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Summary

Speech recognition systems have been developed for the major languages of the world,
yet for the majority of languages there are currently no large vocabulary continuous speech
recognition (LVCSR) systems. The development of an LVCSR system for a new language is
very costly, mainly because a large speech database has to be compiled to robustly capture

the acoustic characteristics of the new language.

This thesis investigates techniques that enable the re-use of acoustic information from a
source language, in which a large amount of data is available, in implementing a system
for a new target language. The assumption is that too little data is available in the target
language to train a robust speech recognition system on that data alone, and that use
of acoustic information from a source language can improve the performance of a target

language recognition system.

Strategies for cross-language use of acoustic information are proposed, including training on
pooled source and target language data, adaptation of source language models using target
language data, adapting multilingual models using target language data and transforming
source language data to augment target language data for model training. These strate-
gles are allied with Bayesian and transformation-based techniques, usually used for speaker
adaptation, as well as with discriminative learning techniques, to present a framework for
cross-language re-use of acoustic information. Extensions to current adaptation techniques
are proposed to improve the performance of these techniques specifically for cross-language
adaptation. A new technique for transformation-based adaptation of variance parameters
and a cost-based extension of the minimum classification error (MCE) approach are pro-

posed.

Experiments are performed for a large number of approaches from the proposed framework
for cross-language re-use of acoustic information. Relatively large amounts of English speech
data are used in conjunction with smaller amounts of Afrikaans speech data to improve

the performance of an Afrikaans speech recogniser. Results indicate that a significant
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reduction in word error rate (between 26% and 50%, depending on the amount of Afrikaang
data available) is possible when English acoustic data is used in addition to Afrikaans
speech data from the same database (i.e. both sets of data were recorded under the same
conditions and the same labelling process was used). For same-database experiments, hest

results are achieved for approaches that train models on pooled source and target language
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Opsomming

Spraakherkenningstelsels is reeds ontwikkel vir die groot tale van die wéreld, maar vir die
meerderheid van tale bestaan daar tans geen groot-woordeskat kontinuespraakherkenning-
stelsels nie. Die ontwikkeling van 'n groot-woordeskat kontinuespraakherkenningstelsel vir
'n nuwe taal is baie duur, hoofsaaklik omdat 'n groot databasis opgestel moet word om die

akoestiek van 'n nuwe taal op robuuste wyse te vervat.

Die tesis ondersoek tegnieke wat die hergebruik van akoestiese inligting van 'n brontaal,
waarvoor 'n groot hoeveelheid data beskikbaar is, toe te laat in die implementering van 'n
stelsel vir 'n nuwe teikentaal. Die aanname word gemaak dat te min data beskikbaar is
vir die teikentaal om 'n robuuste spraakherkenningstelsel mee af te rig, en dat akoestiese
inligting in 'n brontaal gebruik kan word om die herkenning van ’'n teikentaalstelsel te

verbeter.

Strategieé vir die gebruik van akoestiese inligting oor taalgrense heen word voorgestel en
sluit in: afrigting op gepoelde brontaal- en teikentaaldata, aanpassing van brontaalmodelle
met teikentaaldata, aanpassing van multitaalmodelle met teikentaaldata en transformasie
van brontaaldata om teikentaaldata aan te vul vir afrigting van modelle. Hierdie strategieé
word met Bayes en transformasie tegnieke, wat gewoonlik vir sprekeraanpassing gebruik
word, en diskriminerende afrigtingstegnieke gebruik om 'n raamwerk vir die gebruik van
akoestiese inligting oor taalgrense daar te stel. Uitbreidings van bestaande tegnieke word
voorgestel om die herkenning van die tegnicke te verbeter vir kruis-taal aanpassing. 'n
Nuwe tegniek vir transformasie van variansieparameters en 'n kostegebaseerde uitbreiding

van die minimum klassifikasiefout tegniek word voorgestel.

Eksperimente word uitgevoer vir 'n groot aantal benaderings uit die voorgestelde raam-
werk vir kruis-taal hergebruik van akoestiese inligting. Relatief groot hoeveelhede Engelse
spraakdata word gebruik tesame met kleiner hoeveelhede Afrikaanse spraakdata om die
werkverrigting van 'n Afrikaanse herkenningstelsel te verbeter. Die resultate dui aan dat 'n

beduidende vermindering in woordfouttempo (tussen 26% en 50%, afhangende van die hoe-
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veelheid Afrikaanse data wat beskikbaar is) moontlik is wanneer Engelse data tesame met
Afrikaanse data van dieselfde databasis gebruik word (dit wil sé beide datastelle is onder
dieselfde toestande opgeneem en dieselfde etiketteringsproses is gebruik). Vir dieselfde-
databasis eksperimente word die beste resultate bereik vir benaderings wat modelle afrig
op gepoelde brontaal- en teikentaaldata, en wat dan verdere afrigting van modelle volgens
Bayes of diskriminasiegebaseerde tegnieke uitvoer met slegs teikentaaldata. Eksperimente
word ook uitgevoer om die gebruik van Engelse spraakdata van 'n verskillende databasis as
die Afrikaanse data te evalueer. Piek verminderings in fouttempo tussen 16% en 35% word
gelewer, afhangende van die hoeveelheid Afrikaanse data wat beskikbaar is. Beste resultate
word bereik vir 'n benadering wat 'n eenvoudige transformasie van bronmodelparameters
uitvoer met gebruik van teikentaaldata, en dan Bayes aanpassing van die getransformeerde

model uitvoer met teikentaaldata.

Sleutelwoorde: multitaalspraakherkenning, kruis-taal akoestiese aanpassing, Bayes aan-

passing, parameter transformasie, minimum klassifikasiefout aanpassing
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Chapter 1

Introduction

Speech is a natural and efficient way for humans to communicate. Automatic speech recog-
nition for computers introduces a fundamental shift in the human-machine interface, leading
to myriads of new applications and greatly improving the usability of many existing ap-
plications. Human to human communication will be significantly enhanced in the future
through the co-development of speech recognition in multiple languages combined with

automatic translation between languages.

For most languages of the world, however, no speech recognition systems exist. The stan-
dard methods used for constructing speech recognition systems have been shown to work
well for a large number of languages. The methods, however, necessitate a large amount
of training data to deliver acceptable performance. The collection of speech data and the
subsequent labelling of that data is currently an expensive and labour-intensive process.
For the majority of languages of the world the lack of sufficient databases is the barrier

that limits the development of speech recognition technology.

An interesting field of research in speech recognition technology is the development of

systems that can explicitly recognise speech in multiple languages. Multilingual systems

generally necessitate the use of acoustic information from multiple languages in a single
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modelling environment to avoid the cost of keeping full models sets for each language, to
facilitate improved systems integration and to enable recognition of words from multiple
languages in the same utterance. Although the aim of multilingual systems as such is not
the re-use of acoustic information across language boundaries, it does present an approach
for the use of acoustic information from existing databases in the development of a speech

recognition system for a new language for which a limited amount of data is available.

Another field of research that is of interest is the field of speaker adaptation. Speaker
adaptation techniques change model parameters to improve recognition performance for a
new target speaker based on a limited amount of data from the new speaker. We, however,
propose using speaker adaptation techniques for the purpose of changing models that were
trained on a source language or languages, to improve performance for a target language.
We propose that in this way, a system for a new target language can be developed that
uses acoustic information from existing source language databases, but the performance of
which is optimised for the target language using whatever target language data is available.
This thesis details how multilingual data should be used in conjunction with adaptation
techniques to deliver optimal performance for a new target language in the absence of
sufficient amounts of target language data for the development of a stand alone speech

recognition system.

1.1 Speech recognition fundamentals

Current leading edge speech recognition systems are based firmly on statistical pattern
recognition principles [1, 2]. As such, these systems are data driven, i.e. are the result of
training models of suitable complexity on large amounts of data. To increase recognition
performance, models of increasing complexity are used - which in turn need increased
amounts of training data to train accurately. It is expected that this trend will continue for
some time. Large projects have been launched to collect and label spoken data for many

of the major language groupings of the world such as American English [3, 4, 5], Japanese

Electrical and Electronic Engineering 2
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[6], French [7, 8], German [9], as well as for the collection of multilingual databases[10, 11].
The existence of a comprehensive collection of data is a prerequisite for the development of

a successful speech recognition system using current algorithms and technology.

Large-vocabulary continuous-speech recognition (LVCSR) systems comprise of two main
parts, firstly acoustic modelling of the basic sounds or phones of speech, and secondly
language modelling which captures the statistics of sequences of words. Pre-processing
or feature extraction forms an important part of acoustic modelling by transforming the
raw speech signal into an acoustic vector sequence X = x;, Xo, ..X7 that is more amenable
to modelling. Bayes’ rule expresses the probability P(1W|X) of a word sequence W =
w1, Wa, .. Wy, given an observed acoustic vector sequence X by

P(X|W)P(W)

P(W|X) = == 9

(1.1)

where P(W) represents the a priori probability of observing the sequence of words W,
independent of the observed signal, and P(X|W) represents the conditional probability of
observing the vector sequence X, given the word sequence W. The probability P(W) is
language specific and is determined by a language model, often in the form of a conceptually
simple bigram or trigram that may contain millions of discrete probabilities. The estimation
of the parameters of these language models are facilitated by the large amounts of text
available electronically. The training of the acoustic model P(X|WW), however, depends on
the availability of speech databases that are phonetically labelled, or at least transcribed. To
achieve good performance, the training data should also fit the expected use of the system
as closely as possible and should include data from many speakers for speaker independent

(SI) recognition.

A basic premise of acoustic modelling is that a speech signal consists of short periods
exhibiting stationary behaviour. This leads to the simplification of subdividing a speech
signal into frames of relatively short length (typically 10-25 ms) with respect to the periods
over which speech is stationary. A further assumption is that words can be modelled as the

concatenation of a sequence of basic sounds or phones. Hidden Markov models (HMMs)

Electrical and Electronic Engineering 3
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[1] are used to model phones via a sequence of states with quasi-stationary behaviour in
each state. If every phone is represented by an HMM, words and sentences can be modelled
by a concatenation of HMMs. The distribution of acoustic parameters in each state of an
HMM is typically modelled with parametric continuous-density output distributions such

as multivariate Gaussian mixtures.

Context has a large influence on the way that phones are produced and thus also influences
the acoustic properties of the phones. To obtain good phonetic discrimination it is desirable
to train different HMMs for phones in different contexts if enough speech data is available.
A solution is to use triphones, where there is a distinct model for each phone combined
with a unique pair of left and right neighbours. In practice this leads to an extremely
large number of model parameters, which is reduced by making use of state tieing. The
idea is to tie together states that are acoustically indistinguishable or at least very similar.
Data associated with each individual state are pooled, giving more robust estimates for the
parameters of a tied state. Even if enough data is not available to train accurate context
dependent models, context independent models should at least allow for relatively complex
distributions (such as Gaussian mixture distributions) to be able to model different contexts
of each phoneme model. In any event, the amount of parameters to be estimated is large

and predicates the use of large databases for training.

For many languages, including 10 of the 11 official languages of South Africa (all but
English), very little or no speech data is available for training acoustic models. Even
for South African English, speech data from various local population groupings would be
needed to develop a system with robust performance on the South African accents. As far as
language modelling is concerned, the situation is somewhat better since moderate amounts
of electronic text are available in at least some of the languages. The speech databases that
are available for South African languages include a database for South African English and
Afrikaans [12] and a Xhosa database [13]. It is foreseeable that some data may be collected
for more of the local languages, but it is unlikely that the quantity of data collected will
approach the amount of data routinely used in developing LVCSR systems for the major

languages of the world.

Electrical and Electronic Engineering 4



University of Pretoria etd — Nieuwoudt, C (2000)
Chapter 1 Introduction

It is apparent that techniques must be found to enable the training of robust acoustic models
in the absence of large quantities of speech data. One possible way would be to attempt to
use expert knowledge from phoneticians in the target language. Approaches based largely
on phonetic knowledge have been superseded by the statistical modelling approach and do
not present a feasible solution. The only other option available then is to find methods that
can use available data from other languages. It is hoped that these methods can improve
the performance of acoustic models for a target language in which little training data is
available. The field of multilingual speech recognition, which investigates the sharing of
phoneme sets across languéges, is a starting point for this research. It should be noted
that the main focus of multilingual research is the creation of systems that can explicitly
recognise speech in multiple languages, which may be in conflict with our goal of optimising

performance for any specific language.

Another set of techniques that may be of use in developing robust acoustic models for a
new language are techniques used for speaker adaptation. Generally, speaker adaptation
techniques have been applied and optimised to improve speaker dependent modelling per-
formance given a certain limited amount of speaker specific data. Although they are called
speaker adaptation techniques, they also adapt models to recording and transmission chan-
nel conditions they are exposed to. These techniques do not have to be directed at a specific
speaker and can be performed in multispeaker or even speaker independent mode and in

our case are investigated for their use in cross-language adaptation of acoustic models.

1.2 Multilingual speech recognition systems

Multilingual speech recognition has generally been researched for the development of sys-
tems that can handle speech input in multiple languages [14, 15], or for the bootstrapping
of seed models for forced alignment of speech data in a new language [16, 17, 18]. Some
studies have researched the explicit sharing of acoustic information between languages by

constructing multilingual phone sets [19, 20], but have in most cases reported some recogni-

Electrical and Electronic Engineering 5
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tion performance degradation in return for simplified modelling of acoustic parameters and
easily integrated multilingual recognition. Few studies have considered using cross-language
acoustic information for the explicit goal of improving the performance of a speech recog-
niser in a new target language. One study [20] pooled cross-language and target language
data to improve recognition for a target language application. Another two studies [21, 22]
performed mean-only Bayesian adaptation of source language models using target language

data and showed improvements in recognition rate under certain conditions.

The re-use of acoustic information across language boundaries for Improving recognition
in a new target language is only partially addressed by current research. Especially the
application of adaptation algorithms for this purpose needs further investigation. We next
discuss the main categories of speaker adaptation algorithms that are relevant for this thesis

before we continue with the discussion on their use for cross-language adaptation.

1.3 Speaker adaptation techniques

The field of speaker adaptation is usually of interest when considering the adaptation of
acoustic model parameters to new speakers or new conditions. Speaker adaptation tech-
niques generally attempt to adapt acoustic parameters from the speaker independent (SI)
scenario to improve performance on the data from a specific speaker. Research in speaker
adaptation, to a large degree, focuses on achieving good adaptation performance using as
little data as possible from a new speaker, enabling faster enrolment for dictation systems
and also enabling the use of speaker adaptation techniques for a wider range of applications.
Our interest in speaker adaptation algorithms lies with their application for the adaptation
of acoustic models from a source language using speech from a limited number of speakers
in a target language. In this way we aim to train target language models that retain some
of their original acoustic properties, rendering them more robust and leading to improved

recognition performance in the target language.

Electrical and Electronic Engineering 6
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Bayesian methods were amongst the first methods used for speaker adaptation [23, 24].
Bayesian methods are especially applicable if a sufficient amount of adaptation data is
available and suitable prior distributions can he estimated for system parameters. Bayesian
methods assume a prior distribution P,(A) for the model parameters, usually determined
from training with a large set of SI data and use observations from a new speaker to
determine the ¢ posteriori distribution of the modal parameters. Using Bayes’ theorem we

may write the posterior distribution P (AIX) as

P(X) = PENEQ)

X (1.2)

The prior distribution, Fo(A), effectively biases the parameter distribution with the statis-
tics for the speaker independent, (SI) scenario. Bayesian estimation in known to work well
for the SI to speaker dependent (SD) mapping since the SI case is a generalisation of the SD
case. This is not true for a cross-language mapping, i.e. observations from a new language
are not expected to be distributed according to a subset of the distribution of a source
language, and may thus limit the performance achievable with Bayesian adaptation. An
advantage of using Bayesian estimation, though, is that it has the property that the para-
meters converge to the target dependent parameters if enough adaptation data is available.
Since we expect at least reasonably large amounts of data to be available for adaptation
to the target language, the asymptotic performance property of a Bayesian estimator is

desirable.

In speech recognition literature the method most commonly used for Bayesian adaptation is
that of maximum a posteriori (MAP) parameter estimation. MAP estimation [25] chooses
the mode of the posterior parameter distribution (the mode of P(A|X)) to represent the
estimate of the parameter and is thus related to mazimum likelihood (ML) estimation, which
chooses the mode of the likelihood function (the mode of P(X]|)\)). Bayesian estimation
can also be based on the use of a loss function to ensure that in some sense the minimum
risk is associated with the estimate. The use of loss function-based Bayes estimators is

nvestigated in this thesis in addition to MAP estimation.
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A second class of methods for speaker adaptation is based on the transformation of the
acoustic model parameters. Speaker adaptation via transformation does not attempt to
directly estimate the new SD parameters, but rather estimates a transformation of the a-
coustic parameters from the SI models to the SD models. As such, it is suitable even when
the SI models do not represent a prior for the SD models. A transformation may have few
parameters - far fewer than the models being transformed, allowing the method to work
reasonably well even when very little data is available. Transformation-based approaches
were originally used to perform spectral transformation for template adaptation, account-
ing for microphone and channel effects and also changing the spectrum to better match
the spectral characteristics of a new speaker [26, p. 286]. More recently, linear transforma-
tions of model parameters such as implemented by the mazimum likelihood linear regression
(MLLR) technique [27], rather than feature space transformations, have been commonly
used. By grouping phones into classes for transformation, multiple transformations can
be estimated, increasing the ability of the approach to perform complex adaptation tasks.
Transformation-based adaptation generally performs well when significant bias exists be-
tween source and destination parameters, but its performance for cross-language adaptation
of acoustic parameters, which may entail managing a complex set of uncorrelated differences

between source and target acoustics, has yet to be fully investigated.

A third class of methods, based on discriminative training, has only recently been applied to
the problem of speaker adaptation. A particularly promising implementation of discrimina-
tive training, called the minimum classification error (MCE) [28] approach, has been shown
for some applications to improve performance beyond that obtained with the traditional
MAP approach [29]. The MCE approach differs from Bayesian and ML approaches in that
it attempts to directly minimise the number of misclassification errors, rather than max-
imising the a posteriori model likelihood or the data likelihood. Because MCE is really an
error-function optimisation approach, it has considerable flexibility, leading us to consider
its use for the complex task of cross-language adaptation. Unfortunately, MCE also suffers
from problems such as being prone to converge to local minima. Using MCE for cross-

language adaptation has the advantages over Bayesian and transformation-based methods
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that MCE does not make the assumption that the parameters of a suitable prior distribution
can be found, nor does it assume that a linear transformation of parameter space is appli-
cable. MCE is not suited for the removal of consistent bias (such as transformation-based
methods are well suited for), but can effect very complex ‘tuning’ of parameters. Similar
to Bayesian adaptation, only observed parameters are adapted, predicating the availability

of reasonably large amounts of adaptation data for good performance.

In the next section we proceed to discuss how we applied the methods from the research
fields covered so far, namely multilingual speech recognition and speaker adaptation, to our

principal problem of cross-language data re-use.

1.4 Cross-language re-use of acoustic information

Previous research has shown the feasibility of using acoustic information from languages for
which large databases exist in aiding the development of speech recognition systems for new
languages. Source language models have been shown to be useful for bootstrapping models
in a new language. Most studies indicate, however, that the sharing of acoustic models
in a multilingual context leads to some performance degradation in return for simplified
modelling [19, 20, 30], because model accuracy is reduced when the same model is used
across multiple languages. Research [20] shows that sharing phones can work well if the
languages have large acoustic similarities e.g. Italian and Spanish. For some new target
languages it may be possible to find an acoustically similar language in which large amounts
of speech data are available, but there may still be some sounds that occur only in the target
language and have no near counterpart in the source language. Even for phones that occur
in both source and target languages, there are bound to be some systematic differences
in pronunciation, as well as differences with respect to the context of the phones. Simple
sharing of acoustic information across language boundaries thus does not present an optimal

solution to the problem in general.
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An alternative to the pooling of data is to train models on large amounts of source language
data and to then adapt the acoustic parameters from the source language to the target
language in the same way that acoustic parameters are adapted from speaker independent
(SI) models to the speaker dependent (SD) models. Some issues have to be addressed,
however, since cross-language adaptation entails an SI to SI mapping and not an SI to
SD mapping. Our aim with cross-language adaptation is to retain the SI properties of the
acoustic models from the source language while changing them to better reflect the overall
distributions of feature parameters in the target language. Typically, more data is available
for cross-language adaﬁtation than is usually used for speaker dependent adaptation, since
a more complex mapping is expected to be necessary and also since the process can be
performed off-line. This implies that techniques which can efficiently use larger amounts of
data, rather than techniques specialised for rapid adaptation, are expected to deliver better

performance.

A problem with the application of speaker adaptation techniques for cross-language adap-
tation is the assumption that the same set of phonemes can be used, which is not true in
general for different databases in different languages. To address this problem it is necessary
to make use of phonetic experts, or to use distance metrics to determine which phone class-
es should be used in conjunction with which other phone classes in the different databases
and languages. For models in the target language that have poor correspondence in the
- source language, cross-language use of data does not guarantee acceptable performance
and adaptation has to be able to significantly alter the model parameters to achieve good

performance.

Two main classes of methods have been employed for cross-language adaptation in previous
' research namely Bayesian methods such as MAP and transformation-based techniques such
as MLLR. We also apply these two methods, albeit more comprehensively than previous
studies, to cross-language adaptation. Our implementation of cross-language Bayesian es-
timation uses the first language models to provide a priori information on the expected
distribution of the second language model parameters and we adapt Gaussian mean and

variance parameters as well as the mixture weight and transition probability parameters.
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We show that adapting all model parameters in a Bayesian framework leads to superior
performance when compared to the mean-only adaptation approach reported in previous
research [22, 21]. A further improvement is obtained when prior distributions for MAP
adaptation are estimated from models trained on pooled source and target language data,
especially when source and target language data present a close match. This strategy of first
training on pooled multilingual data and then performing further target language specific
adaptation is well suited to the Bayesian adaptation paradigm, because use of multilingual

data is more likely to produce suitable prior distributions than use of source data alone.

We find that use of the MLLR technique does not achieve the same level of performance as
that achieved with the MAP technique. We propose a method to also transform the Gaus-
sian variance parameters, greatly improving performance, but still not achieving as good
performance as with MAP. We find, however, that use of MLLR adaptation is especially
applicable when the source and target databases differ in terms of the recording conditions
so that there are spectral differences between the source and target signals. In such cases,
MLLR is used to produce transformed models, which in turn are used to seed prior distri-
butions for MAP adaptation, achieving the best performance on the independent test set

for cross-database adaptation.

‘We find that models trained on pooled multilingual data present good initial models for
discriminative adaptation, especially if the pooled data sets were closely matched. Adapta-
tion of the multilingual models is done with MCE, using target language data only, thereby
improving the performance of the models for the target language. Discriminative training
at this stage allows the models to retain the multilingual acoustic distributions as far as
possible, changing them only with respect to errors incurred on the target language data.
We propose an extension to the MCE framework that modifies the MCE misclassification
measure to associate a cost with each phoneme misclassification error. The cost is based on
the probability of a phoneme error leading to a word error and is shown to deliver improved
performance for cross-language MCE adaptation. We also apply discriminative adaptation
to models that have already been optimised for target language performance using other

approaches and find that the MCE approach can improve on the performance achieved with
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the MAP and combined MLLR and MAP approaches, but that improved performance is

not guaranteed.

Finally, we propose a data augmentation strategy for cross-language use of acoustic informa-
tion. Data augmentation comprises computing a relatively simple transformation of source
language data to better match target language data and then a pooling of the transformed
data and the target language data. This pooled data set is termed the augmented data set
and is used for model training. Trained models can be subjected to further target language
dependent training to improve performance, especially since the data transformation may

not accurately capture all the differences between the acoustics of the respective languages.

Overall, we find that cross-language use of acoustic information can lead to greatly improved
target language performance. We present a framework of strategies and techniques for cross-
language adaptation and perform experiments to evaluate the performance of a variety of

the approaches.

1.5 Organisation of thesis

The outline of the thesis is now given. Chapter 2 gives background on the hidden Markov
modelling approach followed. A relatively comprehensive coverage of basic material is given
for reference purposes from later chapters as well as to at least partially document the
algorithms used in the development of the Hidden Markov Toolkit for Speech Recognition
(HMTSR) software by Darryl Purnell and the author during their Ph.D. studies. Also as
part of the background, Chapter 2 contains a discussion of previous research in the field
of multilingual speech recognition, which sets the stage for the research undertaken in this
thesis. Chapter 3 treats techniques commonly used for speaker adaptation as their use
for cross-language adaptation is extensively evaluated in a later chapter. Improvements
to current techniques are also proposed. Discriminative learning methods, especially the

minimum classification error (MCE) technique, are discussed in depth in Chapter 4, as well
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as a cost-based extension of the MCE framework. Chapters 3 and 4 form the basis for
the presentation in Chapter 5, which describes strategies for cross-language use of acoustic
information, as well as factors to be considered in applying both speaker adaptation methods

and discriminative training methods to cross-language adaptation of acoustic models.

Cross-language English-Afrikaans experiments on the SUN Speech database [12] are pre-
sented and discussed in Chapter 6, showing large improvements in recognition performance
through cross-language re-use of acoustic information. Chapter 7 extends the results from
Chapter 6 to include cross-language use of acoustic information between the TIMIT [31]

d SUN Speech databases. Finally, the conclusion is presented in Chapter 8.

1.6 Contributions of thesis
original contributions presented in this thesis include the following points.

‘o We present a framework of strategies and techniques for cross-language use of acous-
tic information [32]. New strategies are proposed, such as first training models on
pooled source and target language data, followed by adaptation, as well as a cross-
language data augmentation approach which transforms source language data for a
better match with target language data. We use the strategies to apply specific tech-
niques from the field of speaker adaptation and discriminative learning and show that

our newly proposed approach of pooling-adaptation leads to superior performance for

same-database experiments than source model adaptation.

e Our complete implementation, evaluation and comparison of Bayesian and transformation-
‘based adaptation techniques (initial results published in [33, 34]), as applied to the
task of cross-language adaptation, provides insights as to the conditions under which
the algorithms perform well. Previous studies only adapted Gaussian mean parame-
ters and we show that adaptation of Gaussian variance and other HMM parameters

lead to large performance improvements. As part of describing Bayesian estimation,
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we note that although MAP is almost exclusively and sometimes interchangeably used
for Bayesian adaptation in the speech recognition community, that alternative imple-
mentations defined by loss functions exist. Along with the well documented MAP
estimators, we also provide Bayes estimators for a mean square error loss function

and experimentally compare the approaches.

e We propose a technique that, in conjunction with MLLR transformation of the Gaus-
sian means, performs a full matrix transformation of the (diagonal) Gaussian variance
values based on the least squares estimation. The transformation is computed in log-
space, maintaining constraints on the variance values and minimising relative error in
the transformation. Our experimental results show that the proposed approach out-
performs standard MLLR, linear variance transformation and variance re-estimation

in all experiments.

o We implement the recently proposed MAPLR approach, which combines Bayesian
and transformation-based adaptation of Gaussian mean parameters. We use the same
concept to extend our log-space variance transformation technique to incorporate a
MAP-like term, improving generalisation and especially improving sensitivity of the
transformation with respect to the number of regression classes by reducing over-

fitting.

o We derive and implement a comprehensive version of the MCE algorithm, adapting
all HMM parameters, including duration modelling parameters in a unified framework
utilising both “true” class derivatives and the “false” class derivatives. We extend
the MCE framework to include a cost associated with each misclassification into the
misclassification measure. We derive equations to base the estimation of the cost of
- phoneme misclassification on word error rate. We show that the cost-based extension
to MCE achieves superior performance for multilingual model adaptation than the

standard approach in our experiments.

» We evaluate cross-language performance for a continuous speech recognition task and

show that cross-language use of acoustic information from the same or a different
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database can greatly improve the performance of a continuous speech recogniser be-
yond that achievable using only target language data. We present a feasible and useful
approach for the development of a speech recognition system in a new language when

only a limited amount of data is available in the new language.
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ffBackground.

- This chapter discusses in detail the background to the research that was performed for
é’this thesis. Firstly an overview is given of the theory of hidden Markov modelling that
I':w_,as applied. The basic notation is given and algorithms and equations that are required
for understanding the proposed ideas are discussed for reference from later chapters. This
section also serves to at least partially document the algorithms used in the development
of the Hidden Markov Toolkit for Speech Recognition (HMTSR) C++ software by Darryl
Purnell and the author during their Ph.D. studies. The software is included on the compact

disc inserted inside the back cover of this thesis.

Previous research in multilingual speech recognition is discussed next, focusing on how these
systems re-use acoustic information between multiple languages and specifically how cross-
language use of acoustic information has benefited the development of speech recognisers
in a new target language. Limitations of previous research is pointed out, in particular the
partial implementation of speaker adaptation techniques, leading us to consider improved

use of these techniques in following chapters.




University of Pretoria etd — Nieuwoudt, C (2000)

 Chapter 2 Background

2.1 Hidden Markov modelling framework

‘The main components used in the training and testing of the speech recognition system

that was developed are:

e feature extraction in which speech signals are converted into sequences of mel-scaled

cepstral coefficient vectors along with their time derivatives,

e training of HMMs, which includes fixed segment initialisation, Viterbi alignment

re-estimation and the expectation maximisation or Baum-Welch procedure,

e continuous speech recognition in which the feature vectors are matched using dy-

namic programming to a set of trained HMMs constrained by a finite state grammar.

‘We now proceed to discuss each of these items in detail, including various choices with
respect to parameters of especially the feature extraction process. The selection of para-
‘meters of the general system is included in this background section on HMMs because the
values of these parameters are fairly standard and are not considered to significantly impact

the experiments discussed in a later section.

2.1.1 Feature extraction

The speech signal is blocked into frames of 16 ms spaced 10 ms apart - delivering 6 ms of
lap between successive frames. This choice has been empirically determined to deliver
od performance. At a 16 kHz sampling rate, which is used in all experiments, each 16 ms
e consists of 256 samples. Hamming windowing and a fast Fourier transform (FFT) is
ormed on each frame and the result is multiplied by its complex conjugate to deliver a
valued power spectrum. The next step is applying a mel-spaced filter bank to produce
nel-spaced filtered coefficients. The logarithm of each coefficient is taken and a discrete

ne transform (DCT) is performed on the coefficients to deliver what is referred to as
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mel-scaled cepstral coefficients or MFCCs. In all experiments 13 coefficients are used as we

have previously found this to deliver good performance for a connected digit recognition
task [35] performed with the HMM software and is also commonly reported in literature.
lemporal information about the speech signal is incorporated by estimating first and second
time derivatives for each of the 13 coeficients. A second order linear regression is applied
to each set of five consecutive coefficients in order to obtain a smoothed estimate of the first
and second time derivatives. The observation vector x thus consists of the 13 mel-scaled
cepstral coefficients plus first and second order time derivatives, totalling 39 elements at

each frame time. A detailed discussion of issues concerning the feature extraction process

can be found in [26].

2.1.2 Continuous density hidden Markov models

A continuous density hidden Markov model (CDHMM), hereafter referred to simply as an
HMM, signified by A, is described by two sets of parameters:

e a state transition matrix A = {a;;} reflecting the probabilities of making transitions

from each state 7 to each other state 7 and

' a continuous state observation density function b;(x) reflecting the likelihood of ob-
serving observation vector x in state j.

5

To simplify the equations we consider the initial state probabilities to be given by ag; for

h state ¢, without any loss of generality.

The models are first order HMMs since each transition probability to a next state depends

y on the current state, and not on which states were previously traversed. Left-to-
right HMMs without skipping transitions are commonly used for speech recognition and
he connectionist strategy we use for the purpose of this thesis. The state transition

probabilities a;; satisfy the constraints Z?;l a;; = 1 and for left-to-right models without
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'f]ii_pping transitions the additional constraints are that a;; # 0 only for j =i or j =1 + 1.
The assumption with left-to-right modelling is that observation sequences corresponding to
the same HMM traverse the same discrete sequence of statistical properties. This agrees
with our phonetic understanding of speech as exhibiting piecewise continuous behaviour to
a large degree. This unfortunately does not explicitly allow for the modelling of too much
variation in the way that the same word may be pronounced other than for time warping

of the speech signal, but at least leads to very efficient implementation.

The Markov models are termed “hidden” due to the fact that the states are not observed
directly in the observation sequence, but rather indirectly through modelling of observation
distributions in each state. Gaussian mixtures are used to model the observation probability

density functions. The p.d.f. of observation x; at time ¢ in state j takes the form

K

bj(x¢) = Z cipN x4, Hi Zjk]

k=1

s (2.1
=) cju(2m) T2 8 |72 (D btsn ) TG (g =)
k=1
where K is the number of mixture components, D is the number of feature vector elements,
¢, is the weight associated with the kth mixture in the jth state, A is the multivariate
normal density, ;. is the mean vector of the kth mixture in the jth state and X4 is the
covariance matrix of the kth mixture in the jth state. To greatly reduce the number of
parameters and since the elements of x; are largely uncorrelated, we make the assumption

that X, is diagonal. The observation density function becomes

K D
bixe) = 3 eii [ [(2m)~H205) e Cawsul 2oy (2:2)
k=1 =1
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'2.1.3 Duration modelling

= . "
It is commonly accepted that the duration modelling aspect of the HMM approach to speech
recognition is a major weakness. Conventional HMMs implicitly model state duration by

a geometric distribution, i.e.

p;(7) = a1 (1 — ag), (2.3)

where a;; is the auto-transition probability in state j and 7 is the duration in number of
frames. The geometric distribution is not able to model individual state duration probabili-
ties well since it can only represent an exponentially decreasing probability density function.
EXPIiCi‘t duration densities for states may be specified and in such a case the models are

called semi-Markov models [26]. State duration density may be modelled with estimated

discrete duration probabilities d;(7),7 = 1,2,..,7,, for each duration up to a maximum

duration 77 . This approach has the disadvantage that a large number of parameters have

mazr”

to be estimated. Modelling duration with parametric functions greatly reduces the number
\
of parameters. A popular function for modelling state duration probability is the Gamma

distribution
— ﬁa a—1_—fA1
plr) = =7, (2.4)

which has only the parameters o and 3 that have to be estimated for each state duration
model. Initial algorithms for duration modelling were very computationally expensive [26],
and a post-processing approach [36] was often used. The post-processing method uses
duration metrics to re-score a number of the best paths obtained from a search process. This
approach fails where the best re-scored path is not amongst the obtained best paths, and
is thus not re-scored. Another approach that was more recently investigated was the use of
the so-called expanded-state HMM (ESHMM) [37, 38] that provided moderate performance

provement, but at the cost of between 2-times and 4-times speed degradation.

An efficient approach towards incorporating duration modelling into the search process has
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 proposed by Du Preez [39] and a similar approach was later independently proposed by
ein [40]. Both approaches add a duration metric at each time frame to automatically

a state duration probability weighted path in a computationally efficient manner,

ing only marginal speed degradation. The method proposed by Burshtein was used in
experiments where applicable. Implementation of the method is discussed in the next

jon along with the algorithms used for the training of HMMs.

Hidden Markov model training

vent large vocabulary continuous speech recognition (LVCSR) systems make use of
models to efficiently capture the necessary acoustic information for modelling large
cabulary speech through use of pronunciation dictionaries. Separate HMMs are used to
ach phone and if a sufficient amount of data is available for training, head-body-tail
licit trigram-type phone models are used. An HMM is also used to model silence
beginning and end of utterances and between words. A clustering method, often
n data likelihood e.g. the Bayesian information criterion method, is used to decide
h trigrams to group together to constitute the set of phones. In this study only
hones, which do not take context into account, are used since the experiments mostly
£ ﬁise enough data to warrant the training of more complex models and also because of

r computational cost associated with the adaptation of large numbers of context

ent model parameters.

meters that have to be estimated in training an N state HMM are:

1 1 independent transition probabilities (since a; ;11 = 1 — ay; for the left-to-right

model and other off-diagonal values are zero),

'K mixture weights,

"D mean and covariances values and

duration parameters if duration modelling with the Gamma distribution is used.
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Methods used for training HMMSs are usually based on the mazimum likelihood principle.
[he maximum likelihood estimate Ay, of the parameters of an HMM given an observation

iience X = (x1,..,X7) is given by the mode (maximum) of the likelihood function
AML = Iﬂ)E\j.X f(X|A) (25)

The ML estimate is usually found by setting the derivate of either the likelihood function or
l'o'_g~1ikel'1h00d function with respect to the parameters of the model to zero and solving

for the ML estimate of the parameters.

likelihood of a sequence of observations given an HMM denoted by A has the form

'y K
FKIN) o YT T [Gaecsa D cank N (s g D), (2.6)
q t=1 k=1
summation takes place over all possible observation sequences q. ML estimation of
e parameters of an HMM is not trivial because a sufficient statistic of fixed dimension
not exist for observations of an HMM. The likelihood function is not expressible in
jerms of a fixed number of parameters and thus cannot be maximised easily. The lack of
cient statistic of fixed dimension is due to the hidden process of an HMM, namely
act that state and mixture occupancy is not observable. This lack of observability
, HMM estimation to be termed an incomplete data estimation problem. The solution
use an iterative procedure such as expectation maximisation [41] procedure. The
rocedure estimates state and mixture occupancy sufficient statistics in a first part.
the availability of the calculated state and mixture occupancy statistics together with
bservation sequence, the problem becomes a complete data estimation problem. This
es the computation of the ML parameter estimate in the second part for the complete
a problem. The EM procedure consisting of the calculation of occupancy statistics

ed by ML parameter estimation is repeated until convergence or a fixed number of

ons have occurred.

: system we use iterative estimation in each of three different training stages, namely
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fixed segmentation initialisation in the first stage, then segmental training (encompassing
Viterbi-alignment and ML estimation) and finally training with the standard EM or Baum-
Welch algorithm that computes statistics with the forward-backward algorithm and uses
them for ML estimation. Our three stage training process progresses from simple, com-
putationally inexpensive initialisation to the more complex and slower EM training. The

three training stages are discussed next.

Initialisation

The parameters are estimated by examining the distribution of features in training data.
‘The state transition matrix A is initialised according to left-to-right constraints. To boot-
strap the parameters, each observation feature vector sequence corresponding to a single
M is subdivided into as many segments of equal length as there are states in the HMM.
The mean and variance of the first Gaussian mixture component in each state is initialised
0 the sample mean and (diagonal) covariance of the corresponding speech feature segments.

ter initialisation the training process commences.

Segmental training

In segmental training the Viterbi [42] algorithm is used to compute the single most likely
f*l:e-alignment of each observation sequence. Given the estimated alignment, the com-
e data modelling problem is solved using maximum likelihood estimates of the mixture
weights, means and covariances of the Gaussian mixture models at each state and of the
nsition probabilities. Alignment and parameter estimation is repeated iteratively. We
sive details of the Viterbi dynamic programming algorithm since it is used in the imple-
tion of the adaptation algorithms and is also used for both the training and testing

MMs. We present the Viterbi algorithm mostly following the syntax from [26].

n HMM, the Viterbi algorithm finds the most likely state sequence q = (¢, G2, .-, 4r)
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3 given observation sequence X = (x;,Xy,..,X7) as well as the likelihood associated

| this sequence
LK [X)e= max P(X,q|A)
= P(X,q|A) 2.7)

T

= [atit-m‘: bi?'f. (X;)] ;
=1

t of the definition of the Viterbi algorithm we define

®;(t) = max Plqigs, .., G-1,% = J, X1X, .., X¢| A], (2.8)

q1,92,--y0t—1

ghest probability along a single path, at time t, that accounts for the first ¢ observa-

nd ends in state j. By induction, the Viterbi recursion is defined as

@j(t + 1) = Inax [fbi(t)az-j] bj(xt+1), 1 S j S N. (29)

0<i<N

obability in the final state at the final time frame, ® ~(T), indicates the score for

path followed via

’ij(t + 1) = arg max [@i(t)aij]. (210)
0<i<N

th can be backtracked from ¢ (T) to deliver the highest scoring path g.

in Equation 2.9 we have included transitions from state 0 to the current state to
ate the initial state probabilities. To initialise the Viterbi search for left to right
- we define ©y(0) =1, ®,;(0) = 0,7 # 0 and ®y(t) = 0,¢ > 0. When we discuss the
tation of successive Viterbi searches in a later section, the value associated with

zero (®y(t)) for ¢ > 0 might not have the value 0, but may represent the final value of
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a previous level in the search, e.g. q)%) (t) for highest scoring model r in the previous level.

=i
NS

The training of parameters takes place after statistics from an entire batch of training
erances are collected. The result of each application of the Viterbi algorithm is a state-
gned set of observation features. After statistics have been collected for the batch of
ing samples, new mean, variance and transition probability values are computed for
he Gaussian mixture models. Training using Viterbi-alignment is also called segmental
ing since the observation sequence is segmented, with each segment being used to

ipdate the parameters of a particular state. For the update, we first need to define the

rior state probability variable
7i(t) = Plg: = 7|X, A), (2.11)

1 expresses the probability of being in state j at time t, given the observation sequence
the model A\. When segmental training is used, 7;(t) is simply equal to 1 when
i and zero otherwise, i.e. v;(t) = 0(g — j) where § denotes the Kronecker delta
tion. Since we use Gaussian mixture distributions, we proceed to define the posterior
e observation probability variable

t) =y e P (2.12)

xpresses the joint probability of being in state j at time ¢ and observing mixture k,
the observation sequence X and the model A. Finally, we define &;;(#), the probability

g in state 4 at time ¢ and in state j at time ¢ + 1 by

&i(t) = Plg =1, g1 = §|X, A), (2.13)

can define the update equations for the coefficients of the mixture density in
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oy,
aij(n) = %ﬁ (2.14)
- T )
iy ) S
S Ywlt)xe
pik(n) = ﬁ (2.16)

_ T k() () — %) (g () — %4)"

Zf:l 'ij(t)

3,k (n) (2.17)

plementation of the segmental training process is now elaborated in more detail.
; lfult of the initialisation process described at the start of this section, only the first
component has non-zero values after the first iteration. If after an iteration, there
tures with zero mixture weights and sufficient data is available to warrant splitting,
ponent with the largest mixture weight is split to produce two components with
only slightly offset from each other in the direction of maximum variance. This
of alignment, re-estimation and mixture splitting is repeated iteratively until either

ence occurs, or a predetermined number of iterations have been completed.

;ation maximisation

e Baum-Welch method, which is an implementation of the expectation maximi-
or EM method for HMMs, to perform final training of the HMMs. Each HMM
ed using the set of speech segments accorded to it in the labelling process. The

Ich method iteratively updates the means, covariances, mixture weights and state
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sition probabilities at each state in much the same way as done with segmental train-
but uses the forward-backward algorithm instead of the Viterbi algorithm to obtain
ics from the training utterances. Once the sufficient statistics have been computed,
ations 2.14-2.17 are used for the update. The implementation of the forward-backward
ithm is not discussed here as we do not use it for implementing the adaptation ap-
es (i.e. we only use it for initial model training). We use a segmental implementation
I the adaptation algorithms since it is faster and is the method most commonly used in
ch on adaptation methods. Detail regarding use of the forward-backward algorithm

arameter update using the EM method can be found in [26]

ion model training

training of only the duration parameters is done through the Viterbi state alignment
Ms to the utterances they represent. For each alignment, the sum of the first and
nd moments of the number of frames corresponding to each state in each HMM is
- The empirical expectation values of the mean(E{r}) and variance(E2{7}) of

ation can be calculated and used to obtain the Gamma distribution parameters (&

through
gk TR (e grotnililidol (215)
VAR(r} VAR(r}

his concludes the training process. In the next section we discuss the implementation of

6 discuss the incorporation of duration modelling into the Viterbi algorithm. Du-
odelling is implemented according to the synchronous frame by frame method

by Burshtein [40]. The method modifies the Viterbi recursion (Equation 2.9) by
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rating a duration penalty C’{'j of making a transition from state i to state j at time
+1 within the term that is maximised by the recursion. When written in log format for
entation efficiency, the Viterbi recursion becomes

®;(t+1) =

og%}]{v[@i (t) + log(as;) + log(C; ;)] +logb;(x:41), 1<j<N. (2.19)

mpute the duration penalty, the method keeps track of the number of successive self-
ons in each state. The duration D;(t) of a state i at time # is equal to one plus the
er of successive self-transitions in that state. Let 1; denote the duration at which

amma distribution p(7) at state ¢ reaches a maximum value. The duration penalty

hen given by

’

0 =, Dz(t) < M;

e _ |08+ ) gD 1=, D.(0) > b -
IOg(D,(t)) i 7'4 7 Dt(t) < M;
klog(Ml-) i # 7, D;(t) > M;.

orking of the method can be understood in the following way. The duration prob-
ensity function is used to modify the probability of a transition occurring, based
duration spent in the state from which the transition occurs. When a transition
 a different state is taken, the exact duration is known and can be used to modify the
."t'y.. In considering self-transitions, however, the penalty can not be incorporated on
.z’by-fra.me basis since the eventual duration in a state is yet unknown. Incorporating
ration probability at each frame as if it were the last time step in a state would pe-
itial self-transitions in a state — causing an incorrect bias towards transitions from
vious state. Therefore the method should not penalise self-transitions until the peak
L probability is reached in a state. After the point of peak duration probability,

 penalty is applied in accordance with the duration probability density.
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e implementation of the level building algorithm. When recognition of a sequence of
ken words is attempted, it is desired to find the best match across all possible sequences
word and pause models. An exhaustive search of depth V, containing R possibilities
ch level leads to RV Viterbi alignments. Even for a simple task like connected digit
ition it leads to 10'° Viterbi alignments (if pause models are ignored) for a string of
most 10 digits - which is not computationally feasible. The level building algorithm [26]
atically reduces the computational cost by performing only R searches at each of the

els, thus effectively V' x R Viterbi alignments.

evel building algorithm works by computing at each successive level I the most likely

inal state probability (P}) at each frame ¢ over all R models in the search path

P = max [ (1)) (2.21)

“a level has been completed, the final state probabilities are used as initial state

probabilities for all Viterbi searches at the next level, i.e. we now set ®f(¢) = P},1 <r < R.
process continues until the desired number of levels have been searched. The most

equénce ends at the level given by

arg max(P}). (2.22)
1<I<V

' .fthe most likely final state at the final frame it is easy to backtrack the complete path
ved through all levels provided that the backtracking information from each individual
bi alignment has been retained. Note that the most likely solution does not necessarily
itself at the last level. The level building technique can thus be used to find unknown
th word strings up to the maximum depth for which was searched. In continuous speech

n experiments we set the maximum depth large enough so as to not influence the

rel building algorithm was initially used for experiments, but was later superseded
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he use of a frame synchronous trellis search [43] using the Viterbi algorithm, yielding
entical results with less computational cost. With the general HMM system background

vered, we turn to previous research in the field of multilingual speech recognition.

2.2 Multilingual speech recognition

ly the similarities between the phones of different languages, one has to examine the
telatively new field of multilingual speech recognition. Multilinguality refers to the property
m to be capable of understanding speech input in more than one language, i.e. it
both the acoustic and so-called language modelling of the relevant languages. As
coustic modelling in the multilingual field is concerned, research ranges from systems
 have a unified architecture, yet have separate models for each language to systems that
increased numbers of acoustic parameters. Language identification systems are also
nultilingual systems in a certain sense, but focus mainly on language models to perform
lination between languages with multiple acoustic models used primarily to extract

equences, but also to provide some discriminative information [44, 45].

i translation systems from the Verbmobil [10] project, specifically the JANUS [46]
, are amongst the first applications of multilingual speech recognition. The JANUS
is architecturally language independent and each speech recognition module is load-
models for the specific language it has to recognise. It therefore has a common

delling structure for speech from different languages, but does not share acoustic infor-

between languages.

d of multilingual information systems has also been actively researched. In the
ment of the MIT VOYAGER [14] multilingual system, separate context-independent
- models were trained for English, Japanese and Italian. The English version used 58
based on the labels used in the TIMIT [31] database and was trained with data from

 database. For the Japanese and Italian versions, the models were initialised by
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1 from their most phonetically similar English counterparts. This was reported
e further training of the Japanese and Italian models on language specific speech
nly transcribed but not aligned, thus saving the great amount of work needed
gn the speech. The Mandarin Chinese version of the GALAXY system, called
llowed on the VOYAGER system and also used English models to seed near-
andarin acoustic models. Another large multilingual speech recognition system
OS Callhome system [15]. The system performs task specific speech recognition
guages using the same architecture, but using separate acoustic models for

in question.

tstrapping of new target language recognisers

been performed to quantify the effect on system performance of the cross-
trapping of acoustic models. Wheatley et al. [16] compared the performance
acoustic models are bootstrapped with English acoustic models trained on
t-start training of the Japanese models, as well as initialisation of the Japanese
h a limited number of hand-picked representative examples. The application was
git recognition system with some control words and was modelled with whole
In the case of bootstrapping with English models the Japanese word models
with sequences of English phone models. Compared to the flat-start ap-
ss-language bootstrapped models and the hand-picked representative exam-
s achieved better performance after 2 training iterations. After 10 iterations,
ed models exhibited a small improvement in overall performance over the
proaches. The authors also performed a cross-language smoothing experiment.
L small amount of Japanese data was used, smoothing of the final model by

tween English and Japanese models achieved slightly better performance

Japanese models directly.

. performed bootstrapping of a Japanese recogniser with models from a German

and showed bootstrapping to be an efficient method of initialising the target
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anguage models. In a subsequent study [17] a multilingual phoneme set comprising of
ollection of the language dependent phonemes of German, English, Japanese and
h was created and used to bootstrap recognisers in Chinese, Croatian and Turkish.

tstrapping was done through a five step process namely

1. the determining of a mapping of language specific phones to the multilingual set by

phonetic experts,
itialisation of the acoustic models according to the mapping,

naximum likelihood linear regression (MLLR) transformation of the models using
language specific data along with language specific linear discriminant analysis (LDA)

salculation and K-means codebook clustering,
our training iterations and

epetition of steps 3 and 4.

pping was shown to result in better performance than is achievable with flat start
g on target language data when only a few iterations of training is done. Schultz &
later also investigated a simpler form of bootstrapping by performing cross-language
[30] of acoustic models. Various monolingual model sets as well as a multilingual
VIMs were used as starting models for 2 iterations of Viterbi training on German
a. It was shown that using the multilingual phone set as initial model was slightly

to using 3 of the 5 languages (Turkish, Croatian and Spanish) and was far superior

1j:apa.nese and Korean initial models.

ootstrapping results discussed in this subsection indicate that cross-lingual models
e good initial models for training in a new language. None of the bootstrapping
Its, unfortunately, indicate a real advantage in terms of recognition rate of using cross-
ormation. The methods do, however, show the advantage of requiring fewer

iterations for convergence when cross-language seed models are used.
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2.2.2 Explicitly multilingual systems

acoustic information in a source language is used to bootstrap models for a new lan-
the source language data is only used to construct seed models for initial alignment,
labelled data and is not used in subsequent re-alignment and re-estimation of models
new language. In this case separate recognisers are realised for each target language.
' studies have explicitly used multilingual phoneme sets, in which case the eventual
Is exhibit characteristics of multiple languages. Kohler [48] studied isolated phoneme
tion on continuous American English, German and Spanish telephone speech. He
hat the sharing of acoustic information across languages leads to some performance
tion, but that a representation with fewer mixtures than that of the combined mod-
the three languages still delivered reasonable performance. Weng et al. [19] used
Gaussian codebooks across Swedish and English phones and reported that allowing
ing of data across phones from the two languages also did not improve performance,
10 a system capable of performing language identification as part of the decoding
Bonaventura et al. [20] performed experiments to quantify the performance of a
with a language-independent phonetic inventory on Italian, Spanish, English and
man words. Dissimilarity measures were proposed to enable automatic determination of
phones from the different language to merge into multilingual phones. Significant re-
1 of the total number of phones needed was achieved at the cost of some degradation

rmance with respect to language dependent phones.

ailed study covering five languages (Croatian, J apanese, Korean, Spanish and Turk-
ultz & Waibel [30] found that monolingual systems outperformed a system with
nultilingual acoustic models and the same number of parameters as the five mono-
/stems combined, by approximately 1% (27% versus 28%) in terms of word error
R). The reason given for the decrease in performance is that language indepen-
odelling decreases the precision of the acoustic models. In a study also covering
ages (French, German, Italian, Portuguese and Spanish) Kohler [21] found that a
gual approach to acoustic modelling yielded a 3.2% (14.2% versus 11.0%) increase
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Laverage WER for an isolated word recognition task and a 4.9% (43.7% versus 48.6%)

se in correct phone recognition rate compared to a monolingual approach.

performed by Uebler et al. [49] targeted performance improvement in a bilingual
ronment where L1 German and Italian speakers spoke both languages, producing L1
' German and Italian speech. The study found that a bilingual German/Italian
outperformed two separate monolingual systems on the test database of L1 and
German and Italian speech. The improvement of 1.2% (11.3% versus 12.5%) in WER
bilingual system is attributed to the large variation in accents and dialects of the

ers in both languages being better captured by the bilingual system than by the
onolingual systems.

esearch discussed so far in this section has focussed either on bootstrapping to avoid
nual labelling effort in a new language, or on creating shared multilingual phone sets
cilitate integrated multilingual recognition. The latter approach has mostly lead to a
lation in performance over monolingual systems, except where L1 and L2 speech were
in an application [49]. Little research has been performed with the goal of improving
‘mance in a specific target language through explicit use of cross-language acoustic

tion. Research conducted with this specific goal in mind is discussed next.

Cross-language use of acoustic data for new target lan-

guages

ntura et al. [20] performed experiments where it was assumed that little data was
> for training Spanish models. The application was an isolated word recognition
with a vocabulary of 70 words. It was found that the use of phone models trained
Italian and Spanish data, i.e. on the pooled multilingual data, lead to between
(12.9% versus 13.5%) and 3% (20% versus 23%) reduction in WER over a system
only on the Spanish data, depending on the amount of adaptation data used.
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f on-line Bayesian learning for cross-language adaptation was investigated by Bub
d applied to Slovene isolated digit recognition. The method used the on-line
a posteriori (MAP) algorithm, updating only the Gaussian means via linear in-
etween the original and sample means - i.e. the Gaussian variance, mixture
ransitions probabilities from the original models were not changed. The adap-
nolingual and a multilingual (German, American English and Spanish) HMM
Slovene was considered. Results show that MAP adaptation on 646 utterances
Slovene digits improved the performance of the baseline multilingual HMM
76.5% to 85.0%. Unfortunately no comparable results for direct training on the
data are given. The WER of 15% is also high for an isolated digit recognition

mvestigated the cross-language use of multilingual acoustic models (trained on
lish, Italian, French, Portuguese and Spanish) in developing a German speech
system. A bootstrapping method from Schultz & Waibel [17] was compared to
mean-only MAP adaptation on German adaptation data and it was found
le adaptation data, the cross-language adaptation approach achieved better
an a bootstrapping or a flat-start approach. When most of the adaptation
5 used, a flat-start German system was found to achieve the best performance. The

oor performance of the adapted system when more data is available is probably
fact that only the mean parameters were adapted- since it is known that the
the MAP algorithm is asymptotic with the task dependent performance as
f data increases (Lee et al. [24]).

1 we discussed the various approaches that were followed in previous research
al recognition. Some adaptation algorithms, notably MAP and MLLR were
1 a limited fashion. Proper use of adaptation algorithms presents the logical
1 to the research covered in this chapter. In the next chapter we therefore pro-

adaptation algorithms in depth to apply these methods for cross-language
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Speaker adaptation theory

This chapter discusses previous research in speaker adaptation, but places it within the
context of our topic of cross-language adaptation. Reasonably detailed derivations of algo-
1ithms are given, especially when understanding of the algorithms are necessary for their

Pproper use for cross-language adaptation versus for speaker adaptation as such.

3.1 Background on speaker adaptation

adaptive training uses large amounts of existing information from many speakers to improve

he estimation of model parameters when faced with little data from a new speaker.
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3.1.1 Speaker variation

The reason for performing adaptation is that there exists variation between the speech of

;ﬂiﬂ'erent speakers. This variation can be classified into two main categories [52]:

e acoustic level differences, including

— realisational,
— physiological and

— durational differences, and
e phonological level differences, including

— lexical and

— stress differences.

In this thesis we are mainly interested in the former category of speaker differences, or more
accurately, in the correspondence between variation at this level across different languages.
""*ﬂ1 the degree that the acoustic level speaker differences are not language specific, we
expect direct cross-language re-use of acoustic information to be useful. In terms of a
speech recognition system, the latter category of phonological differences between speakers
15 dealt with at the language (grammar) and pronunciation modelling level and is thus very
language specific. However, since we deal with acoustic modelling, phonological speaker

differences are not of direct importance.

Realisational factors comprise different methods of using the articulatory organs to produce
nted sounds. Physiological factors influence the generation of sounds by constraining the
ssible range of sounds that can be generated by an individual. For example the physical

dimensions of the articulatory organs and notably the length of the vocal tract is known to
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3.1.2 Speaker normalisation

Speaker normalisation groups together techniques that attempt to remove, or at least re-
duce, the differences between the speech of different speakers, while retalning the charac-
teristics that distinguish the different phonetic categories. Vocal tract length normalisation
(VILN) is one such technique that estimates vocal tract length and computes a spectral
ft accordingly [53]. An important aspect of normalisation is taking into account not only

the characteristics of the particular speaker, but also being able to compensate for recording

A'h a different frequency transfer function or by frequency filtering due to a transmission

\T

Normalisation is usually applied to the speech signal, or at least to the observation vector

e spectral differences between training speakers, resulting in more accurate models
: ‘When considering the use of multiple databases for cross-language use of data it may
portant to apply a normalisation technique such as CMS to take care of recording
el mismatch between the databases. Normalisation will, however, also remove overall
al differences between the languages, influencing the distribution of feature vectors for
all phones. The languages and databases concerned may differ significantly with respect to
the phones and the relative quantities of these phones they contain, causing application of
to entire databases to be biased. A solution may be to weight the contribution of the
ssociated with each individual phone in computing the cepstral mean for a database.
liscuss this topic in more detail in Section 5.1 where aspects regarding cross-database

e of acoustic information are discussed.

alisation overlaps to a large degree with speaker adaptation, with normalisation usu-
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ally seen as the application of adaptation techniques at the feature level, rather than at the
- model level. Some types of model adaptation, such as transformation-based adaptation,
may implicitly perform normalisation, such as done by CMS, with an offset term and can
approximate the spectral shift performed with VTLN in the cepstral mean transformation
‘matrix [55], thus further blurring the distinction between adaptation and normalisation.
Other adaptation techniques, such as Bayesian or discriminative training-based adapta-
tion can not efficiently remove bias and thus the use of normalisation such as CMS in
conjunction with adaptation may still be important to achieve good recognition perfor-
mance. Zhao [56] performed exf)eriments showing that acoustic normalisation (via CMS)

followed by Bayesian adaptation achieved improved performance compared to performing

er adaptation can be applied in an on-line or an off-line mode. For dictation systems
ker adaptation can generally be performed in off-line or static mode, with adapta-
occurring after initial enrolment and at intervals after collection of more data. For
telephone-based systems, adaptation, if any, has to be applied on-line or dynamically on a
per-call basis. The main difference between static and dynamic adaptation is in terms of
eed for real-time implementation. Real-time constraints force dynamic adaptation to
erformed on very little data, typically a single utterance, while static adaptation such
used for dictation systems, may use perhaps 30 minutes of speaker specific data. On-line
methods use incremental techniques that typically only slightly change model parameters
each additional utterance used, while off-line methods perform batch-mode parameter
ipdates that may completely re-estimate parameters. Cross-language adaptation is per-
ormed off-line since real-time constraints are not applicable. On-line adaptation may of
ourse still be used after this to further increase performance when the system is applied

) specific speakers.
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.

Another important aspect to take into account is whether adaptation will be supervised
or unsupervised. In supervised adaptation the adaptation speech has been labelled, or at
least a transcription of the adaptation speech is available. In unsupervised adaptation,
the speech to be used for adaptation is unknown and has to be recognised first before
it can be used for adaptation. Chapter 2 discussed cross-language use of bootstrapping
methods where transcriptions of the data in the target language were available, but the
data was not labelled at phone level. Completely unsupervised cross-language adaptation

is probably not feasible since the mismatch between the models and data would probably

e too great for recognition in the target language to give acceptable results for further

ning or adaptation.

.4 Categories of speaker adaptation

er adaptation techniques have previously been classified into three categories [54]

(i) speaker classification, (i) spectral transformation and (iii) speaker adaptive
ation of model parameters. We use a similar structure for our discussion of speaker
lon techniques, but consider the transformation category to encompass newer tech-
using transformations of model parameters and not only spectral or feature space
mations. Furthermore the third category of speaker adaptive re-estimation is quite
d we limit ourselves in this chapter to the discussion of Bayesian adaptation tech-
5. A further field only recently applied to speaker adaptation, namely discriminative

, is discussed in the next chapter. An overview of the three categories of

® speaker classification,
 transformation-based adaptation and

 Bayesian adaptation

fiven next.
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Speaker classification attempts to identify a specific set of models that best exhibit the
characteristics of a new speaker and uses those models to perform recognition. The speaker
classification category is of little interest to our research as it cannot change the character-
istics of the acoustic space except to cluster it into segments. It is unlikely that significant
overlap will occur between the clusters of speakers in different languages and even if there
were significant overlap, the method would still only be useful in terms of handling speaker
specific characteristics and not performing any adaptation to the new target language. The
other two categories are more interesting to our research as they both can change source

.,:language model parameters in a structured way to better reflect the characteristics of the

target language.

‘Transformation-based adaptation entails computing a transformation of pre-trained model

Pparameters to better fit the speech of a new target speaker. This type of adaptation has

between the pre-trained model and the target speakers’ speech in the same way that would

distribution expressed by the current model and the feature distribution of the target s-
peaker. This paradigm is well suited for the removal of correlated noise between source and
target parameters. In contrast, Bayesian learning does not assume correlation with respect
0 changes from a current model, but assumes that prior knowledge exists about the distri-
bution of the model parameters. Observations from a new speaker are treated as adding to

the prior knowledge of the parameter distributions, thereby improving the estimate of the
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parameters. We expect Bayesian methods to work well in an environment where we have
reasonably robust models in general, but which may need complex fine-tuning to achieve
improved performance for a specific speaker or environment. The next two sections discuss

in detail the implementation of Bayesian and transformation methods used in this thesis.

3.2 Bayesian adaptation

ofa parameter into an a posteriori density, improving the estimate of the true value of the
rameter and converging to the true value as the amount of observations increases. In
lan estimation, the unknown, but desired p.d.f. p(x) is estimated by using the observed
X = {xi,...,x,} and integrating over the parameter vector 0, which is considered a

om variable taking values in the space ©. The integral is expressed by [25, p. 51]

p(x/X) = /@ p(x, 6X)d6 -
3.1
= [ n(xlo)p(6ix)do.

g Bayes rule, Equation 3.1 can be written, using the notation g(@) for the prior distri-
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bution and f(X|@) for the likelihood function, by

[(X[0)g(6)
p(x|X :fpx()———dﬁ, 3.2
(x/X) e(|)p(X) (32)
where the observation probability, p fe (X|@)g(0)d8, is a constant that normalises

the posterior density function. In practice Equation 3.2 does not offer a computation-
ally feasible solution with current speech modelling techniques and computer technology
due to the integration term. However, if p(8|X) peaks very sharply about some value 8,

Equation 3.2 may be approximated by
p(x|X) ~ p(x|6). (3.3)

This is especially applicable according to the Bayesian learning paradigm described by
Duda & Hart [25, p. 54], which states in general that as the number of observations from a
given distribution increases, the posterior distributions of the parameters peak more sharply
around the true values of the parameters, ultimately approaching Dirac delta functions at
the true values of the parameters as the number of observations approaches infinity. In this

case the approximation is therefore entirely applicable.

However, even if the posterior parameter distribution is not sufficiently peaked, to reach a
computationally feasible solution, it may still be necessary to estimate a single parameter
alue 6 for use in place of the integration over the parameter space of Equation 3.2. The

n(

next section discusses a procedure to estimate such a parameter.

3.2.1 Bayes estimators

Because Bayesian methods consider parameters to be random variables, distributions of
neters are used, rather than fixed values. For efficiency, a single suitable value for
ihe parameter may need to be estimated and for this purpose an estimator is used. The

jorm of the estimator is not prescribed in Bayesian learning and remains to be decided by
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the statistician. The most important requirement of an estimator ¢ is that it delivers an
estimate 0(X) (based on the observed data X) that is close to the actual value a of the
parameter € in an experiment. A sensible way of determining an estimator is by specifying a
loss function L(a, 9) which measures the loss or cost when the true value of the parameter
is @ = a and the estimate is §. The Bayes estimator [57, p. 275] is then given by the

function ¢*(X) that, for every possible value x of X, delivers the minimum expected loss,

E[L(8,6"(X))|X] = e 9)X], (3-4)

where the unknown value @ of @ takes values in the space O.

of @ for which E[(@ — )7 (6 — 6)|X] reaches a minimum value. The Bayes estimator

for the squared error loss function is found by finding the root of the quadratic, i.e.
4.
00
i[E[GTmX] — 20" E[0]X] + éTé] —H
o0

E[(6 - 6)"(6 ~ 8)|X] =0

—2E[8]X] +20 = 0
and thus the Bayes estimator is simply equal to the expectation value of the parameter 6,
§*(X) = 8 = E[0|X]

- [ 6-nieix)ao (3.5)

B f(X]8)g(6)
_Le p(X) 4
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which in turn equals the first moment of the posterior density function f(X|8)g(8)/p(X).

We refer to the Bayes estimator of Equation 3.5 as the MSE estimator in subsequent

discussions since it produces the minimum squared error (MSE) solution to the Bayes loss

function.

Other loss functions exist and may lead to different Bayes estimators, such as the absolute
error loss function which leads to the Bayes estimate being equal to the median of the
posterior distribution [57, p. 277]. An alternative to using a loss function in the Bayesian
framework is to simply use the maximum value of the posterior distribution as the esti-
mate, which in general will differ from the mean for asymmetric functions. This method is

discussed next.

MAP Bayes estimation

Maximum a posteriori (MAP) estimation uses the parameter associated with the maximum
a posteriori probability as the Bayes estimate. The MAP estimate for a parameter 6, given
prior distribution g(@) and observation sequence X = {x,..,X,} is given by the mode of

the posterior density function, i.e.
Orap = arg gnaxp(9|X) = arg ;naxf(XIG)g( ). (3.6)

If g(8) is considered fixed, but unknown, also known as a non-informative prior, then there
is no knowledge about 6 and the MAP estimate is equal to the maximum likelihood (ML)
estimate. We thus consider the selection of a suitable informative prior. The choice of a prior
distribution is predicated as much by its suitability for expressing the prior distribution as
by the possibility of deriving a solution for the Bayesian/MAP estimation problem. Similar
to ML estimation, the computation of the MAP estimate is relatively easy when the family
of p.d.f.’s {f(-|0),0 € O} possesses a sufficient statistic of fixed dimension. For HMMs in
the incomplete data modelling problem this is not true, but is addressed by iterative methods

that solve the complete data modelling problem for which a sufficient statistic exists. Given
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 that the family {f(:|0),8 € ©} possesses a sufficient statistic t(X) of fixed dimension for
 the parameter 8, f(X|@) can be factored into two terms f(X]0) = h(X)k(8,#(X)) such that
h(X) is independent of @ and (6, £(X)) is the kernel density, which is a function of @ and
depends on X only through the sufficient statistic t(X). If the prior density is thus chosen
in a conjugate family {k(-|¥),v € ¥} which includes the kernel density of the likelihood
function f(-|@), the MAP estimate is greatly simplified since the posterior density is then
of the same form as the prior, i.e. k(8|9") o< k(8|4)k(0,4(X)). With such a choice of prior,
the procedure for finding the MAP estimate is similar to solving for the ML estimate - i.e.

both find the mode of the kernel density.

.Having a simple posterior density also eases implementation of other Bayesian estimators

such as the MSE estimator which finds the mean of the posterior distribution. For sym-

the MAP and MSE estimators is considered. We do not expect the difference between the
estimates produced by the methods to be large, but still wish to quantify the difference.

With some basic theory behind Bayesian estimation now covered, we proceed to discuss the
implementation of Bayesian adaptation, and more specifically MSE and MAP adaptation for
both the (single) Gaussian observation density case as well as for the more general Gaussian
mixture distribution case. We assume that we are solving the complete data modelling
problem as we shall discuss the implementation of the iterative estimation algorithm [24, 58]

for the incomplete data modelling problem for HMMs in Section 3.2.4.

3.2.2 Gaussian density parameter distributions

I this section it is assumed that a sample from a Gaussian distribution is available and it

5 desired to derive the posterior distributions of the parameters of the Gaussian, i.e. the
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mean and variance of the Gaussian. The derivations closely follow DeGroot [59].

Mean-only adaptation

The simplest and also most used approach for Bayesian adaptation is to assume a normal
distribution with mean m and precision 7 (inverse of the variance) as the prior for the mean
Parameter . (to be estimated) of the Gaussian observation distribution and a fixed, known

value for the Gaussian precision parameter r. The prior distribution of y
and the likelihood function f(X|u) for observations X = T

f(XIIJJ) oC 'rn'/28_(r/2) Z?‘:l (.“'_431')2

o r2e=(r/2) [nS+n(u—z)?] (3.8)
where 7 = 2 >~ 7, is the sample mean and
1 n
g==]1

s the sample variance of the observations, can be combined to form the posterior p.d.f.

g(p| X ) given by
g(JuIX) X f(X|,U,)g(‘U,) o< Tllgrn/ge_(]'/m[r(“_m)z+'-'1T(,Lt—f)2+ﬂ-r5']' (310)

By using the equality

7y 2
Tm+nr3:) ™" r(m—~f)2, (3'11)

T(u—m)2+nr(u—f)2=('r+m")(u— g

T+ nr
tis noted that the posterior p.d.f. g(u|X ) of u is also a normal distribution (similar to the

prior of 42 in Equation 3.7), with mean T and precision 7 +nr [59, p. 167] and is given
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by

_T4nr _Tm4nrry2
S (e )

T+nr

9(plX) e (3.12)

%i’nce the mode and the mean value of the normal distribution are equal, both the MAP
estimate as well as the minimum squared error Bayesian estimate for u are given by the
mean of Equation 3.12, namely

M + nrx

= — et 3.13
HMAP = HUMSE S ( )

Note that we refer to the mean value of a distribution as the expectation value of the pa-
rameter on which the distribution is conditioned. The estimate of x is a linear combination
of the prior mean m and the speaker dependent sample mean Z. When n = 0, no obser-

vations are available and the MAP estimate is simply equal to the prior mean value m.

K
m= &y, (3.14)
k=1
K
/7= &g — m)? (3.15)
k=1
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and

K
1/n =) 6,62 (3.16)
k=1

‘where ¢y, is the weight, my, is the mean and % is the variance of the kth mixture component
of the speaker independent model. The weighted value of m is simply the sample mean of the
speaker independent data when the weights are ML estimates while 1 /T equals the variance
of the mixture means around the global mean value and 1/r is the weighted average variance
within a mixture. This choice of estimating the prior distribution and fixed variance makes
especially good sense when we expect each mixture distribution to be representative of

an individual speaker or type of speaker since Equation 3.15 then represents the expected

Variance-only adaptation

Variance adaptation is proposed by Lee et al. [24] by assuming the value of the mean m to
be fixed, but unknown and the variance a random variable with a prior distribution g(o?)

f the form

constant if o2 < o2

2 —_— min

9(0%) = (3.17)
0 otherwise,

here o7, is estimated from a large amount of speech data and should be a reasonable

bound on the variance. We have arbitrarily chosen 02, = 10~%. The MAP estimate

or the variance is then given by

Tiiap = ¥ 52 omi (3.18)
o2:, otherwise,
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‘Where S is the sample variance as in Equation 3.9. While Equation 3.18 is not really useful
by itself for speaker adaptation since the Gaussian variance plays a much less important
1ole than the Gaussian mean value in speaker adaptation, it is of much use in any training
situation when little data is available. The training procedure detailed in Chapter 2.1.4
and all adaptation methods detailed in this thesis also implement Equation 3.18 during
'a;ra.méter re-estimation in the form of a variance floor. This prevents variance values from
reaching unrealistically low values when little data is used for estimation or adaptation

purposes, thereby improving generalisation.

Mean and variance adaptation

Lee ef al. [24] proposes a third approach where mean and precision parameters are adapted
according to a joint mean and precision prior distribution derived from the set of speaker
ﬁependent Gaussian mixtures. It has been shown [59, p. 169] that the choice of a normal-
Gamma joint prior distribution forms a conjugate family for the mean and precision of a
sample from a normal distribution. The joint prior distribution of the mean x and precision
 parameters is as follows: the conditional distribution of 4 given r is a normal distribution

mean m and precision wr where w > 0, and the marginal distribution of r is a Gamma

distribution with parameters @ > 0 and 3 > 0, i.e.,

g(u, 1) oc 2= @r/2u—m)* pa—1~pr (3.19)
The Gaussian likelihood function given by (similar to Equation 3.8)

F(X |, 7) o rH2e=(r/2nS+n(u-2)%] (3.20)

an be combined with the prior g(y, r) of Equation 3.19 to form the posterior p.d.f. g(p, r|X)

il ;,-T|X) o f(X[,LL, T)g(,u, ’i‘) o {T1/28—{1/2)[wr(p—m)2+nr(,u—:r‘;)2}}Ta+n/2—le—ﬁr—(nr/2)5'. (3_21)
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By using the equality

wm+nrﬁ)2 Wn

o Y
w4+ n w—l—nr(m =% 322

wr(w—m)?+nr(u—72)? = (w+ n)r(u -

it is noted that the posterior p.d.f. g(u, 7| X) (from Equation 3.21) of y and 7 is also a joint
normal-Gamma distribution (similar to the joint prior of x and r in Equation 3.19) with

the following form [59, p. 169]
g, 7| X) o {ri/2e=/DwAnu—m) Y a1 o=hr (3.23)

which is discussed in detail next. The part between braces on the right hand side of Equa-
fion 3.23 expresses the conditional distribution of 4 for a given r and given the observations,

thich is a normal distribution with mean m given by

m = w (3_24)
w—+n

id precision (w + n)r. The second part on the right hand side of Equation 3.23 expresses
1e marginal distribution of r given the observations, which is a Gamma distribution with

arameters & and [ given by

Gd=a+n/2 (8.25)

n(m — )*

~ 7 w
F=p+55+ - (3.26)

is perhaps not immediately apparent from Equation 3.23 that the marginal distribution
ris simply the second part on the right hand side of the equation, until one considers
at the integral over p of the normalised first part on the right hand side of the equation

e normal distribution) is independent of r, rendering the remaining part the marginal
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distribution of r, i.e.

o(r1X) = [ o(u,r1X)doc [ {[(w -+ nr]i2em ety it

o< Téule_ﬁr /[(w + n)’r]1/28—(r/2)(1”+”)(ﬂ—ﬁ1)2 dﬂ: (3.27)

o ré&lg=hr,

The posterior distribution of ;2 and 7 shows that they are dependent. The joint MAP
estimate of 12 and r is given by the mode of the 2-dimensional posterior distribution, while
-e MSE estimate is given by the mean of the distribution. Inspection reveals that the
jont posterior distribution (Equation 3.23) has an axis of symmetry along 1 = 77 and thus
expectation value of 4, as well as the value of the mode of i are independent of r and
equal to 7. Both the MAP and the MSE estimates for ;1 are given by the mean of the
normal distribution

A wm -+ nx

HMAP = [MSE = T = T (3.28)

MAP estimate of the Gaussian precision is calculated by differentiating the joint pos-
ierior distribution (Equation 3.23) with respect to 7 and finding the root of the equation.
[he calculation is greatly simplified since we know that the mode is located along p = m

and thus we calculate

g . ) d a—1/2_—pr _
E—g(m,r|X) = & et =0

(& — 1/2)r032e~Fr — po-1/2(_fye~Pr — ¢

erefore the MAP estimate of the Gaussian precision is given by

a—1/2 20— 1+n
= = = : 3.29
R B 2 +nS + 2% (m — 1)? (:26)
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‘The MSE estimate of the Gaussian precision is simply the mean of the marginal posterior

Gamma distribution and is given by (from Equations 3.25 and 3.26)

- 2a4tn
T 28+ nS+ 2o (m—7)?

w-n

TMSE = (3.30)

o &

We note at this point that Lee et al. [24] used the mean (not the mode as in Equation 3.29)
of the marginal distribution of 7, i.e. the mean of the Gamma p.d.f. &/f, as the MAP

estimate. This choice is inconsistent with the definition of MAP estimation, requiring use

of the mode of the posterior distribution. In a later paper, Gauvain & Lee [58] refer to the
correct MAP estimate 7 = (& — 1/2)//3. There is, however, a problem with using the mode
of the posterior, since as Equation 3.29 shows, the precision is only valid (larger than zero)
for @ = @ +n/2 > 1/2. This may pose a problem when no observations are made (n = 0),
depending on the value of «, for which case it is probably sensible to select to use the mean

of the posterior, i.e. &/f.

m=Y G, (3.31)
k=1
1 K
— = Z Ek('ﬁ’bk o m)2 (332)
wr k=]
110
K
Bloa=) " &st. (3.33)
k=1
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By choosing somewhat arbitrarily the value of 8 = 1 we can solve for (Equation 3.33)

1
O =i s (3.34)
Zszl Ck G,
and using the prior mean value of the Gamma distribution a/f = « in place of r in

Hquation 3.32 we solve for

K -
17 Zk:l CkUl%

- Zf:l Ek(ﬁ’lk = m)2 '

(3.35)

Since 5 was chosen arbitrarily, the prior variance of the precision was not considered. We
know, however, that for a sample from a Gamma distribution the expectation value of the
variance is given by a/f%, which in our case simply equals a. It is intuitively pleasing
that the variance of the precision in the prior is equal to the chosen expectation value of
the precision, meaning that large prior values of the precision are associated with larger

variance and thus less certainty than for lower values of the precision.

The MAP equations we derived here are the same as those derived by Lee et al. [24], except
for the offset in the variance estimate, but our derivation shows perhaps more clearly the
meaning of the choices with respect to the prior parameters. The procedure outlined above
isonly for parameter estimation of univariate Gaussian distributions. This is not a problem
if diagonal covariance matrices are used with multivariate Gaussian distributions, as they
then simplify to independent univariate estimation problems. The next section discusses

the implementation of Bayesian adaptation for the general multivariate case.

Multivariate normal distribution adaptation

le derivation of posterior distributions for a multivariate Gaussian distribution is a gener-
ion of the discussion in the previous section. We proceed to give the derivation of the
ayesian estimates for a joint mean and variance prior distribution. It has been shown [59,

. 177] that the choice of a normal-Wishart joint prior distribution forms a jointly conju-
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gate family for the mean and precision of a sample from a multivariate normal distribution.
The joint prior distribution of the mean p and precision R parameters is as follows: the

conditional distribution of g given R is a normal distribution with mean vector m and

precision matrix wR,w > 0, and the marginal distribution of R is a Wishart distribution
with & > D — 1 degrees of freedom and a symmetric positive definite precision matrix Y.

The joint prior normal-Wishart distribution is given by [59, p. 178]

g(, R) |R|1/28—(w/2)(n—m)TR(u—m) |R|(a—D—l)/2e—(1/2) tr[YR] (3.36)

With the multivariate Gaussian likelihood function for observations X = {x1,...,x,} given

by

f(X|p, R) x |R|"/26_(1/2) SR i—p) TR(x;—p)
x [R|*2e~ A Zia (i —%) "R (30; =%) +n(p—%) TR(1—%) (3.37)

o [R[/2e=(0/2) [r(SR)+ (%) TR (=)

and using the equality

w(p —m)"R(p —m) +n(p — %) R(p - %) =
wm-|-m‘c)TR( B wm—|—m‘c) " wn

e n(m -%)TR(m - x) (3.38)

(w+n)(u—

w1 w+n

the posterior p.d.f. g(u, R|X) o< f(X|w, R)g(p, R) is also a normal-Wishart distribution

with the following form [59, p. 178]

g(ﬂ.,R|X) o {|R|1/26—(1/2)('w+ﬂ)(F-—ﬁl)TR(u—zh}} {|R|{a+n—D—1)/2€—(1/2) t:r[‘?fl'\“,]}1 (339)

iy e O K (3.40)
w+n
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and precision (w + n)R. The marginal posterior distribution of R given the observations

is a Wishart distribution with o+ n degrees of freedom and precision matrix Y given by

T="+nS+—(m-%)(m— ). (3.41)
w—+n

Since the posterior conditional normal distribution has an axis of symmetry along p = rh,

the MAP and MSE estimates of p are independent of R and are given by

Hnap = Mysg =1 = —————. (3.42)

The MSE estimate of the Gaussian covariance can be written in terms of the mean value

of the posterior marginal Wishart p.d.f.

¥ =T+ns+ﬁ(m—i)(m—i):ﬁ

(3.43)
ax+n a—+n

RIT/I}SE i
while the MAP estimate can be derived by calculating the derivative of g(rh, R|X) (from
tion 3.39) with respect to R and setting it equal to zero, which delivers

T +nS + 22 (m — X)(m — x)T
a+n-—D

Bt = (3.44)

1 be attempted to estimate values for the parameters of the prior distributions from
er independent mixture models in the same way as for the univariate case, using the

ia of Equations 3.31-3.33:

K
= Z Gy, (3.45)

k;l
(wR)™ =" & (thy, — m) (i — m)T (3.46)
T/oz = Z Ekﬁk, (347)

lapt
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where 3y, is the covariance matrix for mixture k of the speaker independent model. Setting
R equal to Y /a in Equation 3.47 uses the expectation value of the prior covariance, but
causes the equations to have no solution since R is over-determined. However, if diagonal
dominance of the precision is assumed, use of the trace on both sides of Equation 3.46
allows a reasonable solution to be found for w. A choice with respect to either T or « still
needs to be made. Without further information, it may be necessary to make an arbitrary
assignment. A choice that will satisfy the constraints is e.g. selecting @ = D+ 1. We do
1ot discuss prior estimation for the multivariate case in more detail here, but return to the

;pic in Section 3.2.5 where a method for estimation of prior parameters for a multivariate

mixture distribution is discussed.

The preceding procedures are applicable for the estimation of (single) Gaussian distribu-
fions, which we have found to be useful for speaker adaptation, even when cross-language
prior models are used [33]. However, to estimate complex models commonly used for s-
peaker independent recognition, we have to consider the problem of adaptation of mixture

lensity models, which is addressed in the next section.

3.2.3 Mixture density HMM parameter distributions

This section expands on the previous sections that dealt with mean and variance adap-
ation in a Gaussian framework and places those derivations in the context of Gaussian
ure densities used as output distributions in an HMM with state transition probabili-
Gauvain & Lee [58, 60, 61] suggested applying Bayesian learning of Gaussian mixture
components to speaker adaptation of CDHMMs. The method uses parameters of individ-
ial Gaussian components in a speaker independent HMM to compute prior distribution
neters for the adaptation of the Gaussian mean, variance and component weight, as

well as for the adaptation of state transition parameters within a single framework. We

proceed to discuss the prior distribution for a mixture density.
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Mixture weight distributions

The Gaussian mixture density for a given state j can be considered a density associated with
a statistical population consisting of a mixture of K component populations with mixing
proportions ¢;i, ..., ¢;x. The sizes of the component populations can then be considered to
be distributed according to a multinomial distribution, given by

K
f(nﬂ, ikleit, o Gr) H okl (3.48)

k=1

where n;; occurrences of each of the 1 < k& < K mixture densities in state 7 are observed.

It is known that the Dirichlet density [59, p. 174]

g(cjls ey CjK) o HC;;;: 5 (349)

with prior parameters Uj1,--, jx 1N this case, is a conjugate density for a sample from the ‘\
multinomial distribution and is thus suitable for expressing prior information about the l
mixing proportions. The posterior Dirichlet p.d.f. of the mixing proportions, or mixture

hts as we refer to them, is simply given by

Q(lea --rch|nj1: --;an) x f(njla .- anleh --,CjK)g(lea -'aCjK)
x chﬂ“chj;”_
k=1

OCH 'UJ;G"I“TLJk 1 (350)

The MAP estimate for the mixture weight is given by the mode of Equation 3.50 [61]

G5 — 1

_—— 3.51
S (B — 1) Bt

CikMAP =

e Djr = vjx + nj) is the parameter of the posterior Dirichlet distribution. The MSE
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estimate for the mixture weight is given by the mean of Equation 3.50 [59, p. 51]:

'U_;,'k

= (3.52)
D i1 Ot

Cjk MSE =

Transition probability distributions

The HMM state transition probability parameters can be dealt with in much the same
as the mixture weight parameters. If the assumption is made that the transition
ability parameters are independent of the other HMM parameters and that each row
of the transition probability matrix A is independent, which is true for a first order Markov
process, each row of the transition probability matrix can be considered to be the parameter

multinomial distribution, characterising the number of transitions from state 7 to each

ate in the HMM, with likelihood function

N
f(nﬂ, oo ﬂiN|CL2'1, e aiN) o H a;}"" (353)

i=1

here n;; transitions from state 7 to each of the 1 < j < N states are observed. The prior

Dirichlet density is expressed by

N
i —1
g(ai, .., a;in) H a:;?j’ (3.54)
j=1
with prior parameters 7, .., 7;n for the transition probabilities from state 7. Similar to
Equation 3.50, but calculating the joint p.d.f. of the transition probabilities from each state

neluding dummy state 0, we derive the joint posterior distribution

N
Q(AHnij} z‘:O,..,N;j:l,..,N) x Hf(nila - nz’N|a'i1: e afiN)g(aila o aiN)

1=0

N N

<[] [ aj};j*""f‘l] . (3.55)

i=0 j=1
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The MAP estimate for the transition probability parameters is given by the mode of Equa-
tion 3.55:

i —1
= L (3.56)
i e (a — 1)

where 7j;; = 7;; + n; is the parameter of the posterior Dirichlet distribution. The MSE

estimate for the mixture weight is given by the mean of Equation 3.55:

ﬁ..

i
_— (3.57)
S, fa

Q35 MSE =

Now that we have prior distribution families for every parameter of the Gaussian mixture

HMM in isolation, we combine these prior distributions to form a joint prior distribution.

Joint prior distribution for HMM parameters

Assuming independence between the transition probability parameters, the mixture weight

parameters and the parameters of the mixture distribution, the prior distributions of the

parameters of the Gaussian mixture HMM X can be combined in a joint prior distribution

g(A)ocﬂ{ast[H ][Hc:’,;“ g R )]] (3.58)

Jj=1

with the prior normal-Wishart mixture parameter distribution given by (see Equation 3.36)

(”tk, le) o ]Rik|1/2e_(wikfg)(l—"i,k,*mik)TR{k(“ik_mik) |B'ik|(a“k—D-—l)/’2€—(1/2) tr['r,-kR,-;\.,]. (359)

Under the complete data density assumption, which explicitly uses state and mixture align-

ment, posterior distributions for the parameters of an HMM can be derived. This is done
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Complete data HMM likelihood function

The complete data likelihood for a mixture density HMM A is the joint likelihood of the
observations X = {x, .., Xz}, the state alignment given by q = {qi, ..., ¢r} and the mixture
alignment given by 1 = {l1, ..., I} (see Equation 2.6):
T
f(X, q. 1|)\) o< H [aqt_lqthtlt|qut|1/23“(1/2)(.%”1—xt)Tqu(#qut—X:) , (3.60)
t=1
From the state and mixture alignments, mixture occupancy <;(t) and transition occupan-
¢y &;(t) (described by Equations 2.12 and 2.13 respectively) can be computed. From a
decoding point of view, this correspond to Viterbi state alignment and choosing the most
likely mixture at each state aligned observation frame. We note that the forward-backward

algorithm can also be used to calculate values for the statistics v;x(t) and &;(t), but for

the complete data likelihood we assume exact state and mixture alignment. In the fol-
lowing section (Section 3.2.4) this constraint will be eased when the estimation strategy is

discussed. Further statistics can be defined:

T
Yik :Z’Yik(t): (361)
=1
& =) &), (3.62)
=1 .
it =(1/7i) Z Yir (8) % (3.63)
and
T
Sit =(1/vik) Z’h‘k(f)(xt — %) (%0 — Rig) " (3.64)

where 7, is the total occupancy of mixture k in state j, &;; is number of transitions in the
aligned data from state 4 to state j, and X, is the sample mean and S;; the sample variance

of observations in mixture k of state 7. Using the statistics of Equations 3.61-3.64 and the
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compact form of the Gaussian likelihood function (see Equation 3.37), the complete data

ikelihood function of Equation 3.60 can then be written as

N N K
'f(X’ e IIA) = H [aggt [Haf”] [H klR.L Tik/2¢ —(Yin /D [r(SirRig )+ (g —%ik) T m(.ufk—iik)]]] )

i=1 g=i k=1
(3.65)

Complete data posterior distribution

The prior g(A) (Equation 3.58) includes the kernel density of the complete data likelihood
function f(X,q,1|A) (Equation 3.65) and is thus a conjugate prior distribution for the
complete data density. From Equations 3.58 and 3.65, the joint posterior distribution

g(q,1, A|X) for the complete data density is therefore given by

N

a1, AIX) o £(X, q,1|A)g( H [azr TTe™

i=1

K
H Vik— 1|E |1,.'2 —(wip /2) (i —mmie) T Rig (prz—miy) {R’ik|(&ik—D—1)/28f(l/2)tI’[TgkR;kI]“
k=1

N N K
H l:agc:a [H 1‘531] [H C;Y;;klek ')’ik/“ze_(%k/2)[tr(5ikak)+(#fk—’_‘-z‘k)TRv'k(”ik_"‘ik)]]:| ; (3.66)

1=1 =i k=1

By re-arranging terms, g(q,l, AlX) can be written in the same form as the joint prior

distribution g(\) (Equation 3.58) by:
~ N N
1=1 j:1

g

Uik +Yik— 1|m |1/2 —(1/2) (wi +yin) (i — 1035 ) T R (27, — 1035 |R1.k|(aik+'h'k_D"1)/2e_(1/2}tr[?ikRik]]“,

(3.67)

Blectrical and Electronic Engineering




University of Pretoria etd — Nieuwoudt, C (2000)

Chapter 3 Speaker adaptation theory

where the mean of the posterior Gaussian mean i is given by (see Equation 3.40)

" WMk + VikXik
m;, = ; 3.68
Wik + Vik ( )

and the precision of the posterior Wishart precision Y, is given by (see Equations 3.41
and 3.38)

3 Wik Yik

Y. = Yir + YieSik + e — Xk ) (1M =
k k + YikSik wik_'_%_k(mgk %) (e — Rik)

T
=Ty + Z’}’z‘k(ﬂ(ﬁlik — x¢) (tiag — %) + wip (B — my) (g — m;)7.  (3.69)
=i

The solutions to the other posterior distribution parameters are also similar to those pre-

ability and mixture weight densities (7j; and Oz respectively), the relative precision of
the conditional posterior mean density, wi and the number of degrees of freedom of the

posterior Wishart precision density are given by:

flij = Mij + &ij (3.70)
Uik = Uik T Vik 3.5
Wik = Wik + Vik (3.72)
Qi = Qi + Vik- (3.73)

MAP and MSE parameter estimates

from the posterior distributions, MAP and MSE parameter estimates can be made. For

he Gaussian mean distribution, the mean and the mode of the posterior distributions are

rical and Electronic Engineering o




University of Pretoria etd — Nieuwoudt, C (2000)

Chapter 3 Speaker adaptation theory

the same and the MAP and MSE parameters are given by mm (Equation 3.68)

WigMyg + VikXik (3.74)
Wik + Yik '

Hirvmap = HikMSE —

Tor the Dirichlet and Wishart distributions the mean and mode differs. The MAP para-
meters are given by (see Equations 3.56, 3.51 and 3.44)

i + & —1
o , (3.75)
; S (ma+€a—1)
Vig + Yik — 1
Cik MAP = (3.76)
E{{zl(vii +7a — 1)
e _ Y + Z?:l Yie () (i — x¢) (g — x¢) T + wir (M — myg) (B, — m;; )7
g F o+ Yik — D ’
(3.77)

and the MSE parameters are given by (see Equations 3.57, 3.52 and 3.43)

i + &ij
Qi MSE = —F (3.78)
Zl:l (nﬂ + gﬂ)
R o
CikMSE = K Rl (3.79)
> oim (v + va)
o _ Yadt ST e (£) (135 — ) (g — %) + wie (g — muge) (i — m;;)”
ik MSE g b

(3.80)

i; is apparent that the MAP estimates (Equations 3.75-3.77) are invalid under certain
‘conditions (7;; + & < 1, vik + Yk < 1 and ; + Y < D). This is because the mode of
the posterior distribution is undefined under these conditions. The MSE estimates do not

suffer from this problem though.

The MAP and MSE estimates of Equations 3.74-3.80 have been derived based on the
complete data assumption, i.e. that state and mixture alignment information is available.
In practice, this information has to be computed from the adaptation data. The next

section discusses an iterative estimation technique for the incomplete data scenario where
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state and mixture occupancy is not observed and also generalises the results of this section

to include all possible state and mixture sequences.

3.2.4 Estimation algorithm

Gauvain & Lee [61] propose using an expectation maximisation (EM) [41] estimation strat-
egy for MAP parameter estimation. The proposed strategy is based on the maximisation of
the auxiliary function R(A, 5(), representing the ezpectation of the complete data posterior

model log-likelihood (log[f(X, q, 1| Ng(A)])

R(A,A) = E[loglf(X, 4, 10)g(X) X, X]
= B[ loglf (X, @, 1) |X, A]] +log g(A) (3:81)

Q(A,A) +log g(N),

wiven the observations X, a current model A and where Q(A, 5\) is the auxiliary equation

for conventional Gaussian mixture ML procedures and is given by

~

QA A) = sz (X, q, 1)) log £ (X, q, 1| A). (3.82)

X|)\
Similar to maximising Q(A, A) (see [62]), maximising R(A, A) in each iteration, R(X, A) >
R(X,A\) implies a monotonic increase in posterior likelihood f (leu)g(j\) > f(X|A)g(A)
mtil X reaches a critical point where f(X|A) attains a local maximum. Maximisation
of R(\, A) according to the procedure defined by [61] leads to exactly the re-estimation

equations derived in the previous section (Equations 3.74-3.77), as we shall show shortly.

The auxiliary function Q(A, A) can be expanded (following [63, p. 9]):

T T T
Q(A! i) = TC’;T Z Z f(Xa q. 1|A) [Z 1Og ae}'t—mt‘“Z 1Og CQth+Z IOgN[Xfi P"qm ! thlt]]

= Z Qﬂ'r[ {G‘U}Jﬁl] e Z QC A {Cf'k’}k 1 + Z Z QN[)‘ i h'ﬁ] (383)

i=0 1=1 k=1
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(3.84)

1 k=1 t=1

Dl {cir o] (X| 2025 3 Z f(X, g =1l = k|X) log ca
K T

= Z Z vir(t) logcip  (reversing order of summation and using Equation 2.12)
k=1 i=1

K
= Z ~ix log ¢ (using Equation 3.61),
=1

(3.85)
g T
QN [, pig, Rik] = XN SN (X g =iyl = k[A) log N [xt, iy, Rar]
q I i=1
T
o Z Yik(t) log [|Rik|1/26_(1/2)(”“_x‘)TR"‘(““““x*)]
=1 (3.86)

(reversing order of summation and using Equation 2.12)

o 7ix log [|mk|1/28*(1/2)[tr(55kRik)+(M;k—itk}TRik(uik—ie;:)]]

(following Equation 3.37).
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If we consider maximising ¥(X, A) = e®*A) we get

YA, A) = QM) Hogg(R)

= g(i) 622’_‘“ Qa[A{ai }j'v=l}+z£v=i Qe; [A’{cik}i,::l]+zyzl 2{21 QAn[A i Rikl

N N N K
o< g(x) H eQa[Al{at‘j }f:}]] lH eQC-,: [A:{Cik}i‘;l] {H H eQN‘[Awuik=Rik]:|
1=0 =1 1=1 k=1
N N K
&5 g()‘) 1__[ [a‘(glgi [H a;:;j] [ H cggﬂ |Rlik|7ik/26_(7ik /2)[tr(SikRik)+(in—Rir )T Ran (Bix —iik)]]] ’
i=1 J=1 k=1

(3.87)

ch is of exactly the same form as the joint posterior distribution for the complete data
density given in Equation 3.66 and therefore maximisation of Equation 3.87 leads to the
MAP estimation equations derived in the previous section (Equations 3.74-3.77). Use of

the auxiliary function in the derivation ensures that the likelihood of the MAP estimates

monotonically increase in every iteration. Unfortunately this theoretical result does not
apply for the MSE estimates. Since the maximisation of the auxiliary function is done
for arbitrary unknown state and mixture alignment, either of the two main methods for
ive estimation of HMM parameters, namely the segmental and forward-backward
nethods of Chapter 2 can be used to calculate the sufficient statistics for the approximation
of the posterior parameters. For computational efficiency we select to use the segmental
adaptation method to locally maximise f(X, g|A)g(A), but we could also have used the more

seneral solution offered by the forward-backward adaptation algorithm to locally maximise

>

)g(A), as was assumed in the derivation of the maximisation of the auxiliary function

n the implementation of the segmental Bayesian adaptation algorithm, the Viterbi algo-
ithm is used to compute the state alignment (G(n)) in iteration n of the observations with

ie current model estimate:

d(n) = arg Inzk f(X,a|A(n)). (3.88)
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tate alignment in iteration n is used, in turn, to estimate the statistics of Equation-

61-3.64 and the MAP parameters of iteration n + 1, as described by
A(n+ 1) = arg max f(X,a(n)|A)g(N), (3.89)
A

> \(0) is initialised to the model estimate when no data is observed, which is usually
ist the model that was used to seed the prior distribution. When applying the segmen-
al Bayesian algorithm for speaker adaptation, use of only a single iteration may suffice,
ut we expect that for cross-language adaptation a relatively large number of iterations
e necessary, especially if there is a large mismatch between source and target data
ibutions. When a large number of iterations take place, unobserved model mixtures
ures with very low output probabilities) may converge to feature space regions where
ontribute to the a posteriori probability function and are therefore adapted. We now

mn our attention to the determination of the parameters of the prior distribution.

3.2.5 Prior density estimation

tion 3.2.2 discussed a method (from [24]) for prior density estimation for the mean and
ce (or precision) parameters of a univariate Gaussian (Equations 3.31-3.33) and a
iltivariate Gaussian (Equations 3.45-3.47). The discussion centred around a way of using
r independent Gaussian mixture models to estimate a normal-Gamma (univariate)
d normal-Wishart (multivariate) prior distribution for the mean and variance of obser-
tions from the Gaussian observation distribution. One may apply this approach directly
r Gaussian mixture observation distributions, but it would imply use of an identical prior
stribution for every mixture. Another way of estimating parameters for the prior distri-
fion is to set the prior mode equal to the parameters of a given HMM [61], typically an
MM trained on speaker independent data. The prior distribution, however, contains five
arameters (i, Mk, Wik, @ and Y ;) for each mixture, while only three parameters (Cik,
¢ and T;,) are associated with each mixture of the speaker independent HMM, essentially

__‘g that we are unable to estimate the variance of the prior mean and, similar to the

llectrical and Electronic Engineering 68



University of Pretoria etd — Nieuwoudt, C (2000)

_ Chapter 3 Speaker adaptation theory

other approaches, that our estimate of the mean and the variance of the prior precision are

dependent.

An elegant solution [61] can be found by limiting the family of the prior distribution to that
of the kernel density of the complete-data likelihood. The prior family is expressed as a joint
Dirichlet-normal-Wishart distribution (Equation 3.58) while the complete data likelihood
function (Equation 3.65) is a dependent Dirichlet-normal-Wishart function. Element-wise

comparison of the two equations delivers the following correspondence

M — 1 &; (3.90)
vik — 1 5 i (3.91)
i — D < v (3.92)
Wik < Yik- (3.93)

By selecting to retain 7i; and wiy, the other two parameters of the prior distribution, namely

i and oy, can be written in terms of w; by

Vi = Wy + 1 (394)

Qe = Wy + D. (395)

Ihis reduction of the prior renders it of the same distribution family as the complete data
ikelihood function and the remaining parameters can then be estimated directly from the

seed model parameters by using the prior transition probability
lie prior mixture weight value

Wik = Cik, (3.97)
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My, = My, (3.98)
Ty =
=3By d
wi, + D K (3 99)

estimates. The parameter reductions of Equations 3.94 and 3.95 are applied, as well as the
vice of prior seed values (Equations 3.96-3.99) for the Gaussian mean estimates (from

ation 3.74)

CikTi + YikKik

i = H; = = 3.100
Higmap = HikMSE Bp b ( )
for the MAP parameters (from Equations 3.75-3.77)
i e
o ol (3.101)
PR (e & —1)
w0 (3.102)

Sy (@ + 7a)
(G + D)Xy + Zle Vi () (B, — %) (B — %) + Cip (i — My ) (Mg — )"

= s

Cik + Yik
(3.103)
and for the MSE parameters (from Equations 3.78-3.80)

dij + &ij
- i (3.104)
| Efil(au + &a)

Ci ik + 1
3 Cik + Yik + (3.105)

S @+ + 1)
= (Eix + D) ik + Yor, i () (i, — %) (g — ;)7 + o (g — Mgg) (thry, — ag,)T
" Cik + Yik + D

(3.106)

'0,ugh the parameter reduction has produced a MAP estimate that is defined for all

lid prior parameter values, an artifact of the seeding is that the MAP variance estimate
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fion 3.103) is not equal to the prior variance when no observations are available.
ropose to remedy this by seeding the mode Yir/wi (in place of the mean as in
ation 3.99) of the variance prior. This results in an elegant formula for the MAP

ice estimate which is independent of the feature dimension D and is given by

A CrZix + Z;F___l Yir (8) (e — x¢) (i — x,)T + Cit (M — M) (1, — )T
Cik + Vik

(3.107)

lination of the posterior mean estimate (Equation 3.100) and the posterior variance
s (Equations 3.103, 3.106 and 3.107) shows that ¢ can be interpreted as a prior
g factor associated with the kth mixture of state 7. When ¢ is large the mean
fariance prior densities are sharply peaked around the values used for seeding the prior
adaptation occurs than when Cik 1s small. This choice implies that we expect the
associated with a mixture to express the confidence associated with the mixture,
1 makes intuitive sense. While the choice of seed value (Equation 3.97) makes sense, it
510 prior weight values in the range [0, 1], which in Equations 3.100-3.107 implies that
aweight associated with the prior distribution is less than that associated with a single
afion frame. The prior weight ¢ assigned to the prior distribution for each mixture
erefore multiplied by a global prior weight scaling factor w. Unfortunately, the optimal
eof w cannot be determined easily from a small amount of training data, since it needs

bé evaluated on independent data (target data not used for adaptation). We do not

ross-validation approach, but in experiments (Chapters 6 and 7) rather explicitly

Fthe effect of the prior weight scaling factor on recognition performance. More detailed

Bets of the application of Bayesian techniques for cross-language adaptation are covered
ter 5.

2 Bayesian framework for estimation that we discussed in this section focussed heavily
use of existing knowledge when facing the design of a new system, or when changing
based on new observations. In the next section we discuss methods that attempt

it correlation between parameters when changing a current model to better reflect
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the characteristics of a new sample.

3.3 Transformation-based adaptation

estimate a transformation of model parameters using a
limited amount of observation data. A linear transformation of model parameters is usually

fomputed and applied to an existing model for the model to better reflect the characteristics
ofthe observations. Non-

perceptrons (MLPs)

linear transformations, such as those implemented with multi-layer

, have also been applied for the transformation of model parameters.

ave
0 be estimated which will typically be far fewer than those of the model being tra

:Ek’

11S-

ed. Parameters of unobserved distributions are adapted by implementing the same

ansformation for all the parameters or for groups of parameters and rapid adaptation

tan thus be achieved on little target data. When a reasonably large amount of adaptation

is available, such as for our application of cross-language adaptation, transformation-

adaptation does not automatically guarantee asymptotic behaviour wi

th respect to
ilanguage dependent system.

Phe transformation approach can be applied at the feature or at the model level,

When
lied at the feature level, it is referred to as feature space adaptation or spectral transfor-
lation [54]. Feature Space transformation can be implemented as part of the pre-processing

tage of a system, transforming incoming speech from a new speaker to better match that

ta reference speaker or speakers - thus normalising the speech of the new speaker with
iB5pect to the reference. Feature space transformation can also be used to perform compen-
jation for spectral mismatch of recording conditions and channel effects between training

ind testing environments. When the transformation is implemented on cepstral features, as
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susually done, a linear process in the frequency domain can be implemented (or counter-
tted) with a simple offset in the cepstral domain. Frequency warping or other non-linear
fequency domain processes can be approximately implemented or counteracted with full
ranstormations of the cepstral features. Feature space transformations have been used to
perform phone-specific transformations to some degree by estimating several transforma-

bns across the entire feature space and implementing transformation of specific features

Sing fuzzy class membership rules [64].

Model space transformations are generally accepted [65] to deliver better performance than
ature space transformations since different transformations can be estimated for different
lionetic groupings and also other parameters, such as Gaussian variance, can be trans-
rmed separately from the Gaussian mean parameters. Model space transformations can
liake better use of available data than feature space transformations by estimating few
ansformations when little adaptation data is available and estimating many transforma-

s when a large amount of adaptation data is available.

i application of feature space transformation that is promising is the use of transformation
dnormalise speech from the training speakers with respect to some reference and then to
firain the models [66]. This approach is related to data augmentation, which transforms
h data from speakers close to the target speaker and subsequently performs retraining
tmodels [67]. We discuss these methods in the context of using them for cross-language
did augmentation, i.e. performing cross-language transformation and subsequent retrain-
We now proceed to discuss the method most commonly used for transformation-based

daptation namely the linear transform.

43.1 Linear transformation of the Gaussian mean

iear transformation of the Gaussian mean model parameters using target data attempts
dimprove the match between the model and target data through correlation between the

Stribution the model represents and the distribution of the target data. The Gaussian
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parameters are usually transformed since they specify positions in feature space that
epresent nuclei of the model distribution and can thus be directly compared with target
2 distributions. Transformation-based adaptation is usually performed with a linear
ransformation because it is well understood and leads to simple implementation. When
g linear transformation y = Wx from parameters or observations X = {x;, X7} to
arameters or observations Y = {yi, ..., yr} is estimated, the squared error is given by

f i
E=> (yi— Wxt)T(yg - Wx;) = tr[(Y - WX)(Y - WX)] (3.108)

=1

and the minimum squared error (MSE) solution is found using the pseudo inverse form for
he transformation matrix

W =YXT(XXT)! (3.109)
hich is given in transpose form by

W = (XXT)-1xXY” (3.110)
ind for the transpose of row [ of W by

wi = (XX Xy (3.111)

I comparison with later equations, where y; is the [th row of Y (not to be confused with
ny; of Y). Least squares linear regression has been used for estimation of feature
ransformations [54], as well as for model adaptation by estimating transformations
ifparameters of CDHMM [68]. Cox [69] also used regression to estimate linear transforma-
on of individual sound classes, exploiting correlation between classes. The most popular
ach for estimating linear transformations is related to the least squares estimate and

8 discussed next.
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um likelihood linear regression

maximum likelihood-based approach for linear transformation, termed maximum likeli-
d linear regression (MLLR), was proposed by Leggetter and Woodland [63, 27]. In the
mixture density HMM framework, MLLR estimates the linear transformation of

jussian means

i, = Wy, (3.112)
jat maximises the likelihood f(X|A) of the observations given the transformed model
A= {4, (cjk, Wy, R.Tk)_;l ket b (3.113)

e fransformation matrices can be found by maximising the auxiliary function
QA A) =) f(X,qlA) log(f(X, qlA)) (3.114)
q

ith respect to W where A is the transformed model of Equation 3.113. Using the trans-

med model in the expansion of the auxiliary equation (Equation 3.86) delivers

; W;U',;k,Rik] X Vik log [IRikI1/26-(1/2)[tl‘(sikRik)+(WHik—iik)TRik(Wﬂik—iik)]] (3115)

1 1 i _ _
oK ok [5 log [Rix| — Etr(SikR,-k) = §(Wﬂzk — Xik) T Rin(W gy, — Xz‘k)]

maximise Q(A, 5\), its derivative w.r.t. W is computed and equated to zero, i.e.

A) d N K
= ﬁ Z Z QN [Aa W”ik‘l Rzk]

i=1 k=1
T Z Z D7 dW [ 10g |Rzk| ( szzk:) (Wp‘gk - iik)TRik (W.’J'z}c - izk)
=1 k=1
N K
=3 > vuRa(Way, — i)y, =0, (3.116)
1=1 k=1

lectrical and Electronic Engineering 75




University of Pretoria etd — Nieuwoudt, C (2000)

er 3 Speaker adaptation theory

delivers

N K N K
Z Z ViR W i i, = Z Z Yir Rk R iy, (3.117)

i=1 k=1 p=10k—=]

for a diagonal covariance matrix (and thus diagonal precision also), the Ith row on both

 of Equation 3.117 is given by

N K N K
Wi Z Z YehTskilbin M, = Z Z VikTikiT ik g (3.118)

t=1 k=1 1=1 k=1

ind we therefore find that the maximum likelihood estimate of the mean transformation
matrix W can be expressed in a much simpler format than in the original publications

7] by the expression

N K N K
= [Z Z '.Yik'rik”-"ik”ikJ [Z Z k?"mzﬂilkz#m] (3.119)
i=1 k=1

t=1: k=1

the Ith row of W. Equation 3.119 also clearly shows the relationship between the MLLR
timate and the MSE transformation estimate of Equation 3.111. The MLLR estimate is
y an MSE estimate that weights the contribution of each mixture component to the
seudo inverse with the amount of data associated with the mixture (7i%) multiplied by

ie precision of the mixture component separately for each feature dimension (rigr). The

th D x KN dimensional matrices X and Y, with the (i % k)th column of X given by
1)/, and the (i x k)th column of Y given by (vieriw)™/?%ir.
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owing Equation 3.119, but sharing the transformation W, across the K components of

arbitrary set of R states {si,...,sg}, the lth row of the transformation matrix W is

R K R K

=
WZ: = [ZZ'YsrkTsrklvs,kUg;k:l [ZZ%,;;TS,HH_?MHUM&]- (3.121)

r=1 k=1 r=1 k=1

'ytra.nsformation—based adaptation is performed because there is too little data for
-"-'-f'%ln ation of parameters, thus necessitating the tieing of transformations across multiple
f multiple HMMs to obtain a robust estimates of the transformation. Equation 3.121
88 not explicitly show tieing between states of different HMMs, but the group of states
a regression class) tied in the transformation may be associated arbitrarily with
t HMMs. The implementation of tieing used in this thesis groups together HMMs
ording to phonetic categories. A clustering algorithm may also be used to group together
fures that are close to each other in feature space according to some metric [70]. When
netic groupings, the assumption is that sounds from the same categories undergo

ansforms, while the clustering approach assumes that mixtures that are closely

ated in feature space undergo similar transforms.

pection of Equation 3.121 reveals that the rank of the matrix that is inverted is less
) or equal to the number of observed independent Gaussian mean vectors (at most
(). Since the matrix contains D + 1 rows and columns, it follows that it is necessary

RK > D + 1 for a non-singular matrix and thus for a unique solution to be found
Writing Equation 3.121 in the familiar Ax = b notation, it is apparent that b is
the column-space of A when the coefficients of the summation are not degenerate
therefore a solution exists, irrespective of the degree of mixture tieing. However, when
{ < D+ 1, the solution is not unique and a range of values for W exist that exactly
e the maximum likelihood values for all the tied Gaussian means, i.e. the values
if mean-only training (re-estimation) is done on the adaptation data. The use
singular value decomposition is preferred in general for the solution of the least squares

lem and may be used to determine a suitable transformation matrix W, irrespective
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‘whether the matrix A is singular or not. The transformation may, however, not be very

| if it merely implements re-estimation of the means.

When little target data is available, re-estimation is particularly troublesome as the re-
ated means are likely to be inaccurate. In this case a value of RK >> D + 1 is
sired to tie the transformation across a large number of mixtures for accuracy. However,
amount of available target data increases, less tieing, i.e. more regression classes and
15 a smaller RK is desired so that transformations may group together more closely
d mixtures. In the event of a very large amount of data being available, RK < D + 1
ively re-estimation) does not present a problem and may even be desirable because
curate estimates can be made on the target data alone. This is a very important point
ke since it indicates that MLLR can exhibit asymptotic behaviour (in terms of mean
imation) with respect to a system trained on target data only, if the number of regression

is allowed to increase in relation to the amount of target data available.

iscussion of this aspect in the original MLLR paper [27] attributes poor performance in
treme case of calculating a transformation of few tied mixtures using little data, to

accumulated matrices being close to singular and (matrix inversion) therefore causing
mputational errors. We feel that this is not the true reason for poor performance in the
e of little data and few tied mixtures (many regression classes). Rather, as mentioned,
on is that re-estimation on small amounts of target data is undesirable and therefore
e inter-dependencies between more parameters should be shared in the transformation.
ion of the condition of the matrices (from Equation 3.121) calculated in experiments
ters 6 and 7 also reveals that numerical accuracy is not of concern - also substan-
by the fact that the same results are obtained with Gauss-Jordan elimination (with

pivoting) than with a singular value decomposition-based approach.
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Implementation of adaptation procedure

An iterative procedure is typically used to estimate the transformations, consisting of the

ollowing steps:

1. initialising current model estimates to trained source models,

9. computing sufficient statistics (Equations 2.12, 2.13 and 3.61-3.64) from target da-
ta using current model estimates and either Viterbi-alignment or forward-backward

approaches,
3. computing the transformation for each regression class (Equation 3.121),
4. updating current model estimates (Equation 3.112) and

5. repeating the process from step 2 for a limited number of iterations or until conver-

gence occurs.

fhe procedure usually converges within only a few iterations, but more iterations may be
eded if the original source models match very poorly with the target data, which may be

e case in particular for cross-language model transformation.

3.2 Variance transformation

method for the transformation of both the Gaussian mean and variance parameters that
dosely related to MLLR was suggested by Digalakis et al. [71]. The method computes
near transformation of both Gaussian mean and variance parameters through the

imation of a transformation matrix W and an offset vector b, yielding transformed
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Ejk = WEjkWT.

(3.123)

ortunately a closed form solution exists only for diagonal transformation matrices and

teiore the transformation for each feature dimension is computed separately. The

thod has been found [65] not to perform as well as the standard MLLR approach, even

1t also adapts the variance parameters, since it does not make use of dependencies

ieen different feature dimensions. For this reason we did not pursue it further.

um likelihood variance transformation

er method for transforming both Gaussian mean and variance parameters, based on
ion of the MLLR adaptation framework, was proposed by Gales and Woodland
. Unlike the approach suggested by Digalakis et al. [71]

, the method optimises the
an and variance parameters

(3.124)

1 is the transformation to be estimated and B

sk 18 the inverse of the Choleski factor
b of -1
‘..‘_!‘ ;,G zjk 3 i.e:

By = €71 (3.125)
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where
= CuCh. (3.126)

lhe updated variance model A is given by

i = {Av (Cjk’ ﬁjk: B}:‘cHBJk)?rzlaE:l } (3127)
e f;; is the MLLR updated Gaussian mean estimate.

imilar to the MLLR, derivation, the transformation matrix H can be found by performing
he derivative of the auxiliary function Q(X, A) (where A represents the MLLR updated
iea model obtained using Equation 3.121 and A the MLLR updated mean and variance
odel) with respect to H and finding the root of the equation. For a transformation
I, shared by the K components of a set of R states {si,...,sg}, each associated with
ation sequences of length Ty, , the estimation of the tied variance transformation can

represented by [72]

1 Zf:l Zf:l {Cik [Z?ii Yo b ) (it = Bos g Koyt = ﬁs,k)T] Crﬁ:k}
HS = R K Tsf- (3128)
Z’r:l Zk:l Et:l ’Ysrk(t)

e fi, . is the MLLR updated Gaussian mean estimate and C, ; is given by Equa-
26. The estimate of Hy in Equation 3.128 results in a full transformed covariance
. Full covariance matrices, however, are rarely used in speech recognition systems
e {0 their greatly increased computational requirements. For diagonal covariance, which
also use, the diagonal entries of f]jk are only affected by the diagonal entries of H. The
thus a diagonal transformation of variance - which does not take dependencies
the feature dimensions into account. In experiments, Gales and Woodland [72]
rfed an additional decrease in word error rate (WER) of 2% for speaker adaptation by
g this mean and variance adaptation approach versus only MLLR mean adaptation,
lich by itself achieved 13% decrease in WER.. Results [72] for noise and channel compen-

n produced greater increases due to variance adaptation (7% reduction in WER).
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oss-language adaptation, adaptation of the variance components may result in larger
rmance gains than for speaker adaptation, but may require a more complex approach
n diagonal transformation. Recently, Gales [73] proposed a method for unconstrained
variance transformation which uses an iterative estimation algorithm to solve for the

formation. We, however, propose and evaluate an alternative approach.

um squared error variance transformation

propose a method for unconstrained full variance transformation that uses weighted
it squares estimation to compute the variance transformation in a single iteration. The
d MLLR algorithm (Equation 3.121) is used to estimate transformed Gaussian mean
arameters in a first stage, similar to the approach suggested by Gales & Woodland [72],
llowed by Gaussian variance transformation in the next stage. Since almost exclusive use
of diagonal covariance matrices in speech recognition systems, we only consider
ansformation of the variance parameter vector o2 , on the diagonal of the covariance
x B, ;. A full transformation of the variance parameters associated with the K

mponent mixtures of a set of R states {s1,..., sp} can be expressed by
&srk == W:O'ET,C (3-129)

W is the (full) shared variance transformation matrix. We consider calculating the
jaximum likelihood estimate of the variance transformation of Equation 3.129, but find
e estimate can not be written in a closed-form, which reduces the attractiveness of
s approach. We therefore consider using least squares estimation for the computation of
* The squared error for the variance transformation of Equation 3.129 can be computed

from the observation data and is then expressed by

P B

R
= 3> k) [yt — 1) = W02 (] (Kot — i) = Wioh, ] (3.130)

r=1 t=1 k=1
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ere fi, ;. is an MLLR updated mean value (Equation 3.121) and assuming that the square

L vector implies computing the component-wise square of the vector (in the first term

ckets). Alternatively the squared error can also be expressed in terms of a statistic

ring the expected variance of the observation data by

R K 3
Z S ook [V = Wi | [vour = Wia2 ], (3.131)
r=1 k=1

Vi 1S the target variance (vector) for mixture % of state s, and is given by

iy - 2
Vo = == 1 York(®)(Xart = Bort)” (3.132)

" Vsrk

s prefer to use Equation 3.131 because Equation 3.130 computes the fourth power of the
stance between each observation and the transformed mean value, leading to very large
ates of the variance, while Equation 3.131 uses the average variance as computed in
n 3.132. There are still, however, fundamental problems with the use of the variance

ansformation of Equation 3.129 as optimised using Equation 3.131 since:

the constraint &2 7w > 0 1s not guaranteed and

» the least squares error function measures an additive error and not a relative error,
thereby biasing the transformation to decrease the error produced by large variance

values and causing large relative errors for small variance values.

transformed variance values can be forced to be valid by applying a variance floor, such
ibed in Section 3.2.2, but this does not really present a desirable solution. Also,
e magnitude of the variance values grouped together in a transformation have a large
ge, the relative error may be very large for small variance values, even if the relative
is small for large variance values. A better method for the MSE variance transform

vercomes both these problems is given next.
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mum squared error log-variance transformation

opose transforming variance parameters in log-space, thereby maintaining the con-
nt '&?kz > 0 and also minimising the relative error (in place of the absolute error) in the
nation of 5?kz- The transformation of the log-variance parameters by transformation

‘W1 is given by
logé? , = Wilogo? (3.133)

logo? , is the element-wise logarithm of &% ;. The squared error to be minimised
gan be written as

I K

E= Z Z Vs [1ogvmc — Wilog a?rk]T [log Vsx — Wilog ofrk] : (3.134)

I =1l e=1

the target variance v, j is given by Equation 3.132. By writing the squared error in

e following format

R K 5
= Z Z Yok [log ~ vk ] [log %] ; (8.135)

~ 2
r=1 k=1 Usrk o—srk

ent that the log-variance transform minimises the relative error between the trans-
; ) . . ) sy
variance &7, ; and the target variance v, and is therefore not as sensitive to the

five magnitudes of the variance components as the direct variance transformation.

illy, the least squares estimate for the log-variance transformation matrix is given in

aido inverse form solution (as in Equation 3.109):

R K K
r: T 771
WI = [ d > Yerlogvsslogol ] [ > Y vsklogol ogal | (3.136)

r=1 k=1 r=1 k=1

B note that the same discussion that applied to the MLLR estimation equation (Equa-
3.121 in Section 3.3.1) applies here with respect to the number of transformed mixtures

the dimension of the transformation. When equal or fewer mixtures than the dimension
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transformation are used, exact re-estimation of the variance values is the result. This,
ver, implies that inversion of the right-hand-side of Equation 3.136 is not attempted,
ut that the solution is found through e.g. a singular value decomposition-based approach.
he more mixtures are grouped together in a transformation, the more robust, yet less
iccurate, the transformation becomes. When little data is available, few transformations

hould be calculated since direct estimation of the variance is problematic on little data.

his concludes our discussion of linear transformation-based adaptation. For speaker adap-
tion mean-only transformations are usually used, but we have covered variance adaptation
i depth since it is important for cross-language adaptation. We have omitted discussion of
daptation of mixture weight and transition probability parameters because it is inap-
ropriate to apply transformation-based adaptation to them. For cross-language purposes,
daptation of mixture weight and transition probability parameters may be warranted.
ther forms of adaptation as in Section 3.2 or even re-estimation may then be used on
gse parameters as they require far smaller amounts of data to estimate reliably than the
aussian mean and variance parameters. We now proceed to discuss the application of

on-linear transformation methods for adaptation.

3.3 Non-linear transformation adaptation

on-linear transformation presents a more powerful paradigm than linear transformation,
i present serious challenges in finding a suitable functional form for the transformation
d also in optimising the parameters of the transform. As was noted in the previous section
| linear transformation, only limited amounts of data are usually available. Relatively
mple and well understood estimation techniques such as linear regression are able to use
ta relatively efficiently, while for the non-linear transformation approach gradient-based

thniques must generally be used, which may not use limited data as efficiently.

on-linear transformation of acoustic parameters has been performed for speaker adapta-

i using multi-layer perceptrons (MLPs) by Abrash et al. [74]. Gaussian mean compo-
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ients of a speaker independent model were adapted on speech from non-native American

English speakers. A single non-linear (sigmoidal output function) hidden layer was used

or the MLP. A linear transformation was used in parallel with the MLP, effectively adding

mprovement on standard MLLR was achieved by applying gradient descent to both the
ar transform and the MLP.

Choi and King [54] compared the performance of using an MLP with using linear transfor-
mations for speaker adaptation and found that the linear transformation delivered signif-
tantly better performance. The two studies thus indicate that, using current techniques,
tmay be difficult for non-linear transformations to improve on the performance of multi-
¢ linear transformations. For these above reasons, we restrict our further experimental

nvestigations to linear transforms.

3.3.4 Transformation for normalisation before training

e use of transformations as a pre-processing stage for the normalisation of speech from
ifferent speakers before commencing with HMM training has shown promising results. A
ocedure for data augmentation was suggested by Bellegarda et al. [75] that performs a
gast squares linear mapping from the acoustic space of a reference speaker to that of a
éw speaker. A large amount of data from a reference speaker is transformed to augment
e little data from a new speaker to serve for the training of speaker dependent models
I the new speaker. Separate linear transformations are estimated for the data associated
ith groups of elementary speech models. A problem that was reported with the procedure

a8 that too much transformed data from a single reference speaker overwhelmed the small
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amount of speaker specific data. This situation was improved in subsequent research [76]

hy
et

o implementing transformations from multiple reference speakers - thereby reducing the
amount of data per reference speaker to approximately the amount of data available

for the new speaker,

o implementing a selection procedure to choose reference speakers that are “close” in

some sense to the new speaker and

o tieing all the models for a reference speaker in estimating the transformation.

nstead of using reference speaker specific models.

Procedures related to the previous approach have been used for speaker normalisation
hefore training. Ishii and Tonomura [77] implemented a procedure for speaker normalisation
firough transformation. The method estimates MLLR mappings from each speaker to
e ST model trained on speech from all the speakers, subtracts the MLLR offsets from
ihe speech data and retrains the SI models. This procedure is repeated iteratively and
rs speaker independent models that do not model speaker variation offset and may
thus have narrower distributions. For recognition purposes MLLR is used to estimate the
mnsformation (including offset) from the normalised SI models for a new speaker. A closely
tlated approach was also proposed by Nagesha and Gillick [66]. MLLR mappings are also
stimated from SI models to each of a set of speakers, but speaker specific data is then
ansformed using the inverse of the MLLR estimated transformation for each speaker. The
pverse transformed data is then used to retrain SI models and the procedure is repeated.
er independent models are thus produced that are invariant to linear transformations
speech from speakers used to train them. Obviously, to accurately recognise speech
a new speaker, a transformation from the normalised models to the new speaker must

5t be estimated.
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procedures discussed in this section are of interest for cross-language adaptation, be-
ause they may be applied to the normalisation of data from multiple databases containing
multiple languages to a single target language. Further detail regarding application of the
0ds is given in Chapter 5. The next section discusses how Bayesian and transformation-

ased techniques can be combined to improve adaptation performance.

Combined Bayesian and transformation-based adap-

tation

the Bayesian adaptation approach detailed in Section 3.2 and the transformation-
ased adaptation approach detailed in Section 3.3 have their respective strengths and weak-
s. Bayesian methods have in particular two perceived advantages over the transformation-

based approach namely that with Bayesian methods

o expected performance is asymptotic with respect to a target system - i.e. the perfor-
mance converges to that of a target dependent system when a large amount of data

is available, and

o the degree to which adaptation takes place is automatically controlled by the amount
of adaptation data available - i.e. when little data is available little adaptation takes

place and as more data is available, more adaptation takes place.

ote that the asymptotic performance property of Bayesian techniques is not true for a
ransformation-based adaptation approach in general, but as we discussed in Section 3.3.1,
lay be achieved for transformed values if the number of transformation classes is allowed
icrease with the amount of adaptation data. The Gaussian mean values then eventually
with the target dependent mean values when there are fewer independent Gaussian

lixfures per transformation than the dimension of the transformation itself. This argu-

nent may be extended to the Gaussian variance values if they are transformed separately
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m the means. Transformation-based adaptation, on the other hand, has the advantage
wer Bayesian adaptation that by sharing transformations across groups of phonemes, un-

iith Bayesian adaptation.

ethods to combine Bayesian and transformation-based adaptation are researched in an
iiempt to retain desired properties from both strategies. We discuss two main techniques
at combine Bayesian and transformation-based methods, the first technique focusing on
mbining rapid transformation-based adaptation with the asymptotic performance proper-
of Bayesian adaptation and the second technique focusing on using Bayesian techniques

o control transformation-based adaptation when little data is available.

41 Linear transformation-MAP

galakis and Neumeyer [78] proposed combining Bayesian and transformation-based adap-
fion in two stages. Constrained transformation-based adaptation [71] is performed in the
5t stage, using a diagonal transformation to adapt both mean and variance (Equations
122 and 3.123) parameters with the adaptation data for a new speaker. This has the ad-
antage of rapidly and accurately compensating for significant bias between source models
d target data, such as is exhibited by channel effects. The resulting (speaker adapted)
odels are used as the starting point for the second adaptation stage, implementing an
proximate MAP (AMAP) adaptation algorithm for the Gaussian mean and variance pa-

meters. The Gaussian mean parameters are estimated using an interesting variation to

e MAP mean estimate of Equation 3.74 given for mixture & of state by [78]

@k + (L — @)y Xy

@ + (1 — w2

Hig AMAP = ) (3.137)

L and ;P are the mixture occupancy statistics of the speaker independent and
eaker dependent data respectively, uS® is the (speaker adaptive) transformed mean val-

' :-,P is the sample mean of the speaker dependent data and = is a global adaptation
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factor, in this case taking on values between zero and one. Gaussian variance pa-
r estimation is computed in a similar fashion to the mean estimation, calculating
inear combination of transformed variance statistics and speaker dependent variance s-
s. Digalakis and Neumeyer report [79] that their technique approximately halves
recognition error rate for non-native speakers of American English with only a small

t of adaptation data, approaching the speaker independent accuracy achieved for

paring the method to MAP mean estimation as derived in Section 3.2.5 (Equation 3.100
particular), the mixture weight prior seed é; associated with a mixture in the prior has
n replaced by the occupancy statistics for that mixture and the learning factor w is in-
ated in a different way. Using occupancy statistics for weighting causes mixtures with
i occupancy in the prior to be adapted more slowly than mixtures for which little data
8 observed when the prior was trained. This may be useful for speaker adaptation, but
| necessarily for cross-language adaptation, as the frequency of occurrence of a phoneme

source language may not give an accurate indication as to its suitability for seeding a
ribution for target language model estimation. In fact, we found that use of source
jage occupancy statistics (as in Equation 3.137) delivered poorer performance than use
ixture weight prior seed &; (as in Equation 3.100) and therefore in experiments in

6 and 7 we used the MAP estimates of Section 3.2.5 in implementing MLLR-MAP

| MAP algorithm to derive the final mean values. Better results were obtained with
netically derived regression classes than with clustering procedures. Interestingly, they
that their linear regression-MAP algorithm did not achieve asymptotic perfor-
ce with a speaker dependent system as was planned. They give as a reason the fact
f, even with a large amount (several hours) of adaptation data from a single speaker,

than 70% of the transformed densities are observed during MAP adaptation and are
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us unadapted. Most parameters of the adapted system are therefore not optimised for
e farget speaker beyond the initial transformation. The percentage of unobserved densi-
g5 may have been even higher if the initial transformation had not been performed. This
ints to a deficiency in the Bayesian estimation framework, namely that when the distri-
fion of the adaptation data differs significantly from the distribution of the data that was
‘on, only a fraction of the total parameter set that corresponds to the adaptation
adapted. For cross-language and cross-database acoustic adaptation we expect that

8 overlap between source and target feature distributions may be relatively poor, which

ay negatively influence recognition performance. We therefore evaluate the performance
psing MLLR-MAP, showing in Chapter 7 that it leads to improved performance for

anguage, cross-database adaptation.

MAP-MLLR

J [81] recently proposed an alternative combination of Bayesian and transformation-
ed adaptation termed maximum a posteriori linear regression (MAPLR). The goal of the
hod is not to ensure asymptotic performance, but to control the amount of adaptation
n little data is available by using prior distributions. It incorporates prior knowledge
hiasing the MLLR transformation to more closely match a unity transformation when
ptation data is available and to more closely match the MLLR estimate when a

se amount of adaptation data is available.

APLR

PLR assumes an elliptic symmetric a priori distribution for the transformation matrix.

e solution to MAPLR entails diagonalising the matrix inversion of the MLLR estimate
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Jquation 3.121) through the addition of a diagonal matrix, i.e.

ﬁ'z; = (é"sl)_lisl

= (Ggq +Dy) Yz + Dyw)) (3.138)

here G, is equal to the first term in brackets and zy the second term in brackets on
ht hand side of Equation 3.121, Dy, is the scale factor (acting as a diagonalising
m) and W} is the [th row of the location parameter of the transformation. Choosing

¢ location parameter (W) to be the identity matrix backs off the transformation to an

agonalising term the diagonal of G, (from Equation 3.121), normalised with respect

the amount of data and multiplied by an overall prior weight scaling factor w, i.e.

R K 2
Zr:l Zk:l ’Ysrkrﬁ'rklvsrki

R K
Zr:l Ek:l ’Y-S'rk

, (3.139)

dg; = @

here d; is the ith term on the diagonal of Dy, and v, j; is the ith term of the extended
1 vector v, ;. The value of w depends on the suitability of the prior distribution and

ould be determined empirically.

AP-like log variance transformation

e propose using a similar approach to MAPLR for the diagonalisation of the MSE log-
riance transformation. Since our attempts at obtaining an ML estimate for the variance
g-variance transformations did not produce a closed-form solution, MAP estimation

not attempted. We propose simply adding a diagonalising term (scaling parameter)
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lar to the scaling parameter in Equation 3.138, to the pseudo inverse solution of

13.136, producing the MAP-like estimate

R K R K
-1
= [Z Z Vs k lOg V5 i log a’ikT + DI] [Z Z Vs, k lOg afrklog crf?_kT + DZJ ;

=1 k=1 r=1 k=1

(3.140)

1 no data is observed, W1 backs off to a unity transformation and when a large
of data is observed, W;[ converges to the MSE estimate. We propose calculating
diagonal term D! in a similar fashion to the MAPLR diagonal term (Equation 3.139),

diicing the equation

R K
dl’i — erzl Z]i::l rysrk(log Jgrk‘i)‘z

S SR (3.141)
=1 k=1 /sr

l;; is the 7th term on the diagonal of D{ and the overall prior weight scaling factor

ared with Equation 3.139.

Comparison of MLLR-MAP and MAP-MLLR

3.1 shows conceptually the difference between the MLLR-MAP and MAP-MLLR
proaches. While MAP-MLLR controls the amount of adaptation the transformation can
0, MLLR-MAP uses the MLLR transformed models to seed prior distributions for MAP

MLLR
L L X
O --=""" MAP-MLLR il MLLR-MAP
. %
Prior X \\O
Sample average
A X

wre 3.1: Graphical comparison of the working of the MAP-MLLR and MLLR-MAP
es, showing adaptation of the Gaussian mean
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chniques may be useful for cross-language adaptation in different ways. MLLR-MAP

prove the robustness of estimates for transformation classes with little data by decreasing
e over-fitting effect when complex transformations are estimated from limited data. Both

thods are experimented with in Chapter 6 and 7 and are shown to significantly improve

¢ have discussed the major classes of methods used for speaker adaptation, namely
yesian and transformation-based methods, as well as combinations of these techniques.
new technique for full transformation of variance parameters in log-space and utilising
like control over adaptation was proposed, specifically with cross-language model
ation in mind. Some aspects regarding the application of the techniques for cross-
guage adaptation were mentioned, but will only be discussed in detail in Chapter 5.

perimental comparisons of Bayesian, transformation-based and combined techniques are

n Chapters 6 and 7).

 the next chapter we discuss a third class of methods applicable for acoustic adaptation,
amely discriminative training methods. These methods are not generally used for speaker
tion as such, but we found them to deliver useful performance for cross-language

coustic adaptation.
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Discriminative learning presents an alternative to the classical probabilistic interpretation
of pattern recognition, which links a pattern classification task to a distribution estimation
problem. Given an observation, the Bayes decision rule leads to the minimum misclassifi-
cation probability when the true observation distribution is known, by selecting the model
with the highest a posteriori probability. Unfortunately, the true form of the distribu-
tion is rarely known in classification problems and a parametric form is often assumed for
computational tractability. Furthermore, the parameters of the assumed distribution have
to be estimated from a limited amount of training data. These factors contribute to the
sub-optimality of the distribution estimation strategy for classifier design and leads to the
consideration of an alternative strategy that attempts only to discriminate between observa-
tions from different classes, rather than attempting to estimate the true distributions. The
Bayes decision rule can still be applied if the models are used to implement discriminant

fuinctions rather than distribution estimators.

Discriminative learning has been researched for many decades for pattern classification pur-
poses, but it is in conjunction with efficient methods for training artificial neural networks
[ANNs) [82] that the most prominent research in this field has taken place. Most algorithms

for training ANNs make use of supervised feedback of some error or reward (discriminative
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Discriminative optimisation criteria

ie most useful training or learning strategies include a criterion or function that in some
measures the quality of a particular model, given observations from the process that
smodelled. Since the criterion determines subjectively the performance of any particular
it prescribes which models will be considered “better” models and which will be
nsidered “poorer” models. Usually, models are desired that maximise the criterion. The
sation of a criterion, however, is generally obtained in closed-form solution only for
e simplest criteria and models, e.g. a least squares linear estimation problem. Therefore,
I addition to defining a criterion, a method for determining useful model parameters
n the criterion has to be established. The choice of optimisation function is thus
afluenced both by its intended purpose, e.g. increasing class separation or decreasing the

isclassification rate, as well as by the ease with which it can be optimised.

we proceed to discuss discriminative criteria for optimisation, we first review the

criminative criterion that is most widely used for HMM training, namely the maz-

iminant function. Even for ML estimation, closed form solutions do not exist for

IM parameter estimates and iterative methods such as the Baum-Welch procedure are
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ised to approximate the ML parameters. The Baum-Welch procedure guarantees increas-

seriminative optimisation techniques often deliver little in terms of guaranteeing increased
eformance and are prone to converge to (poor) local minima/maxima. ML model esti-
ates are therefore almost always used as a starting point for discriminative training. After
at, it is attempted to incrementally improve performance using discriminative optimisa-

i techniques. We now proceed to discuss discriminative criteria applied to the training

e (including all states from false class models) likelihoods are zero. Various heuristics

eused to limit the degree of adaptation to avoid over-training. The method was shown

vain and Lee [58] proposed a simple modification to the statistics collection phase of the
P algorithm to implement a heuristic version of corrective training. Training sentences

it are incorrectly recognised are used as new data for updating model statistics and the
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d by 1 for the correct model. A limited number of MAP adaptation iterations using the
dified statistics are performed. The procedure has no explicit optimisation function, but
s found to deliver better performance on connected digit and isolated word recognition

ks than ML estimated models.

en & Soong [85] suggested an N-best candidates-based discriminative training algorith-
sing a frame-level optimisation criterion. It improves on the method suggested by
anco [84] by not attempting to force zero-one state occupancy values for correct and
rrect classes respectively. The frame-level loss function comprises a half-wave rectified
tlikelihood difference between the correct and competing hypotheses and is optimised
the training set by performing gradient descent on the HMM parameters. Performance
ement over ML trained HMMs was reported on connected digit and isolated word

pgnition tasks.

Maximum mutual information (MMI)

imum mutual information is an information-theoretic concept that provides a basis
erivation of a discriminative training criterion. The following derivations closely
oW McDermott [86]. The conditional entropy Ha(C|X) of the class random variable C,
gl the observation random variable X, is minimised in terms of the model parameters
...; Ay) when the mutual information is maximised for each of M classes. What
s is that the uncertainty associated with C given X is minimised when the model
rs A provide as much information as possible about the class random variable C
X. This can be verified by noting that the mutual information between C and X,
) = 1, (X; C) can be written as the difference between the entropy of C and the

ifional entropy of C given X:

Ix(G;X) = H(C) — Ha(CIX). (4.1)

ical and Electronic Engineering "




University of Pretoria etd — Nieuwoudt, C (2000)

Discriminative learning theory

the entropy H(C), for a basic unit such as a word in a speech recognition task is ex-
by a language model and may thus be considered a given [87] , minimisation of the

onal entropy is achieved by maximising the mutual information between C and X.

more useful form of Equation 4.1 will now be shown. With the entropy of a random

e C for model parameters A given by a summation over the class variable ¢
H(C)=-) P(C=c)logP(C=c) (4.2)

[ the conditional entropy of C given X for model parameters A given by a summation

it ¢ and the observation variable z by

HA(C|X) =Y P(C=c¢,X =1)log PA(C = c|X = z), (4.3)

-—ZP(C =c)logP(C=r¢)+ ZP(C =¢ X = %) log Po[C = ¢|X = g)

3 ;P(C =¢,X=2)logP(C=c)+ ;P(C = &% =) Iog PA(I(EA(:XC,:sz z)
22P(0 =0 X =t =
- Po(X =z|C =¢)
PR P(C=c X =12)] e
(4.4)

to be representative of the true distribution and the MMI criterion is maximised

8 A that maximises

B Py(X=3z|C=2¢
Fmr(A) = %;log ch PA(};\: z|C = ¢)P(C = ¢)

(4.5)

riterion differs from the ML criterion (P (X = z|C = ¢)) since the MMI crite-
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on maximises the relative likelihood of the correct class, rather than simply maximising

e absolute likelihood. This introduces discrimination into the training procedure. The
pondence between the MMI criterion and the a posteriori class probability is evident,
i note that the likelihood functions associated with the model (A) that maximises the

I criterion are of a discriminatory nature and do not implement density estimators.

me applications of MMI are briefly mentioned. Cardin et al. [88] and also Normandin
Morgera [89] applied MMI estimation to the training of parameters of HMMs. Para-
‘were initialised with ML estimates and MMI was performed in an adaptive mode,
ih smoothing applied during the parameter update. Both studies showed improvemen-
om ML trained models on the TI/NIST connected digit database. Kapadia et al. [90]
ieved improved continuous phoneme recognition on the TIMIT [31] database using MMI

mation.

ile the MMI criterion clearly improves on the ML criterion in terms of taking into
yunt both the correct and incorrect model likelihoods, it still does not directly reflect

ification performance of a system. This topic is addressed in the next section.

Minimum error rate

50al of a classifier is ultimately to achieve the minimum possible error rate, if equal
8 associated with each error. This minimum error rate is achieved with a Bayes
in which, for any observation, the discriminant function associated with the largest
jori probability has the largest value. The MMI criterion expresses the functional
he a posteriori estimate, thereby increasing class separation, but does not expressly
he error rate association with the estimate. The most direct optimisation of the
rate can be achieved with a criterion that hard-limits the difference between the true
sand the highest false class discriminant functions. Discontinuous criteria are hard to
jise, however, and therefore a continuous criterion that emulates the error rate should

tonsidered. We discuss such a method that was implemented and extensively used in
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s thesis in more detail in the following section.

Minimum classification error approach

e minimum classification error (MCE) approach suggested by Juang & Katagiri [91]
ides a technique for designing a classifier that approaches the objective of minimum

cation error more directly than the methods discussed so far in this section. This

The method in general does not lead to closed-form re-estimation solutions for
eters and is thus used in conjunction with a gradient-based optimisation scheme. We

y proceed to discuss the criterion for optimisation used in MCE.

Optimisation criterion

ample risk, represented by the number of misclassifications in the training set, is the
and most direct function representing the error rate. It is, however, a piece-wise
function and thus very difficult to optimise numerically since its derivatives contain
formation. MCE training attempts to overcome the difficulty of directly optimising
 rate of a classifier on a set of data by defining a smoothed version of the error

or optimisation. There are two key problems that have to be addressed namely

uring the distance between a correct and multiple incorrect classes and

uring the loss associated with a classification.
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classification measure

ision boundary for a two class classification problem, with classes C; and Cy, is
described in terms of the a posteriori probabilities by P(Cs|X) = P(C:|X). It is,
not easily extended to provide a measure of the distance between the correct class
multiple incorrect classes. One way of defining such a misclassification measure for an
vation X from class 7 in terms of the class conditional log-likelihood functions, using
on g;(X;A) = log f(X|A;), where f(X]|A;) is the class conditional likelihood

on for class 7, is by [28]:

M
1 y 1/n
di(X; A) = —gi(X; A) + log [ > :eﬂﬂxrﬂ)ﬂ] , (4.6)

JJ#i

 a positive number. The misclassification measure is a continuous function of
ifier parameters A and attempts to emulate the Bayes decision rule, i.e. that
class utterance X, d;(X;A) < 0 implies correct recognition and d;(X;A) > 0
g5 incorrect recognition. The value of 77 controls the relative significance of false class
When 7 is large the term in brackets approaches max; ;- g;(X; A), which is
y the Bayes decision rule. For smaller 7, competing classes with relatively smaller
are also taken into account, thereby deviating from the Bayes decision rule in a

efined manner and creating a soft decision boundary.

ng of the incorrect classes in Equation 4.6 is perhaps easier to understand when

ssed in terms of the class conditional likelihood functions

[ 2 ] (47)

VN ES
at the misclassification measure (Equation 4.6) therefore actually expresses the ratio
rrect to correct class likelihoods, just in the log domain. When working with

this is sensible because the likelihood values have a very large range, making direct

of likelihoods almost meaningless.
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ation rate the misclassification measure is embedded in a smoothed zero-one function

as the sigmoid function. The resulting function is then called the loss function and is

1

L(X;A) = 1 4+ e—7di(X;A)+0

(4.8)

hf normally set to zero and 0 < v < 1. When d;(X; A) is much smaller than zero, which
lies correct classification, virtually no loss is incurred, while a large value of d;(X; A)

ds to a loss close to one.

8 criterion for minimisation can then be defined for a given training data set consisting

J observation sequences X;..Xo from a total of M classes {C1, ..., Cir} by the empirical

0 M

L(X1.X0,A) =) 1i(Xe;A) 1(X, € Cy) (4.9)
o=1 i=1

(go) is the indicator function, taking on the value 1 when ¢ is true and 0 when it is

. Use of the expected loss presents an alternative to using the empirical loss, but has

ssociated problem that since the true distributions are unknown, current distribution

nates must be used in an iterative procedure. This would, however, also imply that

.

ilation of the expectation is dependent on the classifier parameters, further complicating

ptimisation function, and thus we use the empirical loss as optimisation criterion.
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ient descent optimisation

ion to minimise the empirical loss defined in Equation 4.9 is to use the

t technique with batch-mode parameter updates

0O M
A1 =Ap—€n > D 1(X, € C)VIi(Xy; A)|a=a,, (4.10)

o=1 i=1

update parameter in iteration n and is chosen to be a suitable decreasing
e that we calculate the gradient using all available samples, also termed
¢ update, since this improves the estimate of the gradient. A block mode
¢ be computationally cheaper to perform, or even an on-line update can also be

al-time purposes, but we have not further pursued these two options.

th the gradient descent technique is that it is suitable only for unconstrained
hile the parameters of an HMM have definite constraints. Chou et al.
akin g use of parameter transformations that remove the constraints in the
| parameter space and thus facilitate the use of gradient descent optimisation.
the parameter transformations are given in the next section, along with the

e MCE approach for HMMs.

VI parameter update

applying MCE to the training of the parameters of continuous density

sted by Chou et al. [92] under the name segmental GPD (generalised

nt). Use of the name GPD is derived from the original MCE paper
ed using probabilistic descent, i.e. minimising the ezpected loss rather

| loss. For practical reasons, however, we optimise the empirical loss in

ions of the approach. A more detailed discussion of the application of MCE
ining was later published by Juang et al. (28] and forms the basis for the

s section. We note, however, that previous publications [92, 28] did not take
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0 account false class derivatives, i.e. the derivative of the loss function with respect to

ipeting classes. We therefore extend the derivations to include both true and false class
es as was suggested by Kwon & Un [93] for the special case of the discriminative

e-weighted HMM. For completeness we also provide transition probability derivatives.

ikelihood functions

en that HMMs have been selected as the framework for modelling speech features, the

s conditional log-likelihood function ¢;(X;A), i =1,.., M takes the form
6:i(X; A) = log fi(X; A) = log f(X]AD, (47} 1L,) (4.11)

e superscript 7 denotes the parameter set associated with class 7. The segmental
iing procedure uses the Viterbi state-aligned likelihood function, which calculates the

lihood of Equation 4.11 along the state sequence with the highest likelihood, producing

log-likelihood function given by
9i(X; A) = log{max fi(X, q; A)}
=log fi(X, @ A) (4.12)
T + it
= llog gy g, +logy, (x:)]
t=1
is the sequence with the maximum likelihood. As discussed in Chapter 2.1.2, the

on density in each state is a Gaussian mixture distribution, given in extended form

diagonal covariance for model 7 by

K @ @ K c{i) _% zP—l mu—({‘)('?t )2

' () 56 ik =

=) cONx, w3, T3 = —e ikt (4.13)
k=1 1 T whi w1 (2m)P73) H:j:l Ué'k)t
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Parameter transformations

It is desirable to maintain the original parameter constraints in the HMMs when adaptation
takes place such as E;\;l ay =1, a5 = 0, Zle cjk =1, ¢j > 0 and g > 0. In order for
the problem to remain an unconstrained problem that is suitable for direct optimisation by
gradient descent (Equation 4.10), a transformation of the parameters is necessary. A set
of transformed parameters @;;, ik, fljr and dju can be calculated that will maintain the

constraints on the original parameters [28]:

— aij
]__ cso—> (i, W re Q;; = - - S
Qij ] he ] 3T, etii!
2. cip — Cik, Where c; .
- Ljk jks ik Y oCik!

; 77 e HAEREL
3. Wikt = Mkl = o

4. Tkl — a'jkg = lOgO'jkg.

The reverse transformations of a;; and c;j, ensure that the coefficients remain positive and
maintain the property of summing to one. The transformation of pjr normalises the rel-
ative magnitude of the mean in each dimension by the variance of the component in that
dimension. In the author’s experience, this transformation is very important because with-
out it the derivative of the loss function with respect to the mean contains the precision
term (the inverse of the variance), rendering the mean update stable only for very small
values of the update parameter e. With the transform in place, the loss function deriva-
tive with respect to the mean is proportional to the variance, rendering the mean update
stable for a much wider range of values of the update parameter. This can be understood
intuitively by considering that the output values of a Gaussian are less sensitive to changes
in the mean value in a dimension for which the variance is large than for changes in the
mean value in a dimension for which the variance is small. Finally, the transformation of
oj; maintains the constraint that ojx > 0 and also greatly reduces the sensitivity of the
update for small values of the variance- thereby also helping to render the update stable for

a greater range of update parameters. The transformation of oy essentially implies that it
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multiplicatively, making the magnitude of the update relative to the magnitude

q:

dient descent update equations

1 Equation 4.10 the following gradient descent update equations are derived (similar

r the transformed parameters belonging to class i:

1) = ) - 331K, € 0)&)—1‘—)5 c (414
== ops), la=a.

Taln+1) =30 (n) - e, ié 1(X, € Cc)%gf—;’ii)\m (4.15)

& (n+1) = & (n) a;;;l(x i) gij; A)LM (4.16)

@ (n+1) =a%(n) - e, i f 1(X, e ) LeXoi 4) | (4.17)

ulation of derivatives

vatives of the loss with respect to the transformed parameters [z, G and G,
Il appear in Equations 4.14 to 4.16, can be expanded as is now shown for the derivative
ie mean (Equation 4.14) in the following equations [28]. First the derivative of the

unction (Equation 4.8) is expanded via the chain rule to include the misclassification
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| (see also Equation 4.8)

Ole(X,A) _ BI(X,A) 8d.(X, A)

oy 0d(X,A) gl (4.18)
%{% = Yle(do(X, A))[1 = I.(d.(X, A))]. (4.19)

(XA 9i(X;A)n (X
= i — C)&}iy)) +1(i # 0) s = agz(g(;)/\) (4.20)
Olji Lorre N o)

T(X) ()
0g:(X; A _ . Ologh;’(x
B =35 10 =B (4:21)
8lujkl t=1 j=1 d.u/jkjj

quations 4.18 through 4.21 we have now detailed the procedure for calculating the
iive of the loss function with respect to the observation log-probability. All that re-
515 to calculate the derivatives of the log-observation probability function log bgi) (%)
n 4.13) with respect to the transformed parameters ,&gi}l, Egzk) and ‘—755'21- The deriva-

§are given by [28]:

dlog bgi) (xt) cﬁ’}c}N [%t, ,ufk), Ef,“,j]
aﬁ;c)t b?) (%)

Ty _(i

(= — %), (4.22)
(1)

Okt
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6logb(z)(Xt) _ N[Xm Mjk, E(t] [( Ty ﬂ(zl)g B 1] (4.23)
05 b (x,) G

calculate

8log b (x;) _ [.N'[xt il 2
b? (%)

jarameter a,;, which aplﬁears in Equation 4.17 is also given in a similar form to Equation-
£18-4.20. Finally the derivative of the class discriminant function with respect to the

nsformed transition probability is given by

T(X) N
dg:(X; A) '
S %al) {z) E \ E (G- = 5) 1(G = s)[1(" —3)—a§;] (4.25)
=1 s=1

iiled derivations of Equations 4.24 and 4.25 are given in Appendix C because our
ns differ from those previously published [86], where mixture weight and transition

bability parameter dependencies were not taken into account.

MCE training for HMMs

e update equations fully specified, the training procedure is now discussed in more

MCE training is usually preceded by standard ML training of models, such as

piima than gradient-based techniques. In contrast, training using MCE does not guarantee
ed loss (it depends on the selection of a suitably small update parameter) and is

lie to converge to local minima.

g gradient descent optimisation approach discussed in this section, also termed segmental
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D fraining, is implemented as follows:

ML models are estimated using the EM algorithm,

2. observation sequences are aligned with the models, accumulating the derivative statis-

 (Equations 4.18 through 4.25),

transformed parameters are updated (Equations 4.14 through 4.17), and

th

the reverse transformation of the parameters completes the process, which is itera-
tively repeated from point 2.

of the problems with using gradient descent optimisation on MCE is that over-training

and that, based on the training set only, there are no suitable stopping criteria.

Vious research reporting results using MCE/GPD used a fixed number of iterations and

arly decreasing update parameter that was determined empirically to work well (28]

e, however, also other parameters such as the slope of the sigmoid + and the offset

e sigmoid ¢ that need to be carefully selected as they influence the stability, speed of

vergence and ultimately the recognition performance achieved with the method. These

65 are discussed in Chapter 5 when the method is applied to cross-language adaptation.

ative training method for MCE, that uses the N-
ggested by Chou et al. [94].

best candidates from a search,

The method is also known as string-level MCE [95]

118 particularly useful for optimising continuous speech recognition performance when

amount of data is available. We discuss string-level MCE in detail in Section 4.5.1,

we compare 1t with the standard approach that was detailed in this section (

phoneme-level or model-level MCE)

also

when extended using a cost-based method for
proving word recognition performance.
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¥

Applications

the first applications of the MCE approach for speech recognition used artificial
etworks to classify features in isolated word speech experiments [91]. Other ear-
arch on the application of MCE for speech recognition investigated improving the
jance of dynamic time warping-based systems. The MCE criterion was employed
iscriminative optimisation of several parameters of dynamic time warping (DTW)
ding trajectory weighting coefficients [96] and reference patterns [97, 98]. M-
also applied to both DTW (99, 100] and HMM-based [101] word-spotting systems,
as for utterance rejection [102]. MCE was applied for the optimisation of standard
extraction parameters in speech recognition [103, 104] as well as for optimising dy-
ectory) features [105]. The unified framework that MCE provides for global
ation of both the feature extraction front end, as well as the classification back end

fem was also researched [106, 107].

fions that benefited from the use of MCE in the above-mentioned papers include
tion, the E-set problem and connected digit recognition. Relatively few s-
rgeted improving performance on continuous speech. An N-best-based MCE
tion approach was shown to improve continuous speech recognition performance
JARPA naval resource management (RM) task [94] compared to ML trained mod-
ther study [95] found string-level MCE to improve continuous phoneme recognition

compared to ML trained models but found phoneme-level MCE to outperform

evel MCE for the specific task.

jation using MICE

 recently been applied specifically for the purpose of adapting pre-trained models
et fit new speech data. Matsui & Furui [29] compared the MAP and MCE techniques
iptation of Gaussian mean and mixture weight parameters and found that the best

were obtained for a combination of the MAP and MCE methods. MAP was used to
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itial estimate of the speaker adapted parameters and MCE was used to further
a-tune the results. The reason for first using MAP is that MCE is prone to converging to
| minima and therefore achieved better results when starting with the improved MAP
models rather than with the speaker independent models. McDermott et al.
yplied MCE to on-line adaptation and found it to outperform a segmental k-means
. Laurila et al. [109] performed adaptation of only Gaussian mean parameters
fs to new speakers and environmental noise using MCE, MMI, MLLR and MAP
. They report that MAP and MCE delivered very similar results and produced
ifer recognition performénce than the MMI and MLLR approaches.

section we detailed the basic approach to MCE optimisation of HMM parameters.
ihe following sections we propose a few specific extensions to MCE. We propose ex-
ding MCE to discriminatively adapt duration modelling parameters since it is expected
b all parameters, including duration modelling parameters, may need to be optimised
2 new language. A method for the discriminative optimisation of linear parameter
formations is proposed that may deliver better performance than ML estimated trans-
ons. Finally, we propose a method to modify the MCE misclassification measure in
' to associate a (language specific) cost with misclassifying a class as a certain other

This enables MCE to focus on the adaptation of class boundaries that are important

tecognition in the target language.

Discriminative optimisation of duration modelling

parameters

ormance improvement may be obtained by the discriminative optimisation of the du-
on modelling parameters in addition to the discriminative optimisation of the HMM
ameters described in Section 4.2. In Section 2.1.3 we detailed the approach to explicit
jtion modelling followed in this thesis. A gamma distribution function is used to model

(distribution of the number of frames spent in each frame of the HMM. The parameters
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¢ gamma distributions, namely the o and [ parameters, are simply estimated through
onship to the expected mean and variance of the number of frames spent in each
Use of this estimation procedure has been substantiated empirically, but it is not

ed to deliver optimal performance, especially since the true form of the duration

1S unknown.

ction we therefore propose the discriminative optimisation of duration modelling
15 using the MCE framework and derive the equations for it. The state aligned H-

iood function in Equation 4.12 can easily be expanded to include explicit duration

‘and is then given by

T N

G:(X;A) =+ llogag g, +1ogb (x)] + 3" log py (7;) (4.26)
t=1 F=1.

is the number of discrete time frames spent in state J and log p;() is the duration

ihood function in state j given by (refer to Equation 2.4)
log p;(75) = ajlog B; — log T'(a;) + (et — 1) log 7; — ;7. (4.27)

ote that a model duration likelihood function can also be used in conjunction with the
duration likelihood function, but we have not incorporated a model duration likelihood

on. Also the transition probability parameters can be left out if one considers them

replaced by explicit duration modelling.

idering the duration modelling parameters part of the HMM modelling parameter set

413

radient descent optimisation of the duration modelling parameters o and f in state j

1 is implemented by the update equations

o M
(z) (z) Ol (Xo; A)
(n+1) = — €n El Eﬁl 1(X, € C.) - (2) . (4.28)
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partial derivative of the loss function with respect to the class discriminant function is

L by (refer to Equations 4.18-4.21)

— B = e[~ 1] [~ i = o) +1 £ )

e9i(XiA)n ]

SN, e XKk (4.30)

partial derivatives of the class discriminant function (Equation 4.26) with respect to
parameters o and (3 are given by
9g:(X; A) I'(ay)

! —Jog B - 21 L 4 log 7; 4.31
X0 7T () T8 S

0gi(X;A) _ af

oy g

: ,-*’(af,-i)) denotes the derivative of P(af)) with respect to agi) and is computed with nu-
rical differentiation. Adaptation of the duration modelling parameters is thus relatively

ly integrated into the MCE framework.

Discriminative optimisation of linear model trans-

formations

ear transformation for speech model adaptation usually follows the maximum likelihood
roach, leading to the well known MLLR. algorithm or variants of it. In contrast to this,

en linear transformation is applied to the speech pre-processing or feature extraction
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linear discriminant analysis (LDA) [110], principal component analysis (PCA) [38]
ninatively optimised linear transformations using MCE [107] are commonly used.
) not explore feature space reduction or discriminative optimisation of the feature
process, since the techniques are liable to be database, or at least language
Je, however, are interested in the application of discriminative methods in the
n of the linear transformation of the HMM model parameters between languages,

§ may improve on the performance of maximum likelihood transformation estimators.

navelu [111] proposed applying the MCE/GPD method in optimising the parameters
ransformation of the trajectory parameters of a non-stationary state HMM. We
ndently arrived at the same method for the transformation of the Gaussian mean
s of a mixture observation density HMM. If the transformation of the Gaussian

components is given by
i = Wy, (4-33)

servation probability of a state in the transformed HMM becomes (for diagonal

TE— “"”"' k

. i (i)N[ W (4) E(t) ZM: C(i) —3 Zida G (4 34)
Xi) = C; Xi, ; ikl ) ]
o o t e (QTT)(D/ 2 H; 1‘7%

fion of the MCE loss function with respect to the transformation matrix W then
similar fashion to Equations 4.18 through 4.21. These equations give the par-
e of the loss function with respect to any parameter of the mixture distribution
the derivative of the log-observation probability with respect to that parameter.
that remains is to compute the derivative of the state log-observation prob-

ty with respect to the transformation matrix. This is given for the Ith row of
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(3)
wi. @)

amination of Equation 4.35 shows that there is a aﬁ?ﬁ term in the denominator, which
peause the update to be unstable even for a small update parameter due to the extremely
ange of gradient values associated with a small variance component. A solution to
318 fo reduce the quadratic form to first order, or even to drop the variance term in the
ominator of the gradient altogether. This heuristic solution can be better expressed in

GPD framework proposed by Juang & Katagiri [91] that caters for a positive definite

fix U, as part of the update equation, which is then given by

0O M

wi(n+1) = wi(n) — Unen > > 1(X, C)M (4.36)

=i aw, A=A,

sing U, to be a diagonal scaling matrix, with the average component variance for the
dimension taking the /th position on the diagonal, provides a way of normalising the
ence of the variance in the update equation. Note that this could also have been used
e MCE Gaussian mean update equation (Equation 4.14), but was not necessary since

g the transformed mean value has exactly the same effect.

ice has to be made with respect to the initial value W (0) of the transformation ma-
Using an identity matrix presents one option, but in light of the tendency of the

ient descent procedure to converge to local optima, a better choice is perhaps to use

e simple nature of the linear transformation process and because relatively fewer pa-
ters are optimised. Experiments with the discriminatively optimised linear transform

MLLR initial estimates for the transformation and achieved improved performance
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er standard MLLR transformation. However, since both MLLR and the discriminatively
ed linear transform did not produce very good performance in isolation, experiments

Chapters 6 and 7 only detail MLLR-based transformation results, mainly for comparison
i MLLR-MAP results.

the next section we discuss modifying the MCE loss and misclassification measures to
beiate varying cost or loss with different misclassification errors. Associating a cost
| a particular misclassification indicates the importance (or lack of impdrtance) of the
ification and can improve the performance achievable with discriminative phoneme

timisation by focusing on phoneme errors that have a high probability of leading

YOIrd errors.

| Cost-based MCE

1an framework for classifier design [25] allows for the specification of a cost or risk
ated with classifying a sample from class i as belonging to class j. In this sense,
ard implementation of MCE uses only a true-false cost function, considering in
assification measure (Equation 4.6) only the class to which an observation belongs
e true class and treating all other classes equally as false classes. When the true
classifier is to achieve minimum phoneme misclassification, use of a zero-one cost
makes sense. In this case the MCE loss function closely approximates the empirical
cation rate and presents a suitable function for optimisation. Generally, however,
L of a classifier may be better expressed in terms of a more useful property such
id accuracy in continuous speech, or even at a more abstract level, in terms of how
ately the meaning of a speech utterance is expressed by a recognised phrase. In this
i we consider ways of improving the MCE loss function to more accurately reflect the
e classifier. We start off with a previously discussed approach that implements

tive training by comparing competing hypotheses.
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2.1 String-level MCE

order to improve the performance of discriminative training techniques for continuous
h applications, research was performed by Chou et al. [92] on a minimum string error
¢ implementation of MCE using N-best candidate strings. Even though the method
a string-level loss function, optimisation occurs at the subunit (word or phoneme
del) level, thereby indirectly also optimising classification performance of the subunits.
e method has been shown to work well for closed vocabulary problems such as connected
if recognition. This is to Be expected because it implements a task dependent word error
i based minimisation that compares possible in-vocabulary errors to the correct align-
computes the update accordingly. String-level MCE is very useful when speech
a 18 available that has been transcribed, but not labelled, since alignment information
eeded for the method. The method also may have an advantage over the standard
proach in that recognition units are automatically aligned in sentence context with each
her during training and can therefore take into account insertion and deletion errors in
to substitution errors. However, McDermott [95] points out that string-level MCE
ely only considers regions of the speech input frame where there are differences in
nentation between the correct and competing hypotheses. Since only a limited number
theses are typically decoded for computational reasons, only limited regions of each
me are used to increase discrimination, whereas with phoneme-level MCE adapta-
y or all competing hypotheses (single HMMs) are considered for every phoneme

thereby better utilising the available data to increase class separation.

el MCE will not necessarily deliver optimal performance at the subunit level, as
been found [95] for continuous phoneme recognition. This can be explained by con-
g exactly what the effect of string-level training on the basic modelling units are.
systems, phoneme models are usually used as the building blocks for compos-
ch units such as words. String-level MCE uses an N-best search to find the best
g hypotheses that differ in terms of word sequence from the correct hypothesis.

ptation occurs only for models associated with these strings, thus predicating the adap-

d Electronic Engineering 118




University of Pretoria etd — Nieuwoudt, C (2000)

Discriminative learning theory

0 of phoneme models on word confusability. The cost in terms of word error rate for
g one phoneme as another is thus determined based on the whole word training
and used to adjust the boundary between the two phonemes. This is, however, a sim-
| view of how the method works. Typically, an exact pronunciation dictionary is not
and therefore a training speech utterance may not exactly match the phoneme
" the correct word sequence. The acoustic models are thus adapted to also ex-
fphonemic properties. This happens anyway if forced-alignment training is done, and
surely improve task specific word recognition performance, but care should be taken in

2=

g performance a task with a different vocabulary or grammar.

w discussed how string-level training can use a string and thus in effect a word
cost in adapting phoneme models. The method we discuss next shows a way
integrating a phoneme misclassification cost into the MCE framework, without

y perform an N-best search-based word level alignment.

Incorporating cost into the loss function

ons for applying modification of the phoneme models at the phoneme level rather than

e string or word level include:

er efficiency is achieved with (phoneme) model-level MCE versus string (word)

G;; associated with the classification of a sample from class 7 as being of class j
nd is treated as a risk, the design of a minimum risk classifier in the Bayes sense

e attempted (determination of ¢;; is the topic of a following section).
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ermott [86] suggested a modification of the MCE loss function to integrate a model-
ost function that ensures that the overall loss function reflects the empirical risk. For
ng token the method weights the contribution from each false class by the risk
siated with that false class. To incorporate the method into the MCE misclassification
ire, the weight of each incorrect class j with respect to the total contribution of the

rect classes is first expressed as

93 (X:A)7

35 pere eI EAM

wi(X;A,¢) = (4.37)
the correct class is ¢. The cost-based loss function can then be expressed in terms
he cost .; and the contribution w;(X; A, ¢) of each incorrect class, summed over all the

orrect classes by

M
BEGA) =[] CwilXs A, 0] (X5 A). (4.38)
Jd#Fe

jgure 4.1 shows graphically for a two class problem how the loss varies as a function of the
sition of an observed value, when different cost values are associated with the misclassi-
. The loss is a function of the relative correct versus incorrect class likelihoods and
lso the cost associated with misclassifying the correct class as the incorrect class. Since
Jquation 4.38 expresses the overall empirical risk, optimisation of the equation minimises
he risk. If suitable estimates of the individual risks (.; are available, the method may

approximate minimum risk classification.

Unfortunately, no further details of the implementation of the method were published in
8t . Since we are interested in implementing the method we compute the derivative of the

gost-based loss function I}(X; A) with respect to the class discriminant function g:(X; A),
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Loss

Feature distance

Figure 4.1: The loss I* incurred as a function of the position of an observed value for various
values of the misclassification cost when the Gaussian mean of the correct class is at -1 and
the Gaussian mean of an incorrect class is at 1 and both Gaussians have unity variance

‘which is then given by

ol:(X; A)

M
B 1) = 17 I A, 0) G — 3 G5 4,0 (X A)

J.jFe
M
l(X; A)
-+ [Z Cejwi (X A, c)] —C(—_, (4.39)
- 9g:(X; A)
Ji#Fe
where the partial derivative of the loss function with respect to the class discriminant
function (g;ci((%%) is given by Equation 4.30. Since the derivation of the derivative of the
discriminant function with respect to HMM, duration and transformation parameters have
been given previously in this chapter, the process is now fully specified, except for the

determination of the cost function itself, which is discussed next.

4.5.3 Estimating cost based on word error

We formulate a rather simple procedure for estimating the cost of misclassification for

each phoneme pair that is based on the probability of the misclassification leading to a
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word error. The procedure assumes that phonetic transcriptions of a large set of words
are available and using simplifying assumptions, statistically determines the relationship

between phoneme misclassification and word misclassification.

Given the problem of recognising an isolated word from a closed vocabulary, the probability
hat a word is recognised in error can be expressed in terms of the probability that the

ecogniser substitutes word j for word 7 by

P(word error) = Z [P(wi) ZP(w?; > wjl'wi)] (4.40)

i i
there P(w; — w;|w;) denotes the conditional probability that the substitution takes place
and P(w;) is the a priori occurrence of word i. The next step is to condition the probability
ord substitution w; — w; on a specific phoneme substitution oy, — ;. The problem
§greatly simplified by considering for each word pair only phoneme errors that change the
5t word along the optimal alignment path of the word pair to look more like the second
ord, hereafter termed cross-word phoneme errors. We define the phoneme misclassification
ki to be the probability of a word error given that a specific substitution ay — ay of

plioneme oy, by oy occurs by:

i)

(word error|ay — o)

P(word error, a, — o)
P(O{k —2 Clq)

> [Plws) > iz Plwi = wjlwi, a, — o) Ly — oy in{wy, wj})]
X [P(w) 5 e — 0 infus, wy})]
b [P('w,;) >z P(word error|d(w;, w;), #substitutions > 1) 1(e — oy in{w;, wj})]

;- 2 [P('wi) D i Lok = oy in{wi’wj})]

(4.41)

(p — oy in{w;, w;}) is 1 when the oy, — « substitution match occurs in the
imal alignment of w; and w; and 0 otherwise, d(w;, w;) is the number of insertions,

s and substitutions in the optimal alignment of w; and w; and the probability of a
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word error, given the distance between the words and the fact that at least one substitution

takes place is given by P(word error|d(w;|w;), #substitutions > 1).

The probability of a word error is thus defined to depend only on the phonetic distance
d(w;, w;) between the words, i.e. on the number of insertions, deletions and substitution-
s necessary to convert one word to the other. Independence of the cross-word phoneme
errors is assumed and the number of cross-word phoneme errors then assumes a binomial
distribution. When more than 50% of cross-word phoneme errors occur, a word substi-
fution is assumed to take place and when exactly 50% of the cross-word phoneme errors
oceur, a 50% chance of a word substitution error is assumed. The probability of a word
substitution is expressed by the summation of the binomial probabilities that half or more
of the cross-word phoneme errors occur, taking into account that at least one phoneme
error has occurred. The word substitution probability can then be expressed in terms of

the inter-word phonetic distance n and the cross-word phoneme error probability p by the

function

B 5) — D m=(n/2] (Pl —p ™ n odd
1/2(717;—11)?”/2_1(1 o LD DN (2 )pmtA —p)"™™ neven.
(4.42)

Figure 4.2 shows graphically how the word substitution probability varies as a function of
the inter-word phonetic distance for a number of cross-word phoneme error probabilities.
Since cross-word phoneme errors only include phoneme errors that change the first word
according to the optimal alignment path with the second word, the use of a relatively small
value for the cross-word phone error probability is therefore applicable. We selected to use

a value of 0.1 for the cross-word phoneme error probability.

Conditioning the probability of a word error only on phoneme substitutions (Equation 4.41)
is perhaps too simplistic. We therefore oxtended the method to also consider the effect of
phoneme insertions and deletions, by regarding them in the same way as substitutions.

An insertion before or after aj of q, is considered a possible misclassification of speech
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4.2: The word substitution error (WE) probability as a function of the inter-word
¢ distance for a number of values of the cross-word phoneme error (CWPE) proba-
iven that at least one substitution has occurred

ja corresponding to oy as q;. Similarly, the deletion of ay before or after o is also

lered a possible misclassification of speech data corresponding to aj as «;. By as-
g a probability of % with the mentioned insertions or deletions being caused by a
— oy misclassification, the probabilities that these phoneme errors lead to word errors

incorporated into Equation 4.41 by the following equation:
: 1 d
4= P(word error|ay — o) + EP(word error|ag T ay) + aP(Word error|og 4 ay), (4.43)

e o, T oy means that «; is inserted before or after oy and ay | c; means that oy
ed before or after oy. Both P(word error|a; T ai) and P(word error|ay | o) are

ed in the same way as for P(word error|ay, — o;) (Equation 4.41).

s concludes our discussion of the estimation of the word error-based phoneme misclassi-
cost. The resulting cost matrix can be used with the loss function method discussed

Section 4.5.2, or can be used with an alternative method that we discuss in the following
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45.4 Modifying the misclassification measure

The method presented in Section 4.5.2 uses the cost values {(;;} to weight for each training
foken the contribution of each false class in determining a new overall loss function. We
may, however, want to use the cost values to affect the relative correct/incorrect likelihood
at which loss is incurred. Rather than a small cost value reducing the total loss associated
with a misclassification, we want to only reduce the loss in the region where the relative
likelihoods of the correct and incorrect classes are comparable. It basically means that
near the decision boundary bf two classes, and thus in the region where overlap may oc-
cur between the distributions, loss is reduced. Loss is, however, not significantly reduced
when the incorrect class likelihood is much higher than the correct class likelihood. This
effectively shifts the loss function towards the incorrect class as the cost associated with a

‘misclassification becomes lower.

(Cost-based misclassification measure

In order to achieve the above, we present an approach to integrate the cost function ()
into the MCE framework, based on a modification of the misclassification measure. The
decision boundary of the misclassification measure is shifted with the value of the cost

function. The new misclassification measure can then be expressed by

M
Z e(log{ij+9j(X§A))n:| 1/7?_ (4.44)
NINE=

dI(X;A) = —gi(X; A) +1 [
(X A) = ~i(X; A) +log [ 77—
The log cost (log¢;;) is added to the log-likelihood function, which is equivalent to multi-
plication of the likelihood function by the linear cost. Figure 4.3 shows graphically for a
fwo class problem how the loss varies as a function of the position of an observed value,
when different cost values are associated with the misclassification. It can be seen that the

effect of the cost is to shift the loss function towards the incorrect class for lower cost.
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Loss
o
n

I

Feature distance

: The loss If incurred as a function of the position of an observed value for various
of the misclassification cost used in the misclassification measure, when the Gaussian
the correct class is at -1 and the Gaussian mean of an incorrect class is at 1 and
ussians have unity variance

parison of modified misclassification measure with modified loss function

iferesting to compare the working of the two approaches (Equations 4.44 and 4.38) to
orating cost into the loss function. We refer to the approach of Section 4.5.2 that uses
5t o weight the loss function (4.38) as the cost-based loss function (CBLF) approach
our approach (4.44) as the cost-based misclassification measure (CBMM) approach.

L4 shows a three class problem with one correct class centred at -1 and two incor-
sses, centred at 1 and 3 and associated with misclassification costs of 0.5 and 1.0
vely. Figure 4.4(a) shows the three Gaussian distributions, as well as the “average”
act class value as expressed by Equation 4.7 in the linear domain. Figure 4.4(b) also
the three Gaussian distributions, but multiplied by their respective costs in the linear
is effectively performed by CBMM in Equation 4.44 (by adding log-cost in the
). Figure 4.4(c) shows the shape of the loss function for the distributions in
ieved with CBLEF (Equation 4.38). Figure 4.4(d) shows the loss CBMM associates

s likelihood functions in (b). The contribution from incorrect class 1 can be
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compared to that in Figure 4.3 to see how the cost value of 0.5 shifts the loss to the right

in this case.

OBMM has the advantage that the inter-dependencies between the contribution of different
false classes are handled better, because they are already taken into account in the misclas-
sification measure. This is clearly explained by a more extreme example, in which incorrect
class 1 has very low cost. Figure 4.5 shows the same four graphs, but with a cost of only
0.1 associated with incorrect class 1. Note in Figure 4.5(c) how in CBLF the contribution
of the loss from incorrect class 2 is suppressed by the contribution from incorrect class 1,
although class 1 has a very low associated cost of 0.1. At z = 1, one expects a loss in
the region of 0.5 because the point is halfway between the true class and incorrect class 2,
yet incorrect class 1 suppresses the loss. Figure 4.5(d) shows how in the CBMM approach
the loss attributed to class 2 is only slightly suppressed by incorrect class 1 because the

dependency between the incorrect classes in the misclassification measure is handled better.

Cost and reward-based misclassification measure

The goal of phoneme-level discriminative training should be the improvement of the over-
all system, of which the word error rate is a reasonably good measure. The method for
estimating a word error-based phoneme misclassification cost and the integration of it into
the discriminative training of phonemes provides a step in the right direction. String-level
training, as we have discussed before, goes even a step further because it performs a degree
of phonemic training - i.e. training based on what was supposed to have been said rather
than for what was actually said. The method we propose next attempts to incorporate
some phonemic information in the discriminative training procedure, while at the same

time reducing the overall loss and thus the degree of adaptation that will occur.

The first step in the procedure is the extension of the word error-based phoneme misclassi-
fication cost estimation procedure to include a reward (negative cost) for a misclassification

that may improve the word recognition rate. This is possible because different phonetic
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4: A comparison of two methods for computing the loss for a three class problem
orrect Gaussian mean at -1 and incorrect Gaussian means at 1 and 3 and with as-
| misclassification costs of 0.5 and 1 respectively, showing (a) the three distributions
with the “average” of the two incorrect classes, (b) the three distributions, modified
to the CBMM approach along with the “average” of the two incorrect classes,
ss function according to the CBLF approach and (d) the loss function according

MM approach

f the same word may occur in practice while the pronunciation dictionary for
contains only a subset of the possibilities. The misclassification of one or more
emes corresponding to the actual speech as the phonemes from the pronunciation
iy may thus improve the overall word recognition rate. A procedure to estimate

ted reward associated with such misclassification can be derived by modifying
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Figure 4.5: A comparison of two meth
with a correct Gaussian mean at -1 an

ods for computing the loss for a three class problem
d incorrect Gaussian means at 1 and 3 and with as-

sociated misclassification costs of 0.1 and 1 respectively, showing (a) the three distributions
along with the “average” of the two incorrect classes, (b) the three distributions, modified

according to the CBMM approach along with the “average” of the two incorrect classes,
(c) the loss function according to the CBLF approach and (d) the loss function according

to the CBMM approach
Equation 4.41 in the following way:
3o | P(wi) 2o ki s P(word subst.|d(w;, w;), #subst. 2 1) 1(ax = in{wi,wj})]

o > [P (wi) X Lo — o in{uwi; wy })]

s

(4.45)

where €2; represents the phonetic variants of word 4. Equation 4.45 estimates the expecta-
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tion value of a phoneme misclassification leading to the recognition of an alternative form
of the same word. This, of course, does not directly express a contribution towards the
reduction of the word error rate, since it would really have had to take into account the rel-
ative distance to the closest incorrect words. It therefore only expresses to some degree the
phonemic information regarding alternate pronunciations contained in a pronunciation dic-
tionary. In place of a pronunciation dictionary, a labelled speech database can also be used,
with the various label sequences associated with each word considered to be pronunciation

variants.

A procedure for discriminative optimisation, that is based on phonemic training, is then
derived by subtracting the reward from the cost and using the resulting net cost value

5 = (ij — rij in a further extension of Equation 4.44 by

d 1/n
> LG < 0)6(1“g(‘<GJ+91(X;AJ)n]

M - i
Zj:l 1((1_7 < O) j=1 !

M

1 : : 1/n

+ log § s > 0)eloB(=¢5)+ai (XsA)n | 77 (4 46)
[Zﬁumgzmjﬂ ’ |

di(X; A) = —log |

We term this the cost-reward-based misclassification measure (CRBMM) approach. For

phoneme pairs with a net reward or negative net cost, i.e. (; < 0, values of the parameters

of model 7 will be adapted to increase the likelihood of observations from class k, thereby
effecting phonemic training. It should, however, be noted that this approach reduces the
empirical loss and therefore less adaptation will likely take place than for zero-one cost
functions. The reason why this approach works may thus be rooted not only in the fact
that it performs phonemic training, but in the fact that it reduces the loss associated with
errors that have some positive or little negative effect, thereby stopping the MCE approach
from changing ML estimated models to enforce rigid acoustic separation between phonetic

classes.

The working of the method is shown in Figure 4.6 for the same three class problem with

Gaussians centred at -1, 1 and 3, but with an associated net cost of -1, -0.1 and 1.0
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respectively. Figure 4.6(a) shows that the net reward of 1.0 (net cost of -1.0) associated
with correct class 1 effectively means that its likelihood function is unaffected, while the 0.1
" net reward associated with correct class 2 means that its likelihood function is multiplied by
0.1 in the linear domain. The likelihood function of class 3 (the incorrect class) is unaffected
by its cost of 1.0. The “average” likelihood of the classes with net reward (correct classes)
is compared to the net loss class likelihood in the misclassification measure. Figure 4.6(b)
shows the total loss incurred, as well as the portion of the total loss attributed (in the
component derivatives) to class 1 and class 2. It can be seen that for large z, loss is
attributed to class 2, which is then adapted rather than class 1, which has almost no

contribution to the loss for large z.

T T 1 T T 1 1 T T T T ‘EA_HAA—
correct class | ——— . 09 + yﬂ‘* _
coreet elass 2 i 7
incorrect class - | 0.8 correct class | —— 4+ -
correct "average" - 07 |  correctclass2 - o -
total loss ~ + +

Loss

As far as the implementation of the procedure is concerned, the only derivation that changes
is that of the misclassification measure. The derivative of the modified misclassification

measure with respect to the class discriminant function becomes

0di(X, A) L = (})3{10E(—C;-)+9='(X;A)1n 1(¢ > 0)e [log(—¢Z;)+9i (X;A)]n

= " - -+ e
0g:(X; A) Zﬁi i 1( :j < U)e[log(—Cc,-)ﬂj(X,A)]n Zg 11( x> 0)e [log(—¢x;)+g; (X5A)n
(4.47)
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Note that this equation is also valid for the derivative of the misclassification measure of

the CBMM approach (Equation 4.44) with respect to g;(X; A) by setting the correct class

cost Cj; to -1.

4.6 Discussion

In this chapter we discussed the application of discriminative learning methods for the
purpose of training and adapting parameters of speech recognition systems, continuous
density HMMs in particular. The effect of the optimisation criterion on classifier design was
discussed. The minimum classification error (MCE) criterion was chosen for discussion as it
most closely follows the principle of reducing the error rate of a classifier. An important step
in the design of a training or adaptation procedure is the optimisation approach. For MCE
a gradient descent optimisation approach was detailed, including derivation of the MCE
gradient of all HMM variables. Model-level and string-level approaches for MCE training

were compared and advantages and disadvantages of both methods were discussed.

Some applications of the MCE method were discussed, noting that the method has mainly
been applied to limited, yet confusable vocabulary problems such as the E-set problem and
connected digit recognition. Only a limited number of medium to large vocabulary continu-
ous speech recognition applications of MCE have been published. Adaptation performance
of MCE was also discussed, with research indicating that better model initialisation, such
s achieved by first performing MAP estimation, improves performance achieved with MCE

and is better than ML adaptation in isolation.

Extensions to the standard MCE framework were presented, including discriminative adap-
tation of duration modelling variables, discriminative linear parameter transformation and
word error-based phoneme adaptation approaches. The reason why the adaptation of all
parameters, rather than say only Gaussian mean parameters are considered, is that cross-

language adaptation may require significant adaptation, compared to perhaps the fine tun-
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ing of models for a specific speaker. Alternative approaches for incorporating cost into the
MCE framework were compared and an approach that also utilises reward in the misclas-
sification measure was presented. The cost-based framework is of specific importance for
cross-language adaptation since the phoneme inventory, context and acoustic separation
between phonemes differ significantly between languages and adaptation should be able to

address these issues efficiently for the target language.

In the next chapter we treat the issues involved in applying the techniques from speak-
er adaptation (Chapter 3) and discriminative learning (this chapter) for cross-language

acoustic adaptation in detail. -
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Cross-language acoustic adaptation

iIssues

In this chapter we discuss the framework for the experiments detailed in the following two
chapters. Practical aspects regarding the cross-language use of algorithms detailed in the
previous two chapters are covered as part of this framework. Language and database issues

are also discussed to place the experiments that were performed in the proper perspective.

Cross-language use of acoustic information attempts to exploit the acoustic-phonetic sim-
ilarities between languages. These similarities are evident from the use of international
phonetic inventories, such as the International Phonetic Alphabet! (IPA) and Speech As-
sessment Methods Phonetic Alphabet? (SAMPA), that serve to classify the sounds of many
languages. There are still, however, differences with respect to the acoustic properties of
sounds from different languages that share the same labels. Also, often a target language
may contain sounds that do not occur in languages for which large databases are available.
Labelling conventions, recording conditions and the type of speech recorded may also differ

between databases, making cross-language and cross-database use of acoustic information

http:/ /www2.arts.gla.ac.uk/IPA /fullchart.html
2http://www/phon.ucl.ac.uk/home/sample/home.html
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y formidable task. Aspects regarding language and database specific issues are discussed

in this chapter to facilitate cross-language use of acoustic information.

We consolidate the application of methods discussed in the previous three chapters for
ng acoustic information across language boundaries. The strategies that have been used
in previous research are (i) training on pooled multilingual data and (ii) adapting models
ned on one language using data from another. There are, however, as we shall discuss
in this chapter, other strategies that can be followed such as (iii) training models on pooled
source and target language data and then adapting the models using only target language
data and (iv) cross-language transformation of source data followed by training on the

pooled target and transformed source data.

In addition to the different strategies for cross-language adaptation that will be discussed,
the algorithms used for adaptation or transformation should also be examined to use them
efficiently for the specific purpose. In previous chapters we already proposed new tech-
niques to improve cross-language adaptation performance, such as the MSE log-variance
ransformation, the discriminative adaptation of duration parameters and use of a word
error-based cost function in discriminative phoneme adaptation. These techniques are not
part of the published repertoire of speaker adaptation algorithms, perhaps because speaker
adaptation differs essentially from cross-language adaptation. In this chapter we therefore
teconsider how to apply the standard adaptation methods together with our extensions

thereof for cross-language adaptation.

5.1 Language and database issues

The acoustic-phonetic similarities between languages are well documented in international
phonetic inventories. The existence of such standards is central to our goal of using acoustic
information across language boundaries. The international phonetic inventories were devel-

oped by phoneticians using expert phonetic knowledge, however, and not by using acoustic
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measurements or statistical techniques. There is thus no guarantee that these phonetic in-
ventories represent an optimal classification of the acoustic properties of speech in different
languages. Indeed, even for the same phonetic category, the acoustical realisation of the

honeme may differ between different languages for a number of reasons such as [48]:

o different phonetic context due to different phoneme sequence statistics and different

phoneme inventories,
o different speaking styles,
e different prosodic features and

e different allophonic variations.

According to the principle of sufficient acoustic separation, the set of sounds in a language
are kept acoustically distinct by its speakers to make it easy to distinguish between the
sounds. Because the phonetic inventories of languages differ, the positions of the boundaries
between phonemes are language dependent. In spite of the differences between languages
with respect to the characteristics of speech of the same phonetic category, we still expect
reasonable overlap between the phoneme feature distributions of different languages and
that the phonetic categories give a good indication as to how the overlap occurs. This
reasoning is supported by empirical evidence from systems with explicitly multilingual
:'one sets. In the next section we examine how differences with respect to phoneme

inventories and context may influence the usefulness of speech data.

5.1.1 Phonetic inventories and context

Cross-language use of acoustic-phonetic information is limited to the overlap or junction of
the phoneme inventories of the languages. When considering cross-language use of acoustic-
phonetic information, it is therefore important to attempt to find languages that are as

similar as possible. This ensures that maximal overlap of phonetic inventory as well as
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overlap of phonetic context between the languages occur. Significant overlap of phonetic
ontext ensures that monophone models contain to a large degree the same built-in context

mformation and also facilitates the cross-language use of data to train context dependent

h and Afrikaans, mainly because (i) suitable databases were available for these lan-
es and (ii) research on South African languages are of particular interest to us. Two
different databases were used, one containing both South African English and Afrikaans,

and one containing American English only.

As far as the specific context of the source language databases are concerned, it is better if
source language databases are phonetically diverse and contain a large variety of con-
ts. This reduces the specialisation of the source language acoustics for specific contexts
and may improve the performance of models for recognition tasks containing speech from

an entirely different context [112], such as is typically expected for a cross-language task. In

) has diverse context. The phonetic context of the bilingual database, however, is not

very diverse as a large number of utterances of only 60 different sentences are used.

Although an international phoneme inventory (such as IPA) may be used, a subset of the
lnventory is usually selected that covers the expected occurrence of phonemes in the speech
of the database. Using a limited number of phoneme categories has the advantages of
simplifying the labelling process and possibly reducing the number of incorrectly assigned
labels. On the other hand, a small number of labels may group together phonetic cate-
gories, which separately could provide useful information. If a database is created for the

explicit purpose of multilingual speech recognition, then use of a larger set of labels that
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suitably covers the phonetic variety over the combination of languages may facilitate the
development of multilingual and cross-lingual application of the database. The bilingual
database that is used in this thesis is of this nature, using a consistent set of labels for both
languages. This is very convenient because it enables experiments to better quantify the
effect of actual acoustical differences between the languages rather than possible artifacts

of labelling differences.

A

An important aspect with respect to the accuracy of a database is the extent to which the
database is labelled using phonetic or phonemic considerations. The purpose of labelling is
usually to assign phonetic categories on an acoustical basis to the speech. This implies that
phonetic labelling is attempted. Phonetic labelling is, however, a difficult and tedious task
and it is often easier for the person performing the labelling to assign a label to a sound
segment on a phonemic basis, i.e. on what was supposed to have been said, rather than
on what was actually said. Perhaps the easiest way to assign labels to a speech database
is by forced alignment, delivering a purely phonemic segmentation of the speech. For
mstance, in bootstrapping procedures this is the only solution because phonetic labelling
of the target language database is not done. When source language models trained with
forced alignment are used for a closed vocabulary task, or even for an open vocabulary
same-language application this may not have a severe effect beyond the loss of acoustic
tesolution. It may even improve recognition performance in continuous speech when an
imperfect pronunciation model is used. However, for a cross-language task, the loss of
acoustic resolution, coupled with the incorporation of incorrect (source) language specific
phonemic information, is likely to degrade performance for target language applications.

For both databases used in this thesis, a phonetic labelling approach was used.

5.1.3 Phonetic mapping

Generally, if identical labelling conventions are used in the creation of the source and
target databases, no work needs to be done at the phonetic level in determining how to

implement cross-language use of the data. This is also the case for the bilingual database
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in this thesis. Several multilingual speech recognition studies have demonstrated the

(R

efficient re-use of acoustic-phonetic information across multiple languages [19, 20]. It is
when differences exist with respect to labelling, i.e. a one-to-one mapping of phonemes
s not exist, that difficulties are encountered. Two approaches for determining how

o use the acoustic-phonetic information across language boundaries are generally applied

o phonetic knowledge-based and

e distance measure-based

methods for pairing phonemes or groups of phonemes from multiple languages. In our case

process is somewhat simplified since only a one-way mapping from source language(s) to

Phonetic knowledge-based mapping

ert phonetic knowledge can be used to determine a mapping from the phonetic inventory
) source language database to the phonetic inventory of a target language database.
As previously mentioned, this is the only viable approach for research on bootstrapping
of target language models, since target language data is not labelled. Research on explicit
multilingual phoneme-based recognition often also makes use of phonetically derived sharing
of acoustic parameters e.g. [19, 49]. For this thesis a phonetic expert determined a mapping
fom the American English database to the bilingual database, details of which are given

in Appendix B.

Many multilingual systems use phonetically derived categories with multilingual scope, but

then use statistical procedures to select whether to consider the same phoneme in the
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ifferent languages as one or whether to model them separately [30]. The procedures have
 been extended to the creation of generalised triphone models of arbitrary complexity
ing a decision tree clustering approach with both language and context questions in
ihe splitting procedure. These approaches were not followed because the amount of data

was deemed to be too limited.
~

Distance measure-based mapping

Research has shown the use of a metric such as the Bhattacharyya distance

1 3y 4 By 1. |
Dphat = = — ) E = — —log —2—— :
Bhat = ¢ (2 — p1) [ 5 ] (Bg — pq) + 2 0g =) (5.1)

0 measure the distance between Gaussian distributions representing phone classes of the
same language for clustering purposes [113]. This metric has been used in a multilingual
context to merge arbitrary phonemes from multiple languages [20] to reduce the complexi-
fy of the multilingual models. This entailed computing the distance between the phoneme
models of the different languages and merging phonemes for which the distance measure-
ment was below a pre-set threshold. Only a partial mapping of the phonemes was performed

since some classes were not merged.

T

The question therefore still remains whether a distance measure can be efficiently used to
perform a complete mapping of the phoneme set of a source language database to a target
language database. An approach for automatic phoneme mapping is attempted in this
thesis. Single state (single mixture) Gaussian distributions are estimated for each phoneme
in both databases on CMS normalised data. For each target phoneme the list of closest

source phonemes are then found using the Bhattacharyya distance (Equation 5.1).

problem with an automatic approach to phoneme mapping is that it depends on the
distance measure used, but more importantly, that the usefulness of the results depends

on a close match between the acoustic properties of the speech in the relevant databases.
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for example, say a significant (but mostly linear) bias in feature space exists between the
"b‘ases. The knowledge-based phonetic approach to computing the mapping is inde-
endent of the recording properties of the database and thus should deliver a reasonable
napping, enabling the use of linear transformation to remove the bias. With the automatic
pproach, though, the mapping may be so poor that even iterative application of transfor-
mation and re-mapping may not converge to the optimal mapping. Iterative application of

mapping and transformation is, however, not attempted in this thesis.

5.1.4 Database issues

The characteristics of databases used for speech recognition experiments influence to a large
nt the expected results. Use of a multilingual database, or bilingual database, in our
. ensures that cross-language experiments using only the database can focus mainly on
ihe acoustic differences between the languages. The characteristics of the database still
etermines to a large degree the type of experiments that can be performed and also the
ecognition performance expected when applying various techniques. Both databases used
1 this thesis contain read speech from many speakers. Read speech is easier to recognise
or example spontaneous speech. Both databases contain phonetically diverse speech,
Wt limited to any particular topic or speaking style, thereby increasing the number of

gontexts each phoneme may occur in.

When attempting the transfer of acoustic information between databases, it may be im-
portant to compensate for differences between the recording conditions of the databases.
For example, frequency range and even the frequency transfer functions imposed on record-
od speech may differ. Linear frequency effects may be compensated for by cepstral mean
subtraction (CMS), although it may be inaccurate to simply implement CMS over the com-
lete databases if the phonetic contexts of the databases differ significantly. The approach
at we follow to solve this problem is to train models on the source database and to then
sompute the maximum likelihood cepstral offset between the source models and the target

data within the MLLR framework. The offset is applied to the source data to perform
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. Section 5.2.5 gives detail about a generalisation of this approach that performs a

formation of source data, as opposed to simply performing CMS. Experimental results

etailed in Section 7.7 of Chapter 7. Thus, while this thesis does not attempt to char-
icterise the effect of using different databases in general, some experimentation is done to
ascertain the relative influence of using the same source language (in this case English) from
ihe same database and from a different database. In the next section we discuss various

ways in which multilingual data sources can be used to create target language systems.

Strategies for using multilingual data sources

The typical position is that a large amount of data is available for one or more source
languages and only a limited amount of data is available for the target language. The goal
1§ to construct a recogniser that will achieve optimal performance on unseen data from
the target language. We make the assumption that sensible use of all available data will
lead to better recognition performance than using only the target language data. Baseline
performance is thus set by training on target language data only and methods to improve

on this performance are sought. The next sections discuss various ways of utilising the

available data.

5.2.1 Data pooling

The simplest method of constructing a recogniser using all available data is to simply
pool the data and train on the pooled data set. This technique is commonly used to
construct explicitly multilingual systems. Previous studies [48, 19, 20, 30] have shown that
for reasonably large amounts of data from each of the languages, a slight performance
degradation is actually achieved by the multilingual system in comparison to the language
specific recognisers because the accuracy of the models is decreased. If only a small amount

of data for the specific language were available, then some improvement in performance is
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le with the multilingual system, simply because robust models cannot be trained with
0 little data. It is difficult to predict what amount of language specific data is necessary
re multilingual pooling will degrade performance. This depends of course also on how
close the match between the languages is - the closer the match, the better the chance that

' V_fle pooling will lead to desirable results.

5.2.2 Model combination

\ simple alternative to the multilingual pooling method is to first train models separately on
hoth source and target language data and to then select the specific models that perform
le best on a separate cross-validation set. The reasoning behind this is that when a
imited amount of training data is available, there may be enough data to train models
or the phonemes that occur most, but not enough to train models for phonemes with
a priori occurrence. For these models the source language models can be used. For
ertain phonemes that occur only in the target language, the target language models are
ised irrespective of the amount of training data. This method is very simple to implement
use pre-trained source language models can be used and training on the limited amount
of target language data is computationally inexpensive. The method, however, does not

make optimal use of all the available data.

5.2.3 Model adaptation

Adaptation of source language models using limited amounts of target language data has
been previously researched, mostly for bootstrapping, but also for directly constructing
farget language recognisers. The assumption is that too little target language data is
available for direct training, but that this data may be enough to adapt source language
parameters to sufficiently improve target language performance. The adaptation task is
complex compared to a typical speaker adaptation task and it is therefore expected that

at least a reasonable amount of data will be necessary for adaptation to achieve good
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Multilingual pooling and adaptation are considered separate approaches, but it may lead to

tobust models are trained to begin with and are “fine-tuned” using target language data.
Adaptation on target language data may improve recognition compared to the multilin-
pual models. This is because the accuracy of the models may be improved with the target
language data without sacrificing the robustness of the multilingual models. The method
may also outperform source language model adaptation with target language data because
source language model adaptation only uses the target language data in the adaptation
process, say in the estimation of a transformation. This process may not efficiently ex-
fract the available information, thereby leading to suboptimal performance. This may be
especially apparent when a reasonable amount of data is available in the target language.
Also, adaptation of source language models may “untrain” the acoustic characteristics of
the source language in order to specialise the models for the target language - thereby de-
grading robustness of the models. On the other hand, combined pooling and adaptation is
also prone to “untraining” of the source language acoustics, except that little adaptation
is likely to be necessary, thereby decreasing that risk. Combined pooling and adaptation is

likely to be most useful in conjunction with a technique that adapts the model parameters
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where necessary to effect a target language specific “fine-tuning”.

2.5 Data augmentation

ugmentation usually comprises the transformation of data from one or more speakers
) the space of a new speaker to augment the data from that speaker. It is therefore a
rm of data pooling, but only of transformed data. When using multiple databases for
s-language adaptation this may be of specific interest because differences, other than
anguage, may also be removed as part of the process. When large differences exist between
atabases, the data augmentation approach may deliver an improvement in performance

yer the simple multilingual pooling approach.

Jomputation of the transformation

Jith the augmentation approach, a transformation is applied to the source data to alter it
o better reflect the characteristics of the target data. The transformation can be computed

1 a number of ways, namely

¢ from source data to target data,
¢ from source models to target data,
» from source models to target models and

e the inverse of the transformation from target models to source data.

| data to data estimation approach for the transformation has the disadvantage that it
§ inevitably very simplistic since the elements of the transformation are not accurately
dentifiable. A model to data approach is more powerful since the model can be used to

pmpute occupancy statistics, thereby artificially making the source and target elements of
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ransformation identifiable, aiding in the estimation of multiple transformations. Model
o data transformations can also be optimised easily for maximum likelihood or least square
orror criteria. A model to model transformation is again difficult to estimate since source

nd target model parameters are not identifiable, especially for mixture distribution models.

fa model to data transformation is thus preferred, the choice has to be made between

g source models or target models. Since a larger amount of data is typically available

Application of the data transformation

[he transformation that was computed from source models to target data is used to trans-
orm source data to more closely match the target data. Since the transform is applied
0 labelled speech tokens, the data can be grouped in a meaningful way and multiple re-

ression classes can be identified for transformation. The transformations do not directly

The augmentative transformation of the data is mainly to remove the possibly large bias

etween source and target features and a single transformation may even be used for this

The transformed speech data is pooled with the target language speech data and used
0 train target language specific speech models. The ratio of transformed versus target
nguage data may influence the results as too much transformed data may dominate the
rained model parameters, degrading performance. A way to improve this situation is to

gain fine-tune models using target language data only and is discussed next.
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2.2.6 Combined augmentation and adaptation

odels trained on the augmented data set consisting of the original target data along with
ormed source data are still candidates for target language specific adaptation. This is
e to the fact that the data transformation may be relatively simple, consisting of a single
ggression class and therefore perform mainly channel equalisation and frequency shifting
en the databases and languages. Even a transformation with multiple regression
s will not compensate for the differences in variance between the phoneme data of the
source and target languages. Another reason for performing further adaptation is that the
imount of transformed data may be so much more than the original target data that the

m of the target data is not properly reflected by the pooling process.

Adaptation may therefore further improve performance by more efficiently utilising target
age data in “fine-tuning” the models. At this stage, any adaptation method may
e used of course, but it is expected that an approach that can adapt individual parame-
e1s efficiently may prove to be better than say transformation of a large number of tied

rameters.

[ this section we discussed various strategies for using the source and target data. A
choice now exists between a number of algorithms to be used for the implementation of the
strategies. Various implementation aspects of algorithms also bear discussion in order to

ensure acceptable performance. These aspects are discussed in the next section.

3.3 Cross-language model adaptation issues

In this section we discuss how to apply various methods from the fields of speaker adap-
n and discriminative training to cross-language acoustic adaptation. Cross-language
adaptation of acoustic models is a more difficult and complex task than speaker adaptation

or a number of reasons, including
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® cross-language adaptation performs a SI to SI mapping, rather than an SI to SD

mapping,

acoustic variations across languages are expected to be far larger and more complex

than same-language speaker variations, and

» for speaker adaptation the source models generally cover the acoustics of the target
- speaker well, but are just not very accurate - while for cross-language adaptation the

source models may model the target acoustics poorly to start with.

According to the above criteria, dialect adaptation may be closely related to cross-language
tation, except that the acoustic variations are not expected to be as large. A recent
study on dialect adaptation found that more complex adaptation procedures delivered bet-
er performance than simpler procedures that perform well for speaker adaptation [114].
i35 likely that the complex task of cross-language adaptation will benefit from even more
tomplex adaptation procedures. In the previous two chapters we focussed on methods to
itilise the available data as efficiently as possible and we examined adaptation of all HMM
ameters including duration modelling parameters. In the following sections the specif-
¢ application of Bayesian estimation, transformation-based adaptation and discriminative

lechniques for cross-language adaptation is discussed.

2.3.1 Bayesian adaptation

Bayesian methods exhibit the desirable property of asymptotic performance. This is espe-
tially applicable for cross-language adaptation since a reasonably large amount of data may
vailable in the target language - more than is typically available for speaker adaptation.
The relatively slow adaptation performance of Bayesian techniques may also therefore not
present a great problem, although it may necessitate a larger target language database
than may be needed with alternative approaches. A problem that is related to the slow
adaptation of Bayesian techniques, is the fact that with Bayesian techniques, only observed

ixtures are adapted. This implies that if source and target language distributions overlap
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model mixtures remain unadapted. The effect is reduced by performing a large number of

ptation iterations, but it may still not completely solve the problem.

A partial solution to the problem is to first perform linear transformation-based adaptation
0 increase the overlap of the distributions, thereby reducing the number of unadapted

mixtures. This may, however, have the unwanted side-effect of changing the priors (seeded

languages as possible. In this way the inter-language variability is represented in the source
nodels and can probably best express the expected uncertainty with respect to the para-
neters of a new target language. Such an approach, however, requires the availability of

a from a number of languages and is not attempted in this thesis.

hutions and needs relatively little data for robust estimation. For speaker adaptation, a

notivation for using transformation-based adaptation is its efficiency in coping with spec-

what extent this applies to the cross-language adaptation scenario, but the differences may

be larger and more complex for the cross-language case. Transformation-based adaptation
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t least has the advantage over Bayesian techniques that a large level of mismatch between
source and target distributions is not a problem by itself, the problem rather lies in whether

useful transformation exists and whether it can be estimated accurately.

3 order to perform the complex adaptation expected to be necessary, relatively large
mounts of data will typically be available in the target language. The question arises
shether transformation-based techniques can efficiently use relatively large amounts of da-
nce they do not guarantee asymptotic performance with respect to a target dependent
. An application in which transformation-based systems are expected to deliver an
dvantage over other approaches is when cross-database adaptation is performed as part of

toss-language adaptation.

ct of the mapping and transformation class grouping on the transformation

fhe fact that a phoneme mapping is used in the cross-language transformation can in-
luence the transformation to a large degree. As we have discussed in Section 5.1, the
mapping attempts to find the best source phoneme match for every target phoneme, but
1 there is no real counterpart and an approximate mapping may result. Source lan-
uage phonemes may also be mapped to multiple target phonemes, of which some may
resent close matches, but others not. The transformation is computed from the statistics
whole group of phonemes and the individual statistics from each phoneme mapping
therefore influences the shared transformation. However, the shared transformation, as
quch, transforms each source model to only a single target model, and can therefore not
iminate at all between target classes seeded from the same source model. This is a
ous disadvantage of the transformation-based approach, that, for example, does not
present itself with Bayesian techniques where the parameters of each model are adapted
pendently. This problem may have to be addressed by post-transformation adaptation

sing Bayesian or discriminative adaptation methods.

A related problem caused by shared transformations is that inaccuracies in the mapping -
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hich are unavoidable - translate to bias in the adapted parameters. What this means is
“outlier” source models (mainly due to mapping inaccuracies) influence the shared

ansformations in an unpredictable and undesirable way. The method used to group

hat it depends on position in feature space. Phonetically derived regression classes have
 found to deliver better performance [80] than clustering procedures, perhaps because
ech production) information at a higher level than acoustics is used. The piece-wise lin-
ar feature space transformation implied by model clustering of regression classes is perhaps

i too simplistic assumption for cross-language adaptation.

Adaptation of variance parameters

fhen the potentially large differences between the acoustic properties of languages are
wnsidered, the need for adaptation of variance parameters is obvious. The relationships
etween source model and target data variance may also be quite complex, necessitating
e use of full transformation matrices. In this respect, the log variance transformation of
Section 3.3.2 is applicable since constraints on variance parameters are maintained auto-

natically and parameter accuracy is treated sensibly.

mplementation of variance adaptation entails first performing mean adaptation with MLL-
R, followed by a limited number of variance adaptation iterations. For speaker adaptation
urposes often only a single iteration of MLLR is performed since the initial alignment is
isually satisfactory. For cross-language adaptation, however, a reasonably large number of
iterations may be necessary to achieve satisfactory alignment between the current model
stimate and the target data. It is for this reason that estimation of the variance transform

s preceded by mean transformation, otherwise very inaccurate initial variance estimates
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Nay cause poor convergence.

full, diagonal or block-diagonal transformation

speaker adaptation it has been found that use of a full transformation matrix delivers
er performance than use of either diagonal or block-diagonal matrices (27, 65]. For
our more complex application of cross-language adaptation we therefore also expect full

ransformation matrices to deliver better performance. When computing the transforma-

easons not produce ideal target models. The transformation, though, may be very useful
s a first adaptation stage to deal with large overall differences between source and tar-
sef language distributions. These transformed models can then be used to compute prior
istributions for Bayesian adaptation. Bayesian adaptation may function more efficiently
on transformed models than on source language models (since the fraction observable mix-
ures should improve) and may deliver good performance in the complex “fine-tuning” of
distributions. In place of Bayesian adaptation, discriminative training may also be used to

adapt transformed models or pooled data models. This is the topic of the next section.

5.3.3 Discriminative adaptation using MCE

The main advantage of a discriminative training technique such as MCE over distribution

i

stimation strategies is usually explained in terms of the improved goal of the technique -
jamely to directly improve expected classification performance. Another advantage that is
really apparent in the implementation of discriminative training is that it may use the
available information more efficiently in certain respects. Both Bayesian and discriminative

idaptation approaches suffer from the problem of updating only observed mixtures since
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wvery parameter is updated independently. However, with discriminative adaptation, both
correct and false class tokens are used in computing the update for the parameters of a
e, thereby greatly reducing the fraction of unobserved mixtures. This is especially
applicable when cross-language adaptation is attempted, since the overlap between source

and target distributions for some phoneme pairs may be poor.

Initial models for MICE training

The selection of the initial models to use is very important when MCE is applied because
ilie approach is susceptible to local optima. Use of initial models that already achieve good
erformance, or that are expected to be robust under different testing circumstances is
desirable. In Section 5.2, various strategies were discussed for using multilingual data and
nodels. Some of these strategies produce models that are not necessarily optimal and can
benefit from further MCE adaptation. Models that can serve as possible initial models for

sibsequent MCE adaptation can be produced by

e ML training on pooled multilingual data,

e source language models adapted using Bayesian and transformation-based techniques

on target language data.

¢ multilingual models adapted using Bayesian techniques on target language data.

Bxplicitly multilingual models may be less accurate than target language specific models
since model accuracy is decreased when data from multiple languages are used for training.
However, these models may be more robust because more data is available for estimation
and also because a larger set of contexts are represented. These models may therefore be
suitable as initial models for MCE adaptation and performing MCE adaptation on these
models may improve the accuracy of the models, while retaining some of the robustness

wchieved by the initial training that took place on a large, diverse training set.
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oth source language models and multilingual models that have been adapted on tar-
et language data may produce models suitable for further MCE adaptation. Bayesian
tation may deliver robust model estimates that already deliver good performance.
ransformation-based adaptation may also deliver models that are good starting points for
rther adaptation if large, overall differences between source and target language distri-
ution can be efficiently removed without severely impacting on the robust characteristics
these models. However, it should be taken into account that initial models that have
already been adapted for improved target language performance may be specialised to the

pxtent that they are not as robust as (unadapted) multilingual models.

‘inally, the use of transformed source data to augment target data for model training
nay also produce good initial models for further MCE adaptation. The models should be
more accurate than explicitly multilingual models since the transformation should at least

vartially cornpensaté for differences between the languages.

MCE parameter optimisation

The use of the MCE method for the optimisation of the parameters of HMMs is relatively
gomplicated since gradient-based optimisation has to be used. A further complicating
or is the existence of a number of parameters, namely 7 in the misclassification measure
(Equation 4.6), v and 6 in the loss function (Equation 4.8) and € in the parameter update
[Equations 4.14-4.17). Since these parameters influence the results obtained with MCE,

their importance is analysed at least in a qualitative manner.

The value of 7 determines the degree to which false classes contribute to the misclassifica-
ion measure according to their likelihoods. We have elected to use 77 = 4 since this seems
a reasonable trade-off between choosing the maximum incorrect class and averaging over
the incorrect classes and was found empirically to deliver reasonable results. The value
of 7 scales the slope of the sigmoid and is important because it influences the size of the

eature space region in which observations materially affect the update. Examination of
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on 4.19 shows that for loss close to either 0 or 1, the derivative of the loss with
ect to the misclassification measure becomes small. Smaller values of 7 increase the
over which the derivate of the loss remains large, thereby taking into account more
vations. High values of v lead to the consideration of observations only in the imme-
 region of the decision boundary. In order to effectively use limited amounts of data

and also to be able to significantly shift the current decision boundaries, for example when

of likelihood values that are observed. A value of v = 1 was found empirically to deliver

p00d performance and was used in experiments.

The value of the update parameter € should also be selected. An update value of € = 0.1
was found empirically to deliver good performance and was used in experiments. On-line
raining can also be used, but we have selected to use gradient descent with batch-mode
ipdates for simplicity. An approach whereby € is a linearly decreasing function of the
lteration count is commonly used with MCE adaptation and we selected to also decrease
ihe update value as a function of the iteration count through €, = ¢p(N —n)/N for iterations

1=0,..,N — 1, with N typically set to 10. If a cross-validation set is available, it may be

ised as a stopping criterion for adaptation.

WL

MCE cost function application

It can be reasoned that if a suitably large amount of data is available, that string-level MCE
will optimally achieve the goal of minimum word and string error rate recognition. For a
small vocabulary task such as CDR, the amount of data needed will probably be relatively
small. For vocabulary independent adaptation, however, the amount of data needed to
properly represent a reasonable percentage of phonetic contexts may be quite large. The

use of phoneme-level MCE that implements word error-based phoneme misclassification
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st therefore presents an alternative. Estimation of the misclassification cost can be per-
jormed using pronunciation dictionaries as was detailed in Section 4.5.3 and can therefore
be performed irrespective of the availability of speech databases. In fact, the cost-based
MCE approaches can be applied directly on source language data, without using any target
anguage data and may improve to some extent the class discrimination properties with
respect to target language needs. However, we believe that the availability of at least some

arget language data is essential for the development of accurate speech recognition systems.

A side-effect of the cost-based methods, especially the reward-based method, is that the
amount of adaption is decreased rather than increased. By reducing the loss associated
jith certain categories and even associating a reward with some categories, the overall loss
and therefore indirectly the overall gradient in each iteration is reduced. This is desirable

since over-specialisation can easily happen with MCE if too little target language data is

5.4 Discussion

In this chapter we discussed the issues involved with using data from multiple languages and
databases in improving the recognition performance for a single target language. Strategies
or cross-language use of data and models were proposed, as well as the implementation
of these strategies via adaptation techniques. The suitability of implementing different
sfrategies via specific adaptation techniques were discussed. Overall, the combination of
ihe proposed strategies and their implementation in terms of adaptation techniques presents

4 framework for cross-language use of acoustic information.

Approaches from this framework are applied in the following two chapters on a multilingual

database and on two different databases to empirically evaluate their performance for cross-

language acoustic adaptation.
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Afrikaans speech is investigated in particular. The results empirically support the proposed
extensions to speaker adaptation and discriminative training algorithms and also support

the newly proposed strategies for using multilingual data.

The SUN Speech database is discussed first, setting the environment for the experimental
work in this chapter. The experimental protocol is discussed next, covering the selection of
ihe parameters of the system, including various adaptation algorithm parameters. Param-
ster selection is a difficult task in speech recognition because there are many parameters
that can influence the results. The influence of a number of the more important para-

meters on the recognition results are therefore shown in the experimental sections, rather

than selecting just a single value as part of the experimental protocol. The experimental

protocol also covers the process used to measure the results of experiments. The following

157



University of Pretoria etd — Nieuwoudt, C (2000)

Chapter 6 Cross-language recognition on SUN Speech

sections discuss specific experiments that evaluate the various strategies for cross-language
use of acoustic information. The chapter concludes with a comparison of the results from

the different experiments.

6.1 The SUN Speech database

The SUN Speech database [12] contains phonetically labelled speech in both Afrikaans and
English. Details of the database are given in Appendix A and only an brief overview is
given here. The database contains read speech from 138 speakers totalling approximately
1500 utterances in English and 500 utterances in Afrikaans. The context of the database
is limited since the English speech consists of only 40 different sentences and the Afrikaans
speech of only 20 different sentences. The sentences were chosen to deliver a reasonable
spread of the phonemes found in both languages. A total of 59 phonemes are used in the
labelling of the database. They represent vowels, diphthongs, nasals, fricatives, affricates,

glides, liquids, stops and an “other” category containing “silence” and “unknown” labels.

For the purpose of our experiments, the Afrikaans set is divided into a large training set,
a smaller subset of the training set and a speaker and context independent test set, i.e.
speech contained in the test set is from speakers not represented in the training set and the
utterances for the test set differs from the utterances used in the training set. Details of

the subdivision and composition of the database are given in Appendix A.2.

When all the available English speech data is used for training models, it amounts to 2 hours
and 10 minutes of speech, which is approximately 5 times the amount of data contained in
the Afrikaans training set (26 minutes of speech) and approximately 25 times the amount
of data contained in the Afrikaans training subset (5 minutes of speech). For cross-language
experiments it therefore makes sense to consider the English data as representing a source
language with a relatively large amount of data and Afrikaans as the target language with

a relatively small amount of adaptation data.
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6.2 Experimental protocol

The goal of the experimental section is to evaluate the cross-language recognition perfor-
mance of the various strategies and algorithms as fairly and accurately as possible, given
the data that is available. For experimental purposes English is considered the source lan-
guage and Afrikaans the target language, since a larger amount of labelled English speech
is available in the SUN Speech database and because of the availability of other large En-
glish speech databases. Use of both the full Afrikaans training set and the training subset
are evaluated to measure the effect of the amount of target language specific data on the
recognition results. Initial experiments evaluate isolated phoneme recognition performance
to focus on the performance of specific phonemes and classes of phonemes in the multi-

lingual context. Later, more comprehensive experiments test continuous word recognition

performance.

The results of the experiments are influenced by the parameters of the training, adaptation
and recognition procedures. The selection of various parameters of the feature extraction,
HMM modelling and training, duration modelling and adaptation processes is done so that

system performance is nearly optimal, yet is not tuned to optimise results in favour of any

particular approach.

6.2.1 General system setup

The system that is used for training and testing of the hidden Markov models was developed
by the author and a colleague at the University of Pretoria. Details of the system are given

in Chapter 2 and only a brief summary of the salient system parameters are given here.

Feature extraction computes 39 mel-scaled cepstral, delta and delta-delta features from 16
s frames with a 10 ms frame advance. Continuous density hidden Markov models (HMMs)
with Gaussian mixture distributions are used for modelling purposes. Strict left-to-right

constraints are imposed on HMM transitions and three state HMDMs are used to model each
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phoneme. Training proceeds using 3 stages, namely initialisation, segmental training and
Baum-Welch training. Mixture splitting with stopping criteria is used to enable training
of complex mixture distributions. The number of mixtures allowed is varied and up to
10 mixtures per state are allowed. A variance floor of 10~ is imposed. State duration
is modelled with a Gamma distribution and the duration parameters are estimated after

model training is done through use of segmental training.

As far as recognition is concerned, two main categories of experiments, namely phoneme
recognition experiments and word recognition experiments were performed. The experi-

mental protocol of the two recognition approaches is discussed next.

6.2.2 Phoneme recognition experiments

Phoneme recognition is performed using a subset of 47 phonemes, including silence, from
the total set of 59 phonemes. The 47 phonemes represent the labels most commonly used
in labelling the Afrikaans speech, and exclude the “unknown” category as well as categories
that represent less than 0.1% percent of the Afrikaans speech labels. Context independent
phoneme modelling is used throughout because of the increased computational expense of
context dependent modelling and also because the context of the SUN Speech database is

relatively limited and differs significantly between the Afrikaans training and testing sets.

Experiments perform isolated phoneme recognition to allow a comparison to be made be-
tween the confusions that occur between the phoneme classes in the recognition process.
These results indicate comparatively how well different phoneme models are seeded by their

cross-language counterparts.

It is useful to consider some measure of the statistical significance of phoneme recognition
results on the entire test set of 9413 labelled phones. Under the assumption of independence,
for expected phoneme recognition rates in the range of 40% to 65%, the 95% confidence

interval starts at between 1.4% and 1.6% in absolute phoneme recognition rate. We do not
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calculate confidence intervals for results from individual phonemes or phoneme groupings,
as the experiments do not attempt to prove that the results differ (we are fairly sure that

they should differ), but rather examine the type of differences encountered.

6.2.3 Word recognition experiments

The same 47 phoneme models that are reported on in the previous subsection are used
to construct word models by connecting the phone HMMs according to a phonetic dictio-
nary for all words occurring in utterances 11-20 of the speaker independent test set(see
Appendix A for more detail). The phonetic dictionary is created by analysing the phoneme
labels assigned to the speech of the 8 training subset speakers for utterances 11-20. Note
that this speech does not form part of the Afrikaans test set. Multiple pronunciations of
the same word are allowed, as long as at least two or more of the speakers used the given
pronunciation. Using the pronunciation dictionary, in total 151 models for the 100 distinct
words in the test utterances are created. In order to run a continuous speech recognition
experiment, a small grammar was devised that allocates each word to one of 5 language
categories comprising loosely verbs, nouns, adjectives, pronouns and conjunctives. A total
of 18 transitions out of a possible 25 transitions between the 5 categories are allowed, limit-
ing the possible sequences enough to deliver reasonable performance for continuous speech

recognition in the absence of statistical language modelling.

Recognition results are obtained by aligning the output string from the recogniser with the
true transcription and thereby identifying the insertions, deletions and substitutions that
are needed to convert the transcription into the output string. Word accuracy is computed
by subtracting the number of insertions, deletions, and substitutions from the number of
words to be recognised and expressing this number as a fraction of the total number of

words to be recognised.

It is useful to consider some measure of the statistical significance of word recognition results

on the test set of 150 utterances, comprising 2096 distinct words. Under the assumption
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of independence of word recognition, for expected word error rates in the range of 25% to
40%, the 95% confidence interval starts at between 2.2% and 2.8% in absolute word error

rate.

6.3 Initial phoneme recognition experiments

Initial experiments are performed to evaluate baseline same language (Afrikaans train,
Afrikaans test) and different language (English train, Afrikaans test) recognition perfor-
mance, as well as to examine some aspects of using the SUN Speech database in speech
recognition experiments. Testing is done on the Afrikaans test set, consisting of 9413 la-
belled phonemes in continuous speech, or approximately 12.5 minutes of speech data. More
details regarding the SUN Speech database and its subdivision into training and testing
sets are given in Appendix A. Experiments perform isolated phoneme recognition to al-
low examination of how the recognition performance of individual phonemes and phoneme
classes are affected in the cross-lingual scenario. When no training tokens are available
for a model, the model is not used in recognition, and all test samples from the phoneme

category are misclassified.

6.3.1 Overall phoneme recognition performance

Figure 6.1 shows isolated phoneme classification performance on the Afrikaans test set as a
function of the model complexity allowed, for models trained on either the Afrikaans training
set, training subset, or on the entire English set. As expected, using Afrikaans training
data delivers models that more closely match the Afrikaans testing data and delivers a
peak correct classification rate of 62.5% (10 mixtures), which is 13.5% better than the peak
correct classification rate of 49.0% (10 mixtures) achieved with models trained on the 5
times larger English set. Models trained on the Afrikaans training subset achieve a peak

correct classification rate of 53.1% (4 mixtures), which is 4.1% better than that achieved
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with models trained on the 25 times larger English set. The results indicate, at least as far
as isolated phoneme recognition is concerned, that use of target language specific data may

outperform using even a significantly larger amount of non-target language data.

Allowing a larger number of mixtures to be trained (allowing more mixture splitting in
training), generally improves performance, as expected. Performance of models trained on
the Afrikaans training set, and especially performance of models trained on the training

subset, levels off at fewer mixtures than for models trained on the larger English set.
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Figure 6.1: Isolated phone classification rate as a function of the number of HMM mixtures
when training on the Afrikaans training set (A), the Afrikaans training subset (A1) and the
entire English set (E) and testing on the Afrikaans test set

6.3.2 Individual phoneme recognition performance

The classification rates of Figure 6.1 give an overall view of relative phoneme classification
rates, but it is of interest to study the classification rate of individual phoneme categories
to compare their relative performance. Table 6.1 and 6.2 expands the 10 mixture per state

results of Figure 6.1 by listing isolated phoneme recognition performance for each phoneme
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class when models trained on the Afrikaans training set, Afrikaans training subset and the

English set, are tested on the Afrikaans test set.

Table 6.1: Phoneme classification rates achieved on the Afrikaans test set for models trained
on the Afrikaans training set (A), training subset (A1), and the English set (E), also showing
relative frequency of phonemes in the Afrikaans train (Fasain), Afrikaans test (Flages:) and
the English set (Fg)

[ Category | Symbol | Fasest | Fatrain | Fr | A | Al E |
Vowels 38.37% | 34.22% | 32.90% | 53.0% | 44.3% | 41.0%
a 3.53% 3.74% 2.84% | 59.3% | 65.5% | 38.5%
e 2.22% 1.93% 1.19% | 44.1% | 22.8% | 50.0%
i 5.05% 5.25% 459% | 67.4% | 47.6% | 36.5%
0 1.16% 1.70% 0.27% | 55.7% | 47.2% 3.8%
u 2.53% 1.72% 0.57% | 32.9% | 33.8% | 16.5%
y 0.60% 0.79% 0.85% | 18.2% | 20.0% | 40.0%

2.05% 1.69% 3.24% | 52.9% | 28.3% | 33.7%
2.51% 3.06% 1.21% | 68.1% | 68.1% | 74.2%
@ 0.74% 0.66% 0.60% | 11.9% | 43.3% | 38.8%
13.30% 9.70% | 11.18% | 55.1% | 49.3% | 39.9%

x® 1.02% 0.30% 2.28% | 36.6% | 16.1% | 40.9%

lo¢] 1.17% 0.81% 2.57% | 11.2% | 15.0% | 45.8%

: 2.49% 2.87% 1.51% | 63.0% | 30.4% | 64.8%

Diphthongs 4.83% | 5.52% | 3.93% | 47.0% | 33.4% | 30.3%
5] 0.34% 1.12% 1.26% | 77.4% | 48.4% | 67.7%

o:i 0.32% 0.36% 0.01% | 65.5% | 51.7% 0.0%

ol 0.50% 0.08% 0.39% 4.3% 0.0% | 87.0%

i 0.16% 0.00% 0.05% 0.0% 0.0% 0.0%

i 1.46% 1.50% 1.47% | 51.9% | 14.3% | 38.3%

ui 0.46% 0.65% 0.00% | 64.3% | 66.7% 0.0%

iu: 0.30% 0.49% 0.05% | 59.3% | 59.3% 3.7%

ceu 0.45% 0.46% 0.60% | 26.8% | 26.8% | 24.4%

ey 0.84% 0.86% 0.10% | 50.6% | 55.8% | 14.3%

Nasals 9.36% | 10.71% | 11.96% | 66.9% | 59.9% | 65.3%
m 2.11% 2.92% 2.77% | 58.3% | 69.8% | 73.4%

n 5.69% 6.56% 7.82% | 75.5% | 58.4% | 67.1%

1.56% 1.23% 1.37% | 47.2% | 52.1% | 47.9%
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Table 6.2: Phoneme classification rates achieved on the Afrikaans test set for models trained
on the Afrikaans training set (A), training subset (A1), and the English set (E), also showing
relative frequency of phonemes in the Afrikaans train (Flaqin ), Afrikaans test (Fatest) and
the English set (Fg)

| Category [ Symbol [ Fawest | Fatrain Fr | Al Al E |

Fricatives 14.55% | 15.71% | 14.04% | 81.4% | 77.5% | 62.8%
ant 2.91% 3.39% 2.18% | 86.4% | 81.5% | 94.3%

h 0.11% 0.71% 0.80% 0.0% 0.0% 0.0%

S 6.25% 6.10% 5.67% | 87.2% | 86.7% | 73.2%

v 1.72% 1.75% 1.90% | 56.7% | 48.4% | 64.3%

X 2.59% 2.65% 0.01% | 94.5% | 89.8% 0.8%

Z 0.53% 0.67% 1.64% | 47.9% | 31.2% | 72.9%

0.30% 0.44% 1.48% | 66.7% | 55.6% | 74.1%
0.14% 0.00% 0.36% 0.0% 0.0% | 61.5%

Affricates 1.00% | 0.74% | 1.77% | 34.0% | 25.2% | 53.8%
ts® 0.32% 0.06% 0.46% | 10.3% 0.0% | 31.0%

P 0.68% 0.68% 1.31% | 45.2% | 37.1% | 64.5%

Liquids 8.75% 8.16% 6.45% | 70.5% | 60.4% | 32.6%
i 5.20% 4.33% 2.95% | 85.0% | 81.2% | 16.9%

1 2.97% 3.50% 297% | 59.0% | 35.8% | 60.1%

0.58% 0.33% 0.53% 0.0% 0.0% | 32.1%

Glides 1.92% 1.25% 2.05% | 41.1% | 21.1% | 56.6%
] 1.03% 1.15% 0.47% | 67.0% | 38.3% | 50.0%

w 0.89% 0.10% 1.58% | 11.1% 1.2% | 64.2%

Stops 19.08% | 14.33% | 15.62% | 65.9% | 52.3% | 53.4%

b 2.93% 1.54% 1.50% | 63.7% | 58.4% | 61.4%
d 3.51% 3.95% 2.36% | 75.9% | 51.9% | 46.9%
g 1.02% 0.47% 0.66% | 16.1% | 16.1% | 52.7%
k 3.66% 2.79% 3.21% | 72.2% | 59.6% | 72.5%
p 2.47% 0.95% 2.04% | 471% | 23.1% | 81.3%
t 5.49% 4.63% 5.85% | 74.2% | 64.4% | 28.0%
Other 2.12% | 3.72% | 3.42% | 90.2% | 85.0% | 89.6%
sil 2.12% 3.72% 3.42% | 90.2% | 85.0% | 89.6%

Same-language recognition performance

We first discuss the recognition performance of models trained on the Afrikaans training
set. Classification performance achieved on vowels is only 53.0%, compared to the overall

isolated phoneme classification rate of 62.5%. This differs from what is reported in literature
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[26], i.e. that for English speech at least, classification performance on vowels is generally
much better than on non-vowels. To some degree this is explained by the large number of
vowel classes (13 in all) that are used for labelling in the SUN Speech database, as well
as the specific choice of vowel classes. Some classes, especially the rounded vowels [y] and
[0] are often confused for their unrounded counterparts [i] and [e]. In English speech this
distinction is not important, but in Afrikaans speech the distinction is important e.g. [mi:r]
versus [my:r] and [le:n] versus [lgn]. The presence of the central vowel [| in the labelling
also causes confusion as both front and back vowels are often confused with it. Exact
distinction of the central vdwel may not be very important for word recognition, yet it has
been assigned to more than 13% of the total number of labels in the test set. Classification
performance on diphthongs (47.0%) is also not very good as they are often confused with
vowels. Better performance (66.9%) is achieved with the class of nasals, with most of the
misclassified examples also being classified as one of the other nasal categories. Somewhat
surprisingly, excellent performance (81.4%) is achieved on fricatives. This can be due in
part to the fact that there are only four frequently found fricatives in Afrikaans ([f], [s], [v]
and [x]) which are all relatively distinct. The other categories do not deliver major surprises.
We note that phoneme classes not well represented in the training set often perform very
poorly in classification, with four classes even achieving 0% correct classification. This
‘would seem to indicate over-fitting, but inspection reveals that these models contain few
‘mixtures (between one and three), which should limit the degree of specialisation. Still, the
21 Afrikaans phoneme classes that each have less than 1% of the total training samples,
together comprise 9.9% of the training set, 13% of the test set, and achieve a combined

correct recognition rate of only 24%. The performance of models trained on the English

data is discussed next.

Cross-language recognition performance

The average correct classification rate for English models is 49.0% compared to 62.5%
achieved when training with the smaller Afrikaans training set and 53.1% achieved with

the even smaller Afrikaans training subset. For phoneme classes that contain no data in the
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English set, no models are trained and all test tokens are classified incorrectly. Compared
with the Afrikaans training set model performance, most categories show a decrease in
performance, except for affricates, which improve from 34.0% to 53.8% and glides, which
improve from 41.1% to 56.6% correct classification rate. Nasals show only a 1.6% drop in
classification performance from 66.9% to 65.3%. Overall performance is not poor, however,
and the only phoneme categories that achieve less than 50% recognition rate are the vowels,
diphthongs and liquids. Relatively poor performance of the vowel and diphthong categories
8 to be expected due to the differences between the language in these categories. Poor
performance of the liqﬁids is due to the English [r] model (16.9% correct) not exhibiting
the diverse allophonic variations found in Afrikaans. The [x] model also achieves very
poor performance (0.8% correct) since it is not a sound which occurs naturally in English.
Somehow, two [x] labels were assigned to English speech, enabling training of a simple

single mixture per state model.

An interesting phenomenon can be observed by comparing the results from selected classes
of Afrikaans (training set) and English trained models. When one considers the phoneme

classes for which the English frequency of occurrence is at least twice the Afrikaans training

set frequency of occurrence, the resulting set of phonemes is [z], [ce], [oi], [2], [], [], [ts"],
[w] and [p]. For these phoneme classes there are at least 10 times more samples in the
English training set than in the Afrikaans training set. It is not too surprising then, to
notice that the recognition performance for each of these phoneme classes is higher in the
experiments with the English trained models than in the experiments with the Afrikaans
trained models. This is indicative of the general problem of estimating distributions of such
high dimensionality (39 feature dimensions plus the dimension of time), i.e. that a large

amount of data is necessary to obtain robust performance.

A comparison between (small) Afrikaans training subset and English model results also
delivers interesting insights. Although the overall performance of the English models is
4.1% lower than that obtained with Afrikaans training subset models (49.0% versus 53.1%
correct), for 27 out of 44 phonemes (more than 60% of phonemes) the English models deliver
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of each phoneme (i.e. not taking into account the frequency of each phoneme in the test set),
the English phoneme models average 45.5%, the Afrikaans trained models average 49.2%
and the Afrikaans subset trained models average only 41.2%. The interpretation of isolated
phoneme recognition results is problematic since the importance of individual phoneme
misclassifications are not taken into account. It is therefore decided to perform continuous
word recognition in subsequent experiments to represent the application of phoneme models

for a useful purpose.

6.4 Multilingual data pooling

In this section we investigate multilingual data pooling in detail and perform experiments
that measure word accuracy in continuous speech. Continuous word recognition experi-
ments are performed as was discussed in Section 6.2.3 and evaluate the performance of

monolingual and multilingual acoustic models for a real-world task.

Figure 6.2 shows the results achieved in continuous word recognition experiments on the
Afrikaans test set of various monolingual and multilingual models. The best performance
of 73.3% word accuracy is achieved by training on pooled English and Afrikaans data,
followed by training on the Afrikaans training set (69.0% accuracy) and by training on the
pooled English data and Afrikaans training subset (68.1% accuracy). Recognition using the
English models peaks at 57.9% while training on only the Afrikaans training subset delivers
an accuracy of only 45.0%. The results show a clear improvement in performance obtained
by multilingual pooling versus using target language data only. Compared to using the
Afrikaans training set, 4.3% absolute improvement in accuracy (73.3% versus 69.0%) is
achieved by pooling with English data, and compared to using only the Afrikaans training
subset, a large 23.1% absolute improvement in accuracy (68.1% versus 45.0%) is achieved

by pooling with English data.

The baseline word accuracy results given in Figure 6.2 serve as reference for the results giv-
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Figure 6.2: Word accuracy on the Afrikaans test set as a function of the maximum allowed
number of mixtures per state for three-state HMMs trained on various monolingual and
pooled multilingual data sets formed using the English set (E), the Afrikaans training set
(A) and the smaller Afrikaans training subset (Al)

en in the following sections. It should be kept in mind that English and Afrikaans acoustics
from the same database are used, explaining why even simple multilingual pooling delivers
good results. The following sections detail experiments that evaluate the cross-language
adaptation performance of techniques discussed in Section 5.3 for speaker independent
speech recognition. Experiments using Bayesian, transformation-based and discriminative
techniques are discussed. For all the experiments that follow, 3-state HMMs with a maxi-
mum of 10 mixtures per state are used as these represent the best performance for almost

all models in Figure 6.2.

6.5 Bayesian adaptation

Experiments are performed to evaluate the application of Bayesian adaptation for cross-

language adaptation as discussed in Section 5.3.1. Full mean, variance, mixture weight and
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transition probability adaptation is performed according to the implementation detailed in
Section 3.2.4 and using the MAP estimates given by Equations 3.100-3.102 and 3.107, and
where applicable, the MSE estimates given by Equations 3.100 and 3.104-3.106.

The overall adaptation rate is controlled with the prior weight parameter @, as discussed
in Section 3.2.5. Determination of the prior weight variable w, however, is difficult and
part of the experimentation process is to determine how important the exact choice of the
adaptation rate is with respect to the overall system performance. This factor plays a role

in all the experiments and is therefore considered an independent parameter.

Several pertinent questions about the application of Bayesian estimation for cross-language

adaptation are evaluated experimentally:

How does the amount of target language data influence the results ?

e How does the performance of cross-language model adaptation compare with adapting

multilingual models using target language data ?

How important is adaptation of variance parameters ?

How does the performance achieved with MAP and MSE Bayesian adaptation com-

pare?

These questions form the basis for experiments discussed next.

6.5.1 Cross-language model adaptation

Figure 6.3 shows the performance achieved as a function of the adaptation rate for English
prior models adapted on the Afrikaans training set and the Afrikaans training subset.
Peak performance of 74.9% word accuracy is achieved when adapting on the full Afrikaans
training set, which delivers an absolute 7.3% improvement over using only the Afrikaans

training set (67.6% for 3 state, 10 mixture models). This performance (74.9%) also delivers
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an absolute 1.6% improvement over using the pooled English and Afrikaans training set
(73.3%). Even better relative performance is achieved by adaptation on the Afrikaans
training subset, achieving peak performance of 70.2% word accuracy, which is 25.2% better
than that achieved with the Afrikaans training subset alone (45.0%, not shown) and 2.1%
better than that achieved with the pooled English and Afrikaans training subset (68.1%).
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Figure 6.3: Word accuracy on the Afrikaans test set as a function of the adaptation rate for
English models (E) adapted using MAP adaptation on the Afrikaans training set (A) and
training subset (A1) with reference performance of monolingual and multilingual models
also shown

The dependency between adaptation performance and the overall prior weight variable w is
apparent, with in particular, performance of adaptation with the small Afrikaans training
subset suffering when < is small. This is due to the fact that re-estimation on a small set
delivers inaccurate estimates and therefore a larger weight should be associated with the

prior to ensure good results.
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6.5.2 Cross-language adaptation of variance

Figure 6.4 shows the effect of using mean-only MAP versus full MAP adaptation, which
includes adaptation of the variance and mixture weight parameters when English prior

models are adapted using the Afrikaans training set and training subset. It is apparent
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Figure 6.4: Comparison of word accuracy on the Afrikaans test set for mean-only (mo
MAP) and full MAP (MAP) adaptation as a function of the adaptation rate for English
models (E) adapted on the Afrikaans training set (A) and training subset (A1)

that significantly better performance is achieved when full adaptation is performed, with
3.1% degradation (74.9% versus 71.8%) in peak performance attributable to mean-only
adaptation on the Afrikaans training set and 4.1% degradation (70.2% versus 66.1%) in
peak performance attributable to mean-only adaptation on the Afrikaans training subset.
The results indicate that adaptation of variance parameters is important to achieve good
cross-language adaptation performance. However, for very small overall prior weight values
(w < 20) mean-only adaptation outperforms full adaptation on the Afrikaans training

subset since variance re-estimation on little data is avoided.
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6.5.3 Data pooling followed by adaptation

Figure 6.5 shows the performance achieved as a function of the adaptation rate for bilingual
prior models trained on the pooled English and Afrikaans training sets and on the pooled
English and Afrikaans training subsets, when adapted on the Afrikaans training set and

the Afrikaans training subset respectively. Peak performance of 75.1% word accuracy is
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Figure 6.5: Word accuracy on the Afrikaans test set as a function of the adaptation rate
for models trained on pooled English and Afrikaans training data (E+A) and pooled En-
glish and Afrikaans training subset data (E4+A1l) and adapted using MAP adaptation with
reference performance of multilingual models also shown

achieved for pooling/adaptation on the full Afrikaans training set, which delivers an 1.8%
improvement over data pooling (73.3%) and an additional 0.2% improvement over the direct
cross-language adaptation of English source models (74.9%) in Section 6.5.1. Even better
relative performance is achieved for pooling/adaptation on the Afrikaans training subset,
delivering a 3.3% improvement in word accuracy (71.4% versus 68.1%) over data pooling
and an additional 1.2% improvement over the direct cross-language adaptation of English

source models (70.2%) in Section 6.5.1.

The general trend that the smaller Afrikaans data set benefits more from the sharing of
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acoustic information with the English set than the larger Afrikaans set is to be expected,
since with a sufficiently large Afrikaans data set we expect the benefit to asymptotically
decrease to zero. It is interesting to observe that peak performance is achieved with larger
prior weight values (200 < @ < 500) compared to direct cross-language models adaptation
(@ ~ 100). This is indicative that less adaptation is required for peak performance when
multilingual priors (which include the target language) are used compared to using priors

from a single different source language.

6.5.4 Pooling-variance parameter adaptation

Figure 6.6 compares the performance achieved using mean-only MAP versus full MAP
adaptation, which includes adaptation of the variance and mixture weight parameters. This
is shown for bilingual prior models, trained on the pooled English and Afrikaans training
sets and on the pooled English and Afrikaans training subsets, that are adapted on the
Afrikaans training set and the Afrikaans training subset respectively. Interestingly, mean-
only adaptation achieves slightly better performance than full adaptation (75.3% versus
75.1% word accuracy) on the Afrikaans training set. Full adaptation on the Afrikaans
training subset, however, outperforms mean-only adaptation by 1.8% (71.4% versus 69.6%).

This indicates that, when a reasonably large target language specific data set forms part

of the pooled multilingual data set, variance adaptation may not be important. However,
when a small amount of target specific data is used in pooling, variance adaptation may be
necessary because training on pooled data may not represent the variance characteristics

accurately enough.

6.5.5 MAP versus MSE estimation

So far in Section 6.5 we have been using MAP estimates, and in particular the proposed vari-
ance estimate of Equation 3.107. The next experiment compares the performance achieved

with this method with the performance achieved using the biased MAP variance estimate
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Figure 6.6: Comparison of word accuracy on the Afrikaans test set for mean-only (mo
MAP) and full MAP (MAP) adaptation as a function of the adaptation rate for pooled
English-Afrikaans models adapted on the Afrikaans training set (A) and training subset
(A1)

of Equation 3.103 and the performance achieved with MSE variance estimation (Equation-
s 3.100 and 3.104-3.106). Figure 6.7 shows word accuracy on the Afrikaans test set for
the adaptation of English prior models on the Afrikaans training set and training subset.
When adapting English priors on the Afrikaans training set, best performance of 74.9%
is achieved with the proposed MAP estimate (Equation 3.107), 74.4% word accuracy is
achieved with an MSE Bayes estimate, and a peak accuracy of 74.0% is achieved with the
biased MAP estimate (Equation 3.103). For adaptation on the Afrikaans training subset,
best performance of 70.2% is achieved with the proposed MAP estimate, 68.9% word ac-
curacy is achieved with an MSE Bayes estimate and peak accuracy of 66.4% is achieved
with the biased MAP estimate. For smaller prior weighting, the MSE estimator delivers
the best performance (for @ < 50), while the performance achieved with the biased MAP

estimate degrades significantly (for @ < 200).

To understand the better performance of the MSE estimate for small o, we consider that

the feature dimension D is basically a lower bound on the weight the MSE estimate attaches
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Figure 6.7: Comparison of word accuracy on the Afrikaans test set for MAP, biased MAP
(using Equation 3.103 for variance estimation) and MSE Bayesian adaptation as a function
of the adaptation rate for English models adapted on the Afrikaans training set (A) and
training subset (A1)

to the prior variance & (see Equation 3.106), which in this case leads to improved perfor-
mance since the degree to which target dependent variance re-estimation occurs is reduced.
If the effective offset (of D) in @ is ignored, the only difference between the MAP and MSE
approaches is that the MSE estimate effectively attaches less importance to the difference
between the prior mean and the posterior mean estimate (m;; — ;). The reason for the
proposed MAP estimate achieving better peak performance than the MSE estimate for this
experiment must therefore be that it attaches greater weight to the difference between the
prior mean and the posterior mean. This may have a positive influence on recognition per-
formance because relatively larger displacements in mean position are likely to be incurred
for poorly seeded distributions, in turn increasing posterior variance. Increased variance is
applicable for poorly seeded models to the degree that limited target data does not allow

for accurate estimation of the posterior mean.

The poor performance achieved with the standard MAP estimator for small @ can be

attributed to its highly biased estimate of the variance for small w, which makes it an
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undesirable estimator. For large prior weighting (large w), the three approaches deliver
asymptotically similar performance since the relative difference in parameter weighting
reduces. Based on the discussion regarding this experiment, we have chosen to report
results from the proposed MAP estimator in this section (Section 6.5), but in general the

MSE Bayes estimator may provide comparable results.

6.6 Transformation-based adaptation

Experiments are performed to evaluate the performance of transformation-based methods
for cross-language adaptation, as discussed in Section 5.3.2. Maximum likelihood linear
regression (MLLR) transformation (Equation 3.121) is used to transform Gaussian mean
parameters. In order to comprehensively adapt source model parameters, we also experi-
ment with the adaptation of Gaussian variance parameters. The techniques used for the

adaptation of the Gaussian variance parameters include:

no adaptation,

direct re-estimation (on only the target data),

linear transformation with MSE criterion (Equation 3.129), and

log-domain transformation with MSE criterion (Equation 3.136).

Relative to speaker adaptation, it is expected that cross-language adaptation will necessitate
a more complex and comprehensive adaptation of source language models. In order to
estimate a complex mapping, models are grouped into regression classes, with a separate
transformation being calculated for each class. Grouping into classes is done according to
broad phonetic groupings, i.e. for a two-class subdivision vowels/diphthongs are separated
from the rest, a five-class subdivision separates vowels, diphthongs, fricatives/affricates,

stops and nasals/glides/liquids and for a eight-class subdivision all mentioned categories
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are treated as distinct regression classes. Grouping transformations into classes has the
advantage that each class of similar phonemes share a transformation, which is different
from that used to transform the other classes. The assumption is that the distributions
of the acoustic parameters for the target language exhibit correlation within each class.
In experiments the effect of both the number of regression classes, as well as the method
used for variance compensation are evaluated. We first experiment with cross-language
transformation of English models using the Afrikaans sets and then evaluate the effect of

transforming bilingual (pooled) models.

6.6.1 Cross-language model adaptation

Figure 6.8 shows word accuracy as a function of the number of regression classes when
English models are transformed using the Afrikaans training subset only. Best performance
of 65.7% is achieved with a 2-class MLLR mean/MSE log-variance transformation and sec-
ond best performance is achieved with mean-only MLLR transformation, delivering peak
word accuracy of 62.7%. The other techniques that adapt variance in addition to perform-
ing MLLR mean transformation perform significantly poorer and do not even improve on
baseline (untransformed) English model performance. As expected, variance re-estimation
performs poorly on the small Afrikaans training subset. The relatively poor results for the
5 and 8-class transformations indicate that there is not enough data to perform complex
transformations contained in many regression classes. As the number of regression class-
es increases, performance degrades even below that achieved with direct training on the
Afrikaans training subset. This happens because the English source models were trained
on a large amount of data and therefore typically contain many mixtures per state (up to a
maximum of 10). They are therefore easily over-fitted by the transformation on the limited
amount of target data. In Section 6.7.2 we experiment with a technique that solves this

problem to some degree by combining MAP with MLLR transformation.

Overall, the results in Figure 6.8 show that MLLR transformation of the Gaussian means,

with or without log-variance transformation, at least delivers an improvement on baseline
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Figure 6.8: Comparison of word accuracy on the Afrikaans test set for MLLR transformation
of Gaussian means combined with different variance transformation techniques: mean-only,
log variance (logv), linear variance (linv) and variance re-estimation (rv) as a function of the
number of regression classes for English models adapted on the Afrikaans training subset
(A1)

English model performance (58.0% word accuracy) for few regression classes, but does not
attain the performance achieved with bilingual pooling (68.1% word accuracy) in Section 6.4

or with cross-language MAP adaptation (peak word accuracy of 70.2%) in Section 6.5.1.

Figure 6.9 shows word accuracy as a function of the number of regression classes when
English models are transformed using MLLR transformation of mean parameters combined
with various techniques to adapt variance parameters on the (full) Afrikaans training set.
Comparing the overall results with that of Figure 6.8, it is apparent that performance using

more regression classes has improved since more target data is available.

Best performance of 71.8% is achieved with an MSE log-variance transformation when two
regression classes are used. MLLR mean transformation with variance re-estimation also
delivers good results (69.5% word accuracy), probably due to the fact that the Afrikaans

training set is large enough for re-estimation to deliver reasonable estimates. Mean-only
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Figure 6.9: Comparison of word accuracy on the Afrikaans test set for MLLR transformation
of Gaussian means combined with different variance transformation techniques: mean-only,
log variance (logv), linear variance (linv) and variance re-estimation (rv) as a function of
the number of regression classes for English models adapted on the Afrikaans training set

(A)

(67.0%) and linear variance transformations (67 :3%) show performance improvement over
the baseline English models, but do not exceed the performance obtained with training
directly on the Afrikaans training set. The peak word accuracy of 71.8% achieved with
log-variance transformation is better than that achieved using English-only or Afrikaans-
only training sets (58.0% and 69.0% respectively), but is still less than the word accuracy
achieved with bilingual models (73.3%) in Section 6.4 or with cross-language MAP adap-
tation (74.9%) in Section 6.5.1.

6.6.2 Data pooling followed by adaptation

It was decided to evaluate the performance of transformation-based adaptation of bilingual
models for the purpose of comparing the results with MAP adaptation under the same

circumstances, even though the meaning of such a procedure is not intuitive. Figure 6.10
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shows the performance achieved when models trained on the pooled English and Afrikaans
training set and on the pooled English and Afrikaans training subset are transformed using
the Afrikaans training set and training subset respectively. Interestingly, MLLR transfor-
mation using the full Afrikaans training set delivers peak word accuracy of 74.4%, improving
by 1.1% on simple bilingual pooling with the English set (73.3% word accuracy). For the
Afrikaans training subset, however, transformation of bilingual models degrades accuracy
compared to bilingual pooling with the English set. This is probably due to the fact that the
transformation changes the parameters too much, based on a small amount of data, thereby
degrading the positiv‘e influence the large amount of English data had in the performance

of the bilingual models.
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Figure 6.10: Word accuracy on the Afrikaans test set for (mean only) MLLR transformation
of Gaussian means as a function of the number of regression classes for pooled English-
Afrikaans models adapted on the Afrikaans training set (A) and Afrikaans training subset
(A1)

Results for methods that perform variance compensation are not shown because they were
found to degrade performance for bilingual model adaptation. This agrees with the results
for MAP adaptation, where it was found that variance compensation of the bilingual models

was less important than for the English models.
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The peak word accuracy of 74.4% achieved with MLLR. transformation is less than the
75.3% achieved with mean-only MAP adaptation of bilingual models in Section 6.5.4. Fur-
thermore, transformation of the bilingual models presents a risk since it may degrade perfor-
mance if too little target data is available, such as is the case for transformations calculated
using the Afrikaans training subset. In the next section experiments are performed in an
attempt to combine some of the advantages of both Bayesian and transformation-based

adaptation.

6.7 Combined transformation-Bayesian adaptation

In this section experiments are performed to evaluate the two ways of combining Bayesian
and transformation-based techniques, previously discussed in Section 3.4, for cross-language

adaptation.

6.7.1 MLLR-MAP

MLLR-MAP performs MLLR transformation (Equation 3.121) in a first step and then
uses the transformed models to seed prior distributions for full MAP adaptation (Equa-
tions 3.100-3.102 and 3.107). We use the MLLR-transformed models from Section 6.6.1
(Figures 6.8 and 6.9), that were transformed from English source models using data from
the Afrikaans training set and training subset. These MLLR-transformed models are used

as seed models for further MAP adaptation on the respective Afrikaans sets.

Figure 6.11 shows the word accuracy achieved on the Afrikaans test set as a function of
the MAP prior weight when the MLLR transformed models are adapted using full MAP
adaptation. Results are shown for single regression class mean-only MLLR transformations
as this delivered the best performance, achieving peak performance of 74.8% word accura-

cy for Afrikaans training set adaptation and 69.9% word accuracy for Afrikaans training
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subset adaptation. The performance is slightly below that achieved with MAP adaptation
of the English priors, indicating that the additional use of MLLR transformation does not
improve performance in this case. This was expected since both the English and Afrikaans
data are from the same database and the ability of MLLR to remove overall mismatch is
not important. The results are of interest, though, for comparison with results in Chap-
ter 7, where we show that MLLR-MAP is very useful for cross-database adaptation when

significant differences exist with respect to the databases.
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Figure 6.11: Word accuracy on the Afrikaans test set as a function of the adaptation rate
for English models adapted using MLLR-MAP adaptation on the Afrikaans training set
(A) and training subset (A1) with reference performance of monolingual models also shown

6.7.2 MAP-MLLR

MAPLR provides a second way of combining Bayesian and transformation-based adapta-
tion and attempts to determine the linear regression parameters that deliver the maximum
a posteriori probability model estimate. We have combined MAPLR (Equations 3.138 and
3.139) with a MAP-like variance adaptation technique (Equations 3.140 and 3.141) and
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group the combination of the techniques under the name MAP-MLLR. The MAP-MLLR
transformations converge to unity transformations as the amount of adaptation data avail-
able decreases and converge to the MLLR (for Gaussian means) and log-variance MSE
(for Gaussian variance) estimates as the amount of adaptation data available increases.
The amount of adaptation that source models incur under the transformation can be con-
trolled and performance can therefore be improved by decreasing the degree of over-fitting,

especially for complex transformations that span many regression classes.

Figure 6.12 shows the performance achieved as a function of the number of regression
classes when MAP-MLLR. transformation of the Gaussian mean parameters, and option-
ally a MAP-like log-space transformation of the Gaussian variance parameters, of English
models are attempted on the Afrikaans training set and training subset. The results can
be compared directly to the MLLR-mean and MSE log-variance transformation results
in Figures 6.8 and 6.9 with those results being considered a special case of MAP-MLLR
with non-informative priors. Peak performance of 73.9% word accuracy is achieved for
mean and variance MAP-MLLR, transformation on the Afrikaans training set, delivering
a 2.1% improvement in performance over using MLLR-mean/MSE log-variance transfor-
mation (peak word accuracy of 71.8% in Figure 6.9). Peak performance of 65.9% word
accuracy is achieved for adaptation on the Afrikaans training subset, which is 0.2% better
than using a non-informative prior for the transformation (peak 65.7% word accuracy in
Figure 6.8). The results in Figure 6.12 also show that variance transformation (in addi-
tion to mean transformation) significantly outperforms mean-only transformation, by 5.9%
on the Afrikaans training set (73.9% versus 68.0% word accuracy) and by 2.6% on the

Afrikaans training subset (65.9% versus 63.3% word accuracy).

6.8 Discriminative adaptation

Experiments are performed to evaluate the application of discriminative adaptation for

cross-language adaptation, as was discussed in Section 5.3.3. A major consideration when
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Figure 6.12: Comparison of word accuracy on the Afrikaans test set for MAP-MLLR trans-
formation of Gaussian means, optionally combined with a MAP-like log-space (+logv) MSE
transformation of Gaussian variance parameters, computed as a function of the number of
regression classes for English models adapted on the Afrikaans training set (A) and training
subset (Al)

applying discriminative adaptation is the selection of initial model parameters, as discrim-
inative techniques are prone to converge to local minima (in terms of the loss function).
The initial model must therefore be selected to exhibit desirable characteristics and dis-
criminative optimisation is performed only to “fine-tune” the characteristics for the target
language. We experiment with initial models that are trained on pooled multilingual data,
as well as with models that are the product of other adaptation techniques, such as MAP
adaptation, and therefore have already been specialised to some extent for improved target

language performance.

The MCE framework for discriminative training from Chapter 4 is used and in particular
experiments are performed to determine the performance of the cost-based extensions to
MCE that we proposed in Section 4.5. A method from Section 4.5.3 is used to calculate
the word error-based cost associated with each phoneme misclassification (in particular

Equation 4.43). In experiments, two sets of word contexts were used to derive the word
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error-based cost. The first is a target language context that is independent from the context
in the test application. The second context is not only from the target language, but also
expresses the same word context as the target application, i.e. it contains the same set of
words and word frequencies as the target application and therefore represents an applica-
tion specific optimisation. Cost-based MCE is performed using the modified misclassifica-
tion measure (Section 4.5.4) and in particular the two approaches namely, the cost-based
misclassification measure (CBMM) approach (Equation 4.44), and the cost-reward-based

misclassification measure (CRBMM) approach (Equation 4.46).

6.8.1 Data pooling followed by adaptation

MCE adaptation is performed on models trained on pooled English and Afrikaans data.
The multilingual models are trained on a large amount of data, ensuring robust param-
eter estimation, although the models will be biased towards the source language since it
represents most of the training data. Discriminative adaptation is performed, using target
language data only, to adapt the multilingual models with the aim of improving performance

specifically for the target language.

Figure 6.13 shows word accuracy on the Afrikaans test set as a function of the number
of adaptation iterations when models trained on the pooled English and Afrikaans train-
ing subset (68.1% word accuracy) are used as initial models for MCE adaptation on the
Afrikaans training subset. Peak performance of 71.3% word accuracy is achieved with tar-
get context CBMM MCE adaptation, which is 3.2% better than the performance of the
baseline multilingual models. Similar peak performance is achieved with target context
CRBMM MCE adaptation and (independent context) CBMM (both achieve 71.2% word
accuracy). MCE adaptation (without a modified misclassification measure) achieves peak
performance of 70.6%, which is still 2.5% better than the performance of the multilingual
initial models. The best performance of 71.3% word accuracy is, however, 0.1% below the
71.4% word accuracy achieved with MAP adaptation of multilingual models in Figure 6.5.
The results indicate that the CRBMM approach to MCE adaptation does not offer im-
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Figure 6.13: Comparison of word accuracy on the Afrikaans test set for the MCE adaptation
of pooled English-Afrikaans models on the Afrikaans training subset, also including use
of cost-based (CB) and cost-reward-based (CRB) misclassification measures, optionally
designed specifically for the target context (T)

proved performance over the CBMM approach (this is also generally the case for the other
experiments) and in following experiments we therefore discuss only the CBMM approach

for incorporating cost into MCE adaptation.

Figure 6.14 shows word accuracy on the Afrikaans test set as a function of the number of
adaptation iterations when models trained on the pooled English and Afrikaans training
set (73.3% word accuracy) are used as initial models for MCE adaptation on the Afrikaans
training set. Peak performance of 76.1% word accuracy is achieved with target context
CBMM MCE adaptation, which is 2.8% better than the performance of the multilingual
initial models and is also 0.8% better than the best performance previously reported in this
chapter, namely the 75.3% word accuracy achieved with MAP adaptation of multilingual
models in Figure 6.6. MCE adaptation (without CBMM) delivers peak performance of
75.9% and CBMM MCE delivers peak performance of 75.8% word accuracy. For Afrikaans
training set adaptation, all of the MCE adaptation techniques therefore achieve better

performance than the best performing non-MCE techniques that were evaluated.
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Figure 6.14: Comparison of word accuracy on the Afrikaans test set for the MCE adaptation
of pooled English-Afrikaans models on the Afrikaans training set, also including use of a
cost-based (CB) misclassification measure, optionally designed specifically for the target
context (T)

The experiments with the different approaches to MCE adaptation show significant im-
provements in performance compared to the performance of multilingual initial models
used for adaptation. Target context cost-based MCE adaptation delivers the best perfor-
mance for multilingual model adaptation, increasing performance by 3.2% for Afrikaans
training subset adaptation and by 2.8% for full Afrikaans training set adaptation. The
results achieved on the Afrikaans training set are the best results that are reported. The
results on the Afrikaans training subset are 0.1% lower than the best non-MCE adaptation

method and an attempt is made in the next section to improve on this performance.

6.8.2 Improving best performing models

The performance achieved with MCE adaptation on the Afrikaans training subset (Fig-
ure 6.13) is less than the best performance achieved without using MCE. An experiment

is performed to test whether performance of the MCE technique can be improved upon by
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selecting a better seed model. The model adapted (without using MCE) on the Afrikaans
training subset, that delivered the best performance, is selected as the initial model for
MCE adaptation. The particular model was adapted using MAP adaptation with a pri-
or weight scaling factor of @ = 200 from a multilingual prior and achieves 71.4% word
accuracy, as was shown in Figure 6.5. Figure 6.15 shows word accuracy as a function of
the number of adaptation iterations when the particular model is used as initial model for
MCE adaptation on the Afrikaans training subset. Peak performance of 72.3% is achieved
with MCE adaptation. Comparable performance of 72.1% is achieved with CBMM MCE
adaptation, irrespective of whether target dependent or independent context is used in cal-
culation of the cost. Use of MCE in this case leads to between 0.7% and 0.9% increase in

word accuracy relative to initial model performance.
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Figure 6.15: Comparison of word accuracy on the Afrikaans test set for the MCE adaptation
of models that have already been optimised for performance on the Afrikaans training
subset, also including use of cost-based (CB) and cost-reward-based (CRB) misclassification
measures, optionally designed specifically for the target context (T)

The same approach, namely to use an initial model that delivers better performance than
the multilingual models trained on pooled data, is attempted for the full Afrikaans training

set adaptation. However, use of the MAP adapted model (from Figure 6.6) that produced
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the best results, as initial model for subsequent MCE adaptation does not deliver improved
performance. Initial model performance of 75.3% word accuracy on the Afrikaans test set
is only degraded by further MCE adaptation on the Afrikaans training set and is therefore
not shown graphically. The result suggests that use of an initial model that achieves better

word accuracy does not necessarily ensure that better final performance will be achieved.

6.9 Discussion of results

The experiments in this chapter covered application of the major categories of speaker
adaptation techniques, as well as extensions and combinations of them, to cross-language
adaptation of acoustic parameters. The results indicate convincingly that cross-language
use of acoustic information leads to performance improvement and virtually all of the
techniques are shown to be useful in some way for improving baseline performance in
particular experiments. Table 6.3 summarises the methods that were experimented with
and their results, which are briefly discussed next.

Table 6.3: Summary of peak word accuracy achieved on the Afrikaans test set in various ex-

periments that evaluate different approaches to cross-language adaptation on the Afrikaans
training set (A) and Afrikaans training subset (A1)

Method Adapted on

Al A
Train source 57.9% | 57.9%
Train target 45.0% | 67.6%
Pooling 68.1% | 73.3%
MAP 70.2% | 74.9%
Pooling-MAP 71.4% | 75.3%
Transformation 65.7% | 71.8%
MLLR-MAP 69.9% | 74.8%
MAP-MLLR 65.9% | 73.9%
Pooling-MCE 71.3% | 76.1%
Pooling-MAP-MCE | 72.3% | 75.3%

The relatively good results achieved with English (source) language models, as well as
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the good results achieved with simple multilingual pooling should be seen in light of the
“closeness” of the match between the SUN Speech English and Afrikaans data sets. Because
multilingual data from a single database is used, there are no differences with respect to
recording conditions between the data sets and also a consistent set of labels were used.
This situation facilitates easy cross-language use of speech data. Cross-language MAP
adaptation delivers good results, improving even further when adaptation is done from
multilingual models, and achieves the best results of the non-discriminative adaptation

approaches.

Cross-language transformation-based adaptation does not deliver very good performance
and in isolation does not even achieve the level of performance achieved by the multilingual
(pooling approach) models. MLLR-MAP delivers good performance, but performance is
still less than that achieved with MAP adaptation in isolation - meaning that even the
simplest transformation degrades the priors. MAP-MLLR improves upon using MLLR
alone, allowing transformation-based adaptation to exceed pooling performance on the

Afrikaans training set.

MCE adaptation delivers the best overall performance on both the Afrikaans training set
and training subset, irrespective of whether the CBMM approach is used. Use of target
context CBMM, in particular, achieves improved performance when adapting multilin-
gual initial models and achieves the best overall performance of 76.1% word accuracy for
Afrikaans training set adaptation. For adaptation on the Afrikaans training subset, MCE
adaptation of multilingual initial models previously adapted with MAP adaptation (denot-
ed pooling-MAP-MCE in Table 6.3) delivers the best performance of 72.3% word accuracy.
MCE-based adaptation of best-performing Afrikaans training set adapted models does,

however, not deliver any further improvement in performance.

This chapter discussed experiments performed to evaluate different strategies and tech-
niques for cross-language use of acoustic information. In particular the use of English
data from the SUN Speech database in addition to Afrikaans data, also from SUN Speech,

was investigated for the purpose of improving recognition performance on an indepen-
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dent Afrikaans test set. The results indicate that significant performance improvement is
attained by use of the English data in addition to the Afrikaans data, achieving an improve-
ment of 27.3% (72.3% versus 45% word accuracy), or a 50% relative reduction in word error
rate over using the Afrikaans training subset alone and an improvement of 8.5% (76.1% ver-
sus 67.6% word accuracy), or a 26% relative reduction in word error rate compared with
using only the Afrikaans training set. Use of English data in addition to a small amount
of Afrikaans data (the training subset) outperforms using five times more Afrikaans data
(the full training set) by 3.3% (72.3% versus 67.6%). In the next chapter we investigate to
what extent this gain in performance extends to use of acoustic information across different

databases.
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Cross-language TIMIT - SUN Speech

recognition

This chapter details cross-language, cross-database experiments performed using American
English speech from the TIMIT [31] database in conjunction with Afrikaans speech from
the SUN Speech [12] database to improve speech recognition performance on Afrikaans.
Experiments compare word recognition performance when the set of cross-language adap-
tation strategies from Chapter 5 are applied. The results can be compared with results in
Sections 6.4-6.8 from the previous chapter since the experiments described in this chapter
also perform continuous word recognition as described in Section 6.2.3. Experiments in
both chapters (Chapters 6 and 7) use reasonably large amounts of English source data in
conjunction with smaller amounts of Afrikaans target data and test performance on the
same speaker independent Afrikaans test set. Results should therefore give a good indica-
tion of the expected variation in performance of different techniques when multilingual data
is used from the same database (i.e. the same recording conditions and labelling process)
versus using data from different databases. It is expected that the performance achieved
with cross-language use of the TIMIT database will be less than that achieved with using
English speech from the SUN Speech database in recognising Afrikaans speech from SUN
Speech, due to the fact that the characteristics and labelling of the databases differ, but
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also because the acoustics of South African English may match the acoustics of Afrikaans
more closely than American English. On the other hand, the fact that TIMIT contains
approximately 80% more speech data than is contained in the English part of SUN Speech,
9 times more speech data than the Afrikaans training set and 45 times more speech data

than the Afrikaans adaptation set, may positively influence performance.

The layout of the chapter is as follows. Some characteristics of the TIMIT database, as
well as the mapping of the phoneme labels from TIMIT to SUN Speech are discussed
first. Experiments then follow, discussing bilingual data pooling, Bayesian adaptation,
transformation-based adaptation, combined Bayesian and transformation-based adapta-

tion, discriminative adaptation and finally data augmentation experiments.

7.1 TIMIT - SUN Speech phonetic mapping

The TIMIT [31] database contains read speech in English from a large number of speakers
from various dialect regions in the USA. Utterances are labelled phonetically and contain
diverse phonetic content. TIMIT is easily available and has been used in previous research
for seeding cross-lingual acoustic models [14, 16]. It is therefore well suited for use as a
source language database, especially in our case since it allows some evaluation of the effect

of database characteristics on cross-language use of acoustic information.

In order to use the TIMIT database with the SUN Speech database, it is necessary to
determine a mapping from TIMIT phoneme labels to the SUN Speech phoneme labels.
In Chapter 5 we discussed two methods of determining the phoneme mapping, namely a
phonetic knowledge-based approach and an automatic approach to determining a phoneme
mapping that uses the Bhattacharyya distance. A phonetic knowledge-based mapping from
TIMIT phonemes to SUN Speech phonemes was performed by a phonetic expert, details
of which are given in Appendix B. The two mappings agree (i.e. list the same TIMIT
label for a given SUN Speech label) on 20 out of the 47 phoneme pairs that are used in
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recognition experiments (see Tables 6.1 and 6.2 in Section 6.3.1 for the list of phonemes
used in experiments). The automatically determined mapping assigns a smaller subset
of the TIMIT phonemes in the mapping process, i.e. only 29 different TIMIT phonemes
compared to the 38 different TIMIT phonemes listed as the first entry for the phonetically

determined mapping.

Continuous word recognition experiments were performed to compare the performance
achieved with the two techniques. Results for models trained on TIMIT data and test-
ed on the Afrikaans test set deliver poor performance, achieving -2.6% word accuracy for
the automatic approach and -5.9% accuracy for the phonetic approach. It is not surprising
that the automatic approach delivers better performance for direct training, since it se-
lects the “closest” source models, thereby reflecting to some extent the channel differences
between the source and target data in its choice. In TIMIT/SUN Speech pooling experi-
ments, however, pooling with models determined by the phonetic approach delivers 55.3%
and 45.0% word accuracy, versus 50.9% and 32.7% for the automatic mapping approach,
when pooling is done with the Afrikaans training set and subset respectively. Also, MAP
adaptation of pooled data models indicates that the phonetically derived mapping produces
better final results, with word accuracies of 67.7% and 57.0% achieved versus 66.8% and
54.7% for the automatic mapping approach, when adaptation is done on the Afrikaans

training set and subset respectively.

The comparative results indicate that better performance is achieved by using the phonetic
mapping approach and therefore results are reported only for the phonetically derived
mapping in the rest of the chapter. The phonetically derived mapping associates a quality
figure with each source/target phoneme pair, indicating qualitatively how accurate each
mapping is expected to be, providing extra information which may be useful for seeding
prior weight values for adaptation. We, however, did not experiment with using the quality

figures.
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7.2 Multilingual data pooling

This section evaluates the performance achieved by models trained on pooled speech data
from more than one language and from different databases. Figure 7.1 shows word accuracy
achieved on the Afrikaans test set when pooled data consisting of the entire TIMIT database
in addition to the SUN Speech Afrikaans training set and training subset are used to
train phoneme models. Performance is also shown for models trained on the data sets in
isolation. Best performance of 69.0% is achieved by using the Afrikaans training set in
isolation. Pooling of the Afrikaans training set with the TIMIT set degrades performance
to 55.3% word accuracy. Peak performance of models trained on the Afrikaans training
subset and the pooled TIMIT plus Afrikaans training subset both round off to 45.0%.
Performance of models trained only on the TIMIT database perform poorly on the Afrikaans

test set, achieving peak performance of only -3.7% word accuracy. The poor results indicate
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Figure 7.1: Word accuracy as a function of the maximum allowed number of mixtures per
state for three state HMMs trained on various monolingual and pooled multilingual data
sets using the TIMIT database (T), the Afrikaans training set (A) and the smaller Afrikaans
training subset (A1) and tested on the Afrikaans test set

that a large mismatch exists between the TIMIT and SUN Speech databases, especially
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if the results are compared to the results of same-database experiments in Section 6.4,
where pooling of English and Afrikaans data from the SUN Speech database delivered
better results than using Afrikaans data alone. In Section 7.7 we experiment with a data
augmentation approach that attempts to improve upon the results achieved with simple

data pooling.

For both the pooling approaches (TIMIT pooled with either the Afrikaans training set
or training subset), we expect that the performance of pooled-data models will improve
if more complex models are trained, i.e. if more than 10 mixtures per state are allowed,
but we restrict our attention to using techniques that improve model performance without

increasing model complexity.

7.3 Bayesian adaptation

A number of issues regarding use of Bayesian methods for cross-language and cross-database
adaptation are experimented with in this section. The experiments that are performed are
similar to many of the experiments in Section 6.5 and include experimental evaluation of

the effect on performance of:

e the amount of target data available,

e mean-only MAP adaptation (Equation 3.100) or full MAP adaptation, including vari-
ance adaptation (Equations 3.100-3.102 and 3.107), and

e using multilingual models (trained on pooled source and target language data) to seed

prior distributions.

All experiments also evaluate the influence on performance of the overall weight associated
with the prior distribution as this value is determined empirically. The experiments all
perform Bayesian adaptation, using the MAP estimation equations from Sections 3.2.3-

3.2.5 and in particular Equation 3.107 for variance estimation.
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7.3.1 Adaptation performance

Figure 7.2 shows the performance achieved as a function of the adaptation rate for TIMIT
English prior models adapted on the SUN Speech Afrikaans training set and the Afrikaans
training subset. Peak performance of 67.7% word accuracy is achieved when adapting on the
full Afrikaans training set, which delivers an absolute 0.1% improvement over using only the
Afrikaans training set (67.6% word accuracy for 3 state, 10 mixture models). Adaptation
on the Afrikaans training subset achieves peak performance of 57.0% word accuracy, which
is 12.0% better than thaf achieved by models trained on the Afrikaans training subset alone
(45.0%) or by models trained on the pooled TIMIT/Afrikaans training subset (also 45.0%

word accuracy).
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Figure 7.2: Word accuracy on the Afrikaans test set as a function of the adaptation rate
for TIMIT models (T) adapted using MAP adaptation on the Afrikaans training set (A)
and training subset (A1) with reference performance of monolingual models also shown

The results using English prior models trained on TIMIT are significantly poorer than
corresponding results obtained using English priors trained on SUN Speech (67.7% versus

74.9% word accuracy for the Afrikaans training set and 57.0% versus 70.2% word accuracy
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for the Afrikaans training subset). Peak performance for TIMIT priors is also achieved for
smaller prior weighting (20 < @ < 50) than the weighting that delivers peak performance
for the SUN Speech English prior models (100 < @ < 200), indicating that the TIMIT priors
are less informative than the SUN Speech English priors. The disparity in performance
between using TIMIT priors and SUN Speech English priors is expected since the pooling
results (Sections 6.4 and 7.2) also show that the English SUN Speech data matches the
SUN Speech Afrikaans data more closely than is the case for the TIMIT data.

7.3.2 Variance parameter adaptation

Mean-only and full MAP adaptation are compared in Figure 7.3 for the adaptation of TIM-

IT models on the Afrikaans training set and training subset. The results show the same
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Figure 7.3: Comparison of word accuracy on the Afrikaans test set for mean-only (mo
MAP) and full MAP (MAP) adaptation as a function of the adaptation rate for TIMIT
models (T) adapted on the Afrikaans training set (A) and training subset (A1)

trend as was shown for adaptation of English prior models from SUN Speech, namely that

better cross-language adaptation performance is achieved for full MAP adaptation than for
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mean-only MAP adaptation. A 4.1% degradation in peak word accuracy (63.6% versus
67.7%) is attributable to mean-only adaptation versus full adaptation on the Afrikaans
training set and a 3.9% degradation in peak word accuracy (53.1% versus 57.0%) is at-

tributable to mean-only versus full adaptation on the Afrikaans training subset.

7.3.3 Pooling-adaptation performance

Figure 7.4 shows the performance achieved when models trained on pooled TIMIT and
SUN Speech Afrikaans data set are adapted using full MAP adaptation on the respective
Afrikaans data sets. Peak performance of 69.0% is achieved when adapting on the Afrikaans
training set, which is 1.3% better than that achieved by cross-language MAP adaptation
of TIMIT models (67.7% word accuracy in Figure 7.2) and 1.4% better than training on
the Afrikaans training set alone (67.6% word accuracy for 3 state, 10 mixture HMMs in
Figure 7.1). For the Afrikaans training subset, however, peak performance of 56.0% is
lower than cross-language MAP adaptation of TIMIT models (57.0% word accuracy in
Figure 7.2), but is still 11% better than training only on the Afrikaans training subset
(45.0% word accuracy).

In general, a pooling-adaptation approach may provide a better prior model estimate than
using only source language data, since at least some target data is used for the estimate.
However, it is possible that when the prior model is trained on pooled source and target
databases that are poorly matched, such as is the case with the TIMIT and SUN Speech
databases, that most mixtures tend to model the source language distribution, while a few
mixtures model mostly the target language distribution. During adaptation, mixtures that
closely match the target distribution are observed, while the large fraction of mixtures that
modelled the source language distribution in the initial model are not observed and are
therefore also not adapted - negatively influencing performance. This can possibly explain
why the pooling-adaptation approach does not necessarily deliver better performance than

simply using source language priors for MAP adaptation.
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Figure 7.4: Word accuracy on the Afrikaans test set as a function of the adaptation rate
(@) for models trained on pooled TIMIT and Afrikaans training data (T+A) and pooled
TIMIT and Afrikaans training subset data (T+Al) and adapted using MAP adaptation
with reference performance of monolingual and multilingual models also shown

7.3.4 Pooling-variance parameter adaptation

A comparison between results achieved with mean-only and full MAP adaptation of mod-
els trained on the pooled TIMIT/Afrikaans data set is given in Figure 7.5. In contrast
to the pooled-model MAP adaptation results of the previous chapter (see Figure 6.6), full
adaptation outperforms mean-only adaptation for both Afrikaans sets, achieving 2.2% im-
provement for the Afrikaans training set (69.0% versus 66.8%) and 1.2% improvement for
the Afrikaans training subset (56.0% versus 54.8% word accuracy). This may be due in
part to the fact that the TIMIT set is even larger than the SUN Speech English set, there-
by dominating the pooled model parameters to a larger extent and necessitating variance
adaptation since the Afrikaans speech characteristics are not adequately represented in the

pooled models.
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Figure 7.5: Comparison of word accuracy on the Afrikaans test set for mean-only (mo
MAP) and full MAP (MAP) adaptation as a function of the adaptation rate for pooled
TIMIT-Afrikaans models adapted on the Afrikaans training set (A) and training subset
(A1)

7.4 Transformation-based adaptation

Experiments are performed to evaluate the performance of parameter transformation for
cross-language and cross-database adaptation, as discussed in Section 5.3.2. Maximum
likelihood linear regression (MLLR) transformation (Equation 3.121) is used to transform
Gaussian mean parameters and various methods are experimented with for adaptation of

Gaussian variance parameters, including:

no adaptation,

direct re-estimation (on only the target data),

linear transformation with MSE criterion (Equation 3.129), and

log-domain transformation with MSE criterion (Equation 3.136).
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Figure 7.6 shows word accuracy achieved with TIMIT models transformed on the Afrikaans
training subset. Peak performance of 43.0% word accuracy, achieved with a 2-class MLLR
mean/MSE log-variance transformation, is less than that achieved by models trained on
the Afrikaans training subset only (45.0%). Mean-only MLLR transformation delivers the
second best peak performance, achieving 40.6% word accuracy for a 5-class transformation.
As mentioned in the previous chapter, transformation does not achieve asymptotic target
dependent performance as the number of regression classes increases, because the source
models are too complex (contain more mixtures than is optimal for the target data) and

therefore over-fit the distribution of the limited amount of target data.
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Figure 7.6: Comparison of word accuracy on the Afrikaans test set for MLLR transformation
of Gaussian means combined with different variance transformation techniques: mean-only,
log variance MSE (logv), linear variance MSE (linv) and variance re-estimation (rv) as a
function of the number of regression classes for TIMIT models adapted on the Afrikaans
training subset (A1)

Figure 7.7 shows word accuracy achieved with TIMIT models transformed on the Afrikaans
training set. Peak performance of 56.9% word accuracy is achieved with a 5-class MLLR
mean/MSE log-variance transformation, but is still less than the 67.6% accuracy achieved

by models trained on the Afrikaans training set. Linear variance (53.5%) and variance re-
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estimation (53.1%) deliver poorer performance, with poorest performance (49.6%) achieved
with mean-only MLLR transformation. Other transformation approached were attempt-
ed, including block-diagonal transformation which computes separate transformations for
cepstral, delta and delta-delta coefficients, as well as a diagonal transformation, which trans-
forms each feature dimension independently. Use of these simpler transformations allows
the use of a larger number of regression classes (up to 47 regression classes were used with
the diagonal transformation), but did not improve upon the performance achieved with full

transformation matrices (results not shown).
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Figure 7.7: Comparison of word accuracy on the Afrikaans test set for MLLR transformation
of Gaussian means combined with different variance transformation techniques: mean-only,
log variance MSE (logv), linear variance MSE (linv) and variance re-estimation (rv) as a
function of the number of regression classes for TIMIT models adapted on the Afrikaans
training set (A)

It is, of course, meaningless to perform transformation-based adaptation if the performance
achieved is less than that achieved by direct training on the target language data. However,
in the next section we show that very good performance is obtained when these transformed

models are used for further adaptation.
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7.5 Combined transformation-Bayesian adaptation

Experiments are performed to evaluate the two ways of combining Bayesian and transformation-
based techniques from Section 3.4 for cross-language and cross-database adaptation and
show how MLLR-MAP in particular can lead to greatly improved performance over either

MLLR or MAP approaches in isolation.

7.5.1 MLLR-MAP

Experiments with MLLR-MAP in Section 6.7.1 of the previous chapter indicated that
no increase in performance was delivered beyond what was achieved with direct cross-
' language MAP adaptation. However, compared to the SUN Speech English models, the
TIMIT models are poorly matched to the Afrikaans data, as shown by the difference in
recognition rate on the Afrikaans test set (-5.9% word accuracy for TIMIT models versus
58.0% for SUN Speech English models). Transformation of the TIMIT models to produce
improved prior distributions for subsequent MAP adaptation may therefore be beneficial

and is investigated experimentally.

TIMIT models that were transformed on the Afrikaans training set and training subset (see
Section 7.4) are used as seed models for further MAP adaptation on the respective Afrikaans
sets. Figure 7.8 shows the word accuracy achieved as a function of the adaptation rate when
the MLLR transformed models are adapted using MAP adaptation. Peak performance
of 72.0% word accuracy is achieved when a 2-class (mean-only) MLLR transformation is
followed by full MAP adaptation on the Afrikaans training set. This peak performance is
4.4% better than achieved with training on the Afrikaans set only (72.0% versus 67.6%)
and 3.0% better than the best MAP adaptation results using TIMIT (69.0% word accuracy
for adaptation of bilingual models in Figure 7.4). When the Afrikaans training subset
is used for adaptation purposes, peak performance of 64.1% is achieved when a single

class MLLR transformation is followed by MAP adaptation. This peak performance is
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19.1% better than the 45.0% word accuracy achieved with models trained on the Afrikaans
training subset only and 7.1% better than the 57.0% word accuracy achieved with MAP
adaptation on the Afrikaans training subset in Figure 7.2. Use of the MSE log-variance
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Figure 7.8: Word accuracy on the Afrikaans test set as a function of the adaptation rate for
TIMIT models adapted using MLLR-MAP adaptation on the Afrikaans training set (A)
and training subset (A1) with reference performance of monolingual models also shown

transformation in the first step of MLLR-MAP produces almost the same performance as
using MLLR transformation (71.8% for a single regression class versus 72.0% for the 2-class

MLLR transformation).

The results of Figure 7.8 show useful increases in performance by using the TIMIT database
to improve the Afrikaans recogniser, indicating that the MLLR-MAP strategy is well suited
for cross-database, cross-language adaptation. Best performance is not achieved by using
the MLLR models that deliver the best performance (this would imply using 2-class and
5-class transformed models), but by using models transformed with simpler transformations
(single and 2-class transformations). The transformation step acts to improve the priors by
using correlation between the source language feature distribution and the target language

feature distribution. The transformation step should therefore not necessarily be optimised
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for transformed model performance because a too complex transformation may over-fit the
target data, decreasing the usefulness of the transformed model in seeding the priors for

subsequent MAP adaptation.

7.5.2 MAP-MLLR

Experiments with MAP-MLLR in Section 6.7.2 of the previous chapter showed that the
technique improves upon the performance of MLLR transformation by biasing the transfor-
mation towards the unity transformation, especially when little adaptation data is available.
Since Bayesian adaptation of TIMIT prior models (Section 7.3) delivers significantly poorer
performance than Bayesian adaptation of SUN Speech prior models (Section 6.5), it is also
not expected that the MAP-MLLR technique will provide very good results with TIMIT
prior models. The MAP-MLLR estimation equations used are those for mean transfor-
mation (Equations 3.138 and 3.139) and for variance transformation (Equations 3.140 and

3.141).

Figure 7.9 shows the performance achieved as a function of the number of regression classes
when MAP-MLLR transformation of the Gaussian mean parameters and, optionally, a
MAP-like log-space transformation of the Gaussian variance parameters of TIMIT models
are attempted on the Afrikaans training set and training subset. Peak performance of
56.1% word accuracy is achieved for mean and variance MAP-MLLR transformation on the
Afrikaans training set. This performance is for a prior weight scaling factor of 10 (w = 10),
and is less than the peak word accuracy of 56.9% achieved with MLLR-mean/MSE log-
variance transformation in Figure 7.7, i.e. when a prior weight scaling factor of zero is used
(ww = 0), and is also significantly less than the performance achieved with models trained
directly on the Afrikaans training set (67.6% word accuracy). The best performance on
the Afrikaans training subset is 45.1% (also using @ = 10), at least slightly improving on
direct training on the Afrikaans training subset (45.0% word accuracy) and also improving

on using zero prior weighting (43.0% word accuracy).
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Figure 7.9: Comparison of word accuracy on the Afrikaans test set for MAP-MLLR trans-
formation of Gaussian means, optionally combined with a MAP-like log-space (4+logv) MSE
transformation of Gaussian variance parameters, computed as a function of the number of
regression classes for TIMIT models adapted on the Afrikaans training set (A) and training
subset (A1)

7.6 Discriminative adaptation

Experiments are performed to evaluate the application of discriminative adaptation for
cross-language and cross-database adaptation, as was discussed in Section 5.3.3. MCE
adaptation experiments in Section 6.8 of the previous chapter delivered good performance
when using initial models trained on pooled multilingual data and we therefore also attempt
the same approach in experiments in this section. The reasoning behind using multilingual
initial models is that they are robustly estimated from a large amount of data (pooled
multilingual data) and may need only a degree of language specific “fine-tuning” to deliver
good target language performance. It should, however, be taken into account that pooling
Afrikaans data from SUN Speech with data from the TIMIT database did not improve on
using the Afrikaans data alone (see Section 7.2) and may therefore produce initial models for

MCE adaptation that need significant adaptation to reach a reasonable level of performance,
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for which MCE adaptation may not be suited. We therefore also consider using initial
models that have already been specialised through use of other adaptation techniques, such

as MAP adaptation, and which already exhibit improved performance.

7.6.1 Data pooling followed by adaptation

Figure 7.10 shows word accuracy on the Afrikaans test set as a function of the number of
adaptation iterations when models trained on the pooled TIMIT set and Afrikaans training
subset (achieving 45.0% word accuracy) are used as initial models for MCE adaptation on
the Afrikaans training subset. Use of the cost-based misclassification measure (CBMM)
MCE adaptation approach achieves peak performance of 51.4% word accuracy with target
context cost, compared to 49.4% word accuracy with target independent cost. Performance
using MCE adaptation (without CBMM) is not as good, and only improves by 0.2% on
the initial model performance (45.2% versus 45.0% word accuracy). The best performance
of 51.4%, achieved with MCE adaptation using the Afrikaans training subset (obtained
with CBMM MCE), is 6.4% better than that achieved with the Afrikaans training subset
alone (45.0% word accuracy), delivering useful cross-language adaptation performance. The
performance (51.4%) is, however, below the peak accuracy of 64.1% achieved with MLLR-
MAP adaptation on the Afrikaans training subset.

For comparison purposes, MCE adaptation experiments were also performed using an ini-
tial model trained directly on the Afrikaans training set. Adaptation using target context
CBMM achieves peak performance of 47.4%, which improves on the baseline 45.0% perfor-
mance achieved with direct training on the Afrikaans training subset, but which is less than
that achieved by adapting the multilingual (TIMIT and Afrikaans training subset) initial

model.

Figure 7.11 shows word accuracy as a function of the number of adaptation iterations when
models trained on the pooled TIMIT and Afrikaans training set (achieving 55.3% word

accuracy) are used as initial models for MCE adaptation on the Afrikaans training set.
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Figure 7.10: Comparison of word accuracy on the Afrikaans test set for MCE adaptation
of pooled TIMIT-Afrikaans models on the Afrikaans training subset, also showing results
using of a cost-based (CB) misclassification measure, optionally designed specifically for
the target context (T)

CBMM MCE adaptation achieves peak performance of 66.2% word accuracy with target
context cost and 64.7% word accuracy with target independent cost. As in the previous
experiment, performance of MCE adaptation without CBMM is not as good as MCE with
CBMM, and achieves only 57.0% peak word accuracy.

The best performance of 66.2% (achieved with target context CBMM MCE) is still below
the baseline 67.6% achieved with direct training on the Afrikaans training set. The result
illustrates a drawback of the pooling-adaptation approach. If the performance of the models
trained on pooled multilingual data is far below that of models trained directly on the
target language data only (e.g. in this case 55.3% for multilingual models versus 67.6% for
target language only models), then the tendency of discriminative adaptation techniques
to converge to local minima may result in a poorer final model than simple target language

training.

The experiments with MCE adaptation show reasonable improvements in performance com-
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Figure 7.11: Comparison of word accuracy on the Afrikaans test set for the MCE adaptation
of pooled TIMIT-Afrikaans models on the Afrikaans training set, also including use of a
cost-based (CB) misclassification measure, optionally designed specifically for the target
context (T)

pared to the performance of the initial models before adaptation. Of the MCE approaches,
target context cost-based MCE adaptation delivers the best performance for multilingual
model adaptation, increasing performance by 6.4% for Afrikaans training subset adaptation
(51.4% versus 45.0% word accuracy). For Afrikaans training set adaptation, peak perfor-
mance of 66.2% is achieved, which is still below that achieved with the Afrikaans training
set in isolation (67.6%).

7.6.2 Improving best performing models

The performance achieved with MCE adaptation on both the Afrikaans training set and
subset (Figures 7.10 and 7.11) is less than the best performance achieved with other adap-
tation techniques. The adapted models that delivered the best performance in previous
experiments are now used as initial models in an attempt to improve performance with

MCE adaptation.
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The TIMIT model adapted with MLLR-MAP adaptation on the Afrikaans training sub-
set that delivered the best performance (single regression class MLLR followed by MAP
adaptation with w = 50) is used for subsequent MCE adaptation. Figure 7.12 shows word
accuracy as a function of the number of adaptation iterations of the initial model on the
Afrikaans training subset. The peak performance achieved with MCE adaptation is only
marginally better than the initial model performance (64.2% versus 64.1% word accuracy)
and the different MCE implementations generally achieve poorer performance than the ini-
tial model. This degradation in accuracy on the test set takes place in spite of choosing a
small update paran.leter, ensuring a monotonic decrease in the MCE loss function. Similar
to experiments in the previous chapter (Section 6.8.2) the results indicate that MCE-based
adaptation of models that have already been optimised for target language performance
does not necessarily yield an additional improvement in performance. It is probably advis-
able to use a cross-validation set with such adaptation since a decrease in the MCE loss

function does not guarantee improved performance on the test set.

64.2 , 1 T .
64.15
64.1
64.05
64
63.95
63.9

KEY

Word accuracy (%)

63.85
63.8
63.75
63.7
63.65

MCE Al ———
CB MCE Al -
CB(T) MCE Al -

[terations

Figure 7.12: Comparison of word accuracy on the Afrikaans test set for the MCE adaptation
of models that have already been optimised for performance on the Afrikaans training
subset, also including use of cost-based (CB) and cost-reward-based (CRB) misclassification
measures, optionally designed specifically for the target context (T)
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The next experiment attempts to improve on MCE adaptation performance on the Afrikaan-
s training set. The TIMIT model adapted with MLLR-MAP adaptation on the Afrikaans
training set that delivered the best performance (2-class MLLR followed by MAP adaptation
with zo = 100) is used for subsequent MCE adaptation. Figure 7.13 shows word accuracy as
a function of the number of adaptation iterations when the initial model is adapted on the
Afrikaans training set. Peak performance of 72.7% word accuracy is achieved with MCE
adaptation (without using a cost function), which is 0.7% better than (unadapted) initial
model performance (72.0% word accuracy). CBMM MCE adaptation delivers peak per-

formance of 72.5% word accuracy and target dependent CBMM MCE delivers only 72.2%

peak word accuracy.
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Figure 7.13: Comparison of word accuracy on the Afrikaans test set for the MCE adaptation
of models that have already been optimised for performance on the Afrikaans training
set, also including use of cost-based (CB) and cost-reward-based (CRB) misclassification
measures, optionally designed specifically for the target context (T)

Similar to Section 6.8.2, experimental results for discriminative adaptation of models al-
ready optimised for target language dependent performance are not conclusive. When
adapted initial models are further adapted with MCE, performance improves for Afrikaans

training set adaptation, but does not improve for Afrikaans training subset adaptation. If
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this approach is therefore followed, use of a cross-validation set is recommended to ensure
that discriminatively adapted models are not used if their performance is less than that

achieved with the initial models.

Throughout this chapter different methods of adapting model parameters were investigated.
In the next section we investigate a technique for the transformation of source language

data.

7.7 Data augmentation

Experiments are performed to evaluate the strategy of transforming source language data
to match target language data more closely, followed by training on the pooled target and
transformed data (this data is called “augmented data”). This strategy was not investigated
in the previous chapter, since data from a single database was used. For cross-database

re-use of acoustic information it may, however, be useful.

As was discussed in Section 5.2.5, the transformation is computed from source models
to target data, allowing transformations with multiple regression classes to be estimated
within the standard maximum likelihood (MLLR) framework. The same sets of regression
classes used for transformation-based adaptation (Section 6.6) are used. In model transfor-
mation experiments (Section 7.4), full transformation matrices were used since they were
found to deliver better performance than diagonal or block-diagonal matrices. For data
augmentation, use of diagonal and block-diagonal transformations are reconsidered, espe-
cially if only the mel-cepstral coefficients are transformed (i.e. not including time derivative
components). Single state HMMs with a maximum of 10 mixtures per state are trained on
the TIMIT database and used as source models in the computation of the transformation.
A single state source model is used in order to apply a single transformation to data from a
particular class. Using multiple transformations per speech segment leads to discontinuities

at the alignment points of the data (assuming Viterbi-alignment is done to segment source
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data) and can degrade performance when time derivative feature components are calculated

afterwards.

Table 7.1 summarises the performance achieved when training on the pooled transformed
and ta.rget data. Results for zero regression classes indicate pooling with the (untrans-
formed) source data. Diagonal transformation matrices (with offset) of all features, includ-
ing time derivative features, were used as they were found to deliver better performance

than using either block-diagonal or full transformation matrices. The results indicate that

Table 7.1: Word accuracy achieved on the Afrikaans test set for models trained on data
from TIMIT that is transformed to better match the respective Afrikaans set and also
pooled with the respective Afrikaans set

Set used for adaptation Regression classes

0 lh 2 5 8 15
Afr. training set 55.3% | 53.3% | 48.3% | 49.3% | 45.8% | 40.3%
Afr. training subset 45.0% | 31.0% | 28.9% | 29.4% | 25.9% | 22.8%

no gain in performance is achieved by first transforming the TIMIT data before pooling
it with the SUN Speech data for the training of multilingual models. The transformation
improves the likelihood of the source model (on the target data) when it is transformed,
and therefore probably improves the match between the transformed data and the target
data. However, it should be kept in mind that increased overlap between the (transformed)
source data distribution and that of the target data does not necessarily imply improved

model performance, since the degree of class confusability may also be increased.

The augmentation results of Table 7.1 show no reason to use the approach, but in the next

section we put models trained on the augmented data to good use.
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7.8 Augmentation followed by adaptation

Models trained on augmented data (source data transformed using single regression class
transformations together with the target data) are used for subsequent MAP adaptation
on target language data. Figure 7.14 shows word accuracy achieved on the Afrikaans test
set as a function of the prior weight (w) for MAP adaptation on the Afrikaans training set
and training subset. Peak accuracy of 71.8% is achieved for MAP adaptation of models
trained on augmented data and adapted on the Afrikaans training set, compared to 69.0%
word accuracy (see Figure 7.4) achieved by adapting models trained on pooled data. For
Afrikaans training subset adaptation, peak word accuracy of 61.8% is achieved when priors
trained on augmented data are used, compared to 56.0% word accuracy for priors trained
on pooled data. The results clearly show the benefit of using augmented data priors versus

using priors trained simply on pooled data.
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Figure 7.14: Comparison of the word accuracy on the Afrikaans test set as a function of the
adaptation rate for models trained on transformed TIMIT data in addition to Afrikaans
data (AUG), or on pooled TIMIT and Afrikaans data, when the Afrikaans training set (A)
or training subset (A1) is used
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7.9 Discussion of results

The experiments in this chapter covered application of the major categories of speaker adap-
tation techniques, as well as extensions and combinations of them, to cross-language and
cross-database adaptation of acoustic parameters, combining data and models associated
with both the TIMIT and SUN Speech databases. A number of approaches are shown to
deliver useful cross-language adaptation performance. Table 7.2 summarises the methods

that were experimented with and their results, which are briefly discussed next.

Table 7.2: Summary of peak word accuracy achieved on the Afrikaans test set in various ex-
periments that evaluate different approaches to cross-language adaptation on the Afrikaans
training set (A) and Afrikaans training subset (Al)

Method Adapted on

Al A
Train source 5.9% | -5.9%
Train target 45.0% | 67.6%
Pooling 45.0% | 55.3%
MAP 57.0% | 67.7%
Pooling-MAP 56.0% | 69.0%
Transformation 43.0% | 56.9%
MLLR-MAP 64.1% | 72.0%
MAP-MLLR 45.1% | 56.1%
Pooling-MCE 51.4% | 66.2%
MLLR-MAP-MCE 64.1% | 72.7%
Augmentation-MAP | 61.8% | 71.8 %

Poor results are achieved with TIMIT (source) language models, indicating that there is a
large mismatch between the acoustics of the TIMIT and the SUN Speech Afrikaans data
sets. Pooling TIMIT and SUN Speech data also does not improve on using SUN Speech
data alone, due to the large mismatch between the databases. This is in contrast with
results in the previous chapter (Section 6.4) where simple pooling of SUN Speech English
and Afrikaans data improved on using only the Afrikaans data.

Cross-language MAP adaptation delivers reasonably good results, showing large improve-
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ment over using the Afrikaans training subset only (57.0% versus 45.0%), but showing little
improvement (0.1%) over using the Afrikaans training set only. Using multilingual pri-
ors for MAP adaptation (pooling-MAP) improves performance for Afrikaans training set

adaptation, but degrades performance for the Afrikaans training subset.

Transformation-based adaptation (MLLR mean and log-variance MSE transformation) does
not deliver useful performance by itself, achieving poorer performance than is achieved with
direct training on target data. However, use of MLLR transformed models to seed prior
distributions for subsequent MAP adaptation delivers the best overall results (except for
subsequent MCE adaptation) achieving 64.1% word accuracy using the Afrikaans training
subset and 72.0% when using the full Afrikaans training set. The results on the Afrikaans
training subset are the best achieved in conjunction with the TIMIT database and represent
an improvement of 19.1% (absolute) in word accuracy, or a 35% relative reduction of the
word error rate, over using the Afrikaans training subset in isolation. The MLLR-MAP
approach works well for relatively simple MLLR transformations (one or two regression
classes), since simple transformations remove consistent bias between the source models and
target data without over-specialising the models, thereby improving estimation of the prior
distributions. Subsequent MAP adaptation efficiently uses the relatively large amounts of
adaptation data to deliver robust parameter estimates. MAP-MLLR adaptation improves
on the sensitivity of MLLR performance with respect to the number of regression classes
(see Figure 7.9), but does not deliver consistently better peak performance than MLLR

adaptation.

MCE adaptation of models trained on pooled multilingual data improves performance of the
models, but performance for Afrikaans training set adaptation is still below that achieved
with direct training on the training set. Performing MCE adaptation on models previously
adapted with MLLR-MAP adaptation on the Afrikaans training set delivers the best per-
formance of 72.7% on the Afrikaans training set. This represents an improvement of 5.1% in
word accuracy, or a 16% relative reduction of the word error rate, over using the Afrikaan-
s training set in isolation. MCE-based adaptation of best-performing Afrikaans training

subset MLLR-MAP adapted models, however, does not deliver any further improvement in
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performance.

The last approach for cross-language use of acoustic information that was investigated is
the data augmentation approach. Models trained on target data augmented with trans-
formed source data did not deliver improved performance. The approach is not without
merit though, since models trained on the augmented data provide good prior models for
MAP adaptation, achieving 61.8% word accuracy for Afrikaans training subset adaptation
and 71.8% word accuracy for Afrikaans training set adaptation, which is better than that

achieved with either cross-language MAP or pooling-MAP approaches.

Overall, use of the TIMIT database in addition to the Afrikaans data from SUN Speech
delivers a significant improvement in performance, achieving peak improvement of between
16% and 35% reduction in relative word error rate, depending on the amount of target

language data available.
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Conclusion

In this thesis several general strategies for cross-language use of acoustic information were
proposed. The strategies incorporate specific techniques from the field of speaker adapta-
tion and attempt to use relatively large amounts of source language data to improve the
performance of recognisers for a new target language in which a limited amount of speech
data is available. Extensions to current speaker adaptation techniques were also presented,
with the particular aim of improving the performance of these techniques for cross-language
adaptation. Experimental results vindicate the new approaches for cross-language use of
acoustic information, also indicating improved performance for the proposed extensions to

speaker adaptation techniques when applied to cross-language adaptation.

A fundamental question answered by the research performed in this thesis is whether cross-
language use of acoustic information can be useful for the purpose of improving target
language specific recognition. Previous research on this subject has been inconclusive, with
studies of multilingual speech recognition [48, 19, 30] generally reporting that sharing of
acoustic information degrades performance, and a few studies [20, 21] reporting marginal
improvements by either multilingual pooling or mean-only MAP adaptation. The results in
Chapters 6 and 7 of this thesis show significant reductions in word error rate (between 16%

and 50%) for continuous speech recognition in a target language by use of speech data from
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a source language, showing that cross-language use of acoustic information can significantly

improve target language specific recognition.

Once it is ascertained that cross-language use of acoustic information may be useful, the
question arises as to the approach that should be followed to deliver good results. The
strategies presented in this thesis, allied with specific adaptation techniques, create a frame-
work for research into cross-language acoustic adaptation. The strategies that are presented

include:

e cross-language adaptation of hidden Markov acoustic models,
e multilingual speech data pooling followed by acoustic model adaptation, and

e cross-language speech data augmentation, followed by acoustic model adaptation.

All three general strategies were shown to deliver useful results, with the newly-proposed
multilingual pooling-adaptation strategy (Section 5.2.4) being especially suited when source
and target data are closely matched i.t.o. recording conditions and labelling conventions,
while the newly-proposed cross-language augmentation-adaptation strategy (Sections 5.2.5-
5.2.6) provides improved performance when bias exists between source and target databases,

such as exist between the TIMIT and SUN Speech databases.

These general strategies, incorporating adaptation techniques, form different approaches for
cross-language acoustic use of information. The most prominent methods from the major

categories of HMM adaptation techniques were used, including

e Bayesian techniques, in particular maximum a posteriori (MAP) estimation (Sec-

tion 3.2),

e transformation-based adaptation techniques, in particular maximum likelihood linear

regression (MLLR) transformation (Section 3.3), and

e discriminative learning techniques, in particular minimum classification error (MCE)

adaptation (Chapter 4).
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Within the cross-language adaptation framework, a large number of experiments were per-
formed, using two speech databases namely the SUN Speech and TIMIT databases, to
evaluate the relative performance of different approaches. Interestingly, all three adapta-
tion techniques were found to contribute to achieving the best performance achievable for
particular cross-language adaptation tasks. For experimental purposes, English was con-
sidered a source language, with relatively large amounts of English speech data available in
the TIMIT and SUN Speech databases. Afrikaans was considered the target language, with
a relatively smaller amount of data available in the SUN Speech database. For the rela-
tively closely matched English and Afrikaans data from the SUN Speech database, training
on pooled models, followed by either MAP, MCE, or a combination of MAP and MCE
adaptation delivered the best results. When the English SUN Speech data set was used
in conjunction with a 25 times smaller Afrikaans data set, a pooling-MAP-MCE approach
(Sections 6.5.3 and 6.8.2) achieved a 50% reduction in word error rate over using only the
Afrikaans data. When the English speech data was used in conjunction with a 5 times
smaller Afrikaans data set, a pooling-MCE approach (Section 6.8.1) achieved a 26% re-
duction in word error rate over using only the Afrikaans data. For experiments with the
TIMIT and SUN Speech databases, cross-language MLLR-MAP transformation delivered
the best results, with further MCE adaptation achieving additional improvement. When
the TIMIT database was used in conjunction with a 45 times smaller Afrikaans data set,
an MLLR-MAP approach (Section 7.5.1) achieved a 35% reduction in word error rate over
using only the Afrikaans data. When the TIMIT database was used in conjunction with
a 9 times smaller Afrikaans data set, an MLLR-MAP-MCE approach (Sections 7.5.1 and

7.6.2) achieved a 16% reduction in word error rate over using only the Afrikaans data.

Extensions to current speaker adaptation techniques were proposed, in an effort to improve
the performance of these techniques for cross-language acoustic adaptation and are briefly
reviewed next. MSE Bayesian estimation equations were derived (Sections 3.2.2-3.2.3), and
both the MAP and MSE prior parameter estimation equations were specified in terms of
seed model parameters (Section 3.2.5). The choice of prior parameter initialisation was

found to materially influence recognition results, but the choice between MAP and MSE
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estimation was found to provide little difference in performance (Section 6.5.5).

A technique was proposed to perform full (i.e. considering parameter dependencies) MSE
transformation of the diagonal Gaussian variance parameters, in addition to using MLLR
for the transformation of Gaussian mean parameters (Section 3.3.2). The variance transfor-
mation is implemented in log-space to ensure that parameter constraints are maintained, as
well as to ensure optimisation of the relative variance error. Use of the proposed variance
transformation technique was found to outperform MLLR transformation for cross-language
adaptation, achieving between 8% and 18% reduction in word error rate for same-database
experiments (Section 6.6.1) and between 4% and 14% reduction in word error rate for
cross-database experiments (Section 7.4) over using mean-only MLLR transformation. An
extension of MAP-MLLR for variance adaptation was proposed, incorporating a MAP-like
term into the variance transformation (Section 3.4.2). Experiments showed MAP-MLLR to
improve sensitivity of the transformation with respect to the number of regression classes,

but to not significantly improve peak performance (Sections 6.7.2 and 7.5.2).

The application of MCE adaptation for cross-language adaptation was improved, firstly by
extending the MCE framework to include adaptation of all model parameters, including
duration modelling parameters (Section 4.3), and secondly by defining a method for includ-
ing the cost of phoneme errors into the misclassification measure (Section 4.5.4). Methods
to estimate useful cost matrices were proposed (Section 4.5.3) and cost-based MCE adap-
tation was shown to outperform standard MCE on adaptation of multilingual prior models,

delivering useful cross-language adaptation performance (Sections 6.8.1 and 761

In conclusion, several strategies, including extensions of current speaker adaptation and dis-
criminative learning techniques, were presented, providing a framework for cross-language
use of acoustic information. Approaches from the framework were found to deliver good
performance under a reasonable variety of conditions, exceeding the performance achieved
with previously published approaches to cross-language adaptation and showing significant

gain from cross-language use of acoustic information.
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8.1 Future research

The research performed in this thesis evaluated a wide scope of adaptation techniques, but
on a fairly limited set of languages and databases. Research should be performed to study

in particular

e use of more data sets to study application of the concepts to other databases and

languages than those used in this study,

e use of mappings from more than one source language to a target language as this may

allow improved prior model estimation,

e cross-language adaptation of context dependent phoneme models for target language

LVCSR system development,

e use of target data to estimate the optimal complexity for each phoneme model, fol-
lowed by training of models with the specified complexity on either source data or on

pooled multilingual data,

e automatic phoneme mapping procedures - iterative use of a distance metric-based
source-target phoneme mapping in conjunction with estimation of a source-target

acoustic transformation may provide improved automatic phoneme mapping.

Use of the cross-language techniques proposed here, for accent adaptation, or even for s-
peaker adaptation may provide interesting results. Another, more general research topic
that follows from discussions in this thesis is the application of the integral over HMM
parameter space (Equations 3.1, 3.2) to perform Bayesian estimation. Research into op-
timisation of MCE training, as well as improving the generalisation achieved with MCE
training, perhaps using bootstrapping or Bayesian techniques, also warrants further re-
search. Research regarding the use of MCE for adaptation, rather than training, may also

provide interesting results.
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SUN Speech database

A.1 Description

The SUN Speech database [12] was compiled by the Department of Electrical and Electronic
Engineering of the University of Stellenbosch containing phonetically labelled speech in both
Afrikaans and English. Speech data was recorded under controlled circumstances with 12
bit resolution and a 16kHz sampling rate. Details of the number of speakers and the number
of sentences spoken by each group of speakers are given in Table A.1. The 60 sentences

comprising the four sentence sets were chosen to exhibit the diversity of phonemes in the

two languages.

Table A.1: Description of SUN Speech database: number of male and female speakers and

total number of speakers for each sentence set

Language | Sentence set | Number of speakers Number of sentences
Male | Female | Total
Afrikaans 1 24 16 | 40 10
2 18 12| 30 10
English 5 33 17| 50 20
4 22 41 26 20
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A.2 Subdivision into training and test sets

The database is not entirely consistent in that some speakers, but not all, spoke sentences
from more than one sentence set. For experimental purposes it is desired to obtain as much
invariance as possible between the training set and the test set. A speaker independent,
sentence independent division of the Afrikaans data can be obtained by using data from
the first sentence set for training or adaptation and data from the second sentence set
for testing. If data from the same speaker is available for both sentence sets, then data
from only one of the sentence sets are used for either training or testing. A subset of the
Afrikaans training set is also defined, containing the first 10 utterances from a group of
8 speakers who spoke all 20 Afrikaans sentences, with the second 10 sentences of these
speakers making up the speaker dependent test set. The speaker dependent test set is not
used in experiments reported in this thesis, except to create a pronunciation dictionary,
but has been used previously by the authors for cross-language speaker and multispeaker
adaptation experiments [33]. Details of the composition of the various subdivisions of the

database given in Table A.2.

Table A.2: Subdivision of SUN Speech database into an Afrikaans training set, training
subset, speaker dependent test set and speaker independent test set, as well as an English
set

Language Set Speakers Sentence | Label | Duration
Male | Female | Total | numbers | count | (seconds)
Afrikaans train 23 16 39 1-10 17251 1555
train subset 2 6 8 1-10 3466 316
SD test 2 6 8 11-20 5128 441
SI test 14 1 15 11-20 9413 745
English 55 21 76 21-60 | 93778 7757
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A.3 Phonetic content and labelling

A total of 59 phonetic categories, including both a silence and unknown category, were used
to segment both the Afrikaans and the English speech. It was attempted to assign the labels
phonetically, i.e. according to the sound produced, rather than phonologically assigning the
labels, i.e. according to what was supposed to be said. The complete list of symbols along
with the database numerical representation, computer phonetic representation, examples
and frequency of occurrence is given in Tables A.3 and A 4. The frequency of occurrence
is useful to evaluate the phonetic composition and diversity of the database, as well as the
match between the two languages and also the match between the Afrikaans training and

test sets.

It is evident from Tables A.3 and A.4 that many of the phonemes with no given English
examples occur relatively frequently as labels in the English speech. Even though these
phonemes do not possess accurately representative examples in English, they may occur
due to particular pronunciations of certain words. This happens especially when rounding
of the front vowels in English occurs, such as when [¢] is rounded to form [p] and [i] is
rounded to form [y], which are not usually associated with English speech. The significant
exceptions (more than 0.1% of all occurrences) and the words most commonly containing

these labels are listed next, in order of decreasing occurrence.

y : educational, to, reputation, dreary
: dead, dreary, various, yesterday

¢ : guilty, beautiful, annual, continues

@ : to, of, will, a

ey : educational, motivate, reputation, observation

As far as the Afrikaans speech is concerned, there are also a few of the phonetic labels
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Table A.3: Phonetic classes, labels, SUN Speech numbering and computer phonetic labels
with English and Afrikaans examples, as well as the percentage occurrence relative to all
labels of the label in the English data (Fg) and the Afrikaans training set(Fasrqin) and
Afrikaans testing set(Fazest)

| Category | Symbol | Numeric [ Code | English | Afrikaans | Fs | Papain | Faress |
Vowels a 97 a dug kat 2.84% | 3.74% | 3.53%
e 101 e fear lees 1.19% | 1.93% | 2.22%
i 105 1 meet tier 4.59% | 5.25% | 5.05%
0 111 0 poor oop 0.27% | 1.70% | 1.16%
u T u boot soek 057% | 1.72% | 2.53%
y 121 y nuut 0.85% | 0.79% | 0.60%
: 130 eh: sé 0.31% 0% 0%
131 eh met met 3.24% | 1.69% | 2.05%
132 a0 paw kos 1.21% | 3.06% | 2.51%
: 133 ao: bore more 0.64% 0% 0%
@ 142 iax kleur 0.60% | 0.66% | 0.74%
143 ax ago is 11.18% | 9.70% | 13.30%
: 144 ax: | flower wie 0.63% | 0.01% 0%
2 145 ae bat ek 2.28% | 0.30% | 1.02%
e 149 oe nut 257% | 0.81% | 1.17™%
o 150 oe: fur briie 0.97% 0% 0%
: 247 aa bar aan 1.51% | 2.87% | 2.49%
Diphthongs o 126 ai bite saai 1.26% | 1.12% | 0.34%
o:i 128 o:i mooi 0.01% | 0.36% | 0.32%
oi 134 oi boy 0.39% | 0.08% | 0.50%
i 140 ehi bedjie 0.05% 0% | 0.16%
i 151 axi fate NE 1.47% | 1.50% | 1.46%
ui 153 ui moeite 0.00% | 0.65% | 0.46%
iu: 210 iu: due leeu 0.05% | 0.49% | 0.30%
ceu 211 oeu | goat oud 0.60% | 0.46% | 0.45%
ey 217 oey lui 0.10% | 0.86% | 0.84%
o: 245 aw brow 0.32% 0% 0%
Nasals m 109 m mat mat 2.77% | 2.92% | 2.11%
n 110 n net net 7.82% | 6.56% | 5.69%
205 ng sing sing 1.37% | 1.23% | 1.56%
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Table A.4: Phonetic classes, symbols, Sunspeech labels and computer phonetic labels with
English and Afrikaans examples, as well as the percentage occurrence relative to all labels
of the label in the English data (Fg) and the Afrikaans training set(F asrqin) and Afrikaans

testing set(Fasest)

| Category | Symbol | Numeric | Code ’ English | Afrikaans Fg I Fapsn | FRsS ]

Fricatives f 102 f fat vars 2.18% | 3.39% | 2.91%
h 104 h hat huis 0.80% | 0.71% | 0.11%

s 115 s sit slim 5.67% | 6.10% | 6.25%

v 118 v van was 1.90% | 1.75% | 1.72%

X 120 X gaan 0.01% | 2.65% | 2.59%

z 122 z zip soem 1.64% | 0.67% | 0.53%

0 171 th thin 0.53% 0% 0%

172 dh then 1.53% 0% 0%

188 sh ship Sjina | 1.48% | 0.44% | 0.30%

195 zh | vision genre | 0.36% 0% | 0.14%

Affricates ts" 181 ts cats 0.46% | 0.06% | 0.32%
dz 184 dz cads 0.12% 0% 0%

tt 191 ch chin 1.31% | 0.68% | 0.68%

d 198" 3k " sam 0.82% | 0% | 0.01%

Liquids r 114 r rat 2.95% | 4.33% | 2.88%
R 82 r rooi 0% | 4.15% | 2.54%

94 r berge 0% 0% | 0.26%

| 108 1 lot lou 2.97% | 3.50% | 2.97%

218 / refers to a flap | 0.563% | 0.33% | 0.58%

Glides j 106 j yet jas 0.47% | 1.15% | 1.03%
w 119 W win kwes 1.58% | 0.10% | 0.89%

Stops b 98 b bat bed 1.50% | 1.54% | 2.93%
d 100 d dog dam 2.36% | 3.95% | 3.51%

g 103 g go berge | 0.66% | 0.47% | 1.02%

k 107 k kit kar 3.21% | 2.79% | 3.66%

p 112 p pet pos 2.04% | 0.95% | 2.47%

t 116 t tip taal 5.85% | 4.63% | 5.49%

Other 42 sil silence 3.42% | 3.72% | 2.12%
? 63 ? Unknown 1.97% | 0.47% | 0.42%
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that do not have representative examples, but yet occur in the database. The significant

examples are listed next, in order of decreasing occurrence.

ol : toyitoyi, boikotters, mooi, rooi
ts" : tsetsevlieg, maatskappy, Suid-Afrika, tjinkeringtjees

t* : tjinkeringtjees, Charles, Gorbatsjof, tjelloversameling

The set of phonemes used to label the SUN Speech Database represent the union of the
phonemes found in Afrikaans and English. The labels were assigned phonetically and
there should be close correspondence between data in the two languages with the same
phonetic labels. Because such an expanded set of phonemes were used for labelling, many
of the phonemes that do not usually appear in English phonetic transcriptions do appear as
phone labels in the English transcriptions of this database. This has the advantage that for
almost all the phonemes found in Afrikaans there are labelled examples in English, with the
exception of the phonemes [R] and [] that do not appear in the English part of the database.
The [r], [R] and [] categories are combined into a single [1] category since the [R] and []
categories are not well represented in either of the sets used for training, and because the
distinction between the three phones is not important for word recognition purposes. For
a few of the phonemes the number of examples that appear in the English transcriptions

are very little. They are the phonemes(with the number of occurrences in brackets) : [o:i]

(11), [ui] (2) and [x] (8).
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TIMIT - SUN Speech phonetic

mapping

This appendiz (Appendiz B) presents almost verbatim work that was performed by Dr. Hen-
drik Boshoff in his capacity as phonetic ezpert and is included in this thesis for completeness

and because it has not been published elsewhere.

A mapping from SUN Speech symbols to those of TIMIT was required, in order to do

cross-database training of phonetic models.

Mapping from one set of phonetic symbols to another is fraught with difficulty, especially
when more than one language is involved. Vowels are especially problematic, as dynamic
features contribute to subtle differences. In the present case, SUN Speech already contains

English and Afrikaans speech, but some problems remain.

A few significant differences in approach between the databases must be mentioned:

e TIMIT views stops as potentially two segments, closure and release. An intervocalic
stop of [t] for example, is always transcribed as “TCL T. In other positions, the

transcription depends upon the actual realization. This allows the affricate [ts] to
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be rendered as ‘TCL S.” SUN Speech segments all phases of the stop together, and

provides separate symbols for all affricates.

e SUN Speech makes provision for front rounded vowels, and when judged appropriate,
English vowels are also transcribed using these symbols. This is a somewhat more
‘phonetic’ approach, versus that of TIMIT, which is more ‘phonemic’ with respect to

vowels.

e TIMIT groups all vocalic sounds together, and does not indicate diphthongization.
SUN Speech has an extensive set of diphthongs, and also labels quantity to some

extent.

e TIMIT explicitly indicates beginning and end of speech, and sometimes primary and

secondary stress. Both these types of transcription are absent in SUN Speech.

It was assumed that every symbol of SUN Speech had to be mapped to one of TIMIT
and vice versa. In some cases this was highly artificial, and a ‘matching quality’ figure
was introduced. This ranges from 1 to 3, with the following meanings. 1: The phonemes
indicated by the symbols match closely, and some allophones are likely to be identical across
the databases. 2: The phonemes are not identical, but are ‘neighbours’ in phonetic space.

3: The match is poor, but some features are similar, eg place or manner of articulation.

Following are two tables according to the SUN Speech organisation, with the preferred

equivalents from TIMIT.
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Table B.1: Mapping from SUN Speech to TIMIT symbols (vocoids)

SUN Speech Match TIMIT
Category | Sym | Num | Code | Eng Afr quality | code | word
Vowels a 97 a dug kat 1 ah but
2 ax-h | suspect
e 101 e fear lees 3 ey bait
i 105 i meet tier 1 iy beet
0 111 0 poor oop 2 ow boat
u 117 u boot soek 1 uw boot
2 ux toot
2 uh book
y 121 y nuut 3 ux toot
3 uw boot
130 eh: sé 2 eh bet
131 eh met met 1 eh bet
132 a0 paw kos 1 ao | bought
: 133 | ao: bore | more 2 ao | bought
@ 142 iax kleur 3 ey bait
3 uw boot
143 ax ago is 1 ax about
1 ix debit
1 ih bit
144 ax: | flower wie 3 axr | butter
3 er bird
® 145 ae bat ek 1 ae bat
e 149 oe nut 2 ih bit
2 i debit
oe: 150 | oe: fur brie 3 er bird
- 247 aa bar aan 2 aa bott
Diphthongs | 126 a:i bite saai 1 ay bite
o0:i 128 0:1 mooi 3 oy boy
oi 134 oi boy 1 oy boy
i 140 ehi bedjie 3 eh bet
3 ey bait
i 151 | axi fate Vs il ey bait
ui 153 ui moeite 3 ey bait
3 ux toot
in: | 210 iu: due leeu 3 oW boat
3 ey bait
ceu | 211 | oeu | goat oud 1 ow boat
ey | 217 | oey lui 3 ey bait
3 00 toot
0: 245 aw brow 1 aw bout
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Table B.2: Mapping from SUN Speech to TIMIT symbols (contoids)

SUN Speech Match TIMIT
Category | Sym | Num | Code | Eng Afr | quality | code word
Nasals m 109 m mat | mat 1 m mom
em bottom
n 110 n net net 1 n noon
1 en button
205 ng sing | sing 1 ng sing
L eng | Washington
Fricatives f 102 i fat vars i f fin
h 104 h hat huis 1 hh hay
1 hv ahead
S 115 s sit slim | s sea
118 v van was 1 \ van
% 120 X gaan 3 hh hay
3 k key
z 122 z zip | soem 1 A zone
) 174 th thin 1 th thin
172 dh then 1 dh then
188 sh ship | Sjina 1 sh she
195 zh | vision | genre 1 zh azure
Affricates | ts® | 181 ts cats 3 t tea
3 S sea
dz 184 dz cads 3 d day
3 z ZOne
i 191 ch chin 1 ch choke
d 193 jh jam 1 jh joke
Glides j 106 j yet jas 1 y yacht
w 119 W win | kwes 1 w way
Liquids T 114 2 rat 1 r ray
R 82 r rooi 2 r ray
94 r berge 2 r ray
1 108 | lot lou 1 1 lay
1 el bottle
218 / (flap) 1 dx muddy
2 nx winner
Stops b 98 b bat bed 1 b bee
d 100 d dog | dam 1 d day
g 103 g go | berge 1 g gay
k 107 k kit kar 1 k kite
3 q bat
p L2 P pet pos 1 P pea
E 116 t tip taal 1 t tea
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C.1 Mixture weight derivative
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C.2 Transition probability derivative
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and therefore
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