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Chapter 2

ffBackground.

- This chapter discusses in detail the background to the research that was performed for
é’this thesis. Firstly an overview is given of the theory of hidden Markov modelling that
I':w_,as applied. The basic notation is given and algorithms and equations that are required
for understanding the proposed ideas are discussed for reference from later chapters. This
section also serves to at least partially document the algorithms used in the development
of the Hidden Markov Toolkit for Speech Recognition (HMTSR) C++ software by Darryl
Purnell and the author during their Ph.D. studies. The software is included on the compact

disc inserted inside the back cover of this thesis.

Previous research in multilingual speech recognition is discussed next, focusing on how these
systems re-use acoustic information between multiple languages and specifically how cross-
language use of acoustic information has benefited the development of speech recognisers
in a new target language. Limitations of previous research is pointed out, in particular the
partial implementation of speaker adaptation techniques, leading us to consider improved

use of these techniques in following chapters.
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2.1 Hidden Markov modelling framework

‘The main components used in the training and testing of the speech recognition system

that was developed are:

e feature extraction in which speech signals are converted into sequences of mel-scaled

cepstral coefficient vectors along with their time derivatives,

e training of HMMs, which includes fixed segment initialisation, Viterbi alignment

re-estimation and the expectation maximisation or Baum-Welch procedure,

e continuous speech recognition in which the feature vectors are matched using dy-

namic programming to a set of trained HMMs constrained by a finite state grammar.

‘We now proceed to discuss each of these items in detail, including various choices with
respect to parameters of especially the feature extraction process. The selection of para-
‘meters of the general system is included in this background section on HMMs because the
values of these parameters are fairly standard and are not considered to significantly impact

the experiments discussed in a later section.

2.1.1 Feature extraction

The speech signal is blocked into frames of 16 ms spaced 10 ms apart - delivering 6 ms of
lap between successive frames. This choice has been empirically determined to deliver
od performance. At a 16 kHz sampling rate, which is used in all experiments, each 16 ms
e consists of 256 samples. Hamming windowing and a fast Fourier transform (FFT) is
ormed on each frame and the result is multiplied by its complex conjugate to deliver a
valued power spectrum. The next step is applying a mel-spaced filter bank to produce
nel-spaced filtered coefficients. The logarithm of each coefficient is taken and a discrete

ne transform (DCT) is performed on the coefficients to deliver what is referred to as
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mel-scaled cepstral coefficients or MFCCs. In all experiments 13 coefficients are used as we

have previously found this to deliver good performance for a connected digit recognition
task [35] performed with the HMM software and is also commonly reported in literature.
lemporal information about the speech signal is incorporated by estimating first and second
time derivatives for each of the 13 coeficients. A second order linear regression is applied
to each set of five consecutive coefficients in order to obtain a smoothed estimate of the first
and second time derivatives. The observation vector x thus consists of the 13 mel-scaled
cepstral coefficients plus first and second order time derivatives, totalling 39 elements at

each frame time. A detailed discussion of issues concerning the feature extraction process

can be found in [26].

2.1.2 Continuous density hidden Markov models

A continuous density hidden Markov model (CDHMM), hereafter referred to simply as an
HMM, signified by A, is described by two sets of parameters:

e a state transition matrix A = {a;;} reflecting the probabilities of making transitions

from each state 7 to each other state 7 and

' a continuous state observation density function b;(x) reflecting the likelihood of ob-
serving observation vector x in state j.

5

To simplify the equations we consider the initial state probabilities to be given by ag; for

h state ¢, without any loss of generality.

The models are first order HMMs since each transition probability to a next state depends

y on the current state, and not on which states were previously traversed. Left-to-
right HMMs without skipping transitions are commonly used for speech recognition and
he connectionist strategy we use for the purpose of this thesis. The state transition

probabilities a;; satisfy the constraints Z?;l a;; = 1 and for left-to-right models without
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'f]ii_pping transitions the additional constraints are that a;; # 0 only for j =i or j =1 + 1.
The assumption with left-to-right modelling is that observation sequences corresponding to
the same HMM traverse the same discrete sequence of statistical properties. This agrees
with our phonetic understanding of speech as exhibiting piecewise continuous behaviour to
a large degree. This unfortunately does not explicitly allow for the modelling of too much
variation in the way that the same word may be pronounced other than for time warping

of the speech signal, but at least leads to very efficient implementation.

The Markov models are termed “hidden” due to the fact that the states are not observed
directly in the observation sequence, but rather indirectly through modelling of observation
distributions in each state. Gaussian mixtures are used to model the observation probability

density functions. The p.d.f. of observation x; at time ¢ in state j takes the form

K

bj(x¢) = Z cipN x4, Hi Zjk]

k=1

s (2.1
=) cju(2m) T2 8 |72 (D btsn ) TG (g =)
k=1
where K is the number of mixture components, D is the number of feature vector elements,
¢, is the weight associated with the kth mixture in the jth state, A is the multivariate
normal density, ;. is the mean vector of the kth mixture in the jth state and X4 is the
covariance matrix of the kth mixture in the jth state. To greatly reduce the number of
parameters and since the elements of x; are largely uncorrelated, we make the assumption

that X, is diagonal. The observation density function becomes

K D
bixe) = 3 eii [ [(2m)~H205) e Cawsul 2oy (2:2)
k=1 =1
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'2.1.3 Duration modelling

= . "
It is commonly accepted that the duration modelling aspect of the HMM approach to speech
recognition is a major weakness. Conventional HMMs implicitly model state duration by

a geometric distribution, i.e.

p;(7) = a1 (1 — ag), (2.3)

where a;; is the auto-transition probability in state j and 7 is the duration in number of
frames. The geometric distribution is not able to model individual state duration probabili-
ties well since it can only represent an exponentially decreasing probability density function.
EXPIiCi‘t duration densities for states may be specified and in such a case the models are

called semi-Markov models [26]. State duration density may be modelled with estimated

discrete duration probabilities d;(7),7 = 1,2,..,7,, for each duration up to a maximum

duration 77 . This approach has the disadvantage that a large number of parameters have

mazr”

to be estimated. Modelling duration with parametric functions greatly reduces the number
\
of parameters. A popular function for modelling state duration probability is the Gamma

distribution
— ﬁa a—1_—fA1
plr) = =7, (2.4)

which has only the parameters o and 3 that have to be estimated for each state duration
model. Initial algorithms for duration modelling were very computationally expensive [26],
and a post-processing approach [36] was often used. The post-processing method uses
duration metrics to re-score a number of the best paths obtained from a search process. This
approach fails where the best re-scored path is not amongst the obtained best paths, and
is thus not re-scored. Another approach that was more recently investigated was the use of
the so-called expanded-state HMM (ESHMM) [37, 38] that provided moderate performance

provement, but at the cost of between 2-times and 4-times speed degradation.

An efficient approach towards incorporating duration modelling into the search process has
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 proposed by Du Preez [39] and a similar approach was later independently proposed by
ein [40]. Both approaches add a duration metric at each time frame to automatically

a state duration probability weighted path in a computationally efficient manner,

ing only marginal speed degradation. The method proposed by Burshtein was used in
experiments where applicable. Implementation of the method is discussed in the next

jon along with the algorithms used for the training of HMMs.

Hidden Markov model training

vent large vocabulary continuous speech recognition (LVCSR) systems make use of
models to efficiently capture the necessary acoustic information for modelling large
cabulary speech through use of pronunciation dictionaries. Separate HMMs are used to
ach phone and if a sufficient amount of data is available for training, head-body-tail
licit trigram-type phone models are used. An HMM is also used to model silence
beginning and end of utterances and between words. A clustering method, often
n data likelihood e.g. the Bayesian information criterion method, is used to decide
h trigrams to group together to constitute the set of phones. In this study only
hones, which do not take context into account, are used since the experiments mostly
£ ﬁise enough data to warrant the training of more complex models and also because of

r computational cost associated with the adaptation of large numbers of context

ent model parameters.

meters that have to be estimated in training an N state HMM are:

1 1 independent transition probabilities (since a; ;11 = 1 — ay; for the left-to-right

model and other off-diagonal values are zero),

'K mixture weights,

"D mean and covariances values and

duration parameters if duration modelling with the Gamma distribution is used.
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Methods used for training HMMSs are usually based on the mazimum likelihood principle.
[he maximum likelihood estimate Ay, of the parameters of an HMM given an observation

iience X = (x1,..,X7) is given by the mode (maximum) of the likelihood function
AML = Iﬂ)E\j.X f(X|A) (25)

The ML estimate is usually found by setting the derivate of either the likelihood function or
l'o'_g~1ikel'1h00d function with respect to the parameters of the model to zero and solving

for the ML estimate of the parameters.

likelihood of a sequence of observations given an HMM denoted by A has the form

'y K
FKIN) o YT T [Gaecsa D cank N (s g D), (2.6)
q t=1 k=1
summation takes place over all possible observation sequences q. ML estimation of
e parameters of an HMM is not trivial because a sufficient statistic of fixed dimension
not exist for observations of an HMM. The likelihood function is not expressible in
jerms of a fixed number of parameters and thus cannot be maximised easily. The lack of
cient statistic of fixed dimension is due to the hidden process of an HMM, namely
act that state and mixture occupancy is not observable. This lack of observability
, HMM estimation to be termed an incomplete data estimation problem. The solution
use an iterative procedure such as expectation maximisation [41] procedure. The
rocedure estimates state and mixture occupancy sufficient statistics in a first part.
the availability of the calculated state and mixture occupancy statistics together with
bservation sequence, the problem becomes a complete data estimation problem. This
es the computation of the ML parameter estimate in the second part for the complete
a problem. The EM procedure consisting of the calculation of occupancy statistics

ed by ML parameter estimation is repeated until convergence or a fixed number of

ons have occurred.

: system we use iterative estimation in each of three different training stages, namely
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fixed segmentation initialisation in the first stage, then segmental training (encompassing
Viterbi-alignment and ML estimation) and finally training with the standard EM or Baum-
Welch algorithm that computes statistics with the forward-backward algorithm and uses
them for ML estimation. Our three stage training process progresses from simple, com-
putationally inexpensive initialisation to the more complex and slower EM training. The

three training stages are discussed next.

Initialisation

The parameters are estimated by examining the distribution of features in training data.
‘The state transition matrix A is initialised according to left-to-right constraints. To boot-
strap the parameters, each observation feature vector sequence corresponding to a single
M is subdivided into as many segments of equal length as there are states in the HMM.
The mean and variance of the first Gaussian mixture component in each state is initialised
0 the sample mean and (diagonal) covariance of the corresponding speech feature segments.

ter initialisation the training process commences.

Segmental training

In segmental training the Viterbi [42] algorithm is used to compute the single most likely
f*l:e-alignment of each observation sequence. Given the estimated alignment, the com-
e data modelling problem is solved using maximum likelihood estimates of the mixture
weights, means and covariances of the Gaussian mixture models at each state and of the
nsition probabilities. Alignment and parameter estimation is repeated iteratively. We
sive details of the Viterbi dynamic programming algorithm since it is used in the imple-
tion of the adaptation algorithms and is also used for both the training and testing

MMs. We present the Viterbi algorithm mostly following the syntax from [26].

n HMM, the Viterbi algorithm finds the most likely state sequence q = (¢, G2, .-, 4r)

ical and Electronic Engineering 23
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3 given observation sequence X = (x;,Xy,..,X7) as well as the likelihood associated

| this sequence
LK [X)e= max P(X,q|A)
= P(X,q|A) 2.7)

T

= [atit-m‘: bi?'f. (X;)] ;
=1

t of the definition of the Viterbi algorithm we define

®;(t) = max Plqigs, .., G-1,% = J, X1X, .., X¢| A], (2.8)

q1,92,--y0t—1

ghest probability along a single path, at time t, that accounts for the first ¢ observa-

nd ends in state j. By induction, the Viterbi recursion is defined as

@j(t + 1) = Inax [fbi(t)az-j] bj(xt+1), 1 S j S N. (29)

0<i<N

obability in the final state at the final time frame, ® ~(T), indicates the score for

path followed via

’ij(t + 1) = arg max [@i(t)aij]. (210)
0<i<N

th can be backtracked from ¢ (T) to deliver the highest scoring path g.

in Equation 2.9 we have included transitions from state 0 to the current state to
ate the initial state probabilities. To initialise the Viterbi search for left to right
- we define ©y(0) =1, ®,;(0) = 0,7 # 0 and ®y(t) = 0,¢ > 0. When we discuss the
tation of successive Viterbi searches in a later section, the value associated with

zero (®y(t)) for ¢ > 0 might not have the value 0, but may represent the final value of
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a previous level in the search, e.g. q)%) (t) for highest scoring model r in the previous level.

=i
NS

The training of parameters takes place after statistics from an entire batch of training
erances are collected. The result of each application of the Viterbi algorithm is a state-
gned set of observation features. After statistics have been collected for the batch of
ing samples, new mean, variance and transition probability values are computed for
he Gaussian mixture models. Training using Viterbi-alignment is also called segmental
ing since the observation sequence is segmented, with each segment being used to

ipdate the parameters of a particular state. For the update, we first need to define the

rior state probability variable
7i(t) = Plg: = 7|X, A), (2.11)

1 expresses the probability of being in state j at time t, given the observation sequence
the model A\. When segmental training is used, 7;(t) is simply equal to 1 when
i and zero otherwise, i.e. v;(t) = 0(g — j) where § denotes the Kronecker delta
tion. Since we use Gaussian mixture distributions, we proceed to define the posterior
e observation probability variable

t) =y e P (2.12)

xpresses the joint probability of being in state j at time ¢ and observing mixture k,
the observation sequence X and the model A. Finally, we define &;;(#), the probability

g in state 4 at time ¢ and in state j at time ¢ + 1 by

&i(t) = Plg =1, g1 = §|X, A), (2.13)

can define the update equations for the coefficients of the mixture density in
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oy,
aij(n) = %ﬁ (2.14)
- T )
iy ) S
S Ywlt)xe
pik(n) = ﬁ (2.16)

_ T k() () — %) (g () — %4)"

Zf:l 'ij(t)

3,k (n) (2.17)

plementation of the segmental training process is now elaborated in more detail.
; lfult of the initialisation process described at the start of this section, only the first
component has non-zero values after the first iteration. If after an iteration, there
tures with zero mixture weights and sufficient data is available to warrant splitting,
ponent with the largest mixture weight is split to produce two components with
only slightly offset from each other in the direction of maximum variance. This
of alignment, re-estimation and mixture splitting is repeated iteratively until either

ence occurs, or a predetermined number of iterations have been completed.

;ation maximisation

e Baum-Welch method, which is an implementation of the expectation maximi-
or EM method for HMMs, to perform final training of the HMMs. Each HMM
ed using the set of speech segments accorded to it in the labelling process. The

Ich method iteratively updates the means, covariances, mixture weights and state
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sition probabilities at each state in much the same way as done with segmental train-
but uses the forward-backward algorithm instead of the Viterbi algorithm to obtain
ics from the training utterances. Once the sufficient statistics have been computed,
ations 2.14-2.17 are used for the update. The implementation of the forward-backward
ithm is not discussed here as we do not use it for implementing the adaptation ap-
es (i.e. we only use it for initial model training). We use a segmental implementation
I the adaptation algorithms since it is faster and is the method most commonly used in
ch on adaptation methods. Detail regarding use of the forward-backward algorithm

arameter update using the EM method can be found in [26]

ion model training

training of only the duration parameters is done through the Viterbi state alignment
Ms to the utterances they represent. For each alignment, the sum of the first and
nd moments of the number of frames corresponding to each state in each HMM is
- The empirical expectation values of the mean(E{r}) and variance(E2{7}) of

ation can be calculated and used to obtain the Gamma distribution parameters (&

through
gk TR (e grotnililidol (215)
VAR(r} VAR(r}

his concludes the training process. In the next section we discuss the implementation of

6 discuss the incorporation of duration modelling into the Viterbi algorithm. Du-
odelling is implemented according to the synchronous frame by frame method

by Burshtein [40]. The method modifies the Viterbi recursion (Equation 2.9) by
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rating a duration penalty C’{'j of making a transition from state i to state j at time
+1 within the term that is maximised by the recursion. When written in log format for
entation efficiency, the Viterbi recursion becomes

®;(t+1) =

og%}]{v[@i (t) + log(as;) + log(C; ;)] +logb;(x:41), 1<j<N. (2.19)

mpute the duration penalty, the method keeps track of the number of successive self-
ons in each state. The duration D;(t) of a state i at time # is equal to one plus the
er of successive self-transitions in that state. Let 1; denote the duration at which

amma distribution p(7) at state ¢ reaches a maximum value. The duration penalty

hen given by

’

0 =, Dz(t) < M;

e _ |08+ ) gD 1=, D.(0) > b -
IOg(D,(t)) i 7'4 7 Dt(t) < M;
klog(Ml-) i # 7, D;(t) > M;.

orking of the method can be understood in the following way. The duration prob-
ensity function is used to modify the probability of a transition occurring, based
duration spent in the state from which the transition occurs. When a transition
 a different state is taken, the exact duration is known and can be used to modify the
."t'y.. In considering self-transitions, however, the penalty can not be incorporated on
.z’by-fra.me basis since the eventual duration in a state is yet unknown. Incorporating
ration probability at each frame as if it were the last time step in a state would pe-
itial self-transitions in a state — causing an incorrect bias towards transitions from
vious state. Therefore the method should not penalise self-transitions until the peak
L probability is reached in a state. After the point of peak duration probability,

 penalty is applied in accordance with the duration probability density.
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e implementation of the level building algorithm. When recognition of a sequence of
ken words is attempted, it is desired to find the best match across all possible sequences
word and pause models. An exhaustive search of depth V, containing R possibilities
ch level leads to RV Viterbi alignments. Even for a simple task like connected digit
ition it leads to 10'° Viterbi alignments (if pause models are ignored) for a string of
most 10 digits - which is not computationally feasible. The level building algorithm [26]
atically reduces the computational cost by performing only R searches at each of the

els, thus effectively V' x R Viterbi alignments.

evel building algorithm works by computing at each successive level I the most likely

inal state probability (P}) at each frame ¢ over all R models in the search path

P = max [ (1)) (2.21)

“a level has been completed, the final state probabilities are used as initial state

probabilities for all Viterbi searches at the next level, i.e. we now set ®f(¢) = P},1 <r < R.
process continues until the desired number of levels have been searched. The most

equénce ends at the level given by

arg max(P}). (2.22)
1<I<V

' .fthe most likely final state at the final frame it is easy to backtrack the complete path
ved through all levels provided that the backtracking information from each individual
bi alignment has been retained. Note that the most likely solution does not necessarily
itself at the last level. The level building technique can thus be used to find unknown
th word strings up to the maximum depth for which was searched. In continuous speech

n experiments we set the maximum depth large enough so as to not influence the

rel building algorithm was initially used for experiments, but was later superseded
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he use of a frame synchronous trellis search [43] using the Viterbi algorithm, yielding
entical results with less computational cost. With the general HMM system background

vered, we turn to previous research in the field of multilingual speech recognition.

2.2 Multilingual speech recognition

ly the similarities between the phones of different languages, one has to examine the
telatively new field of multilingual speech recognition. Multilinguality refers to the property
m to be capable of understanding speech input in more than one language, i.e. it
both the acoustic and so-called language modelling of the relevant languages. As
coustic modelling in the multilingual field is concerned, research ranges from systems
 have a unified architecture, yet have separate models for each language to systems that
increased numbers of acoustic parameters. Language identification systems are also
nultilingual systems in a certain sense, but focus mainly on language models to perform
lination between languages with multiple acoustic models used primarily to extract

equences, but also to provide some discriminative information [44, 45].

i translation systems from the Verbmobil [10] project, specifically the JANUS [46]
, are amongst the first applications of multilingual speech recognition. The JANUS
is architecturally language independent and each speech recognition module is load-
models for the specific language it has to recognise. It therefore has a common

delling structure for speech from different languages, but does not share acoustic infor-

between languages.

d of multilingual information systems has also been actively researched. In the
ment of the MIT VOYAGER [14] multilingual system, separate context-independent
- models were trained for English, Japanese and Italian. The English version used 58
based on the labels used in the TIMIT [31] database and was trained with data from

 database. For the Japanese and Italian versions, the models were initialised by

l and Electronic Engineering 30




University of Pretoria etd — Nieuwoudt, C (2000)

Background

1 from their most phonetically similar English counterparts. This was reported
e further training of the Japanese and Italian models on language specific speech
nly transcribed but not aligned, thus saving the great amount of work needed
gn the speech. The Mandarin Chinese version of the GALAXY system, called
llowed on the VOYAGER system and also used English models to seed near-
andarin acoustic models. Another large multilingual speech recognition system
OS Callhome system [15]. The system performs task specific speech recognition
guages using the same architecture, but using separate acoustic models for

in question.

tstrapping of new target language recognisers

been performed to quantify the effect on system performance of the cross-
trapping of acoustic models. Wheatley et al. [16] compared the performance
acoustic models are bootstrapped with English acoustic models trained on
t-start training of the Japanese models, as well as initialisation of the Japanese
h a limited number of hand-picked representative examples. The application was
git recognition system with some control words and was modelled with whole
In the case of bootstrapping with English models the Japanese word models
with sequences of English phone models. Compared to the flat-start ap-
ss-language bootstrapped models and the hand-picked representative exam-
s achieved better performance after 2 training iterations. After 10 iterations,
ed models exhibited a small improvement in overall performance over the
proaches. The authors also performed a cross-language smoothing experiment.
L small amount of Japanese data was used, smoothing of the final model by

tween English and Japanese models achieved slightly better performance

Japanese models directly.

. performed bootstrapping of a Japanese recogniser with models from a German

and showed bootstrapping to be an efficient method of initialising the target
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anguage models. In a subsequent study [17] a multilingual phoneme set comprising of
ollection of the language dependent phonemes of German, English, Japanese and
h was created and used to bootstrap recognisers in Chinese, Croatian and Turkish.

tstrapping was done through a five step process namely

1. the determining of a mapping of language specific phones to the multilingual set by

phonetic experts,
itialisation of the acoustic models according to the mapping,

naximum likelihood linear regression (MLLR) transformation of the models using
language specific data along with language specific linear discriminant analysis (LDA)

salculation and K-means codebook clustering,
our training iterations and

epetition of steps 3 and 4.

pping was shown to result in better performance than is achievable with flat start
g on target language data when only a few iterations of training is done. Schultz &
later also investigated a simpler form of bootstrapping by performing cross-language
[30] of acoustic models. Various monolingual model sets as well as a multilingual
VIMs were used as starting models for 2 iterations of Viterbi training on German
a. It was shown that using the multilingual phone set as initial model was slightly

to using 3 of the 5 languages (Turkish, Croatian and Spanish) and was far superior

1j:apa.nese and Korean initial models.

ootstrapping results discussed in this subsection indicate that cross-lingual models
e good initial models for training in a new language. None of the bootstrapping
Its, unfortunately, indicate a real advantage in terms of recognition rate of using cross-
ormation. The methods do, however, show the advantage of requiring fewer

iterations for convergence when cross-language seed models are used.
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2.2.2 Explicitly multilingual systems

acoustic information in a source language is used to bootstrap models for a new lan-
the source language data is only used to construct seed models for initial alignment,
labelled data and is not used in subsequent re-alignment and re-estimation of models
new language. In this case separate recognisers are realised for each target language.
' studies have explicitly used multilingual phoneme sets, in which case the eventual
Is exhibit characteristics of multiple languages. Kohler [48] studied isolated phoneme
tion on continuous American English, German and Spanish telephone speech. He
hat the sharing of acoustic information across languages leads to some performance
tion, but that a representation with fewer mixtures than that of the combined mod-
the three languages still delivered reasonable performance. Weng et al. [19] used
Gaussian codebooks across Swedish and English phones and reported that allowing
ing of data across phones from the two languages also did not improve performance,
10 a system capable of performing language identification as part of the decoding
Bonaventura et al. [20] performed experiments to quantify the performance of a
with a language-independent phonetic inventory on Italian, Spanish, English and
man words. Dissimilarity measures were proposed to enable automatic determination of
phones from the different language to merge into multilingual phones. Significant re-
1 of the total number of phones needed was achieved at the cost of some degradation

rmance with respect to language dependent phones.

ailed study covering five languages (Croatian, J apanese, Korean, Spanish and Turk-
ultz & Waibel [30] found that monolingual systems outperformed a system with
nultilingual acoustic models and the same number of parameters as the five mono-
/stems combined, by approximately 1% (27% versus 28%) in terms of word error
R). The reason given for the decrease in performance is that language indepen-
odelling decreases the precision of the acoustic models. In a study also covering
ages (French, German, Italian, Portuguese and Spanish) Kohler [21] found that a
gual approach to acoustic modelling yielded a 3.2% (14.2% versus 11.0%) increase
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Laverage WER for an isolated word recognition task and a 4.9% (43.7% versus 48.6%)

se in correct phone recognition rate compared to a monolingual approach.

performed by Uebler et al. [49] targeted performance improvement in a bilingual
ronment where L1 German and Italian speakers spoke both languages, producing L1
' German and Italian speech. The study found that a bilingual German/Italian
outperformed two separate monolingual systems on the test database of L1 and
German and Italian speech. The improvement of 1.2% (11.3% versus 12.5%) in WER
bilingual system is attributed to the large variation in accents and dialects of the

ers in both languages being better captured by the bilingual system than by the
onolingual systems.

esearch discussed so far in this section has focussed either on bootstrapping to avoid
nual labelling effort in a new language, or on creating shared multilingual phone sets
cilitate integrated multilingual recognition. The latter approach has mostly lead to a
lation in performance over monolingual systems, except where L1 and L2 speech were
in an application [49]. Little research has been performed with the goal of improving
‘mance in a specific target language through explicit use of cross-language acoustic

tion. Research conducted with this specific goal in mind is discussed next.

Cross-language use of acoustic data for new target lan-

guages

ntura et al. [20] performed experiments where it was assumed that little data was
> for training Spanish models. The application was an isolated word recognition
with a vocabulary of 70 words. It was found that the use of phone models trained
Italian and Spanish data, i.e. on the pooled multilingual data, lead to between
(12.9% versus 13.5%) and 3% (20% versus 23%) reduction in WER over a system
only on the Spanish data, depending on the amount of adaptation data used.
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Background

f on-line Bayesian learning for cross-language adaptation was investigated by Bub
d applied to Slovene isolated digit recognition. The method used the on-line
a posteriori (MAP) algorithm, updating only the Gaussian means via linear in-
etween the original and sample means - i.e. the Gaussian variance, mixture
ransitions probabilities from the original models were not changed. The adap-
nolingual and a multilingual (German, American English and Spanish) HMM
Slovene was considered. Results show that MAP adaptation on 646 utterances
Slovene digits improved the performance of the baseline multilingual HMM
76.5% to 85.0%. Unfortunately no comparable results for direct training on the
data are given. The WER of 15% is also high for an isolated digit recognition

mvestigated the cross-language use of multilingual acoustic models (trained on
lish, Italian, French, Portuguese and Spanish) in developing a German speech
system. A bootstrapping method from Schultz & Waibel [17] was compared to
mean-only MAP adaptation on German adaptation data and it was found
le adaptation data, the cross-language adaptation approach achieved better
an a bootstrapping or a flat-start approach. When most of the adaptation
5 used, a flat-start German system was found to achieve the best performance. The

oor performance of the adapted system when more data is available is probably
fact that only the mean parameters were adapted- since it is known that the
the MAP algorithm is asymptotic with the task dependent performance as
f data increases (Lee et al. [24]).

1 we discussed the various approaches that were followed in previous research
al recognition. Some adaptation algorithms, notably MAP and MLLR were
1 a limited fashion. Proper use of adaptation algorithms presents the logical
1 to the research covered in this chapter. In the next chapter we therefore pro-

adaptation algorithms in depth to apply these methods for cross-language
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