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Chapter 3

Speaker adaptation theory

This chapter discusses previous research in speaker adaptation, but places it within the
context of our topic of cross-language adaptation. Reasonably detailed derivations of algo-
1ithms are given, especially when understanding of the algorithms are necessary for their

Pproper use for cross-language adaptation versus for speaker adaptation as such.

3.1 Background on speaker adaptation

adaptive training uses large amounts of existing information from many speakers to improve

he estimation of model parameters when faced with little data from a new speaker.
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3.1.1 Speaker variation

The reason for performing adaptation is that there exists variation between the speech of

;ﬂiﬂ'erent speakers. This variation can be classified into two main categories [52]:

e acoustic level differences, including

— realisational,
— physiological and

— durational differences, and
e phonological level differences, including

— lexical and

— stress differences.

In this thesis we are mainly interested in the former category of speaker differences, or more
accurately, in the correspondence between variation at this level across different languages.
""*ﬂ1 the degree that the acoustic level speaker differences are not language specific, we
expect direct cross-language re-use of acoustic information to be useful. In terms of a
speech recognition system, the latter category of phonological differences between speakers
15 dealt with at the language (grammar) and pronunciation modelling level and is thus very
language specific. However, since we deal with acoustic modelling, phonological speaker

differences are not of direct importance.

Realisational factors comprise different methods of using the articulatory organs to produce
nted sounds. Physiological factors influence the generation of sounds by constraining the
ssible range of sounds that can be generated by an individual. For example the physical

dimensions of the articulatory organs and notably the length of the vocal tract is known to
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3.1.2 Speaker normalisation

Speaker normalisation groups together techniques that attempt to remove, or at least re-
duce, the differences between the speech of different speakers, while retalning the charac-
teristics that distinguish the different phonetic categories. Vocal tract length normalisation
(VILN) is one such technique that estimates vocal tract length and computes a spectral
ft accordingly [53]. An important aspect of normalisation is taking into account not only

the characteristics of the particular speaker, but also being able to compensate for recording

A'h a different frequency transfer function or by frequency filtering due to a transmission

\T

Normalisation is usually applied to the speech signal, or at least to the observation vector

e spectral differences between training speakers, resulting in more accurate models
: ‘When considering the use of multiple databases for cross-language use of data it may
portant to apply a normalisation technique such as CMS to take care of recording
el mismatch between the databases. Normalisation will, however, also remove overall
al differences between the languages, influencing the distribution of feature vectors for
all phones. The languages and databases concerned may differ significantly with respect to
the phones and the relative quantities of these phones they contain, causing application of
to entire databases to be biased. A solution may be to weight the contribution of the
ssociated with each individual phone in computing the cepstral mean for a database.
liscuss this topic in more detail in Section 5.1 where aspects regarding cross-database

e of acoustic information are discussed.

alisation overlaps to a large degree with speaker adaptation, with normalisation usu-
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ally seen as the application of adaptation techniques at the feature level, rather than at the
- model level. Some types of model adaptation, such as transformation-based adaptation,
may implicitly perform normalisation, such as done by CMS, with an offset term and can
approximate the spectral shift performed with VTLN in the cepstral mean transformation
‘matrix [55], thus further blurring the distinction between adaptation and normalisation.
Other adaptation techniques, such as Bayesian or discriminative training-based adapta-
tion can not efficiently remove bias and thus the use of normalisation such as CMS in
conjunction with adaptation may still be important to achieve good recognition perfor-
mance. Zhao [56] performed exf)eriments showing that acoustic normalisation (via CMS)

followed by Bayesian adaptation achieved improved performance compared to performing

er adaptation can be applied in an on-line or an off-line mode. For dictation systems
ker adaptation can generally be performed in off-line or static mode, with adapta-
occurring after initial enrolment and at intervals after collection of more data. For
telephone-based systems, adaptation, if any, has to be applied on-line or dynamically on a
per-call basis. The main difference between static and dynamic adaptation is in terms of
eed for real-time implementation. Real-time constraints force dynamic adaptation to
erformed on very little data, typically a single utterance, while static adaptation such
used for dictation systems, may use perhaps 30 minutes of speaker specific data. On-line
methods use incremental techniques that typically only slightly change model parameters
each additional utterance used, while off-line methods perform batch-mode parameter
ipdates that may completely re-estimate parameters. Cross-language adaptation is per-
ormed off-line since real-time constraints are not applicable. On-line adaptation may of
ourse still be used after this to further increase performance when the system is applied

) specific speakers.

Blectrical and Electronic Engineering 39




University of Pretoria etd — Nieuwoudt, C (2000)

- Chapter 3 Speaker adaptation theory

.

Another important aspect to take into account is whether adaptation will be supervised
or unsupervised. In supervised adaptation the adaptation speech has been labelled, or at
least a transcription of the adaptation speech is available. In unsupervised adaptation,
the speech to be used for adaptation is unknown and has to be recognised first before
it can be used for adaptation. Chapter 2 discussed cross-language use of bootstrapping
methods where transcriptions of the data in the target language were available, but the
data was not labelled at phone level. Completely unsupervised cross-language adaptation

is probably not feasible since the mismatch between the models and data would probably

e too great for recognition in the target language to give acceptable results for further

ning or adaptation.

.4 Categories of speaker adaptation

er adaptation techniques have previously been classified into three categories [54]

(i) speaker classification, (i) spectral transformation and (iii) speaker adaptive
ation of model parameters. We use a similar structure for our discussion of speaker
lon techniques, but consider the transformation category to encompass newer tech-
using transformations of model parameters and not only spectral or feature space
mations. Furthermore the third category of speaker adaptive re-estimation is quite
d we limit ourselves in this chapter to the discussion of Bayesian adaptation tech-
5. A further field only recently applied to speaker adaptation, namely discriminative

, is discussed in the next chapter. An overview of the three categories of

® speaker classification,
 transformation-based adaptation and

 Bayesian adaptation

fiven next.
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Speaker classification attempts to identify a specific set of models that best exhibit the
characteristics of a new speaker and uses those models to perform recognition. The speaker
classification category is of little interest to our research as it cannot change the character-
istics of the acoustic space except to cluster it into segments. It is unlikely that significant
overlap will occur between the clusters of speakers in different languages and even if there
were significant overlap, the method would still only be useful in terms of handling speaker
specific characteristics and not performing any adaptation to the new target language. The
other two categories are more interesting to our research as they both can change source

.,:language model parameters in a structured way to better reflect the characteristics of the

target language.

‘Transformation-based adaptation entails computing a transformation of pre-trained model

Pparameters to better fit the speech of a new target speaker. This type of adaptation has

between the pre-trained model and the target speakers’ speech in the same way that would

distribution expressed by the current model and the feature distribution of the target s-
peaker. This paradigm is well suited for the removal of correlated noise between source and
target parameters. In contrast, Bayesian learning does not assume correlation with respect
0 changes from a current model, but assumes that prior knowledge exists about the distri-
bution of the model parameters. Observations from a new speaker are treated as adding to

the prior knowledge of the parameter distributions, thereby improving the estimate of the
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parameters. We expect Bayesian methods to work well in an environment where we have
reasonably robust models in general, but which may need complex fine-tuning to achieve
improved performance for a specific speaker or environment. The next two sections discuss

in detail the implementation of Bayesian and transformation methods used in this thesis.

3.2 Bayesian adaptation

ofa parameter into an a posteriori density, improving the estimate of the true value of the
rameter and converging to the true value as the amount of observations increases. In
lan estimation, the unknown, but desired p.d.f. p(x) is estimated by using the observed
X = {xi,...,x,} and integrating over the parameter vector 0, which is considered a

om variable taking values in the space ©. The integral is expressed by [25, p. 51]

p(x/X) = /@ p(x, 6X)d6 -
3.1
= [ n(xlo)p(6ix)do.

g Bayes rule, Equation 3.1 can be written, using the notation g(@) for the prior distri-
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bution and f(X|@) for the likelihood function, by

[(X[0)g(6)
p(x|X :fpx()———dﬁ, 3.2
(x/X) e(|)p(X) (32)
where the observation probability, p fe (X|@)g(0)d8, is a constant that normalises

the posterior density function. In practice Equation 3.2 does not offer a computation-
ally feasible solution with current speech modelling techniques and computer technology
due to the integration term. However, if p(8|X) peaks very sharply about some value 8,

Equation 3.2 may be approximated by
p(x|X) ~ p(x|6). (3.3)

This is especially applicable according to the Bayesian learning paradigm described by
Duda & Hart [25, p. 54], which states in general that as the number of observations from a
given distribution increases, the posterior distributions of the parameters peak more sharply
around the true values of the parameters, ultimately approaching Dirac delta functions at
the true values of the parameters as the number of observations approaches infinity. In this

case the approximation is therefore entirely applicable.

However, even if the posterior parameter distribution is not sufficiently peaked, to reach a
computationally feasible solution, it may still be necessary to estimate a single parameter
alue 6 for use in place of the integration over the parameter space of Equation 3.2. The

n(

next section discusses a procedure to estimate such a parameter.

3.2.1 Bayes estimators

Because Bayesian methods consider parameters to be random variables, distributions of
neters are used, rather than fixed values. For efficiency, a single suitable value for
ihe parameter may need to be estimated and for this purpose an estimator is used. The

jorm of the estimator is not prescribed in Bayesian learning and remains to be decided by
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the statistician. The most important requirement of an estimator ¢ is that it delivers an
estimate 0(X) (based on the observed data X) that is close to the actual value a of the
parameter € in an experiment. A sensible way of determining an estimator is by specifying a
loss function L(a, 9) which measures the loss or cost when the true value of the parameter
is @ = a and the estimate is §. The Bayes estimator [57, p. 275] is then given by the

function ¢*(X) that, for every possible value x of X, delivers the minimum expected loss,

E[L(8,6"(X))|X] = e 9)X], (3-4)

where the unknown value @ of @ takes values in the space O.

of @ for which E[(@ — )7 (6 — 6)|X] reaches a minimum value. The Bayes estimator

for the squared error loss function is found by finding the root of the quadratic, i.e.
4.
00
i[E[GTmX] — 20" E[0]X] + éTé] —H
o0

E[(6 - 6)"(6 ~ 8)|X] =0

—2E[8]X] +20 = 0
and thus the Bayes estimator is simply equal to the expectation value of the parameter 6,
§*(X) = 8 = E[0|X]

- [ 6-nieix)ao (3.5)

B f(X]8)g(6)
_Le p(X) 4
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which in turn equals the first moment of the posterior density function f(X|8)g(8)/p(X).

We refer to the Bayes estimator of Equation 3.5 as the MSE estimator in subsequent

discussions since it produces the minimum squared error (MSE) solution to the Bayes loss

function.

Other loss functions exist and may lead to different Bayes estimators, such as the absolute
error loss function which leads to the Bayes estimate being equal to the median of the
posterior distribution [57, p. 277]. An alternative to using a loss function in the Bayesian
framework is to simply use the maximum value of the posterior distribution as the esti-
mate, which in general will differ from the mean for asymmetric functions. This method is

discussed next.

MAP Bayes estimation

Maximum a posteriori (MAP) estimation uses the parameter associated with the maximum
a posteriori probability as the Bayes estimate. The MAP estimate for a parameter 6, given
prior distribution g(@) and observation sequence X = {x,..,X,} is given by the mode of

the posterior density function, i.e.
Orap = arg gnaxp(9|X) = arg ;naxf(XIG)g( ). (3.6)

If g(8) is considered fixed, but unknown, also known as a non-informative prior, then there
is no knowledge about 6 and the MAP estimate is equal to the maximum likelihood (ML)
estimate. We thus consider the selection of a suitable informative prior. The choice of a prior
distribution is predicated as much by its suitability for expressing the prior distribution as
by the possibility of deriving a solution for the Bayesian/MAP estimation problem. Similar
to ML estimation, the computation of the MAP estimate is relatively easy when the family
of p.d.f.’s {f(-|0),0 € O} possesses a sufficient statistic of fixed dimension. For HMMs in
the incomplete data modelling problem this is not true, but is addressed by iterative methods

that solve the complete data modelling problem for which a sufficient statistic exists. Given
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 that the family {f(:|0),8 € ©} possesses a sufficient statistic t(X) of fixed dimension for
 the parameter 8, f(X|@) can be factored into two terms f(X]0) = h(X)k(8,#(X)) such that
h(X) is independent of @ and (6, £(X)) is the kernel density, which is a function of @ and
depends on X only through the sufficient statistic t(X). If the prior density is thus chosen
in a conjugate family {k(-|¥),v € ¥} which includes the kernel density of the likelihood
function f(-|@), the MAP estimate is greatly simplified since the posterior density is then
of the same form as the prior, i.e. k(8|9") o< k(8|4)k(0,4(X)). With such a choice of prior,
the procedure for finding the MAP estimate is similar to solving for the ML estimate - i.e.

both find the mode of the kernel density.

.Having a simple posterior density also eases implementation of other Bayesian estimators

such as the MSE estimator which finds the mean of the posterior distribution. For sym-

the MAP and MSE estimators is considered. We do not expect the difference between the
estimates produced by the methods to be large, but still wish to quantify the difference.

With some basic theory behind Bayesian estimation now covered, we proceed to discuss the
implementation of Bayesian adaptation, and more specifically MSE and MAP adaptation for
both the (single) Gaussian observation density case as well as for the more general Gaussian
mixture distribution case. We assume that we are solving the complete data modelling
problem as we shall discuss the implementation of the iterative estimation algorithm [24, 58]

for the incomplete data modelling problem for HMMs in Section 3.2.4.

3.2.2 Gaussian density parameter distributions

I this section it is assumed that a sample from a Gaussian distribution is available and it

5 desired to derive the posterior distributions of the parameters of the Gaussian, i.e. the
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mean and variance of the Gaussian. The derivations closely follow DeGroot [59].

Mean-only adaptation

The simplest and also most used approach for Bayesian adaptation is to assume a normal
distribution with mean m and precision 7 (inverse of the variance) as the prior for the mean
Parameter . (to be estimated) of the Gaussian observation distribution and a fixed, known

value for the Gaussian precision parameter r. The prior distribution of y
and the likelihood function f(X|u) for observations X = T

f(XIIJJ) oC 'rn'/28_(r/2) Z?‘:l (.“'_431')2

o r2e=(r/2) [nS+n(u—z)?] (3.8)
where 7 = 2 >~ 7, is the sample mean and
1 n
g==]1

s the sample variance of the observations, can be combined to form the posterior p.d.f.

g(p| X ) given by
g(JuIX) X f(X|,U,)g(‘U,) o< Tllgrn/ge_(]'/m[r(“_m)z+'-'1T(,Lt—f)2+ﬂ-r5']' (310)

By using the equality

7y 2
Tm+nr3:) ™" r(m—~f)2, (3'11)

T(u—m)2+nr(u—f)2=('r+m")(u— g

T+ nr
tis noted that the posterior p.d.f. g(u|X ) of u is also a normal distribution (similar to the

prior of 42 in Equation 3.7), with mean T and precision 7 +nr [59, p. 167] and is given
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by

_T4nr _Tm4nrry2
S (e )

T+nr

9(plX) e (3.12)

%i’nce the mode and the mean value of the normal distribution are equal, both the MAP
estimate as well as the minimum squared error Bayesian estimate for u are given by the
mean of Equation 3.12, namely

M + nrx

= — et 3.13
HMAP = HUMSE S ( )

Note that we refer to the mean value of a distribution as the expectation value of the pa-
rameter on which the distribution is conditioned. The estimate of x is a linear combination
of the prior mean m and the speaker dependent sample mean Z. When n = 0, no obser-

vations are available and the MAP estimate is simply equal to the prior mean value m.

K
m= &y, (3.14)
k=1
K
/7= &g — m)? (3.15)
k=1
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and

K
1/n =) 6,62 (3.16)
k=1

‘where ¢y, is the weight, my, is the mean and % is the variance of the kth mixture component
of the speaker independent model. The weighted value of m is simply the sample mean of the
speaker independent data when the weights are ML estimates while 1 /T equals the variance
of the mixture means around the global mean value and 1/r is the weighted average variance
within a mixture. This choice of estimating the prior distribution and fixed variance makes
especially good sense when we expect each mixture distribution to be representative of

an individual speaker or type of speaker since Equation 3.15 then represents the expected

Variance-only adaptation

Variance adaptation is proposed by Lee et al. [24] by assuming the value of the mean m to
be fixed, but unknown and the variance a random variable with a prior distribution g(o?)

f the form

constant if o2 < o2

2 —_— min

9(0%) = (3.17)
0 otherwise,

here o7, is estimated from a large amount of speech data and should be a reasonable

bound on the variance. We have arbitrarily chosen 02, = 10~%. The MAP estimate

or the variance is then given by

Tiiap = ¥ 52 omi (3.18)
o2:, otherwise,
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‘Where S is the sample variance as in Equation 3.9. While Equation 3.18 is not really useful
by itself for speaker adaptation since the Gaussian variance plays a much less important
1ole than the Gaussian mean value in speaker adaptation, it is of much use in any training
situation when little data is available. The training procedure detailed in Chapter 2.1.4
and all adaptation methods detailed in this thesis also implement Equation 3.18 during
'a;ra.méter re-estimation in the form of a variance floor. This prevents variance values from
reaching unrealistically low values when little data is used for estimation or adaptation

purposes, thereby improving generalisation.

Mean and variance adaptation

Lee ef al. [24] proposes a third approach where mean and precision parameters are adapted
according to a joint mean and precision prior distribution derived from the set of speaker
ﬁependent Gaussian mixtures. It has been shown [59, p. 169] that the choice of a normal-
Gamma joint prior distribution forms a conjugate family for the mean and precision of a
sample from a normal distribution. The joint prior distribution of the mean x and precision
 parameters is as follows: the conditional distribution of 4 given r is a normal distribution

mean m and precision wr where w > 0, and the marginal distribution of r is a Gamma

distribution with parameters @ > 0 and 3 > 0, i.e.,

g(u, 1) oc 2= @r/2u—m)* pa—1~pr (3.19)
The Gaussian likelihood function given by (similar to Equation 3.8)

F(X |, 7) o rH2e=(r/2nS+n(u-2)%] (3.20)

an be combined with the prior g(y, r) of Equation 3.19 to form the posterior p.d.f. g(p, r|X)

il ;,-T|X) o f(X[,LL, T)g(,u, ’i‘) o {T1/28—{1/2)[wr(p—m)2+nr(,u—:r‘;)2}}Ta+n/2—le—ﬁr—(nr/2)5'. (3_21)
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By using the equality

wm+nrﬁ)2 Wn

o Y
w4+ n w—l—nr(m =% 322

wr(w—m)?+nr(u—72)? = (w+ n)r(u -

it is noted that the posterior p.d.f. g(u, 7| X) (from Equation 3.21) of y and 7 is also a joint
normal-Gamma distribution (similar to the joint prior of x and r in Equation 3.19) with

the following form [59, p. 169]
g, 7| X) o {ri/2e=/DwAnu—m) Y a1 o=hr (3.23)

which is discussed in detail next. The part between braces on the right hand side of Equa-
fion 3.23 expresses the conditional distribution of 4 for a given r and given the observations,

thich is a normal distribution with mean m given by

m = w (3_24)
w—+n

id precision (w + n)r. The second part on the right hand side of Equation 3.23 expresses
1e marginal distribution of r given the observations, which is a Gamma distribution with

arameters & and [ given by

Gd=a+n/2 (8.25)

n(m — )*

~ 7 w
F=p+55+ - (3.26)

is perhaps not immediately apparent from Equation 3.23 that the marginal distribution
ris simply the second part on the right hand side of the equation, until one considers
at the integral over p of the normalised first part on the right hand side of the equation

e normal distribution) is independent of r, rendering the remaining part the marginal
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distribution of r, i.e.

o(r1X) = [ o(u,r1X)doc [ {[(w -+ nr]i2em ety it

o< Téule_ﬁr /[(w + n)’r]1/28—(r/2)(1”+”)(ﬂ—ﬁ1)2 dﬂ: (3.27)

o ré&lg=hr,

The posterior distribution of ;2 and 7 shows that they are dependent. The joint MAP
estimate of 12 and r is given by the mode of the 2-dimensional posterior distribution, while
-e MSE estimate is given by the mean of the distribution. Inspection reveals that the
jont posterior distribution (Equation 3.23) has an axis of symmetry along 1 = 77 and thus
expectation value of 4, as well as the value of the mode of i are independent of r and
equal to 7. Both the MAP and the MSE estimates for ;1 are given by the mean of the
normal distribution

A wm -+ nx

HMAP = [MSE = T = T (3.28)

MAP estimate of the Gaussian precision is calculated by differentiating the joint pos-
ierior distribution (Equation 3.23) with respect to 7 and finding the root of the equation.
[he calculation is greatly simplified since we know that the mode is located along p = m

and thus we calculate

g . ) d a—1/2_—pr _
E—g(m,r|X) = & et =0

(& — 1/2)r032e~Fr — po-1/2(_fye~Pr — ¢

erefore the MAP estimate of the Gaussian precision is given by

a—1/2 20— 1+n
= = = : 3.29
R B 2 +nS + 2% (m — 1)? (:26)
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‘The MSE estimate of the Gaussian precision is simply the mean of the marginal posterior

Gamma distribution and is given by (from Equations 3.25 and 3.26)

- 2a4tn
T 28+ nS+ 2o (m—7)?

w-n

TMSE = (3.30)

o &

We note at this point that Lee et al. [24] used the mean (not the mode as in Equation 3.29)
of the marginal distribution of 7, i.e. the mean of the Gamma p.d.f. &/f, as the MAP

estimate. This choice is inconsistent with the definition of MAP estimation, requiring use

of the mode of the posterior distribution. In a later paper, Gauvain & Lee [58] refer to the
correct MAP estimate 7 = (& — 1/2)//3. There is, however, a problem with using the mode
of the posterior, since as Equation 3.29 shows, the precision is only valid (larger than zero)
for @ = @ +n/2 > 1/2. This may pose a problem when no observations are made (n = 0),
depending on the value of «, for which case it is probably sensible to select to use the mean

of the posterior, i.e. &/f.

m=Y G, (3.31)
k=1
1 K
— = Z Ek('ﬁ’bk o m)2 (332)
wr k=]
110
K
Bloa=) " &st. (3.33)
k=1
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By choosing somewhat arbitrarily the value of 8 = 1 we can solve for (Equation 3.33)

1
O =i s (3.34)
Zszl Ck G,
and using the prior mean value of the Gamma distribution a/f = « in place of r in

Hquation 3.32 we solve for

K -
17 Zk:l CkUl%

- Zf:l Ek(ﬁ’lk = m)2 '

(3.35)

Since 5 was chosen arbitrarily, the prior variance of the precision was not considered. We
know, however, that for a sample from a Gamma distribution the expectation value of the
variance is given by a/f%, which in our case simply equals a. It is intuitively pleasing
that the variance of the precision in the prior is equal to the chosen expectation value of
the precision, meaning that large prior values of the precision are associated with larger

variance and thus less certainty than for lower values of the precision.

The MAP equations we derived here are the same as those derived by Lee et al. [24], except
for the offset in the variance estimate, but our derivation shows perhaps more clearly the
meaning of the choices with respect to the prior parameters. The procedure outlined above
isonly for parameter estimation of univariate Gaussian distributions. This is not a problem
if diagonal covariance matrices are used with multivariate Gaussian distributions, as they
then simplify to independent univariate estimation problems. The next section discusses

the implementation of Bayesian adaptation for the general multivariate case.

Multivariate normal distribution adaptation

le derivation of posterior distributions for a multivariate Gaussian distribution is a gener-
ion of the discussion in the previous section. We proceed to give the derivation of the
ayesian estimates for a joint mean and variance prior distribution. It has been shown [59,

. 177] that the choice of a normal-Wishart joint prior distribution forms a jointly conju-
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gate family for the mean and precision of a sample from a multivariate normal distribution.
The joint prior distribution of the mean p and precision R parameters is as follows: the

conditional distribution of g given R is a normal distribution with mean vector m and

precision matrix wR,w > 0, and the marginal distribution of R is a Wishart distribution
with & > D — 1 degrees of freedom and a symmetric positive definite precision matrix Y.

The joint prior normal-Wishart distribution is given by [59, p. 178]

g(, R) |R|1/28—(w/2)(n—m)TR(u—m) |R|(a—D—l)/2e—(1/2) tr[YR] (3.36)

With the multivariate Gaussian likelihood function for observations X = {x1,...,x,} given

by

f(X|p, R) x |R|"/26_(1/2) SR i—p) TR(x;—p)
x [R|*2e~ A Zia (i —%) "R (30; =%) +n(p—%) TR(1—%) (3.37)

o [R[/2e=(0/2) [r(SR)+ (%) TR (=)

and using the equality

w(p —m)"R(p —m) +n(p — %) R(p - %) =
wm-|-m‘c)TR( B wm—|—m‘c) " wn

e n(m -%)TR(m - x) (3.38)

(w+n)(u—

w1 w+n

the posterior p.d.f. g(u, R|X) o< f(X|w, R)g(p, R) is also a normal-Wishart distribution

with the following form [59, p. 178]

g(ﬂ.,R|X) o {|R|1/26—(1/2)('w+ﬂ)(F-—ﬁl)TR(u—zh}} {|R|{a+n—D—1)/2€—(1/2) t:r[‘?fl'\“,]}1 (339)

iy e O K (3.40)
w+n
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and precision (w + n)R. The marginal posterior distribution of R given the observations

is a Wishart distribution with o+ n degrees of freedom and precision matrix Y given by

T="+nS+—(m-%)(m— ). (3.41)
w—+n

Since the posterior conditional normal distribution has an axis of symmetry along p = rh,

the MAP and MSE estimates of p are independent of R and are given by

Hnap = Mysg =1 = —————. (3.42)

The MSE estimate of the Gaussian covariance can be written in terms of the mean value

of the posterior marginal Wishart p.d.f.

¥ =T+ns+ﬁ(m—i)(m—i):ﬁ

(3.43)
ax+n a—+n

RIT/I}SE i
while the MAP estimate can be derived by calculating the derivative of g(rh, R|X) (from
tion 3.39) with respect to R and setting it equal to zero, which delivers

T +nS + 22 (m — X)(m — x)T
a+n-—D

Bt = (3.44)

1 be attempted to estimate values for the parameters of the prior distributions from
er independent mixture models in the same way as for the univariate case, using the

ia of Equations 3.31-3.33:

K
= Z Gy, (3.45)

k;l
(wR)™ =" & (thy, — m) (i — m)T (3.46)
T/oz = Z Ekﬁk, (347)

lapt
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where 3y, is the covariance matrix for mixture k of the speaker independent model. Setting
R equal to Y /a in Equation 3.47 uses the expectation value of the prior covariance, but
causes the equations to have no solution since R is over-determined. However, if diagonal
dominance of the precision is assumed, use of the trace on both sides of Equation 3.46
allows a reasonable solution to be found for w. A choice with respect to either T or « still
needs to be made. Without further information, it may be necessary to make an arbitrary
assignment. A choice that will satisfy the constraints is e.g. selecting @ = D+ 1. We do
1ot discuss prior estimation for the multivariate case in more detail here, but return to the

;pic in Section 3.2.5 where a method for estimation of prior parameters for a multivariate

mixture distribution is discussed.

The preceding procedures are applicable for the estimation of (single) Gaussian distribu-
fions, which we have found to be useful for speaker adaptation, even when cross-language
prior models are used [33]. However, to estimate complex models commonly used for s-
peaker independent recognition, we have to consider the problem of adaptation of mixture

lensity models, which is addressed in the next section.

3.2.3 Mixture density HMM parameter distributions

This section expands on the previous sections that dealt with mean and variance adap-
ation in a Gaussian framework and places those derivations in the context of Gaussian
ure densities used as output distributions in an HMM with state transition probabili-
Gauvain & Lee [58, 60, 61] suggested applying Bayesian learning of Gaussian mixture
components to speaker adaptation of CDHMMs. The method uses parameters of individ-
ial Gaussian components in a speaker independent HMM to compute prior distribution
neters for the adaptation of the Gaussian mean, variance and component weight, as

well as for the adaptation of state transition parameters within a single framework. We

proceed to discuss the prior distribution for a mixture density.
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Mixture weight distributions

The Gaussian mixture density for a given state j can be considered a density associated with
a statistical population consisting of a mixture of K component populations with mixing
proportions ¢;i, ..., ¢;x. The sizes of the component populations can then be considered to
be distributed according to a multinomial distribution, given by

K
f(nﬂ, ikleit, o Gr) H okl (3.48)

k=1

where n;; occurrences of each of the 1 < k& < K mixture densities in state 7 are observed.

It is known that the Dirichlet density [59, p. 174]

g(cjls ey CjK) o HC;;;: 5 (349)

with prior parameters Uj1,--, jx 1N this case, is a conjugate density for a sample from the ‘\
multinomial distribution and is thus suitable for expressing prior information about the l
mixing proportions. The posterior Dirichlet p.d.f. of the mixing proportions, or mixture

hts as we refer to them, is simply given by

Q(lea --rch|nj1: --;an) x f(njla .- anleh --,CjK)g(lea -'aCjK)
x chﬂ“chj;”_
k=1

OCH 'UJ;G"I“TLJk 1 (350)

The MAP estimate for the mixture weight is given by the mode of Equation 3.50 [61]

G5 — 1

_—— 3.51
S (B — 1) Bt

CikMAP =

e Djr = vjx + nj) is the parameter of the posterior Dirichlet distribution. The MSE
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estimate for the mixture weight is given by the mean of Equation 3.50 [59, p. 51]:

'U_;,'k

= (3.52)
D i1 Ot

Cjk MSE =

Transition probability distributions

The HMM state transition probability parameters can be dealt with in much the same
as the mixture weight parameters. If the assumption is made that the transition
ability parameters are independent of the other HMM parameters and that each row
of the transition probability matrix A is independent, which is true for a first order Markov
process, each row of the transition probability matrix can be considered to be the parameter

multinomial distribution, characterising the number of transitions from state 7 to each

ate in the HMM, with likelihood function

N
f(nﬂ, oo ﬂiN|CL2'1, e aiN) o H a;}"" (353)

i=1

here n;; transitions from state 7 to each of the 1 < j < N states are observed. The prior

Dirichlet density is expressed by

N
i —1
g(ai, .., a;in) H a:;?j’ (3.54)
j=1
with prior parameters 7, .., 7;n for the transition probabilities from state 7. Similar to
Equation 3.50, but calculating the joint p.d.f. of the transition probabilities from each state

neluding dummy state 0, we derive the joint posterior distribution

N
Q(AHnij} z‘:O,..,N;j:l,..,N) x Hf(nila - nz’N|a'i1: e afiN)g(aila o aiN)

1=0

N N

<[] [ aj};j*""f‘l] . (3.55)

i=0 j=1
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The MAP estimate for the transition probability parameters is given by the mode of Equa-
tion 3.55:

i —1
= L (3.56)
i e (a — 1)

where 7j;; = 7;; + n; is the parameter of the posterior Dirichlet distribution. The MSE

estimate for the mixture weight is given by the mean of Equation 3.55:

ﬁ..

i
_— (3.57)
S, fa

Q35 MSE =

Now that we have prior distribution families for every parameter of the Gaussian mixture

HMM in isolation, we combine these prior distributions to form a joint prior distribution.

Joint prior distribution for HMM parameters

Assuming independence between the transition probability parameters, the mixture weight

parameters and the parameters of the mixture distribution, the prior distributions of the

parameters of the Gaussian mixture HMM X can be combined in a joint prior distribution

g(A)ocﬂ{ast[H ][Hc:’,;“ g R )]] (3.58)

Jj=1

with the prior normal-Wishart mixture parameter distribution given by (see Equation 3.36)

(”tk, le) o ]Rik|1/2e_(wikfg)(l—"i,k,*mik)TR{k(“ik_mik) |B'ik|(a“k—D-—l)/’2€—(1/2) tr['r,-kR,-;\.,]. (359)

Under the complete data density assumption, which explicitly uses state and mixture align-

ment, posterior distributions for the parameters of an HMM can be derived. This is done
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Complete data HMM likelihood function

The complete data likelihood for a mixture density HMM A is the joint likelihood of the
observations X = {x, .., Xz}, the state alignment given by q = {qi, ..., ¢r} and the mixture
alignment given by 1 = {l1, ..., I} (see Equation 2.6):
T
f(X, q. 1|)\) o< H [aqt_lqthtlt|qut|1/23“(1/2)(.%”1—xt)Tqu(#qut—X:) , (3.60)
t=1
From the state and mixture alignments, mixture occupancy <;(t) and transition occupan-
¢y &;(t) (described by Equations 2.12 and 2.13 respectively) can be computed. From a
decoding point of view, this correspond to Viterbi state alignment and choosing the most
likely mixture at each state aligned observation frame. We note that the forward-backward

algorithm can also be used to calculate values for the statistics v;x(t) and &;(t), but for

the complete data likelihood we assume exact state and mixture alignment. In the fol-
lowing section (Section 3.2.4) this constraint will be eased when the estimation strategy is

discussed. Further statistics can be defined:

T
Yik :Z’Yik(t): (361)
=1
& =) &), (3.62)
=1 .
it =(1/7i) Z Yir (8) % (3.63)
and
T
Sit =(1/vik) Z’h‘k(f)(xt — %) (%0 — Rig) " (3.64)

where 7, is the total occupancy of mixture k in state j, &;; is number of transitions in the
aligned data from state 4 to state j, and X, is the sample mean and S;; the sample variance

of observations in mixture k of state 7. Using the statistics of Equations 3.61-3.64 and the
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compact form of the Gaussian likelihood function (see Equation 3.37), the complete data

ikelihood function of Equation 3.60 can then be written as

N N K
'f(X’ e IIA) = H [aggt [Haf”] [H klR.L Tik/2¢ —(Yin /D [r(SirRig )+ (g —%ik) T m(.ufk—iik)]]] )

i=1 g=i k=1
(3.65)

Complete data posterior distribution

The prior g(A) (Equation 3.58) includes the kernel density of the complete data likelihood
function f(X,q,1|A) (Equation 3.65) and is thus a conjugate prior distribution for the
complete data density. From Equations 3.58 and 3.65, the joint posterior distribution

g(q,1, A|X) for the complete data density is therefore given by

N

a1, AIX) o £(X, q,1|A)g( H [azr TTe™

i=1

K
H Vik— 1|E |1,.'2 —(wip /2) (i —mmie) T Rig (prz—miy) {R’ik|(&ik—D—1)/28f(l/2)tI’[TgkR;kI]“
k=1

N N K
H l:agc:a [H 1‘531] [H C;Y;;klek ')’ik/“ze_(%k/2)[tr(5ikak)+(#fk—’_‘-z‘k)TRv'k(”ik_"‘ik)]]:| ; (3.66)

1=1 =i k=1

By re-arranging terms, g(q,l, AlX) can be written in the same form as the joint prior

distribution g(\) (Equation 3.58) by:
~ N N
1=1 j:1

g

Uik +Yik— 1|m |1/2 —(1/2) (wi +yin) (i — 1035 ) T R (27, — 1035 |R1.k|(aik+'h'k_D"1)/2e_(1/2}tr[?ikRik]]“,

(3.67)
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where the mean of the posterior Gaussian mean i is given by (see Equation 3.40)

" WMk + VikXik
m;, = ; 3.68
Wik + Vik ( )

and the precision of the posterior Wishart precision Y, is given by (see Equations 3.41
and 3.38)

3 Wik Yik

Y. = Yir + YieSik + e — Xk ) (1M =
k k + YikSik wik_'_%_k(mgk %) (e — Rik)

T
=Ty + Z’}’z‘k(ﬂ(ﬁlik — x¢) (tiag — %) + wip (B — my) (g — m;)7.  (3.69)
=i

The solutions to the other posterior distribution parameters are also similar to those pre-

ability and mixture weight densities (7j; and Oz respectively), the relative precision of
the conditional posterior mean density, wi and the number of degrees of freedom of the

posterior Wishart precision density are given by:

flij = Mij + &ij (3.70)
Uik = Uik T Vik 3.5
Wik = Wik + Vik (3.72)
Qi = Qi + Vik- (3.73)

MAP and MSE parameter estimates

from the posterior distributions, MAP and MSE parameter estimates can be made. For

he Gaussian mean distribution, the mean and the mode of the posterior distributions are
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the same and the MAP and MSE parameters are given by mm (Equation 3.68)

WigMyg + VikXik (3.74)
Wik + Yik '

Hirvmap = HikMSE —

Tor the Dirichlet and Wishart distributions the mean and mode differs. The MAP para-
meters are given by (see Equations 3.56, 3.51 and 3.44)

i + & —1
o , (3.75)
; S (ma+€a—1)
Vig + Yik — 1
Cik MAP = (3.76)
E{{zl(vii +7a — 1)
e _ Y + Z?:l Yie () (i — x¢) (g — x¢) T + wir (M — myg) (B, — m;; )7
g F o+ Yik — D ’
(3.77)

and the MSE parameters are given by (see Equations 3.57, 3.52 and 3.43)

i + &ij
Qi MSE = —F (3.78)
Zl:l (nﬂ + gﬂ)
R o
CikMSE = K Rl (3.79)
> oim (v + va)
o _ Yadt ST e (£) (135 — ) (g — %) + wie (g — muge) (i — m;;)”
ik MSE g b

(3.80)

i; is apparent that the MAP estimates (Equations 3.75-3.77) are invalid under certain
‘conditions (7;; + & < 1, vik + Yk < 1 and ; + Y < D). This is because the mode of
the posterior distribution is undefined under these conditions. The MSE estimates do not

suffer from this problem though.

The MAP and MSE estimates of Equations 3.74-3.80 have been derived based on the
complete data assumption, i.e. that state and mixture alignment information is available.
In practice, this information has to be computed from the adaptation data. The next

section discusses an iterative estimation technique for the incomplete data scenario where
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state and mixture occupancy is not observed and also generalises the results of this section

to include all possible state and mixture sequences.

3.2.4 Estimation algorithm

Gauvain & Lee [61] propose using an expectation maximisation (EM) [41] estimation strat-
egy for MAP parameter estimation. The proposed strategy is based on the maximisation of
the auxiliary function R(A, 5(), representing the ezpectation of the complete data posterior

model log-likelihood (log[f(X, q, 1| Ng(A)])

R(A,A) = E[loglf(X, 4, 10)g(X) X, X]
= B[ loglf (X, @, 1) |X, A]] +log g(A) (3:81)

Q(A,A) +log g(N),

wiven the observations X, a current model A and where Q(A, 5\) is the auxiliary equation

for conventional Gaussian mixture ML procedures and is given by

~

QA A) = sz (X, q, 1)) log £ (X, q, 1| A). (3.82)

X|)\
Similar to maximising Q(A, A) (see [62]), maximising R(A, A) in each iteration, R(X, A) >
R(X,A\) implies a monotonic increase in posterior likelihood f (leu)g(j\) > f(X|A)g(A)
mtil X reaches a critical point where f(X|A) attains a local maximum. Maximisation
of R(\, A) according to the procedure defined by [61] leads to exactly the re-estimation

equations derived in the previous section (Equations 3.74-3.77), as we shall show shortly.

The auxiliary function Q(A, A) can be expanded (following [63, p. 9]):

T T T
Q(A! i) = TC’;T Z Z f(Xa q. 1|A) [Z 1Og ae}'t—mt‘“Z 1Og CQth+Z IOgN[Xfi P"qm ! thlt]]

= Z Qﬂ'r[ {G‘U}Jﬁl] e Z QC A {Cf'k’}k 1 + Z Z QN[)‘ i h'ﬁ] (383)

i=0 1=1 k=1
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(3.84)

1 k=1 t=1

Dl {cir o] (X| 2025 3 Z f(X, g =1l = k|X) log ca
K T

= Z Z vir(t) logcip  (reversing order of summation and using Equation 2.12)
k=1 i=1

K
= Z ~ix log ¢ (using Equation 3.61),
=1

(3.85)
g T
QN [, pig, Rik] = XN SN (X g =iyl = k[A) log N [xt, iy, Rar]
q I i=1
T
o Z Yik(t) log [|Rik|1/26_(1/2)(”“_x‘)TR"‘(““““x*)]
=1 (3.86)

(reversing order of summation and using Equation 2.12)

o 7ix log [|mk|1/28*(1/2)[tr(55kRik)+(M;k—itk}TRik(uik—ie;:)]]

(following Equation 3.37).
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If we consider maximising ¥(X, A) = e®*A) we get

YA, A) = QM) Hogg(R)

= g(i) 622’_‘“ Qa[A{ai }j'v=l}+z£v=i Qe; [A’{cik}i,::l]+zyzl 2{21 QAn[A i Rikl

N N N K
o< g(x) H eQa[Al{at‘j }f:}]] lH eQC-,: [A:{Cik}i‘;l] {H H eQN‘[Awuik=Rik]:|
1=0 =1 1=1 k=1
N N K
&5 g()‘) 1__[ [a‘(glgi [H a;:;j] [ H cggﬂ |Rlik|7ik/26_(7ik /2)[tr(SikRik)+(in—Rir )T Ran (Bix —iik)]]] ’
i=1 J=1 k=1

(3.87)

ch is of exactly the same form as the joint posterior distribution for the complete data
density given in Equation 3.66 and therefore maximisation of Equation 3.87 leads to the
MAP estimation equations derived in the previous section (Equations 3.74-3.77). Use of

the auxiliary function in the derivation ensures that the likelihood of the MAP estimates

monotonically increase in every iteration. Unfortunately this theoretical result does not
apply for the MSE estimates. Since the maximisation of the auxiliary function is done
for arbitrary unknown state and mixture alignment, either of the two main methods for
ive estimation of HMM parameters, namely the segmental and forward-backward
nethods of Chapter 2 can be used to calculate the sufficient statistics for the approximation
of the posterior parameters. For computational efficiency we select to use the segmental
adaptation method to locally maximise f(X, g|A)g(A), but we could also have used the more

seneral solution offered by the forward-backward adaptation algorithm to locally maximise

>

)g(A), as was assumed in the derivation of the maximisation of the auxiliary function

n the implementation of the segmental Bayesian adaptation algorithm, the Viterbi algo-
ithm is used to compute the state alignment (G(n)) in iteration n of the observations with

ie current model estimate:

d(n) = arg Inzk f(X,a|A(n)). (3.88)
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tate alignment in iteration n is used, in turn, to estimate the statistics of Equation-

61-3.64 and the MAP parameters of iteration n + 1, as described by
A(n+ 1) = arg max f(X,a(n)|A)g(N), (3.89)
A

> \(0) is initialised to the model estimate when no data is observed, which is usually
ist the model that was used to seed the prior distribution. When applying the segmen-
al Bayesian algorithm for speaker adaptation, use of only a single iteration may suffice,
ut we expect that for cross-language adaptation a relatively large number of iterations
e necessary, especially if there is a large mismatch between source and target data
ibutions. When a large number of iterations take place, unobserved model mixtures
ures with very low output probabilities) may converge to feature space regions where
ontribute to the a posteriori probability function and are therefore adapted. We now

mn our attention to the determination of the parameters of the prior distribution.

3.2.5 Prior density estimation

tion 3.2.2 discussed a method (from [24]) for prior density estimation for the mean and
ce (or precision) parameters of a univariate Gaussian (Equations 3.31-3.33) and a
iltivariate Gaussian (Equations 3.45-3.47). The discussion centred around a way of using
r independent Gaussian mixture models to estimate a normal-Gamma (univariate)
d normal-Wishart (multivariate) prior distribution for the mean and variance of obser-
tions from the Gaussian observation distribution. One may apply this approach directly
r Gaussian mixture observation distributions, but it would imply use of an identical prior
stribution for every mixture. Another way of estimating parameters for the prior distri-
fion is to set the prior mode equal to the parameters of a given HMM [61], typically an
MM trained on speaker independent data. The prior distribution, however, contains five
arameters (i, Mk, Wik, @ and Y ;) for each mixture, while only three parameters (Cik,
¢ and T;,) are associated with each mixture of the speaker independent HMM, essentially

__‘g that we are unable to estimate the variance of the prior mean and, similar to the
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other approaches, that our estimate of the mean and the variance of the prior precision are

dependent.

An elegant solution [61] can be found by limiting the family of the prior distribution to that
of the kernel density of the complete-data likelihood. The prior family is expressed as a joint
Dirichlet-normal-Wishart distribution (Equation 3.58) while the complete data likelihood
function (Equation 3.65) is a dependent Dirichlet-normal-Wishart function. Element-wise

comparison of the two equations delivers the following correspondence

M — 1 &; (3.90)
vik — 1 5 i (3.91)
i — D < v (3.92)
Wik < Yik- (3.93)

By selecting to retain 7i; and wiy, the other two parameters of the prior distribution, namely

i and oy, can be written in terms of w; by

Vi = Wy + 1 (394)

Qe = Wy + D. (395)

Ihis reduction of the prior renders it of the same distribution family as the complete data
ikelihood function and the remaining parameters can then be estimated directly from the

seed model parameters by using the prior transition probability
lie prior mixture weight value

Wik = Cik, (3.97)
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My, = My, (3.98)
Ty =
=3By d
wi, + D K (3 99)

estimates. The parameter reductions of Equations 3.94 and 3.95 are applied, as well as the
vice of prior seed values (Equations 3.96-3.99) for the Gaussian mean estimates (from

ation 3.74)

CikTi + YikKik

i = H; = = 3.100
Higmap = HikMSE Bp b ( )
for the MAP parameters (from Equations 3.75-3.77)
i e
o ol (3.101)
PR (e & —1)
w0 (3.102)

Sy (@ + 7a)
(G + D)Xy + Zle Vi () (B, — %) (B — %) + Cip (i — My ) (Mg — )"

= s

Cik + Yik
(3.103)
and for the MSE parameters (from Equations 3.78-3.80)

dij + &ij
- i (3.104)
| Efil(au + &a)

Ci ik + 1
3 Cik + Yik + (3.105)

S @+ + 1)
= (Eix + D) ik + Yor, i () (i, — %) (g — ;)7 + o (g — Mgg) (thry, — ag,)T
" Cik + Yik + D

(3.106)

'0,ugh the parameter reduction has produced a MAP estimate that is defined for all

lid prior parameter values, an artifact of the seeding is that the MAP variance estimate
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fion 3.103) is not equal to the prior variance when no observations are available.
ropose to remedy this by seeding the mode Yir/wi (in place of the mean as in
ation 3.99) of the variance prior. This results in an elegant formula for the MAP

ice estimate which is independent of the feature dimension D and is given by

A CrZix + Z;F___l Yir (8) (e — x¢) (i — x,)T + Cit (M — M) (1, — )T
Cik + Vik

(3.107)

lination of the posterior mean estimate (Equation 3.100) and the posterior variance
s (Equations 3.103, 3.106 and 3.107) shows that ¢ can be interpreted as a prior
g factor associated with the kth mixture of state 7. When ¢ is large the mean
fariance prior densities are sharply peaked around the values used for seeding the prior
adaptation occurs than when Cik 1s small. This choice implies that we expect the
associated with a mixture to express the confidence associated with the mixture,
1 makes intuitive sense. While the choice of seed value (Equation 3.97) makes sense, it
510 prior weight values in the range [0, 1], which in Equations 3.100-3.107 implies that
aweight associated with the prior distribution is less than that associated with a single
afion frame. The prior weight ¢ assigned to the prior distribution for each mixture
erefore multiplied by a global prior weight scaling factor w. Unfortunately, the optimal
eof w cannot be determined easily from a small amount of training data, since it needs

bé evaluated on independent data (target data not used for adaptation). We do not

ross-validation approach, but in experiments (Chapters 6 and 7) rather explicitly

Fthe effect of the prior weight scaling factor on recognition performance. More detailed

Bets of the application of Bayesian techniques for cross-language adaptation are covered
ter 5.

2 Bayesian framework for estimation that we discussed in this section focussed heavily
use of existing knowledge when facing the design of a new system, or when changing
based on new observations. In the next section we discuss methods that attempt

it correlation between parameters when changing a current model to better reflect
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the characteristics of a new sample.

3.3 Transformation-based adaptation

estimate a transformation of model parameters using a
limited amount of observation data. A linear transformation of model parameters is usually

fomputed and applied to an existing model for the model to better reflect the characteristics
ofthe observations. Non-

perceptrons (MLPs)

linear transformations, such as those implemented with multi-layer

, have also been applied for the transformation of model parameters.

ave
0 be estimated which will typically be far fewer than those of the model being tra

:Ek’

11S-

ed. Parameters of unobserved distributions are adapted by implementing the same

ansformation for all the parameters or for groups of parameters and rapid adaptation

tan thus be achieved on little target data. When a reasonably large amount of adaptation

is available, such as for our application of cross-language adaptation, transformation-

adaptation does not automatically guarantee asymptotic behaviour wi

th respect to
ilanguage dependent system.

Phe transformation approach can be applied at the feature or at the model level,

When
lied at the feature level, it is referred to as feature space adaptation or spectral transfor-
lation [54]. Feature Space transformation can be implemented as part of the pre-processing

tage of a system, transforming incoming speech from a new speaker to better match that

ta reference speaker or speakers - thus normalising the speech of the new speaker with
iB5pect to the reference. Feature space transformation can also be used to perform compen-
jation for spectral mismatch of recording conditions and channel effects between training

ind testing environments. When the transformation is implemented on cepstral features, as
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susually done, a linear process in the frequency domain can be implemented (or counter-
tted) with a simple offset in the cepstral domain. Frequency warping or other non-linear
fequency domain processes can be approximately implemented or counteracted with full
ranstormations of the cepstral features. Feature space transformations have been used to
perform phone-specific transformations to some degree by estimating several transforma-

bns across the entire feature space and implementing transformation of specific features

Sing fuzzy class membership rules [64].

Model space transformations are generally accepted [65] to deliver better performance than
ature space transformations since different transformations can be estimated for different
lionetic groupings and also other parameters, such as Gaussian variance, can be trans-
rmed separately from the Gaussian mean parameters. Model space transformations can
liake better use of available data than feature space transformations by estimating few
ansformations when little adaptation data is available and estimating many transforma-

s when a large amount of adaptation data is available.

i application of feature space transformation that is promising is the use of transformation
dnormalise speech from the training speakers with respect to some reference and then to
firain the models [66]. This approach is related to data augmentation, which transforms
h data from speakers close to the target speaker and subsequently performs retraining
tmodels [67]. We discuss these methods in the context of using them for cross-language
did augmentation, i.e. performing cross-language transformation and subsequent retrain-
We now proceed to discuss the method most commonly used for transformation-based

daptation namely the linear transform.

43.1 Linear transformation of the Gaussian mean

iear transformation of the Gaussian mean model parameters using target data attempts
dimprove the match between the model and target data through correlation between the

Stribution the model represents and the distribution of the target data. The Gaussian
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parameters are usually transformed since they specify positions in feature space that
epresent nuclei of the model distribution and can thus be directly compared with target
2 distributions. Transformation-based adaptation is usually performed with a linear
ransformation because it is well understood and leads to simple implementation. When
g linear transformation y = Wx from parameters or observations X = {x;, X7} to
arameters or observations Y = {yi, ..., yr} is estimated, the squared error is given by

f i
E=> (yi— Wxt)T(yg - Wx;) = tr[(Y - WX)(Y - WX)] (3.108)

=1

and the minimum squared error (MSE) solution is found using the pseudo inverse form for
he transformation matrix

W =YXT(XXT)! (3.109)
hich is given in transpose form by

W = (XXT)-1xXY” (3.110)
ind for the transpose of row [ of W by

wi = (XX Xy (3.111)

I comparison with later equations, where y; is the [th row of Y (not to be confused with
ny; of Y). Least squares linear regression has been used for estimation of feature
ransformations [54], as well as for model adaptation by estimating transformations
ifparameters of CDHMM [68]. Cox [69] also used regression to estimate linear transforma-
on of individual sound classes, exploiting correlation between classes. The most popular
ach for estimating linear transformations is related to the least squares estimate and

8 discussed next.
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um likelihood linear regression

maximum likelihood-based approach for linear transformation, termed maximum likeli-
d linear regression (MLLR), was proposed by Leggetter and Woodland [63, 27]. In the
mixture density HMM framework, MLLR estimates the linear transformation of

jussian means

i, = Wy, (3.112)
jat maximises the likelihood f(X|A) of the observations given the transformed model
A= {4, (cjk, Wy, R.Tk)_;l ket b (3.113)

e fransformation matrices can be found by maximising the auxiliary function
QA A) =) f(X,qlA) log(f(X, qlA)) (3.114)
q

ith respect to W where A is the transformed model of Equation 3.113. Using the trans-

med model in the expansion of the auxiliary equation (Equation 3.86) delivers

; W;U',;k,Rik] X Vik log [IRikI1/26-(1/2)[tl‘(sikRik)+(WHik—iik)TRik(Wﬂik—iik)]] (3115)

1 1 i _ _
oK ok [5 log [Rix| — Etr(SikR,-k) = §(Wﬂzk — Xik) T Rin(W gy, — Xz‘k)]

maximise Q(A, 5\), its derivative w.r.t. W is computed and equated to zero, i.e.

A) d N K
= ﬁ Z Z QN [Aa W”ik‘l Rzk]

i=1 k=1
T Z Z D7 dW [ 10g |Rzk| ( szzk:) (Wp‘gk - iik)TRik (W.’J'z}c - izk)
=1 k=1
N K
=3 > vuRa(Way, — i)y, =0, (3.116)
1=1 k=1
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delivers

N K N K
Z Z ViR W i i, = Z Z Yir Rk R iy, (3.117)

i=1 k=1 p=10k—=]

for a diagonal covariance matrix (and thus diagonal precision also), the Ith row on both

 of Equation 3.117 is given by

N K N K
Wi Z Z YehTskilbin M, = Z Z VikTikiT ik g (3.118)

t=1 k=1 1=1 k=1

ind we therefore find that the maximum likelihood estimate of the mean transformation
matrix W can be expressed in a much simpler format than in the original publications

7] by the expression

N K N K
= [Z Z '.Yik'rik”-"ik”ikJ [Z Z k?"mzﬂilkz#m] (3.119)
i=1 k=1

t=1: k=1

the Ith row of W. Equation 3.119 also clearly shows the relationship between the MLLR
timate and the MSE transformation estimate of Equation 3.111. The MLLR estimate is
y an MSE estimate that weights the contribution of each mixture component to the
seudo inverse with the amount of data associated with the mixture (7i%) multiplied by

ie precision of the mixture component separately for each feature dimension (rigr). The

th D x KN dimensional matrices X and Y, with the (i % k)th column of X given by
1)/, and the (i x k)th column of Y given by (vieriw)™/?%ir.
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owing Equation 3.119, but sharing the transformation W, across the K components of

arbitrary set of R states {si,...,sg}, the lth row of the transformation matrix W is

R K R K

=
WZ: = [ZZ'YsrkTsrklvs,kUg;k:l [ZZ%,;;TS,HH_?MHUM&]- (3.121)

r=1 k=1 r=1 k=1

'ytra.nsformation—based adaptation is performed because there is too little data for
-"-'-f'%ln ation of parameters, thus necessitating the tieing of transformations across multiple
f multiple HMMs to obtain a robust estimates of the transformation. Equation 3.121
88 not explicitly show tieing between states of different HMMs, but the group of states
a regression class) tied in the transformation may be associated arbitrarily with
t HMMs. The implementation of tieing used in this thesis groups together HMMs
ording to phonetic categories. A clustering algorithm may also be used to group together
fures that are close to each other in feature space according to some metric [70]. When
netic groupings, the assumption is that sounds from the same categories undergo

ansforms, while the clustering approach assumes that mixtures that are closely

ated in feature space undergo similar transforms.

pection of Equation 3.121 reveals that the rank of the matrix that is inverted is less
) or equal to the number of observed independent Gaussian mean vectors (at most
(). Since the matrix contains D + 1 rows and columns, it follows that it is necessary

RK > D + 1 for a non-singular matrix and thus for a unique solution to be found
Writing Equation 3.121 in the familiar Ax = b notation, it is apparent that b is
the column-space of A when the coefficients of the summation are not degenerate
therefore a solution exists, irrespective of the degree of mixture tieing. However, when
{ < D+ 1, the solution is not unique and a range of values for W exist that exactly
e the maximum likelihood values for all the tied Gaussian means, i.e. the values
if mean-only training (re-estimation) is done on the adaptation data. The use
singular value decomposition is preferred in general for the solution of the least squares

lem and may be used to determine a suitable transformation matrix W, irrespective
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‘whether the matrix A is singular or not. The transformation may, however, not be very

| if it merely implements re-estimation of the means.

When little target data is available, re-estimation is particularly troublesome as the re-
ated means are likely to be inaccurate. In this case a value of RK >> D + 1 is
sired to tie the transformation across a large number of mixtures for accuracy. However,
amount of available target data increases, less tieing, i.e. more regression classes and
15 a smaller RK is desired so that transformations may group together more closely
d mixtures. In the event of a very large amount of data being available, RK < D + 1
ively re-estimation) does not present a problem and may even be desirable because
curate estimates can be made on the target data alone. This is a very important point
ke since it indicates that MLLR can exhibit asymptotic behaviour (in terms of mean
imation) with respect to a system trained on target data only, if the number of regression

is allowed to increase in relation to the amount of target data available.

iscussion of this aspect in the original MLLR paper [27] attributes poor performance in
treme case of calculating a transformation of few tied mixtures using little data, to

accumulated matrices being close to singular and (matrix inversion) therefore causing
mputational errors. We feel that this is not the true reason for poor performance in the
e of little data and few tied mixtures (many regression classes). Rather, as mentioned,
on is that re-estimation on small amounts of target data is undesirable and therefore
e inter-dependencies between more parameters should be shared in the transformation.
ion of the condition of the matrices (from Equation 3.121) calculated in experiments
ters 6 and 7 also reveals that numerical accuracy is not of concern - also substan-
by the fact that the same results are obtained with Gauss-Jordan elimination (with

pivoting) than with a singular value decomposition-based approach.
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Implementation of adaptation procedure

An iterative procedure is typically used to estimate the transformations, consisting of the

ollowing steps:

1. initialising current model estimates to trained source models,

9. computing sufficient statistics (Equations 2.12, 2.13 and 3.61-3.64) from target da-
ta using current model estimates and either Viterbi-alignment or forward-backward

approaches,
3. computing the transformation for each regression class (Equation 3.121),
4. updating current model estimates (Equation 3.112) and

5. repeating the process from step 2 for a limited number of iterations or until conver-

gence occurs.

fhe procedure usually converges within only a few iterations, but more iterations may be
eded if the original source models match very poorly with the target data, which may be

e case in particular for cross-language model transformation.

3.2 Variance transformation

method for the transformation of both the Gaussian mean and variance parameters that
dosely related to MLLR was suggested by Digalakis et al. [71]. The method computes
near transformation of both Gaussian mean and variance parameters through the

imation of a transformation matrix W and an offset vector b, yielding transformed
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Ejk = WEjkWT.

(3.123)

ortunately a closed form solution exists only for diagonal transformation matrices and

teiore the transformation for each feature dimension is computed separately. The

thod has been found [65] not to perform as well as the standard MLLR approach, even

1t also adapts the variance parameters, since it does not make use of dependencies

ieen different feature dimensions. For this reason we did not pursue it further.

um likelihood variance transformation

er method for transforming both Gaussian mean and variance parameters, based on
ion of the MLLR adaptation framework, was proposed by Gales and Woodland
. Unlike the approach suggested by Digalakis et al. [71]

, the method optimises the
an and variance parameters

(3.124)

1 is the transformation to be estimated and B

sk 18 the inverse of the Choleski factor
b of -1
‘..‘_!‘ ;,G zjk 3 i.e:

By = €71 (3.125)

al and Electronic Engineering 80




University of Pretoria etd — Nieuwoudt, C (2000)

’} nter 3 Speaker adaptation theory

where
= CuCh. (3.126)

lhe updated variance model A is given by

i = {Av (Cjk’ ﬁjk: B}:‘cHBJk)?rzlaE:l } (3127)
e f;; is the MLLR updated Gaussian mean estimate.

imilar to the MLLR, derivation, the transformation matrix H can be found by performing
he derivative of the auxiliary function Q(X, A) (where A represents the MLLR updated
iea model obtained using Equation 3.121 and A the MLLR updated mean and variance
odel) with respect to H and finding the root of the equation. For a transformation
I, shared by the K components of a set of R states {si,...,sg}, each associated with
ation sequences of length Ty, , the estimation of the tied variance transformation can

represented by [72]

1 Zf:l Zf:l {Cik [Z?ii Yo b ) (it = Bos g Koyt = ﬁs,k)T] Crﬁ:k}
HS = R K Tsf- (3128)
Z’r:l Zk:l Et:l ’Ysrk(t)

e fi, . is the MLLR updated Gaussian mean estimate and C, ; is given by Equa-
26. The estimate of Hy in Equation 3.128 results in a full transformed covariance
. Full covariance matrices, however, are rarely used in speech recognition systems
e {0 their greatly increased computational requirements. For diagonal covariance, which
also use, the diagonal entries of f]jk are only affected by the diagonal entries of H. The
thus a diagonal transformation of variance - which does not take dependencies
the feature dimensions into account. In experiments, Gales and Woodland [72]
rfed an additional decrease in word error rate (WER) of 2% for speaker adaptation by
g this mean and variance adaptation approach versus only MLLR mean adaptation,
lich by itself achieved 13% decrease in WER.. Results [72] for noise and channel compen-

n produced greater increases due to variance adaptation (7% reduction in WER).
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oss-language adaptation, adaptation of the variance components may result in larger
rmance gains than for speaker adaptation, but may require a more complex approach
n diagonal transformation. Recently, Gales [73] proposed a method for unconstrained
variance transformation which uses an iterative estimation algorithm to solve for the

formation. We, however, propose and evaluate an alternative approach.

um squared error variance transformation

propose a method for unconstrained full variance transformation that uses weighted
it squares estimation to compute the variance transformation in a single iteration. The
d MLLR algorithm (Equation 3.121) is used to estimate transformed Gaussian mean
arameters in a first stage, similar to the approach suggested by Gales & Woodland [72],
llowed by Gaussian variance transformation in the next stage. Since almost exclusive use
of diagonal covariance matrices in speech recognition systems, we only consider
ansformation of the variance parameter vector o2 , on the diagonal of the covariance
x B, ;. A full transformation of the variance parameters associated with the K

mponent mixtures of a set of R states {s1,..., sp} can be expressed by
&srk == W:O'ET,C (3-129)

W is the (full) shared variance transformation matrix. We consider calculating the
jaximum likelihood estimate of the variance transformation of Equation 3.129, but find
e estimate can not be written in a closed-form, which reduces the attractiveness of
s approach. We therefore consider using least squares estimation for the computation of
* The squared error for the variance transformation of Equation 3.129 can be computed

from the observation data and is then expressed by

P B

R
= 3> k) [yt — 1) = W02 (] (Kot — i) = Wioh, ] (3.130)

r=1 t=1 k=1
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ere fi, ;. is an MLLR updated mean value (Equation 3.121) and assuming that the square

L vector implies computing the component-wise square of the vector (in the first term

ckets). Alternatively the squared error can also be expressed in terms of a statistic

ring the expected variance of the observation data by

R K 3
Z S ook [V = Wi | [vour = Wia2 ], (3.131)
r=1 k=1

Vi 1S the target variance (vector) for mixture % of state s, and is given by

iy - 2
Vo = == 1 York(®)(Xart = Bort)” (3.132)

" Vsrk

s prefer to use Equation 3.131 because Equation 3.130 computes the fourth power of the
stance between each observation and the transformed mean value, leading to very large
ates of the variance, while Equation 3.131 uses the average variance as computed in
n 3.132. There are still, however, fundamental problems with the use of the variance

ansformation of Equation 3.129 as optimised using Equation 3.131 since:

the constraint &2 7w > 0 1s not guaranteed and

» the least squares error function measures an additive error and not a relative error,
thereby biasing the transformation to decrease the error produced by large variance

values and causing large relative errors for small variance values.

transformed variance values can be forced to be valid by applying a variance floor, such
ibed in Section 3.2.2, but this does not really present a desirable solution. Also,
e magnitude of the variance values grouped together in a transformation have a large
ge, the relative error may be very large for small variance values, even if the relative
is small for large variance values. A better method for the MSE variance transform

vercomes both these problems is given next.

al and Electronic Engineering 83



University of Pretoria etd — Nieuwoudt, C (2000)

Speaker adaptation theory

mum squared error log-variance transformation

opose transforming variance parameters in log-space, thereby maintaining the con-
nt '&?kz > 0 and also minimising the relative error (in place of the absolute error) in the
nation of 5?kz- The transformation of the log-variance parameters by transformation

‘W1 is given by
logé? , = Wilogo? (3.133)

logo? , is the element-wise logarithm of &% ;. The squared error to be minimised
gan be written as

I K

E= Z Z Vs [1ogvmc — Wilog a?rk]T [log Vsx — Wilog ofrk] : (3.134)

I =1l e=1

the target variance v, j is given by Equation 3.132. By writing the squared error in

e following format

R K 5
= Z Z Yok [log ~ vk ] [log %] ; (8.135)

~ 2
r=1 k=1 Usrk o—srk

ent that the log-variance transform minimises the relative error between the trans-
; ) . . ) sy
variance &7, ; and the target variance v, and is therefore not as sensitive to the

five magnitudes of the variance components as the direct variance transformation.

illy, the least squares estimate for the log-variance transformation matrix is given in

aido inverse form solution (as in Equation 3.109):

R K K
r: T 771
WI = [ d > Yerlogvsslogol ] [ > Y vsklogol ogal | (3.136)

r=1 k=1 r=1 k=1

B note that the same discussion that applied to the MLLR estimation equation (Equa-
3.121 in Section 3.3.1) applies here with respect to the number of transformed mixtures

the dimension of the transformation. When equal or fewer mixtures than the dimension
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transformation are used, exact re-estimation of the variance values is the result. This,
ver, implies that inversion of the right-hand-side of Equation 3.136 is not attempted,
ut that the solution is found through e.g. a singular value decomposition-based approach.
he more mixtures are grouped together in a transformation, the more robust, yet less
iccurate, the transformation becomes. When little data is available, few transformations

hould be calculated since direct estimation of the variance is problematic on little data.

his concludes our discussion of linear transformation-based adaptation. For speaker adap-
tion mean-only transformations are usually used, but we have covered variance adaptation
i depth since it is important for cross-language adaptation. We have omitted discussion of
daptation of mixture weight and transition probability parameters because it is inap-
ropriate to apply transformation-based adaptation to them. For cross-language purposes,
daptation of mixture weight and transition probability parameters may be warranted.
ther forms of adaptation as in Section 3.2 or even re-estimation may then be used on
gse parameters as they require far smaller amounts of data to estimate reliably than the
aussian mean and variance parameters. We now proceed to discuss the application of

on-linear transformation methods for adaptation.

3.3 Non-linear transformation adaptation

on-linear transformation presents a more powerful paradigm than linear transformation,
i present serious challenges in finding a suitable functional form for the transformation
d also in optimising the parameters of the transform. As was noted in the previous section
| linear transformation, only limited amounts of data are usually available. Relatively
mple and well understood estimation techniques such as linear regression are able to use
ta relatively efficiently, while for the non-linear transformation approach gradient-based

thniques must generally be used, which may not use limited data as efficiently.

on-linear transformation of acoustic parameters has been performed for speaker adapta-

i using multi-layer perceptrons (MLPs) by Abrash et al. [74]. Gaussian mean compo-
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ients of a speaker independent model were adapted on speech from non-native American

English speakers. A single non-linear (sigmoidal output function) hidden layer was used

or the MLP. A linear transformation was used in parallel with the MLP, effectively adding

mprovement on standard MLLR was achieved by applying gradient descent to both the
ar transform and the MLP.

Choi and King [54] compared the performance of using an MLP with using linear transfor-
mations for speaker adaptation and found that the linear transformation delivered signif-
tantly better performance. The two studies thus indicate that, using current techniques,
tmay be difficult for non-linear transformations to improve on the performance of multi-
¢ linear transformations. For these above reasons, we restrict our further experimental

nvestigations to linear transforms.

3.3.4 Transformation for normalisation before training

e use of transformations as a pre-processing stage for the normalisation of speech from
ifferent speakers before commencing with HMM training has shown promising results. A
ocedure for data augmentation was suggested by Bellegarda et al. [75] that performs a
gast squares linear mapping from the acoustic space of a reference speaker to that of a
éw speaker. A large amount of data from a reference speaker is transformed to augment
e little data from a new speaker to serve for the training of speaker dependent models
I the new speaker. Separate linear transformations are estimated for the data associated
ith groups of elementary speech models. A problem that was reported with the procedure

a8 that too much transformed data from a single reference speaker overwhelmed the small
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amount of speaker specific data. This situation was improved in subsequent research [76]

hy
et

o implementing transformations from multiple reference speakers - thereby reducing the
amount of data per reference speaker to approximately the amount of data available

for the new speaker,

o implementing a selection procedure to choose reference speakers that are “close” in

some sense to the new speaker and

o tieing all the models for a reference speaker in estimating the transformation.

nstead of using reference speaker specific models.

Procedures related to the previous approach have been used for speaker normalisation
hefore training. Ishii and Tonomura [77] implemented a procedure for speaker normalisation
firough transformation. The method estimates MLLR mappings from each speaker to
e ST model trained on speech from all the speakers, subtracts the MLLR offsets from
ihe speech data and retrains the SI models. This procedure is repeated iteratively and
rs speaker independent models that do not model speaker variation offset and may
thus have narrower distributions. For recognition purposes MLLR is used to estimate the
mnsformation (including offset) from the normalised SI models for a new speaker. A closely
tlated approach was also proposed by Nagesha and Gillick [66]. MLLR mappings are also
stimated from SI models to each of a set of speakers, but speaker specific data is then
ansformed using the inverse of the MLLR estimated transformation for each speaker. The
pverse transformed data is then used to retrain SI models and the procedure is repeated.
er independent models are thus produced that are invariant to linear transformations
speech from speakers used to train them. Obviously, to accurately recognise speech
a new speaker, a transformation from the normalised models to the new speaker must

5t be estimated.
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procedures discussed in this section are of interest for cross-language adaptation, be-
ause they may be applied to the normalisation of data from multiple databases containing
multiple languages to a single target language. Further detail regarding application of the
0ds is given in Chapter 5. The next section discusses how Bayesian and transformation-

ased techniques can be combined to improve adaptation performance.

Combined Bayesian and transformation-based adap-

tation

the Bayesian adaptation approach detailed in Section 3.2 and the transformation-
ased adaptation approach detailed in Section 3.3 have their respective strengths and weak-
s. Bayesian methods have in particular two perceived advantages over the transformation-

based approach namely that with Bayesian methods

o expected performance is asymptotic with respect to a target system - i.e. the perfor-
mance converges to that of a target dependent system when a large amount of data

is available, and

o the degree to which adaptation takes place is automatically controlled by the amount
of adaptation data available - i.e. when little data is available little adaptation takes

place and as more data is available, more adaptation takes place.

ote that the asymptotic performance property of Bayesian techniques is not true for a
ransformation-based adaptation approach in general, but as we discussed in Section 3.3.1,
lay be achieved for transformed values if the number of transformation classes is allowed
icrease with the amount of adaptation data. The Gaussian mean values then eventually
with the target dependent mean values when there are fewer independent Gaussian

lixfures per transformation than the dimension of the transformation itself. This argu-

nent may be extended to the Gaussian variance values if they are transformed separately

Blectrical and Electronic Engineering 88




University of Pretoria etd — Nieuwoudt, C (2000)

'1';-;_,“ 3 Speaker adaptation theory

m the means. Transformation-based adaptation, on the other hand, has the advantage
wer Bayesian adaptation that by sharing transformations across groups of phonemes, un-

iith Bayesian adaptation.

ethods to combine Bayesian and transformation-based adaptation are researched in an
iiempt to retain desired properties from both strategies. We discuss two main techniques
at combine Bayesian and transformation-based methods, the first technique focusing on
mbining rapid transformation-based adaptation with the asymptotic performance proper-
of Bayesian adaptation and the second technique focusing on using Bayesian techniques

o control transformation-based adaptation when little data is available.

41 Linear transformation-MAP

galakis and Neumeyer [78] proposed combining Bayesian and transformation-based adap-
fion in two stages. Constrained transformation-based adaptation [71] is performed in the
5t stage, using a diagonal transformation to adapt both mean and variance (Equations
122 and 3.123) parameters with the adaptation data for a new speaker. This has the ad-
antage of rapidly and accurately compensating for significant bias between source models
d target data, such as is exhibited by channel effects. The resulting (speaker adapted)
odels are used as the starting point for the second adaptation stage, implementing an
proximate MAP (AMAP) adaptation algorithm for the Gaussian mean and variance pa-

meters. The Gaussian mean parameters are estimated using an interesting variation to

e MAP mean estimate of Equation 3.74 given for mixture & of state by [78]

@k + (L — @)y Xy

@ + (1 — w2

Hig AMAP = ) (3.137)

L and ;P are the mixture occupancy statistics of the speaker independent and
eaker dependent data respectively, uS® is the (speaker adaptive) transformed mean val-

' :-,P is the sample mean of the speaker dependent data and = is a global adaptation
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factor, in this case taking on values between zero and one. Gaussian variance pa-
r estimation is computed in a similar fashion to the mean estimation, calculating
inear combination of transformed variance statistics and speaker dependent variance s-
s. Digalakis and Neumeyer report [79] that their technique approximately halves
recognition error rate for non-native speakers of American English with only a small

t of adaptation data, approaching the speaker independent accuracy achieved for

paring the method to MAP mean estimation as derived in Section 3.2.5 (Equation 3.100
particular), the mixture weight prior seed é; associated with a mixture in the prior has
n replaced by the occupancy statistics for that mixture and the learning factor w is in-
ated in a different way. Using occupancy statistics for weighting causes mixtures with
i occupancy in the prior to be adapted more slowly than mixtures for which little data
8 observed when the prior was trained. This may be useful for speaker adaptation, but
| necessarily for cross-language adaptation, as the frequency of occurrence of a phoneme

source language may not give an accurate indication as to its suitability for seeding a
ribution for target language model estimation. In fact, we found that use of source
jage occupancy statistics (as in Equation 3.137) delivered poorer performance than use
ixture weight prior seed &; (as in Equation 3.100) and therefore in experiments in

6 and 7 we used the MAP estimates of Section 3.2.5 in implementing MLLR-MAP

| MAP algorithm to derive the final mean values. Better results were obtained with
netically derived regression classes than with clustering procedures. Interestingly, they
that their linear regression-MAP algorithm did not achieve asymptotic perfor-
ce with a speaker dependent system as was planned. They give as a reason the fact
f, even with a large amount (several hours) of adaptation data from a single speaker,

than 70% of the transformed densities are observed during MAP adaptation and are
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us unadapted. Most parameters of the adapted system are therefore not optimised for
e farget speaker beyond the initial transformation. The percentage of unobserved densi-
g5 may have been even higher if the initial transformation had not been performed. This
ints to a deficiency in the Bayesian estimation framework, namely that when the distri-
fion of the adaptation data differs significantly from the distribution of the data that was
‘on, only a fraction of the total parameter set that corresponds to the adaptation
adapted. For cross-language and cross-database acoustic adaptation we expect that

8 overlap between source and target feature distributions may be relatively poor, which

ay negatively influence recognition performance. We therefore evaluate the performance
psing MLLR-MAP, showing in Chapter 7 that it leads to improved performance for

anguage, cross-database adaptation.

MAP-MLLR

J [81] recently proposed an alternative combination of Bayesian and transformation-
ed adaptation termed maximum a posteriori linear regression (MAPLR). The goal of the
hod is not to ensure asymptotic performance, but to control the amount of adaptation
n little data is available by using prior distributions. It incorporates prior knowledge
hiasing the MLLR transformation to more closely match a unity transformation when
ptation data is available and to more closely match the MLLR estimate when a

se amount of adaptation data is available.

APLR

PLR assumes an elliptic symmetric a priori distribution for the transformation matrix.

e solution to MAPLR entails diagonalising the matrix inversion of the MLLR estimate
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Jquation 3.121) through the addition of a diagonal matrix, i.e.

ﬁ'z; = (é"sl)_lisl

= (Ggq +Dy) Yz + Dyw)) (3.138)

here G, is equal to the first term in brackets and zy the second term in brackets on
ht hand side of Equation 3.121, Dy, is the scale factor (acting as a diagonalising
m) and W} is the [th row of the location parameter of the transformation. Choosing

¢ location parameter (W) to be the identity matrix backs off the transformation to an

agonalising term the diagonal of G, (from Equation 3.121), normalised with respect

the amount of data and multiplied by an overall prior weight scaling factor w, i.e.

R K 2
Zr:l Zk:l ’Ysrkrﬁ'rklvsrki

R K
Zr:l Ek:l ’Y-S'rk

, (3.139)

dg; = @

here d; is the ith term on the diagonal of Dy, and v, j; is the ith term of the extended
1 vector v, ;. The value of w depends on the suitability of the prior distribution and

ould be determined empirically.

AP-like log variance transformation

e propose using a similar approach to MAPLR for the diagonalisation of the MSE log-
riance transformation. Since our attempts at obtaining an ML estimate for the variance
g-variance transformations did not produce a closed-form solution, MAP estimation

not attempted. We propose simply adding a diagonalising term (scaling parameter)
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lar to the scaling parameter in Equation 3.138, to the pseudo inverse solution of

13.136, producing the MAP-like estimate

R K R K
-1
= [Z Z Vs k lOg V5 i log a’ikT + DI] [Z Z Vs, k lOg afrklog crf?_kT + DZJ ;

=1 k=1 r=1 k=1

(3.140)

1 no data is observed, W1 backs off to a unity transformation and when a large
of data is observed, W;[ converges to the MSE estimate. We propose calculating
diagonal term D! in a similar fashion to the MAPLR diagonal term (Equation 3.139),

diicing the equation

R K
dl’i — erzl Z]i::l rysrk(log Jgrk‘i)‘z

S SR (3.141)
=1 k=1 /sr

l;; is the 7th term on the diagonal of D{ and the overall prior weight scaling factor

ared with Equation 3.139.

Comparison of MLLR-MAP and MAP-MLLR

3.1 shows conceptually the difference between the MLLR-MAP and MAP-MLLR
proaches. While MAP-MLLR controls the amount of adaptation the transformation can
0, MLLR-MAP uses the MLLR transformed models to seed prior distributions for MAP

MLLR
L L X
O --=""" MAP-MLLR il MLLR-MAP
. %
Prior X \\O
Sample average
A X

wre 3.1: Graphical comparison of the working of the MAP-MLLR and MLLR-MAP
es, showing adaptation of the Gaussian mean
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chniques may be useful for cross-language adaptation in different ways. MLLR-MAP

prove the robustness of estimates for transformation classes with little data by decreasing
e over-fitting effect when complex transformations are estimated from limited data. Both

thods are experimented with in Chapter 6 and 7 and are shown to significantly improve

¢ have discussed the major classes of methods used for speaker adaptation, namely
yesian and transformation-based methods, as well as combinations of these techniques.
new technique for full transformation of variance parameters in log-space and utilising
like control over adaptation was proposed, specifically with cross-language model
ation in mind. Some aspects regarding the application of the techniques for cross-
guage adaptation were mentioned, but will only be discussed in detail in Chapter 5.

perimental comparisons of Bayesian, transformation-based and combined techniques are

n Chapters 6 and 7).

 the next chapter we discuss a third class of methods applicable for acoustic adaptation,
amely discriminative training methods. These methods are not generally used for speaker
tion as such, but we found them to deliver useful performance for cross-language

coustic adaptation.
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