

Characterization of antimicrobial compounds from *Combretum paniculatum,* a plant with proven anti-HIV replication activity

Faga B. Samdumu

Thesis submitted in fulfilment of the requirements for the degree of

Philosophiae Doctor

Phytomedicine Programme Department of Paraclinical Sciences Faculty of Veterinary Science University of Pretoria

Promoter: Co-Promoters:

Prof J.N. Eloff Prof M. van Vuuren Dr L.J. McGaw

January 2007

DECLARATION

The work described in this thesis was conducted in the Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria between July 2003 and June 2006, and the Department of Molecular Natural Products Research, Hans-Knöll Institute (HKI), Jena, Germany from June 2005 to August 2005, under the supervision of Prof J.N. Eloff, Prof M. van Vuuren, Dr I. Sattler and Dr L.J. McGaw.

The data included in this thesis are the results of my investigations, and I hereby declare that this work has been written by me and that it is a record of my research work. References made to published literature have been duly acknowledged.

Faga Samdumu

I declare the above statement to be true.

Professor J.N. ELoff

Professor M. van Vuuren

Dr L.J. McGaw

ACKNOWLEDGMENTS

I thank God Almighty for the marvelous things He has done for me. I can do nothing without Him.

The assistance and advice of Professors J.N. Eloff, M. van Vuuren and Dr L.J. McGaw has been invaluable during the course of this study. Without Dr McGaw's help in editing and finalizing the thesis in South Africa while I was in the USA with my family, I would have had to travel to South Africa for the final stages.

My gratitude also goes to Dr Isabel Sattler and staff of Department of Molecular Natural Products Research HKI, Jena.

My in-depth appreciation goes to the National Research Foundation (NRF) and University of Pretoria Post-Graduate Study Abroad Programme for financial support.

I thank my colleagues and staff of the Phytomedicine laboratory, University of Pretoria and members of house number 5 for all the encouragement and support.

I would also like to thank my adorable family and wife who have stood by me all through my studies for their constant support and prayers.

SUMMARY

There is an urgent need to discover new antimicrobial and antiviral compounds owing to increasing problems of resistance to drugs encountered in many pathogenic organisms. There are also problems with currently used drugs in terms of side effects and expense. Plants have been used for many generations for healing purposes, and screening of extracts of these plants has often yielded positive results. In particular, plants with antimicrobial properties are the subject of much investigation. This study focuses on isolating the compounds responsible for biological activity in one such medicinal plant, *Combretum paniculatum*, extracts of which have been shown to possess antimicrobial activity.

Members of the genus *Combretum* are widely used for medicinal purposes by many groups in Africa, to treat various conditions. Other researchers have discovered antifungal, antibacterial, anti-inflammatory and molluscicidal effects of these plants. One species of this genus, *C. paniculatum*, has been reported in the literature to have antiviral activity against HIV-2 with a promising selectivity index. It is important to exclude highly toxic effects of potential antimicrobial preparations. *C. paniculatum* extracts also displayed good antibacterial activity and some anti-inflammatory activity in other studies. Although many active compounds, especially antibacterial and antifungal, have been isolated from other *Combretum* species, little is known about the identity of compounds responsible for activity in *C. paniculatum*.

In the initial stages of this project, the crude extracts of leaves of *C. paniculatum* were investigated for antiviral and cytotoxic activity. It was found that the acetone and water extracts of *C. paniculatum* leaves reduced the cytopathic effect of feline herpesvirus type 1 by 3.0 log₁₀, a very promising result. Investigations were carried out to determine the best solvent to use for extracting the active components. It was found that acetone was the best extractant in terms of the number of compounds extracted from the plant after analysis using thin layer chromatography (TLC) and the number of bioactive compounds using bioautography against bacteria. Water extracted a large quantity of material.

Different plant parts, namely stem bark, root bark and leaves, were screened for antiviral and antibacterial activity and the leaves and stem bark showed good activity. The test organisms were feline herpesvirus type 1 (FHV-1) for antiviral testing, and a range of Gram-positive and Gram-negative bacteria for antibacterial activity. Cytotoxicity against African green monkey kidney (Vero) cells was observed only at a relatively high concentration of 0.28 mg/ml. Based on availability and sustainability, the leaves were chosen for further work especially since leaves were used in the published data.

Isolation of active compounds from a 70% acetone extract of a large quantity of *C. paniculatum* leaf material was carried out using bioassay-guided fractionation. The bioassay used to select the active fractions for further fractionation was an antibacterial assay since it is easier and more rapid to detect antibacterial activity than antiviral activity. Various techniques including column chromatography and high performance liquid chromatography (HPLC) were used to fractionate the extract to result in pure compounds. The isolated compounds were structurally elucidated by nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) analysis. Nine compounds were identified as cholest-5-en-3-ol, 2-phyten-1-ol, isoquercitrin, p-coumaric acid, 2, 3, 8-tri-O-methylellagic acid, beta-sitosterol, gallocatechin, apigenin and apigenin-7-glucoside.

The compounds were subjected to various bioassays to evaluate their biological activity. The isolated compounds had a broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens, as well as some antifungal and antimycobacterial activity. Cholest-5-en-3-ol, 2-phyten-1-ol, gallocatechin and apigenin were active against *Escherichia coli* (Gram-negative) and *Mycobacterium vaccae*, and against the fungi *Sporobolomyces salmonicolor* and *Penicillium notatum*. Cholest-5-en-3-ol and 2-phyten-1-ol were also active against *Bacillus subtilis* (Gram-positive). None of the compounds showed substantial antiviral activity against coxsackievirus strain B3 Nancy, influenzavirus type A strain Hong Kong and herpes simplex virus type 1 strain K1. The compounds were generally moderately cytotoxic to the HeLa cell line but were less toxic to the Madin-Darby Canine Kidney (MDCK) and Vero cell lines.

The results obtained confirm the ethnobotanical use of *C. paniculatum*. Nine compounds with various biological activities were isolated from the leaf extract. The constituents responsible for antiviral activity still remain to be isolated and further work should be carried out making use of antiviral assay-guided isolation. These compounds may be present in low concentrations in *C. paniculatum*. Synergistic effects of isolated compounds on biological activity, particularly antiviral activity, could be investigated. The results reported here confirm that the presence of antibacterial activity in plant extracts is not an indicator of antiviral activity. Although the crude extracts of *C. paniculatum* had both antibacterial and antiviral activity, different compounds are responsible for antibacterial and antiviral activity respectively.

iv

Table of Contents

Declaration	i
Acknowledgements	ii
Summary	iii
Table of Contents	V
List of Figures	Х
List of Tables	xii
List of Abbreviations	xiii
Chapter 1 Introduction	1
1.1 Introduction	1
1.2 Antimicrobial resistance	2
1.2.1 Antiviral resistance	2
1.2.2 Antibiotic resistance	2
1.2.3 Factors contributing to development of resistance to antimicrobial drugs	3
1.2.3.1 Failure to use narrow-spectrum antibacterial drugs	3
1.2.3.2 Colonization pressure in hospitals	3
1.2.3.3 Length of hospital and ICU stays	4
1.2.3.4 Antibiotic misuse in agriculture	4
1.2.3.5 The FAAIR initiative	5
1.3 Viruses and viral diseases	5
1.3.1 Structure of viruses	6
1.3.2 HIV and AIDS	7
1.3.3 Other viral infections	8
Chapter 2 Literature review on the therapeutic use of plant compounds	10
2.1 Natural product drug discovery	10
2.2 Secondary metabolites	11
2.2.1 Flavonoids	13
2.2.2 Triterpenoids	15

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA <u>UNIBESITHI VA PRETORIA</u>

2.2.3 Glycosides	16
2.2.3.1 Classification of glycosides	16
2.2.4 Coumarins	18
2.2.5 Plant-derived drugs employed in Western medicine	20
2.3 A brief history of pharmacology	21
2.3.1 Historical development	21
2.3.2 The herbal approach to viral infection	21
2.3.3 Some plants with antiviral and antibacterial activities	24
2.4 Study of medicinal plants	24
2.5 Work done on the Combretaceae family	25
2.5.1 The Combretaceae family	26
2.5.2 Taxonomy	27
2.5.3 Evaluation of the antibacterial activity of different species	28
2.5.4 Combretum erythrophyllum	29
2.5.5 Combretum woodii	29
2.5.6 Combretum microphyllum	30
2.5.7 Unpublished work on other members of Combretaceae	31
2.5.8 Combretum apiculatum	31
2.5.9 Combretum paniculatum	32
2.5.9.1 Ethnomedical information on C. paniculatum	32
2.5.9.2 Description of <i>C. paniculatum</i>	33
2.5.9.3 Previous work on <i>C. paniculatum</i>	33
2.6 Hypothesis	34
2.7 Aim of study	34
2.8 Objectives	34
Chapter 3: Materials and Methods	36
3.1 Plant collection	36
3.2 Preparation and extraction of plant material	36
3.3 Analysis by thin layer chromatography (TLC)	36
3.4 Bioassay-guided isolation	37
3.5 Solvent/Solvent fractionation	37
3.6 Chromatography	37

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA UNIBESITHI VA PRETORIA

3.6.1 Amberlite XAD-16	37
3.6.2 Chromatotron	38
3.7 High Pressure Liquid Chromatography (HPLC)	38
3.8 Analysis and concentration of fractions	39
3.9 Antiviral activity	40
3.9.1 University of Pretoria method	40
3.9.1.1 Cell culture	40
3.9.1.2 Virus	40
3.9.1.3 Determination of the antiviral efficacy of the extract	40
3.9.1.4 Determination of the cytotoxicity of the extracts (MTT assay)	41
3.9.2 Hans-Knöll Institute (HKI) method	42
3.9.2.1 Cytotoxicity test to determine the maximum tolerated dose (CC_{10}) of the	
test compound in HeLa, MDCK and Vero cell monolayers	42
3.9.2.2 Determination of the antiviral efficacy of the test compounds by means of	
inhibition of the cytopathic effect (CPE)	42
3.10 Antibacterial activity	43
3.10.1 Microdilution assay for MIC determination	43
3.10.2 Total activity	43
3.10.3 Bioautography	44
3.11 Antifungal activity of extracts	44
3.12 Agar diffusion method for antibacterial and antifungal activity	45
3.13 Antioxidant activity	45
3.14 Anti-inflammatory activity	46
3.14.1 Enzyme assay	46
Chapter 4: Selection of the best extractant for the plant material	48
4.1 Introduction	48
4.2 Extraction	48
4.3 Results	49
4.4 Discussion	52

Chapter 5: Determination of antiviral, antimicrobial, cytotoxic and antioxidant activities of extracts 54

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA UNIBESITHI VA PRETORIA

5.1 Introduction	54
5.2 Methods	55
5.2.1 Antiviral activity	55
5.2.2 Antibacterial activity	55
5.2.3 Bioautography	55
5.2.4 Antioxidant activity	55
5.2.5 Cytotoxicity (MTT assay)	55
5.3 Results	56
5.3.1 Antiviral and cytotoxic activities of extracts	56
5.3.2 Antibacterial activity	57
5.3.3 Bioautography of extracts	59
5.3.4 Antioxidant activity of extracts	59
5.4 Discussion	61
5.5 Conclusion	62
Chapter 6: Preliminary isolation study	64
6.1 Introduction	64
6.2 Methods	64
6.2.1 Extraction and preliminary column chromatography	64
6.2.2 Solvent/solvent fractionation of root bark	64
6.2.3 Bioactivity testing	66
6.3 Results and Discussion	66
6.4 Conclusion	74
Chapter 7: Isolation of compounds from <i>C. paniculatum</i> leaves	74
7.1 Introduction	74
7.2 Methods	74
7.2.1 Extraction and isolation	74
7.3 Results and Discussion	78
7.4 Conclusion	80

Chapter 8: Determination of chemical structures, biological activities and cytotoxicity	
of isolated compounds	81
8.1 Introduction	81
8.2 Structure elucidation	81
8.3 Biological activity and cytotoxicity	82
8.4 Results and Discussion	82
8.4.1 Identification of isolated compounds	82
8.4.2 Biological activity of isolated compounds	92
8.4.2.1 Antiviral activity	92
8.4.2.2 Antibacterial and antifungal activities	93
8.4.2.3 Cytotoxic activity of isolated compounds	95
8.5 Conclusion	96
Chapter 9: General Conclusions	98
9.1 Introduction	98
9.2 Selection of the best extractant for the plant material	98
9.3 Determination of antimicrobial, cytotoxic and antioxidant activities of extracts	99
9.4 Preliminary isolation study	100
9.5 Isolation of antibacterial compounds	101
9.5.5 Determination of chemical structures, biological assays and cytotoxicity of compounds	101
References	103
Appendix 1	119

List of Figures

Fig 2.1: Relationship between intermediate metabolism and secondary compounds	
in plants	12
Fig 2.2: Biosynthetic relationship of flavonoids	14
Fig 2.3: Classification of glycosides	17
Fig 2.4: Types of saponins	17
Fig 2.5: Pathway to triterpenes	18
Fig 2.6: Pathway to formation of coumarins	19
Fig 2.7: Flow chart for the study of plants used in traditional medicine	25
Fig 2.8: Distribution of <i>C. paniculatum</i> in southern Africa	32
Fig 4.1. TLC plate showing separation of components present in 8 different solvent extracts	
of C. paniculatum leaf material using EMW as eluent and vanillin spray reagent	50
Fig 4.2. Separation of components present in 100 µg of extracts of <i>C. microphyllum</i> leaves,	
developed in BEA and sprayed with vanillin/sulphuric acid spray reagent	51
Fig 4.3. Separation of components present in 100 μ g of extracts of <i>C. paniculatum</i> leaves	
developed in BEA and sprayed with vanillin/sulphuric acid spray reagent	52
Fig 5.1. Microplate representation of extract test (A), cytotoxicity (B) and virus control (C)	56
Fig 5.2. Bioautography of ten different leaf extracts of <i>C. paniculatum</i> against <i>S. aureus</i> in CEF	59
Fig 5.3. DPPH spray of leaf extracts in different solvents	60
Fig 5.4. DPPH spray of the root bark extracts of Combretum paniculatum prepared using	
four solvents	61
Fig 6.1. Flow chart of solvent/solvent fractionation of root bark	65
Fig 6.2. Chromatogram of combined fractions after spraying with vanillin/sulphuric acid	
(acetone extract)	66
Fig 6.3. Bioautography of acetone fractions against <i>S. aureus</i> after column chromatography	67
Fig 6.4. Bioautography of acetone fractions against <i>P. aeruginosa</i> after column chromatography	67
Fig 6.5. Bioautogram of combined fractions of acetone extract fractions against E. coli after column	l
chromatography	68
Fig 6.6. Fractions from solvent/solvent fractionation of the root bark after spraying with	
vanillin-sulphuric acid spray reagent	69
Fig 6.7. Bioautography of solvent/solvent fractions of root bark against S. aureus	70
Fig 6.8. Representative microplate of root bark extracts against Candida albicans	71

Fig 7.1. Flow chart for isolation of compounds 1, 2, 5 and 6	76
Fig 7.2. Flow chart of isolation of compounds 3, 4, 7, 8 and 9	78
Fig 8.1. Structure of cholest-5-en-3-ol	83
Fig 8.2. Structure of 2-phyten-1-ol	83
Fig 8.3. TLC of 2-phyten-1-ol	84
Fig 8.4: Structure of quercetin-3-glucopyranoside	85
Fig 8.5: Structure of p-coumaric acid	86
Fig 8.6: Structure of 2, 3, 8-tri-O-methylellagic acid	88
Fig 8.7: Structure of beta-sitosterol	90
Fig 8.8: Structure of gallocatechin	91
Fig 8.9: Structure of apigenin	91
Fig 8.10: Structure of cosmosiin	92

List of Tables

Table 2.1: Plant-derived drugs widely employed in Western medicine	20
Table 2.2: Some plants with antiviral and antibacterial activities	24
Table 2.3: Sectional division in southern African members of Combretaceae	27
Table 4.1: Quantity of material extracted (mg/g) from C. paniculatum and C. microphyllum	49
Table 4.2. Retention factors (R_f) of compounds present in leaf extracts developed in EMW	
and sprayed with vanillin/sulphuric acid spray	50
Table 5.1. Antiviral activity of <i>C. paniculatum</i> extracts against FHV-1	57
Table 5.2. MIC (mg/ml) and total activity (TA, ml/g) values of <i>C. paniculatum</i> leaf extracts	
prepared using eight extractants	58
Table 6.1 R _f values of components from solvent/solvent fractionation of the root bark	69
Table 6.2. MIC (mg/ml) and TA (ml/g) values of root bark extracts against four bacterial strains	71
Table 6.3. MIC (mg/ml) of root bark fractions obtained from solvent/solvent fractionation against	
Candida albicans, Microsporum canis, Aspergillus fumigatus, Cryptococcus neoformans	
and Sporothrix schenckii	72
Table 7.1. R _f values of the isolated compounds	79
Table 8.1. MIC values (µg/ml) of some isolated compounds	93
Table 8.2. Organisms tested for activity against isolated compounds	94
Table 8.3. Results of antimicrobial activity on isolated compounds (diameter of inhibition zone	
in mm)	94
Table 8.4. Cytotoxicity of isolated compounds	96

List of Abbreviations

1D	1- dimensional
2D	2-dimensional
AIDS	Acquired Immune Deficiency Syndrome
APUA	Alliance for the Prudent Use of Antibiotics
ATCC	American Tissue Culture Center
BEA	Benzene, ethyl acetate, acetone
BuOH	Butanol
Bs	Bacillus subtilis ATTC 6633
Са	Candida albicans BMSY 212
САР	Community Acquired Pneumonia
CC	Cytotoxic concentration
CEF	Chloroform, ethyl acetate, formic acid
CFIDS	Chronic Fatigue Immune Deficiency Syndrome
CMV	Cytomegalovirus
CNS	Central Nervous System
COSY	Correlation Spectroscopy
CPE	Cytopathic effect
CRFK	Crandell Feline Kidney cells
DCM	Dichloromethane
DEPT	Distortionless Enhancement by Polarization Transfer
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
DPPH	1,1-diphenyl-2-picryl hydrazyl
DS	Double-stranded
EBV	Epstein-Barr Virus
Ec	Escherichia coli SG 458
EC ₅₀	Effective Concentration 50
EDTA	Ethylene Diamine Tetraacetic Acid
EMW	Ethyl acetate, methanol, water
FAAIR	Facts about Antibiotics in Animals and their Impact on Resistance

FAWE	Formic acid, acetic acid, water and ethyl acetate
GMK	Green Monkey Kidney cells (Vero)
HIV	Human immunodeficiency virus
НКІ	Hans-Knöll Institute
НМВС	Heteronuclear Multiple Bond Correlation
HMQC	Heteronuclear Multiple Quantum Coherence
HPLC	·
HSV	High Performance Liquid Chromatography
	Herpes Simplex Virus
	Inhibitory Concentration 50
ICTV	International Committee on Taxonomy of Viruses
ICU	Intensive Care Unit
INT	p-lodonitrotetrazolium chloride
MDCK	Madin-Darby Canine Kidney cells
ME	Myalgic Encephalomyelopathy
MEM	Minimum Essential Medium
MeOH	Methanol
MIC	Minimum Inhibitory Concentration
MRSA	Methicillin-resistant Staphylococcus aureus
MS	Mass Spectrometry
MTT	3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide
Mv	Mycobacterium vaccae IMET 10670
MW	Molecular Weight
NMR	Nuclear Magnetic Resonance
NOESY	Nuclear Overhauser Enhancement Spectroscopy
Ра	Pseudomonas aeruginosa K 799/61
PBS	Phosphate Buffer Solution
PEP	Pyruvate
Pn	Penicillium notatum JP 36
RNA	Ribonucleic acid
RSV	Respiratory Syncytial Virus
Sa	Staphylococcus aureus SG 511
SAR	Structure Activity Relationship
SARS	Severe Acute Respiratory Syndrome

Ss	Sporobolomyces salmonicolor SBUG 549
ТА	Total activity
TCID ₅₀	Tissue Culture Infectious Dose 50
TLC	Thin Layer Chromatography
THF	Tetrahydrofuran
UV	Ultraviolet
VREF	Vancomycin-resistant Enterococcus faecalis