optimisation of ride and handling of a sedan vehicle. Suspension

non-linearities are modelled as piecewise linear approximations. The full

simulation model has been verified against test data. The ANN was used

for function evaluations within the genetic algorithm optimisation process.

However, this methodology requires an extensive number of function

evaluations, of the expensive full simulation model, to sufficiently train a

representative ANN, making it infeasible for stand-alone workstations.

Schuller et al. (2002) optimised the comfort and handling of a BMW sedan

using a simplified vehicle model composed of transfer functions. Because of

the nature of the vehicle model the suspension design parameters were only

allowed to have a small variance of 15% over the current vehicle design. This

process thus aims to refine an already feasible design for the next model

launch. The numerical model solves faster than real-time, making the use
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of genetic algorithms feasible. Only open loop handling manœuvres were

considered for the optimisation process.

Andersson and Eriksson (2004) optimised the non-linear damper and spring

characteristics of a full city bus vehicle model, that was validated against

test data. The model consists of non-linear bushings, bump-stops, springs,

dampers and a non-linear ‘Magic Formula’ tyre model. The ride comfort

of the bus was optimised for three discrete road obstacles, with a 23 %

improvement achieved. The handling was optimised using a single lane

change manœuvre at 40 and 80 km/h, with a 6 % improvement achieved. The

handling objective function is defined as a combination of the yaw rate gain

and yaw rate time lag, with an inequality constraint limiting the maximum

body roll angle to less than 1.3 degrees. The built-in MSC.ADAMS SQP

method was used, and the optima were reached after approximately 145

function evaluations. An attempt was made at the combined optimisation

of handling and ride comfort, and it was found that the result is heavily

dependent on the weights assigned to the various performance objectives.

Gonsalves and Ambrósio (2005) make use of a vehicle model consisting of a

flexible vehicle body and linear spring and damper characteristics, to perform

optimisation of the suspension characteristics for ride comfort and handling

of a sports car. The ride comfort objective function consists of the ride

index, which is the summed contributions of the vibration dose values for

different positions in the vehicle. The handling objective function consists of

the time taken to reach steady state lateral acceleration and the overshoot of

the roll angle for an open loop manœuvre. The optimisation algorithm used

is the Modified Method of Feasible Directions of Vanderplaats (1992), with

improvement in ride comfort and handling achieved.

Els et al. (2006) compared the efficiency of the Dynamic-Q optimisation

algorithm to the SQP method for vehicle suspension optimisation. They

found that the use of central finite differencing for the determination of

gradient information improved the convergence of the Dynamic-Q
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optimisation algorithm towards a feasible optimum within fewer objective

function evaluations, when compared to SQP or Dynamic-Q with forward

finite differencing. The objective functions exhibited severe noise. It

appeared, however, that using central finite differencing with relatively large

steps in computing gradient information, was successful in smoothing out the

effect of the noise in the optimisation.

Bandler et al. (2004) and Koziel et al. (2005) introduced to the engineering

optimisation world the theory of ‘Space Mapping’, which makes use of a

coarse simple model (surrogate model) and a detailed fine model for the

optimisation process. The Space Mapping technique involves the matching

and updating of the coarse model to more accurately describe the fine model.

This has been successfully applied to the structural optimisation of a vehicle

for crash safety, by Redhe and Nilsson (2004). In their research the coarse

model was constructed using linear Response Surface Methodology (RSM)

with the optimisation converging within 14 iterations, and using a total of

26 expensive function evaluations. However, the RSM model must be trained.

Space Mapping is also refered to as multi-fidelity optimisation, which is also

defined as the use of a high-fidelity model (fine model in space mapping

speak), and a medium or low fidelity model (coarse model), for optimisation.

Balabanov and Venter (2004) made use of a greatly simplified finite element

method (FEM) model of a full FEM model for the determination of gradient

information for structural optimisation, with success. Gobbi et al. (2005)

suggest the use of neural networks, or piecewise quadratic function

approximations of the full simulation model, when optimising a vehicle’s

dynamics. van Keulen and Toropov (2006) investigate the use of the

Multipoint Approximation Method (MAM) for a FEM structural problem

that exhibits numerical noise. The basic idea is to replace the

noisy optimisation problem with a succession of noise-free approximations

at each iteration. This noise-free approximation is then optimised, and

the optimum used for the next iteration point. van Keulen and Toropov

(2006) also suggest the use of mechanistic approximations, to be used for
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the optimisation process, where the simplified numerical model is based on

a prior knowledge of the physical system.

Papalambros (2002) suggests constructing surrogate models for optimisation,

by making use of the computationally expensive simulation model

for ‘computational experiments’. With this experimental data curve-fitting

techniques are applied to represent the original functions with acceptable

accuracy. The problem with this method, however, is that the correct

underlying form of the fit needs to be chosen, and higher accuracy requires

increased sample points, resulting in increased computational cost.

The concept of Automatic Differentiation (AD) is a novel way of obtaining

gradient information with one function evaluation (Tolsma and Barton 1998,

Bartholomew-Biggs et al. 2000). This methodology was evaluated by Bischof

et al. (2005) for the shape optimisation of an airfoil, with the objective

function being evaluated by a software chain. Although AD provides more

accurate gradient information than forward finite differences, the evaluation

of the objective function was approximately 16 times slower than the original

code for eight (n = 8) design variables. Using forward finite differences would

have used the original code n+ 1 times, equating to a cost of nine times the

cost of one function evaluation of the original code. The other downside of

AD is that access to the original source code is necessary, and it is normally

not available when commercial simulation software, such as MSC.ADAMS is

used.

Snyman (2005a) introduced a new implementation of the conjugate gradient

method (Euler-trapezium optimiser for constrained problems, ETOPC) that

overcomes the problem of severe numerical noise superimposed on a smooth

underlying objective function. Snyman introduces a novel gradient-only line

search, that requires two gradient vector evaluations per search direction,

and no explicit function evaluations. It is also found that the computation of

the gradients by central finite differences with relatively large perturbations,

allowed for smoothing out of the inherent numerical noise.
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The principal aim of this work is to promote the use of gradient-based

optimisation algorithms for vehicle suspension optimisation. In order to

do this, the complications associated with computational cost and inherent

numerical noise have to be investigated. For this reason this work investigates

the use of the Sequential Quadratic Programming (SQP) method and the

locally developed Dynamic-Q method, for the optimisation of the suspension

problem.

2.2 The SQP Method

The Sequential Quadratic Programming (SQP) optimisation algorithm is well

known and is considered the industry-standard gradient-based method for

constrained optimisation problems if the number of variables is not too large.

The version used here is found in Matlab’s Optimisation Toolbox (Mathworks

2000a). SQP makes use of successive quadratic approximations of the

objective and constraint functions at each iteration step. In constructing

these approximations second order differential information is required, in the

form of the Hessian matrix. The Hessian matrix is approximated by making

use of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) approximation. The

BFGS method relies on forward finite differences to approximate the gradient

of the objective function. The Hessian matrix does, however, require updating

if the problem behaves poorly, requiring an extra n+ 1 function evaluations

per iteration. SQP makes use of line searches to find the solution of the

approximate subproblem, this solution is then the next iteration point.

2.3 The Dynamic-Q Method

Complications associated with computational cost and inherent numerical

noise have to be investigated in this study, for this reason the locally developed

Dynamic-Q optimisation algorithm is used. Having direct access to the

code allows more freedom to investigate the effects of different optimisation

concepts. Dynamic-Q has also proved to be a feasible algorithm for vehicle
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suspension optimisation by Els and Uys (2003). The Dynamic-Q method has

been developed to address the general optimisation problem:

minimize
w.r.t.x f(x), x = [x1, x2, .., xn]T ∈ Rn (2.1)

subject to the inequality constraints:

gj(x) ≤ 0, j = 1, 2, .., m (2.2)

and the equality constraints:

hj(x) = 0, j = 1, 2, .., r (2.3)

where f(x), gj(x) and hj(x) are scalar functions of x. In this formulation

x is the vector of design variables, f(x) is the objective function, gj(x) the

inequality constraint functions, and hj(x) the equality constraint functions.

The Dynamic-Q algorithm is defined as: ‘Applying a Dynamic trajectory

optimisation algorithm to successive spherical Quadratic approximations of

the actual optimisation problem’ (Snyman and Hay 2002). This algorithm

has the major advantage that it only needs to do relatively few function

evaluations of the original expensive objective function to construct a simple

quadratic approximate function. This new approximate sub-problem’s

objective and constraint functions can then be evaluated cheaply and the

optimum point of the approximate sub-problem may be found economically,

using the robust dynamic trajectory method LFOPC (Snyman 2000). At this

new approximate optimum point, a new quadratic approximate sub-problem

of the objective and constraint functions is constructed, that is

again optimised. This procedure is iteratively repeated until convergence is

obtained. This method is very efficient for optimising objective and constraint

functions that require an expensive computer simulation for their evaluation.

In standard form Dynamic-Q makes use of forward finite differences to obtain

gradient information required for the generation of the approximations. The

details of the method can be found in the publications by Snyman and Hay

(2002), and Els and Uys (2003) where it was applied to a similar vehicle as

in this study, and formed the building block for this work. A basic outline
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of the algorithm is set out below.

A sequence of approximate sub-problems P[i] i = 0,1,2,... are generated by

constructing successive spherically quadratic approximations to the objective

and constraint functions, at successive points xi. The approximation to the

objective function, for example, is as follows:

f̃(x) = f(xi)(x − xi) + ∇Tf(xi)(x − xi) +
1

2
(x − xi)

TA(x − xi) (2.4)

The Hessian matrix A takes on a simple diagonal matrix form:

A = aI; (2.5)

This form of Hessian matrix indicates that the approximate subproblems are

spherically quadratic in nature. The curvature a takes on a value of zero for

the first subproblem i = 0. Thereafter it is defined by:

a =
2[f(xi−1) − f(xi) −∇Tf(xi)(xi−1 − xi)]

‖xi−1 − xi‖2 (2.6)

The approximate constraint functions are constructed in a similar manner.

If the gradient vectors ∇f , ∇g, and ∇h are not known analytically they may

be approximated by first order finite differences, traditionally forward finite

differences are used.

Additional side constraints of the form k̂i ≤ xi ≤ ǩi are normally imposed

on the design variables. Because these constraints do not exhibit curvature

properties they are treated as linear inequality constraints. These constraints

thus take on the form:

ĝil(x) = k̂i − xi ≤ 0, l = 1, ..., r ≤ n, (2.7)

ǧiu(x) = xi − ǩi ≤ 0, u = 1, ..., s ≤ n, (2.8)

To obtain stable and controlled convergence of the solutions of successive

approximate sub-problems, a move limit is set which takes on the form of an

inequality:

gδ(x) =
∥∥∥x − xi−1

∥∥∥2 − δ2 ≤ 0 (2.9)
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where δ corresponds to the specified maximum magnitude of the move limit.

The approximate subproblem at xi−1 can now be solved using the dynamic

trajectory ‘Leap-Frog’ optimisation algorithm for constrained optimisation

LFOPC. This solution is taken as xi, the point at which the next approximate

sub-problem is constructed. This process is continued until convergence is

obtained. The process is illustrated in a simplified form in Figure 2.1, where

f represents the approximated subproblem at each iteration step, and xn the

x value obtained at each iteration step. The x1 value was limited by the

allowable move limit.

x4

x*
x

f(x)

x0x1x2x3

~f0

~f1

~f2

~f3

~f4

Figure 2.1: Simplified illustration on how Dynamic-Q progresses with

optimisation iterations

2.4 Gradient Approximation Methods

Most gradient-based optimisation algorithms require the determination of the

first and/or second order gradient information of the objective and constraint

functions with respect to the design variables. In most engineering

optimisation problems this gradient information is not analytically available.
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The only information available to the designer is the values of objective

and constraint functions obtained via expensive simulations. This paragraph

investigates the use of forward and central finite differences in the Dynamic-Q

optimisation algorithm, for the determination of the first order gradient

information.

2.4.1 Forward Finite Difference (ffd)

This is the simplest and most economic method for approximating the

gradients of the objective and constraint functions, required by gradient-

based mathematical optimisation algorithms. This method approximates

the first order gradient information of a multi-variable function F (x), by

evaluating the change in the function F (x) for a small change dxk in each

of the design variables xk, k = 1, 2, ..., n, as illustrated in Figure 2.2. Thus,

in order to carry out the full gradient vector evaluation, a total number of

n+1 function evaluations are required for each iteration, where n is the total

number of design variables. The forward finite difference approximation to

the kth component of the gradient at x is defined as follows:

∂F

∂xk
=
F (x1, x2, ..., xk + dxk, ..., xn) − F (x)

dxk
(2.10)

for k = 1, 2, ..., n. Noisy objective functions, however, severely limit the

accuracy of the forward finite difference gradient approximation, as is

apparent from Figure 2.2. This can be partly overcome by using larger step

sizes dxk or by considering instead, central finite differences.

2.4.2 Central Finite Difference (cfd)

Central finite differences make use of a function evaluation on either side

of the current iteration point x, resulting in a better approximation to

the gradient of the underlying smooth function in the presence of noise.

Although this method requires 2n + 1 function evaluations per gradient

vector evaluation, it may result in fewer optimisation iterations to obtain

a minimum.
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Figure 2.2: Finite difference gradient approximation methods

The central finite difference procedure is defined as follows:

∂F

∂xk

=
F (x1, x2, ..., xk + dxk, ..., xn) − F (x1, x2, ..., xk − dxk, ..., xn)

2dxk

(2.11)

for k = 1, 2, ..., n. In this way the gradient is evaluated by looking at

information behind and ahead of the current iteration point, while the forward

finite difference only looks ahead of the current iteration point. This results
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in a more accurate approximation to the function gradient, when noise is

present, as illustrated for the case depicted in Figure 2.2. The effects of

noise cannot be completely eliminated by this method, but it certainly yields

gradient approximations that are superior to that given by forward finite

differences.

2.4.3 Higher Order Gradient Information

The Sequential Quadratic Programming (SQP) method (Mathworks 2000a,

Vanderplaats 1999) and other Quasi-Newton optimisation algorithms such as

the Davidon-Fletcher-Powell (DFP) method uses, in addition to first order

gradient approximations, also second order curvature information. This

information is very costly to obtain, as it corresponds to a partial

derivative of a partial derivative. This information is stored in a

n x n square matrix, commonly known as the Hessian matrix. The

Broyden-Fletcher-Goldfarb-Shanno (BFGS) approximation to the Hessian

matrix is used in Matlab’s implementation of SQP. The Hessian matrix is

approximated and updated at iteration k + 1, k = 0, 1, 2, ... by:

Hk+1 = Hk +
qkq

T
k

qT
k sk

− HT
k sT

k skHk

sT
kHksk

(2.12)

where

sk = xk+1 − xk (2.13)

and

qk = ∇f(xk+1) −∇f(xk) (2.14)

and

∇f(xk) = [
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xn
] (2.15)

At the start of the optimisation procedure, (i.e. at iteration k = 0) most

algorithms set H0 equal to any positive definite symmetric matrix, normally

the identity matrix I. Thereafter the approximation is updated at every

iteration via equations 2.12 - 2.14.

 
 
 



CHAPTER 2. MATHEMATICAL OPTIMISATION 22

2.5 Conclusions

This chapter looked at vehicle suspension optimisation research, and defined

the optimisation methods to be used for the rest of this work.

The primary aim of this work is the promotion of gradient-based optimisation

algorithms for vehicle suspension optimisation, due to the minimal number of

function evaluations they require over stochastic based methods to arrive at

a feasible optimum. The decision was thus taken that the SQP method, with

it’s strong industry presence, and the locally developed Dynamic-Q method

will be used.

The successful implementation of gradient-based methods, is strongly

dependent on good gradient information. Finite differencing is, however,

necessary for the determination of gradient information when the objective

and constraint functions are determined via numerical simulations. Forward

and central finite differencing will be investigated for it’s efficiency in

determining gradient information.
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