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Chapter 4

Discriminative learning theory

Discriminative learning presents an alternative to the classical probabilistic interpretation
of pattern recognition, which links a pattern classification task to a distribution estimation
problem. Given an observation, the Bayes decision rule leads to the minimum misclassifi-
cation probability when the true observation distribution is known, by selecting the model
with the highest a posteriori probability. Unfortunately, the true form of the distribu-
tion is rarely known in classification problems and a parametric form is often assumed for
computational tractability. Furthermore, the parameters of the assumed distribution have
to be estimated from a limited amount of training data. These factors contribute to the
sub-optimality of the distribution estimation strategy for classifier design and leads to the
consideration of an alternative strategy that attempts only to discriminate between observa-
tions from different classes, rather than attempting to estimate the true distributions. The
Bayes decision rule can still be applied if the models are used to implement discriminant

fuinctions rather than distribution estimators.

Discriminative learning has been researched for many decades for pattern classification pur-
poses, but it is in conjunction with efficient methods for training artificial neural networks
[ANNs) [82] that the most prominent research in this field has taken place. Most algorithms

for training ANNs make use of supervised feedback of some error or reward (discriminative
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Discriminative optimisation criteria

ie most useful training or learning strategies include a criterion or function that in some
measures the quality of a particular model, given observations from the process that
smodelled. Since the criterion determines subjectively the performance of any particular
it prescribes which models will be considered “better” models and which will be
nsidered “poorer” models. Usually, models are desired that maximise the criterion. The
sation of a criterion, however, is generally obtained in closed-form solution only for
e simplest criteria and models, e.g. a least squares linear estimation problem. Therefore,
I addition to defining a criterion, a method for determining useful model parameters
n the criterion has to be established. The choice of optimisation function is thus
afluenced both by its intended purpose, e.g. increasing class separation or decreasing the

isclassification rate, as well as by the ease with which it can be optimised.

we proceed to discuss discriminative criteria for optimisation, we first review the

criminative criterion that is most widely used for HMM training, namely the maz-

iminant function. Even for ML estimation, closed form solutions do not exist for

IM parameter estimates and iterative methods such as the Baum-Welch procedure are
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ised to approximate the ML parameters. The Baum-Welch procedure guarantees increas-

seriminative optimisation techniques often deliver little in terms of guaranteeing increased
eformance and are prone to converge to (poor) local minima/maxima. ML model esti-
ates are therefore almost always used as a starting point for discriminative training. After
at, it is attempted to incrementally improve performance using discriminative optimisa-

i techniques. We now proceed to discuss discriminative criteria applied to the training

e (including all states from false class models) likelihoods are zero. Various heuristics

eused to limit the degree of adaptation to avoid over-training. The method was shown

vain and Lee [58] proposed a simple modification to the statistics collection phase of the
P algorithm to implement a heuristic version of corrective training. Training sentences

it are incorrectly recognised are used as new data for updating model statistics and the
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d by 1 for the correct model. A limited number of MAP adaptation iterations using the
dified statistics are performed. The procedure has no explicit optimisation function, but
s found to deliver better performance on connected digit and isolated word recognition

ks than ML estimated models.

en & Soong [85] suggested an N-best candidates-based discriminative training algorith-
sing a frame-level optimisation criterion. It improves on the method suggested by
anco [84] by not attempting to force zero-one state occupancy values for correct and
rrect classes respectively. The frame-level loss function comprises a half-wave rectified
tlikelihood difference between the correct and competing hypotheses and is optimised
the training set by performing gradient descent on the HMM parameters. Performance
ement over ML trained HMMs was reported on connected digit and isolated word

pgnition tasks.

Maximum mutual information (MMI)

imum mutual information is an information-theoretic concept that provides a basis
erivation of a discriminative training criterion. The following derivations closely
oW McDermott [86]. The conditional entropy Ha(C|X) of the class random variable C,
gl the observation random variable X, is minimised in terms of the model parameters
...; Ay) when the mutual information is maximised for each of M classes. What
s is that the uncertainty associated with C given X is minimised when the model
rs A provide as much information as possible about the class random variable C
X. This can be verified by noting that the mutual information between C and X,
) = 1, (X; C) can be written as the difference between the entropy of C and the

ifional entropy of C given X:

Ix(G;X) = H(C) — Ha(CIX). (4.1)
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the entropy H(C), for a basic unit such as a word in a speech recognition task is ex-
by a language model and may thus be considered a given [87] , minimisation of the

onal entropy is achieved by maximising the mutual information between C and X.

more useful form of Equation 4.1 will now be shown. With the entropy of a random

e C for model parameters A given by a summation over the class variable ¢
H(C)=-) P(C=c)logP(C=c) (4.2)

[ the conditional entropy of C given X for model parameters A given by a summation

it ¢ and the observation variable z by

HA(C|X) =Y P(C=c¢,X =1)log PA(C = c|X = z), (4.3)

-—ZP(C =c)logP(C=r¢)+ ZP(C =¢ X = %) log Po[C = ¢|X = g)

3 ;P(C =¢,X=2)logP(C=c)+ ;P(C = &% =) Iog PA(I(EA(:XC,:sz z)
22P(0 =0 X =t =
- Po(X =z|C =¢)
PR P(C=c X =12)] e
(4.4)

to be representative of the true distribution and the MMI criterion is maximised

8 A that maximises

B Py(X=3z|C=2¢
Fmr(A) = %;log ch PA(};\: z|C = ¢)P(C = ¢)

(4.5)

riterion differs from the ML criterion (P (X = z|C = ¢)) since the MMI crite-
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on maximises the relative likelihood of the correct class, rather than simply maximising

e absolute likelihood. This introduces discrimination into the training procedure. The
pondence between the MMI criterion and the a posteriori class probability is evident,
i note that the likelihood functions associated with the model (A) that maximises the

I criterion are of a discriminatory nature and do not implement density estimators.

me applications of MMI are briefly mentioned. Cardin et al. [88] and also Normandin
Morgera [89] applied MMI estimation to the training of parameters of HMMs. Para-
‘were initialised with ML estimates and MMI was performed in an adaptive mode,
ih smoothing applied during the parameter update. Both studies showed improvemen-
om ML trained models on the TI/NIST connected digit database. Kapadia et al. [90]
ieved improved continuous phoneme recognition on the TIMIT [31] database using MMI

mation.

ile the MMI criterion clearly improves on the ML criterion in terms of taking into
yunt both the correct and incorrect model likelihoods, it still does not directly reflect

ification performance of a system. This topic is addressed in the next section.

Minimum error rate

50al of a classifier is ultimately to achieve the minimum possible error rate, if equal
8 associated with each error. This minimum error rate is achieved with a Bayes
in which, for any observation, the discriminant function associated with the largest
jori probability has the largest value. The MMI criterion expresses the functional
he a posteriori estimate, thereby increasing class separation, but does not expressly
he error rate association with the estimate. The most direct optimisation of the
rate can be achieved with a criterion that hard-limits the difference between the true
sand the highest false class discriminant functions. Discontinuous criteria are hard to
jise, however, and therefore a continuous criterion that emulates the error rate should

tonsidered. We discuss such a method that was implemented and extensively used in
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s thesis in more detail in the following section.

Minimum classification error approach

e minimum classification error (MCE) approach suggested by Juang & Katagiri [91]
ides a technique for designing a classifier that approaches the objective of minimum

cation error more directly than the methods discussed so far in this section. This

The method in general does not lead to closed-form re-estimation solutions for
eters and is thus used in conjunction with a gradient-based optimisation scheme. We

y proceed to discuss the criterion for optimisation used in MCE.

Optimisation criterion

ample risk, represented by the number of misclassifications in the training set, is the
and most direct function representing the error rate. It is, however, a piece-wise
function and thus very difficult to optimise numerically since its derivatives contain
formation. MCE training attempts to overcome the difficulty of directly optimising
 rate of a classifier on a set of data by defining a smoothed version of the error

or optimisation. There are two key problems that have to be addressed namely

uring the distance between a correct and multiple incorrect classes and

uring the loss associated with a classification.
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classification measure

ision boundary for a two class classification problem, with classes C; and Cy, is
described in terms of the a posteriori probabilities by P(Cs|X) = P(C:|X). It is,
not easily extended to provide a measure of the distance between the correct class
multiple incorrect classes. One way of defining such a misclassification measure for an
vation X from class 7 in terms of the class conditional log-likelihood functions, using
on g;(X;A) = log f(X|A;), where f(X]|A;) is the class conditional likelihood

on for class 7, is by [28]:

M
1 y 1/n
di(X; A) = —gi(X; A) + log [ > :eﬂﬂxrﬂ)ﬂ] , (4.6)

JJ#i

 a positive number. The misclassification measure is a continuous function of
ifier parameters A and attempts to emulate the Bayes decision rule, i.e. that
class utterance X, d;(X;A) < 0 implies correct recognition and d;(X;A) > 0
g5 incorrect recognition. The value of 77 controls the relative significance of false class
When 7 is large the term in brackets approaches max; ;- g;(X; A), which is
y the Bayes decision rule. For smaller 7, competing classes with relatively smaller
are also taken into account, thereby deviating from the Bayes decision rule in a

efined manner and creating a soft decision boundary.

ng of the incorrect classes in Equation 4.6 is perhaps easier to understand when

ssed in terms of the class conditional likelihood functions

[ 2 ] (47)

VN ES
at the misclassification measure (Equation 4.6) therefore actually expresses the ratio
rrect to correct class likelihoods, just in the log domain. When working with

this is sensible because the likelihood values have a very large range, making direct

of likelihoods almost meaningless.
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ation rate the misclassification measure is embedded in a smoothed zero-one function

as the sigmoid function. The resulting function is then called the loss function and is

1

L(X;A) = 1 4+ e—7di(X;A)+0

(4.8)

hf normally set to zero and 0 < v < 1. When d;(X; A) is much smaller than zero, which
lies correct classification, virtually no loss is incurred, while a large value of d;(X; A)

ds to a loss close to one.

8 criterion for minimisation can then be defined for a given training data set consisting

J observation sequences X;..Xo from a total of M classes {C1, ..., Cir} by the empirical

0 M

L(X1.X0,A) =) 1i(Xe;A) 1(X, € Cy) (4.9)
o=1 i=1

(go) is the indicator function, taking on the value 1 when ¢ is true and 0 when it is

. Use of the expected loss presents an alternative to using the empirical loss, but has

ssociated problem that since the true distributions are unknown, current distribution

nates must be used in an iterative procedure. This would, however, also imply that

.

ilation of the expectation is dependent on the classifier parameters, further complicating

ptimisation function, and thus we use the empirical loss as optimisation criterion.
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ient descent optimisation

ion to minimise the empirical loss defined in Equation 4.9 is to use the

t technique with batch-mode parameter updates

0O M
A1 =Ap—€n > D 1(X, € C)VIi(Xy; A)|a=a,, (4.10)

o=1 i=1

update parameter in iteration n and is chosen to be a suitable decreasing
e that we calculate the gradient using all available samples, also termed
¢ update, since this improves the estimate of the gradient. A block mode
¢ be computationally cheaper to perform, or even an on-line update can also be

al-time purposes, but we have not further pursued these two options.

th the gradient descent technique is that it is suitable only for unconstrained
hile the parameters of an HMM have definite constraints. Chou et al.
akin g use of parameter transformations that remove the constraints in the
| parameter space and thus facilitate the use of gradient descent optimisation.
the parameter transformations are given in the next section, along with the

e MCE approach for HMMs.

VI parameter update

applying MCE to the training of the parameters of continuous density

sted by Chou et al. [92] under the name segmental GPD (generalised

nt). Use of the name GPD is derived from the original MCE paper
ed using probabilistic descent, i.e. minimising the ezpected loss rather

| loss. For practical reasons, however, we optimise the empirical loss in

ions of the approach. A more detailed discussion of the application of MCE
ining was later published by Juang et al. (28] and forms the basis for the

s section. We note, however, that previous publications [92, 28] did not take
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0 account false class derivatives, i.e. the derivative of the loss function with respect to

ipeting classes. We therefore extend the derivations to include both true and false class
es as was suggested by Kwon & Un [93] for the special case of the discriminative

e-weighted HMM. For completeness we also provide transition probability derivatives.

ikelihood functions

en that HMMs have been selected as the framework for modelling speech features, the

s conditional log-likelihood function ¢;(X;A), i =1,.., M takes the form
6:i(X; A) = log fi(X; A) = log f(X]AD, (47} 1L,) (4.11)

e superscript 7 denotes the parameter set associated with class 7. The segmental
iing procedure uses the Viterbi state-aligned likelihood function, which calculates the

lihood of Equation 4.11 along the state sequence with the highest likelihood, producing

log-likelihood function given by
9i(X; A) = log{max fi(X, q; A)}
=log fi(X, @ A) (4.12)
T + it
= llog gy g, +logy, (x:)]
t=1
is the sequence with the maximum likelihood. As discussed in Chapter 2.1.2, the

on density in each state is a Gaussian mixture distribution, given in extended form

diagonal covariance for model 7 by

K @ @ K c{i) _% zP—l mu—({‘)('?t )2

' () 56 ik =

=) cONx, w3, T3 = —e ikt (4.13)
k=1 1 T whi w1 (2m)P73) H:j:l Ué'k)t
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Parameter transformations

It is desirable to maintain the original parameter constraints in the HMMs when adaptation
takes place such as E;\;l ay =1, a5 = 0, Zle cjk =1, ¢j > 0 and g > 0. In order for
the problem to remain an unconstrained problem that is suitable for direct optimisation by
gradient descent (Equation 4.10), a transformation of the parameters is necessary. A set
of transformed parameters @;;, ik, fljr and dju can be calculated that will maintain the

constraints on the original parameters [28]:

— aij
]__ cso—> (i, W re Q;; = - - S
Qij ] he ] 3T, etii!
2. cip — Cik, Where c; .
- Ljk jks ik Y oCik!

; 77 e HAEREL
3. Wikt = Mkl = o

4. Tkl — a'jkg = lOgO'jkg.

The reverse transformations of a;; and c;j, ensure that the coefficients remain positive and
maintain the property of summing to one. The transformation of pjr normalises the rel-
ative magnitude of the mean in each dimension by the variance of the component in that
dimension. In the author’s experience, this transformation is very important because with-
out it the derivative of the loss function with respect to the mean contains the precision
term (the inverse of the variance), rendering the mean update stable only for very small
values of the update parameter e. With the transform in place, the loss function deriva-
tive with respect to the mean is proportional to the variance, rendering the mean update
stable for a much wider range of values of the update parameter. This can be understood
intuitively by considering that the output values of a Gaussian are less sensitive to changes
in the mean value in a dimension for which the variance is large than for changes in the
mean value in a dimension for which the variance is small. Finally, the transformation of
oj; maintains the constraint that ojx > 0 and also greatly reduces the sensitivity of the
update for small values of the variance- thereby also helping to render the update stable for

a greater range of update parameters. The transformation of oy essentially implies that it
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multiplicatively, making the magnitude of the update relative to the magnitude

q:

dient descent update equations

1 Equation 4.10 the following gradient descent update equations are derived (similar

r the transformed parameters belonging to class i:

1) = ) - 331K, € 0)&)—1‘—)5 c (414
== ops), la=a.

Taln+1) =30 (n) - e, ié 1(X, € Cc)%gf—;’ii)\m (4.15)

& (n+1) = & (n) a;;;l(x i) gij; A)LM (4.16)

@ (n+1) =a%(n) - e, i f 1(X, e ) LeXoi 4) | (4.17)

ulation of derivatives

vatives of the loss with respect to the transformed parameters [z, G and G,
Il appear in Equations 4.14 to 4.16, can be expanded as is now shown for the derivative
ie mean (Equation 4.14) in the following equations [28]. First the derivative of the

unction (Equation 4.8) is expanded via the chain rule to include the misclassification
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| (see also Equation 4.8)

Ole(X,A) _ BI(X,A) 8d.(X, A)

oy 0d(X,A) gl (4.18)
%{% = Yle(do(X, A))[1 = I.(d.(X, A))]. (4.19)

(XA 9i(X;A)n (X
= i — C)&}iy)) +1(i # 0) s = agz(g(;)/\) (4.20)
Olji Lorre N o)

T(X) ()
0g:(X; A _ . Ologh;’(x
B =35 10 =B (4:21)
8lujkl t=1 j=1 d.u/jkjj

quations 4.18 through 4.21 we have now detailed the procedure for calculating the
iive of the loss function with respect to the observation log-probability. All that re-
515 to calculate the derivatives of the log-observation probability function log bgi) (%)
n 4.13) with respect to the transformed parameters ,&gi}l, Egzk) and ‘—755'21- The deriva-

§are given by [28]:

dlog bgi) (xt) cﬁ’}c}N [%t, ,ufk), Ef,“,j]
aﬁ;c)t b?) (%)

Ty _(i

(= — %), (4.22)
(1)

Okt
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6logb(z)(Xt) _ N[Xm Mjk, E(t] [( Ty ﬂ(zl)g B 1] (4.23)
05 b (x,) G

calculate

8log b (x;) _ [.N'[xt il 2
b? (%)

jarameter a,;, which aplﬁears in Equation 4.17 is also given in a similar form to Equation-
£18-4.20. Finally the derivative of the class discriminant function with respect to the

nsformed transition probability is given by

T(X) N
dg:(X; A) '
S %al) {z) E \ E (G- = 5) 1(G = s)[1(" —3)—a§;] (4.25)
=1 s=1

iiled derivations of Equations 4.24 and 4.25 are given in Appendix C because our
ns differ from those previously published [86], where mixture weight and transition

bability parameter dependencies were not taken into account.

MCE training for HMMs

e update equations fully specified, the training procedure is now discussed in more

MCE training is usually preceded by standard ML training of models, such as

piima than gradient-based techniques. In contrast, training using MCE does not guarantee
ed loss (it depends on the selection of a suitably small update parameter) and is

lie to converge to local minima.

g gradient descent optimisation approach discussed in this section, also termed segmental
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D fraining, is implemented as follows:

ML models are estimated using the EM algorithm,

2. observation sequences are aligned with the models, accumulating the derivative statis-

 (Equations 4.18 through 4.25),

transformed parameters are updated (Equations 4.14 through 4.17), and

th

the reverse transformation of the parameters completes the process, which is itera-
tively repeated from point 2.

of the problems with using gradient descent optimisation on MCE is that over-training

and that, based on the training set only, there are no suitable stopping criteria.

Vious research reporting results using MCE/GPD used a fixed number of iterations and

arly decreasing update parameter that was determined empirically to work well (28]

e, however, also other parameters such as the slope of the sigmoid + and the offset

e sigmoid ¢ that need to be carefully selected as they influence the stability, speed of

vergence and ultimately the recognition performance achieved with the method. These

65 are discussed in Chapter 5 when the method is applied to cross-language adaptation.

ative training method for MCE, that uses the N-
ggested by Chou et al. [94].

best candidates from a search,

The method is also known as string-level MCE [95]

118 particularly useful for optimising continuous speech recognition performance when

amount of data is available. We discuss string-level MCE in detail in Section 4.5.1,

we compare 1t with the standard approach that was detailed in this section (

phoneme-level or model-level MCE)

also

when extended using a cost-based method for
proving word recognition performance.
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¥

Applications

the first applications of the MCE approach for speech recognition used artificial
etworks to classify features in isolated word speech experiments [91]. Other ear-
arch on the application of MCE for speech recognition investigated improving the
jance of dynamic time warping-based systems. The MCE criterion was employed
iscriminative optimisation of several parameters of dynamic time warping (DTW)
ding trajectory weighting coefficients [96] and reference patterns [97, 98]. M-
also applied to both DTW (99, 100] and HMM-based [101] word-spotting systems,
as for utterance rejection [102]. MCE was applied for the optimisation of standard
extraction parameters in speech recognition [103, 104] as well as for optimising dy-
ectory) features [105]. The unified framework that MCE provides for global
ation of both the feature extraction front end, as well as the classification back end

fem was also researched [106, 107].

fions that benefited from the use of MCE in the above-mentioned papers include
tion, the E-set problem and connected digit recognition. Relatively few s-
rgeted improving performance on continuous speech. An N-best-based MCE
tion approach was shown to improve continuous speech recognition performance
JARPA naval resource management (RM) task [94] compared to ML trained mod-
ther study [95] found string-level MCE to improve continuous phoneme recognition

compared to ML trained models but found phoneme-level MCE to outperform

evel MCE for the specific task.

jation using MICE

 recently been applied specifically for the purpose of adapting pre-trained models
et fit new speech data. Matsui & Furui [29] compared the MAP and MCE techniques
iptation of Gaussian mean and mixture weight parameters and found that the best

were obtained for a combination of the MAP and MCE methods. MAP was used to
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itial estimate of the speaker adapted parameters and MCE was used to further
a-tune the results. The reason for first using MAP is that MCE is prone to converging to
| minima and therefore achieved better results when starting with the improved MAP
models rather than with the speaker independent models. McDermott et al.
yplied MCE to on-line adaptation and found it to outperform a segmental k-means
. Laurila et al. [109] performed adaptation of only Gaussian mean parameters
fs to new speakers and environmental noise using MCE, MMI, MLLR and MAP
. They report that MAP and MCE delivered very similar results and produced
ifer recognition performénce than the MMI and MLLR approaches.

section we detailed the basic approach to MCE optimisation of HMM parameters.
ihe following sections we propose a few specific extensions to MCE. We propose ex-
ding MCE to discriminatively adapt duration modelling parameters since it is expected
b all parameters, including duration modelling parameters, may need to be optimised
2 new language. A method for the discriminative optimisation of linear parameter
formations is proposed that may deliver better performance than ML estimated trans-
ons. Finally, we propose a method to modify the MCE misclassification measure in
' to associate a (language specific) cost with misclassifying a class as a certain other

This enables MCE to focus on the adaptation of class boundaries that are important

tecognition in the target language.

Discriminative optimisation of duration modelling

parameters

ormance improvement may be obtained by the discriminative optimisation of the du-
on modelling parameters in addition to the discriminative optimisation of the HMM
ameters described in Section 4.2. In Section 2.1.3 we detailed the approach to explicit
jtion modelling followed in this thesis. A gamma distribution function is used to model

(distribution of the number of frames spent in each frame of the HMM. The parameters
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¢ gamma distributions, namely the o and [ parameters, are simply estimated through
onship to the expected mean and variance of the number of frames spent in each
Use of this estimation procedure has been substantiated empirically, but it is not

ed to deliver optimal performance, especially since the true form of the duration

1S unknown.

ction we therefore propose the discriminative optimisation of duration modelling
15 using the MCE framework and derive the equations for it. The state aligned H-

iood function in Equation 4.12 can easily be expanded to include explicit duration

‘and is then given by

T N

G:(X;A) =+ llogag g, +1ogb (x)] + 3" log py (7;) (4.26)
t=1 F=1.

is the number of discrete time frames spent in state J and log p;() is the duration

ihood function in state j given by (refer to Equation 2.4)
log p;(75) = ajlog B; — log T'(a;) + (et — 1) log 7; — ;7. (4.27)

ote that a model duration likelihood function can also be used in conjunction with the
duration likelihood function, but we have not incorporated a model duration likelihood

on. Also the transition probability parameters can be left out if one considers them

replaced by explicit duration modelling.

idering the duration modelling parameters part of the HMM modelling parameter set

413

radient descent optimisation of the duration modelling parameters o and f in state j

1 is implemented by the update equations

o M
(z) (z) Ol (Xo; A)
(n+1) = — €n El Eﬁl 1(X, € C.) - (2) . (4.28)
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partial derivative of the loss function with respect to the class discriminant function is

L by (refer to Equations 4.18-4.21)

— B = e[~ 1] [~ i = o) +1 £ )

e9i(XiA)n ]

SN, e XKk (4.30)

partial derivatives of the class discriminant function (Equation 4.26) with respect to
parameters o and (3 are given by
9g:(X; A) I'(ay)

! —Jog B - 21 L 4 log 7; 4.31
X0 7T () T8 S

0gi(X;A) _ af

oy g

: ,-*’(af,-i)) denotes the derivative of P(af)) with respect to agi) and is computed with nu-
rical differentiation. Adaptation of the duration modelling parameters is thus relatively

ly integrated into the MCE framework.

Discriminative optimisation of linear model trans-

formations

ear transformation for speech model adaptation usually follows the maximum likelihood
roach, leading to the well known MLLR. algorithm or variants of it. In contrast to this,

en linear transformation is applied to the speech pre-processing or feature extraction
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linear discriminant analysis (LDA) [110], principal component analysis (PCA) [38]
ninatively optimised linear transformations using MCE [107] are commonly used.
) not explore feature space reduction or discriminative optimisation of the feature
process, since the techniques are liable to be database, or at least language
Je, however, are interested in the application of discriminative methods in the
n of the linear transformation of the HMM model parameters between languages,

§ may improve on the performance of maximum likelihood transformation estimators.

navelu [111] proposed applying the MCE/GPD method in optimising the parameters
ransformation of the trajectory parameters of a non-stationary state HMM. We
ndently arrived at the same method for the transformation of the Gaussian mean
s of a mixture observation density HMM. If the transformation of the Gaussian

components is given by
i = Wy, (4-33)

servation probability of a state in the transformed HMM becomes (for diagonal

TE— “"”"' k

. i (i)N[ W (4) E(t) ZM: C(i) —3 Zida G (4 34)
Xi) = C; Xi, ; ikl ) ]
o o t e (QTT)(D/ 2 H; 1‘7%

fion of the MCE loss function with respect to the transformation matrix W then
similar fashion to Equations 4.18 through 4.21. These equations give the par-
e of the loss function with respect to any parameter of the mixture distribution
the derivative of the log-observation probability with respect to that parameter.
that remains is to compute the derivative of the state log-observation prob-

ty with respect to the transformation matrix. This is given for the Ith row of
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(3)
wi. @)

amination of Equation 4.35 shows that there is a aﬁ?ﬁ term in the denominator, which
peause the update to be unstable even for a small update parameter due to the extremely
ange of gradient values associated with a small variance component. A solution to
318 fo reduce the quadratic form to first order, or even to drop the variance term in the
ominator of the gradient altogether. This heuristic solution can be better expressed in

GPD framework proposed by Juang & Katagiri [91] that caters for a positive definite

fix U, as part of the update equation, which is then given by

0O M

wi(n+1) = wi(n) — Unen > > 1(X, C)M (4.36)

=i aw, A=A,

sing U, to be a diagonal scaling matrix, with the average component variance for the
dimension taking the /th position on the diagonal, provides a way of normalising the
ence of the variance in the update equation. Note that this could also have been used
e MCE Gaussian mean update equation (Equation 4.14), but was not necessary since

g the transformed mean value has exactly the same effect.

ice has to be made with respect to the initial value W (0) of the transformation ma-
Using an identity matrix presents one option, but in light of the tendency of the

ient descent procedure to converge to local optima, a better choice is perhaps to use

e simple nature of the linear transformation process and because relatively fewer pa-
ters are optimised. Experiments with the discriminatively optimised linear transform

MLLR initial estimates for the transformation and achieved improved performance
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er standard MLLR transformation. However, since both MLLR and the discriminatively
ed linear transform did not produce very good performance in isolation, experiments

Chapters 6 and 7 only detail MLLR-based transformation results, mainly for comparison
i MLLR-MAP results.

the next section we discuss modifying the MCE loss and misclassification measures to
beiate varying cost or loss with different misclassification errors. Associating a cost
| a particular misclassification indicates the importance (or lack of impdrtance) of the
ification and can improve the performance achievable with discriminative phoneme

timisation by focusing on phoneme errors that have a high probability of leading

YOIrd errors.

| Cost-based MCE

1an framework for classifier design [25] allows for the specification of a cost or risk
ated with classifying a sample from class i as belonging to class j. In this sense,
ard implementation of MCE uses only a true-false cost function, considering in
assification measure (Equation 4.6) only the class to which an observation belongs
e true class and treating all other classes equally as false classes. When the true
classifier is to achieve minimum phoneme misclassification, use of a zero-one cost
makes sense. In this case the MCE loss function closely approximates the empirical
cation rate and presents a suitable function for optimisation. Generally, however,
L of a classifier may be better expressed in terms of a more useful property such
id accuracy in continuous speech, or even at a more abstract level, in terms of how
ately the meaning of a speech utterance is expressed by a recognised phrase. In this
i we consider ways of improving the MCE loss function to more accurately reflect the
e classifier. We start off with a previously discussed approach that implements

tive training by comparing competing hypotheses.
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2.1 String-level MCE

order to improve the performance of discriminative training techniques for continuous
h applications, research was performed by Chou et al. [92] on a minimum string error
¢ implementation of MCE using N-best candidate strings. Even though the method
a string-level loss function, optimisation occurs at the subunit (word or phoneme
del) level, thereby indirectly also optimising classification performance of the subunits.
e method has been shown to work well for closed vocabulary problems such as connected
if recognition. This is to Be expected because it implements a task dependent word error
i based minimisation that compares possible in-vocabulary errors to the correct align-
computes the update accordingly. String-level MCE is very useful when speech
a 18 available that has been transcribed, but not labelled, since alignment information
eeded for the method. The method also may have an advantage over the standard
proach in that recognition units are automatically aligned in sentence context with each
her during training and can therefore take into account insertion and deletion errors in
to substitution errors. However, McDermott [95] points out that string-level MCE
ely only considers regions of the speech input frame where there are differences in
nentation between the correct and competing hypotheses. Since only a limited number
theses are typically decoded for computational reasons, only limited regions of each
me are used to increase discrimination, whereas with phoneme-level MCE adapta-
y or all competing hypotheses (single HMMs) are considered for every phoneme

thereby better utilising the available data to increase class separation.

el MCE will not necessarily deliver optimal performance at the subunit level, as
been found [95] for continuous phoneme recognition. This can be explained by con-
g exactly what the effect of string-level training on the basic modelling units are.
systems, phoneme models are usually used as the building blocks for compos-
ch units such as words. String-level MCE uses an N-best search to find the best
g hypotheses that differ in terms of word sequence from the correct hypothesis.

ptation occurs only for models associated with these strings, thus predicating the adap-
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0 of phoneme models on word confusability. The cost in terms of word error rate for
g one phoneme as another is thus determined based on the whole word training
and used to adjust the boundary between the two phonemes. This is, however, a sim-
| view of how the method works. Typically, an exact pronunciation dictionary is not
and therefore a training speech utterance may not exactly match the phoneme
" the correct word sequence. The acoustic models are thus adapted to also ex-
fphonemic properties. This happens anyway if forced-alignment training is done, and
surely improve task specific word recognition performance, but care should be taken in

2=

g performance a task with a different vocabulary or grammar.

w discussed how string-level training can use a string and thus in effect a word
cost in adapting phoneme models. The method we discuss next shows a way
integrating a phoneme misclassification cost into the MCE framework, without

y perform an N-best search-based word level alignment.

Incorporating cost into the loss function

ons for applying modification of the phoneme models at the phoneme level rather than

e string or word level include:

er efficiency is achieved with (phoneme) model-level MCE versus string (word)

G;; associated with the classification of a sample from class 7 as being of class j
nd is treated as a risk, the design of a minimum risk classifier in the Bayes sense

e attempted (determination of ¢;; is the topic of a following section).
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ermott [86] suggested a modification of the MCE loss function to integrate a model-
ost function that ensures that the overall loss function reflects the empirical risk. For
ng token the method weights the contribution from each false class by the risk
siated with that false class. To incorporate the method into the MCE misclassification
ire, the weight of each incorrect class j with respect to the total contribution of the

rect classes is first expressed as

93 (X:A)7

35 pere eI EAM

wi(X;A,¢) = (4.37)
the correct class is ¢. The cost-based loss function can then be expressed in terms
he cost .; and the contribution w;(X; A, ¢) of each incorrect class, summed over all the

orrect classes by

M
BEGA) =[] CwilXs A, 0] (X5 A). (4.38)
Jd#Fe

jgure 4.1 shows graphically for a two class problem how the loss varies as a function of the
sition of an observed value, when different cost values are associated with the misclassi-
. The loss is a function of the relative correct versus incorrect class likelihoods and
lso the cost associated with misclassifying the correct class as the incorrect class. Since
Jquation 4.38 expresses the overall empirical risk, optimisation of the equation minimises
he risk. If suitable estimates of the individual risks (.; are available, the method may

approximate minimum risk classification.

Unfortunately, no further details of the implementation of the method were published in
8t . Since we are interested in implementing the method we compute the derivative of the

gost-based loss function I}(X; A) with respect to the class discriminant function g:(X; A),

Electrical and Electronic Engineering 120




University of Pretoria etd — Nieuwoudt, C (2000)

Chapter 4 Discriminative learning theory

Loss

Feature distance

Figure 4.1: The loss I* incurred as a function of the position of an observed value for various
values of the misclassification cost when the Gaussian mean of the correct class is at -1 and
the Gaussian mean of an incorrect class is at 1 and both Gaussians have unity variance

‘which is then given by

ol:(X; A)

M
B 1) = 17 I A, 0) G — 3 G5 4,0 (X A)

J.jFe
M
l(X; A)
-+ [Z Cejwi (X A, c)] —C(—_, (4.39)
- 9g:(X; A)
Ji#Fe
where the partial derivative of the loss function with respect to the class discriminant
function (g;ci((%%) is given by Equation 4.30. Since the derivation of the derivative of the
discriminant function with respect to HMM, duration and transformation parameters have
been given previously in this chapter, the process is now fully specified, except for the

determination of the cost function itself, which is discussed next.

4.5.3 Estimating cost based on word error

We formulate a rather simple procedure for estimating the cost of misclassification for

each phoneme pair that is based on the probability of the misclassification leading to a
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word error. The procedure assumes that phonetic transcriptions of a large set of words
are available and using simplifying assumptions, statistically determines the relationship

between phoneme misclassification and word misclassification.

Given the problem of recognising an isolated word from a closed vocabulary, the probability
hat a word is recognised in error can be expressed in terms of the probability that the

ecogniser substitutes word j for word 7 by

P(word error) = Z [P(wi) ZP(w?; > wjl'wi)] (4.40)

i i
there P(w; — w;|w;) denotes the conditional probability that the substitution takes place
and P(w;) is the a priori occurrence of word i. The next step is to condition the probability
ord substitution w; — w; on a specific phoneme substitution oy, — ;. The problem
§greatly simplified by considering for each word pair only phoneme errors that change the
5t word along the optimal alignment path of the word pair to look more like the second
ord, hereafter termed cross-word phoneme errors. We define the phoneme misclassification
ki to be the probability of a word error given that a specific substitution ay — ay of

plioneme oy, by oy occurs by:

i)

(word error|ay — o)

P(word error, a, — o)
P(O{k —2 Clq)

> [Plws) > iz Plwi = wjlwi, a, — o) Ly — oy in{wy, wj})]
X [P(w) 5 e — 0 infus, wy})]
b [P('w,;) >z P(word error|d(w;, w;), #substitutions > 1) 1(e — oy in{w;, wj})]

;- 2 [P('wi) D i Lok = oy in{wi’wj})]

(4.41)

(p — oy in{w;, w;}) is 1 when the oy, — « substitution match occurs in the
imal alignment of w; and w; and 0 otherwise, d(w;, w;) is the number of insertions,

s and substitutions in the optimal alignment of w; and w; and the probability of a
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word error, given the distance between the words and the fact that at least one substitution

takes place is given by P(word error|d(w;|w;), #substitutions > 1).

The probability of a word error is thus defined to depend only on the phonetic distance
d(w;, w;) between the words, i.e. on the number of insertions, deletions and substitution-
s necessary to convert one word to the other. Independence of the cross-word phoneme
errors is assumed and the number of cross-word phoneme errors then assumes a binomial
distribution. When more than 50% of cross-word phoneme errors occur, a word substi-
fution is assumed to take place and when exactly 50% of the cross-word phoneme errors
oceur, a 50% chance of a word substitution error is assumed. The probability of a word
substitution is expressed by the summation of the binomial probabilities that half or more
of the cross-word phoneme errors occur, taking into account that at least one phoneme
error has occurred. The word substitution probability can then be expressed in terms of

the inter-word phonetic distance n and the cross-word phoneme error probability p by the

function

B 5) — D m=(n/2] (Pl —p ™ n odd
1/2(717;—11)?”/2_1(1 o LD DN (2 )pmtA —p)"™™ neven.
(4.42)

Figure 4.2 shows graphically how the word substitution probability varies as a function of
the inter-word phonetic distance for a number of cross-word phoneme error probabilities.
Since cross-word phoneme errors only include phoneme errors that change the first word
according to the optimal alignment path with the second word, the use of a relatively small
value for the cross-word phone error probability is therefore applicable. We selected to use

a value of 0.1 for the cross-word phoneme error probability.

Conditioning the probability of a word error only on phoneme substitutions (Equation 4.41)
is perhaps too simplistic. We therefore oxtended the method to also consider the effect of
phoneme insertions and deletions, by regarding them in the same way as substitutions.

An insertion before or after aj of q, is considered a possible misclassification of speech
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4.2: The word substitution error (WE) probability as a function of the inter-word
¢ distance for a number of values of the cross-word phoneme error (CWPE) proba-
iven that at least one substitution has occurred

ja corresponding to oy as q;. Similarly, the deletion of ay before or after o is also

lered a possible misclassification of speech data corresponding to aj as «;. By as-
g a probability of % with the mentioned insertions or deletions being caused by a
— oy misclassification, the probabilities that these phoneme errors lead to word errors

incorporated into Equation 4.41 by the following equation:
: 1 d
4= P(word error|ay — o) + EP(word error|ag T ay) + aP(Word error|og 4 ay), (4.43)

e o, T oy means that «; is inserted before or after oy and ay | c; means that oy
ed before or after oy. Both P(word error|a; T ai) and P(word error|ay | o) are

ed in the same way as for P(word error|ay, — o;) (Equation 4.41).

s concludes our discussion of the estimation of the word error-based phoneme misclassi-
cost. The resulting cost matrix can be used with the loss function method discussed

Section 4.5.2, or can be used with an alternative method that we discuss in the following
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45.4 Modifying the misclassification measure

The method presented in Section 4.5.2 uses the cost values {(;;} to weight for each training
foken the contribution of each false class in determining a new overall loss function. We
may, however, want to use the cost values to affect the relative correct/incorrect likelihood
at which loss is incurred. Rather than a small cost value reducing the total loss associated
with a misclassification, we want to only reduce the loss in the region where the relative
likelihoods of the correct and incorrect classes are comparable. It basically means that
near the decision boundary bf two classes, and thus in the region where overlap may oc-
cur between the distributions, loss is reduced. Loss is, however, not significantly reduced
when the incorrect class likelihood is much higher than the correct class likelihood. This
effectively shifts the loss function towards the incorrect class as the cost associated with a

‘misclassification becomes lower.

(Cost-based misclassification measure

In order to achieve the above, we present an approach to integrate the cost function ()
into the MCE framework, based on a modification of the misclassification measure. The
decision boundary of the misclassification measure is shifted with the value of the cost

function. The new misclassification measure can then be expressed by

M
Z e(log{ij+9j(X§A))n:| 1/7?_ (4.44)
NINE=

dI(X;A) = —gi(X; A) +1 [
(X A) = ~i(X; A) +log [ 77—
The log cost (log¢;;) is added to the log-likelihood function, which is equivalent to multi-
plication of the likelihood function by the linear cost. Figure 4.3 shows graphically for a
fwo class problem how the loss varies as a function of the position of an observed value,
when different cost values are associated with the misclassification. It can be seen that the

effect of the cost is to shift the loss function towards the incorrect class for lower cost.
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Loss
o
n

I

Feature distance

: The loss If incurred as a function of the position of an observed value for various
of the misclassification cost used in the misclassification measure, when the Gaussian
the correct class is at -1 and the Gaussian mean of an incorrect class is at 1 and
ussians have unity variance

parison of modified misclassification measure with modified loss function

iferesting to compare the working of the two approaches (Equations 4.44 and 4.38) to
orating cost into the loss function. We refer to the approach of Section 4.5.2 that uses
5t o weight the loss function (4.38) as the cost-based loss function (CBLF) approach
our approach (4.44) as the cost-based misclassification measure (CBMM) approach.

L4 shows a three class problem with one correct class centred at -1 and two incor-
sses, centred at 1 and 3 and associated with misclassification costs of 0.5 and 1.0
vely. Figure 4.4(a) shows the three Gaussian distributions, as well as the “average”
act class value as expressed by Equation 4.7 in the linear domain. Figure 4.4(b) also
the three Gaussian distributions, but multiplied by their respective costs in the linear
is effectively performed by CBMM in Equation 4.44 (by adding log-cost in the
). Figure 4.4(c) shows the shape of the loss function for the distributions in
ieved with CBLEF (Equation 4.38). Figure 4.4(d) shows the loss CBMM associates

s likelihood functions in (b). The contribution from incorrect class 1 can be
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compared to that in Figure 4.3 to see how the cost value of 0.5 shifts the loss to the right

in this case.

OBMM has the advantage that the inter-dependencies between the contribution of different
false classes are handled better, because they are already taken into account in the misclas-
sification measure. This is clearly explained by a more extreme example, in which incorrect
class 1 has very low cost. Figure 4.5 shows the same four graphs, but with a cost of only
0.1 associated with incorrect class 1. Note in Figure 4.5(c) how in CBLF the contribution
of the loss from incorrect class 2 is suppressed by the contribution from incorrect class 1,
although class 1 has a very low associated cost of 0.1. At z = 1, one expects a loss in
the region of 0.5 because the point is halfway between the true class and incorrect class 2,
yet incorrect class 1 suppresses the loss. Figure 4.5(d) shows how in the CBMM approach
the loss attributed to class 2 is only slightly suppressed by incorrect class 1 because the

dependency between the incorrect classes in the misclassification measure is handled better.

Cost and reward-based misclassification measure

The goal of phoneme-level discriminative training should be the improvement of the over-
all system, of which the word error rate is a reasonably good measure. The method for
estimating a word error-based phoneme misclassification cost and the integration of it into
the discriminative training of phonemes provides a step in the right direction. String-level
training, as we have discussed before, goes even a step further because it performs a degree
of phonemic training - i.e. training based on what was supposed to have been said rather
than for what was actually said. The method we propose next attempts to incorporate
some phonemic information in the discriminative training procedure, while at the same

time reducing the overall loss and thus the degree of adaptation that will occur.

The first step in the procedure is the extension of the word error-based phoneme misclassi-
fication cost estimation procedure to include a reward (negative cost) for a misclassification

that may improve the word recognition rate. This is possible because different phonetic
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4: A comparison of two methods for computing the loss for a three class problem
orrect Gaussian mean at -1 and incorrect Gaussian means at 1 and 3 and with as-
| misclassification costs of 0.5 and 1 respectively, showing (a) the three distributions
with the “average” of the two incorrect classes, (b) the three distributions, modified
to the CBMM approach along with the “average” of the two incorrect classes,
ss function according to the CBLF approach and (d) the loss function according

MM approach

f the same word may occur in practice while the pronunciation dictionary for
contains only a subset of the possibilities. The misclassification of one or more
emes corresponding to the actual speech as the phonemes from the pronunciation
iy may thus improve the overall word recognition rate. A procedure to estimate

ted reward associated with such misclassification can be derived by modifying
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Figure 4.5: A comparison of two meth
with a correct Gaussian mean at -1 an

ods for computing the loss for a three class problem
d incorrect Gaussian means at 1 and 3 and with as-

sociated misclassification costs of 0.1 and 1 respectively, showing (a) the three distributions
along with the “average” of the two incorrect classes, (b) the three distributions, modified

according to the CBMM approach along with the “average” of the two incorrect classes,
(c) the loss function according to the CBLF approach and (d) the loss function according

to the CBMM approach
Equation 4.41 in the following way:
3o | P(wi) 2o ki s P(word subst.|d(w;, w;), #subst. 2 1) 1(ax = in{wi,wj})]

o > [P (wi) X Lo — o in{uwi; wy })]

s

(4.45)

where €2; represents the phonetic variants of word 4. Equation 4.45 estimates the expecta-
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tion value of a phoneme misclassification leading to the recognition of an alternative form
of the same word. This, of course, does not directly express a contribution towards the
reduction of the word error rate, since it would really have had to take into account the rel-
ative distance to the closest incorrect words. It therefore only expresses to some degree the
phonemic information regarding alternate pronunciations contained in a pronunciation dic-
tionary. In place of a pronunciation dictionary, a labelled speech database can also be used,
with the various label sequences associated with each word considered to be pronunciation

variants.

A procedure for discriminative optimisation, that is based on phonemic training, is then
derived by subtracting the reward from the cost and using the resulting net cost value

5 = (ij — rij in a further extension of Equation 4.44 by

d 1/n
> LG < 0)6(1“g(‘<GJ+91(X;AJ)n]

M - i
Zj:l 1((1_7 < O) j=1 !

M

1 : : 1/n

+ log § s > 0)eloB(=¢5)+ai (XsA)n | 77 (4 46)
[Zﬁumgzmjﬂ ’ |

di(X; A) = —log |

We term this the cost-reward-based misclassification measure (CRBMM) approach. For

phoneme pairs with a net reward or negative net cost, i.e. (; < 0, values of the parameters

of model 7 will be adapted to increase the likelihood of observations from class k, thereby
effecting phonemic training. It should, however, be noted that this approach reduces the
empirical loss and therefore less adaptation will likely take place than for zero-one cost
functions. The reason why this approach works may thus be rooted not only in the fact
that it performs phonemic training, but in the fact that it reduces the loss associated with
errors that have some positive or little negative effect, thereby stopping the MCE approach
from changing ML estimated models to enforce rigid acoustic separation between phonetic

classes.

The working of the method is shown in Figure 4.6 for the same three class problem with

Gaussians centred at -1, 1 and 3, but with an associated net cost of -1, -0.1 and 1.0
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respectively. Figure 4.6(a) shows that the net reward of 1.0 (net cost of -1.0) associated
with correct class 1 effectively means that its likelihood function is unaffected, while the 0.1
" net reward associated with correct class 2 means that its likelihood function is multiplied by
0.1 in the linear domain. The likelihood function of class 3 (the incorrect class) is unaffected
by its cost of 1.0. The “average” likelihood of the classes with net reward (correct classes)
is compared to the net loss class likelihood in the misclassification measure. Figure 4.6(b)
shows the total loss incurred, as well as the portion of the total loss attributed (in the
component derivatives) to class 1 and class 2. It can be seen that for large z, loss is
attributed to class 2, which is then adapted rather than class 1, which has almost no

contribution to the loss for large z.

T T 1 T T 1 1 T T T T ‘EA_HAA—
correct class | ——— . 09 + yﬂ‘* _
coreet elass 2 i 7
incorrect class - | 0.8 correct class | —— 4+ -
correct "average" - 07 |  correctclass2 - o -
total loss ~ + +

Loss

As far as the implementation of the procedure is concerned, the only derivation that changes
is that of the misclassification measure. The derivative of the modified misclassification

measure with respect to the class discriminant function becomes

0di(X, A) L = (})3{10E(—C;-)+9='(X;A)1n 1(¢ > 0)e [log(—¢Z;)+9i (X;A)]n

= " - -+ e
0g:(X; A) Zﬁi i 1( :j < U)e[log(—Cc,-)ﬂj(X,A)]n Zg 11( x> 0)e [log(—¢x;)+g; (X5A)n
(4.47)
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Note that this equation is also valid for the derivative of the misclassification measure of

the CBMM approach (Equation 4.44) with respect to g;(X; A) by setting the correct class

cost Cj; to -1.

4.6 Discussion

In this chapter we discussed the application of discriminative learning methods for the
purpose of training and adapting parameters of speech recognition systems, continuous
density HMMs in particular. The effect of the optimisation criterion on classifier design was
discussed. The minimum classification error (MCE) criterion was chosen for discussion as it
most closely follows the principle of reducing the error rate of a classifier. An important step
in the design of a training or adaptation procedure is the optimisation approach. For MCE
a gradient descent optimisation approach was detailed, including derivation of the MCE
gradient of all HMM variables. Model-level and string-level approaches for MCE training

were compared and advantages and disadvantages of both methods were discussed.

Some applications of the MCE method were discussed, noting that the method has mainly
been applied to limited, yet confusable vocabulary problems such as the E-set problem and
connected digit recognition. Only a limited number of medium to large vocabulary continu-
ous speech recognition applications of MCE have been published. Adaptation performance
of MCE was also discussed, with research indicating that better model initialisation, such
s achieved by first performing MAP estimation, improves performance achieved with MCE

and is better than ML adaptation in isolation.

Extensions to the standard MCE framework were presented, including discriminative adap-
tation of duration modelling variables, discriminative linear parameter transformation and
word error-based phoneme adaptation approaches. The reason why the adaptation of all
parameters, rather than say only Gaussian mean parameters are considered, is that cross-

language adaptation may require significant adaptation, compared to perhaps the fine tun-
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ing of models for a specific speaker. Alternative approaches for incorporating cost into the
MCE framework were compared and an approach that also utilises reward in the misclas-
sification measure was presented. The cost-based framework is of specific importance for
cross-language adaptation since the phoneme inventory, context and acoustic separation
between phonemes differ significantly between languages and adaptation should be able to

address these issues efficiently for the target language.

In the next chapter we treat the issues involved in applying the techniques from speak-
er adaptation (Chapter 3) and discriminative learning (this chapter) for cross-language

acoustic adaptation in detail. -
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