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“Mathematics, rightly viewed, possesses not only truth, but supreme beauty- a
beauty cold and austere, like that of sculpture.”

-Bertrand Russel
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1. INTRODUCTION

1.1 Vector Lattices

The theory of ordered vector spaces, and in particular vector lattices, also
known as Riesz spaces, has its origins in the work of three mathematicians
around the year 1935 namely F. Riesz in Hungary, L. V. Kantorovitch in the
former Soviet Union and H. Freudenthal in the Netherlands. Riesz was inter-
ested in what is in the modern literature called the order dual of a partially
ordered vector space and presented his findings at the 1928 International Math-
ematics conference at Bologna [68] as well as in a 1940 paper [69], a translation
of a 1937 paper in Hungarian. There he proved a result on the nature of
the ordered vector space of all bounded linear functionals on a vector lattice.
Kantorovitch studied convergence and algebraic properties of ordered vector
spaces in some detail, see for instance [40], [41] and [42]. He found, amongst
others, a more general version of Riesz’s theorem. He was soon joined by
more mathematician in Leningrad, among them A. G. Pinsker and A. I. Judin.
Freudenthal contributed a powerful spectral theorem for vector lattices in his
1936 paper [32]. The importance of this result can be seen in the fact that both
the Radon-Nikodym Theorem in measure theory and the spectral theorem for
Hermitian operators on a Hilbert space follow as corollaries to it. Not many
years later, in the period 1940 to 1944, important contributions were published
in Japan, notably those of H. Nakano ([58], [59], [60] and [61]), T. Ogasawara
and K. Yosida, and in the United States by H. F. Bohnenblust and S. Kakutani.
These papers dealt with, among other things, the concrete representation of
a vector lattice as spaces of ‘nearly finite’ continuous functions. With this
three major schools of research in ordered linear spaces were established, in
the Soviet Union, in Japan and in the United States.
It was only after 1971 that the various notations and terminology used by

the different schools were united and brought under a common banner in the
book [52] by W. A. J. Luxemburg and A. C. Zaanen and the second volume
[81] of that same work. It is interesting, though, to note the differences in
approach and nature of the work of the different research communities, see for
instance [83] and [51]. We will submit to the notation and terminology of the
American school as it is by far the most common one in use today.

Definition 1.1 A pair (E,≤) consisting of a real vector space E and a partial
order ≤ defined on E is called a vector lattice if the following conditions are
satisfied for all f, g, h ∈ E and all real numbers α > 0.
(i) If f ≤ g then f + h ≤ f + h;
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(ii) If f ≤ g then αf ≤ αg;
(iii) E is a lattice.

Of particular interest here are those vector lattices that satisfy the following
addition property.

Definition 1.2 A vector lattice E is Archimedean whenever the relation

0 ≤ nf ≤ g, n ∈ N

implies that f = 0.

In the Soviet terminology a vector lattice is known as a K-lineal while
Nakano and the Japanese school call it a semi-ordered linear space. A well
known example of a vector lattice is the space C (X) of all continuous functions
on a topological space X. Another is the space M (X,µ) of all µ-almost
everywhere finite valued µ-measurable functions on the nonempty point set
X, where µ is a countably additive non-negative measure on the σ-field Λ of
subsets of X, ordered pointwise µ-almost everywhere. These examples also
motivate the choice of notation for elements of a vector lattice commonly used
in the literature. Since we will also apply our results to function spaces we
conform to the standard, that is, we denote such elements always by lower case
roman characters, mostly f, g, h and so forth.
The notation f ∨ g = sup {f, g} and f ∧ g = inf {f, g} is dominant in the

literature, and we use it as well. For a vector lattice E and f ∈ E we make
use of the following notation: The positive part f+ and the negative part f−

of f are given respectively by

f+ = f ∨ 0, f− = (−f) ∨ 0.
The modulus |f | of f is defined to be

|f | = (−f) ∨ f. (1.1)

It is obvious that −f− = f ∧ 0 and for any f ∈ E we have
f = f+ − f−,
f+ ∧ f− = 0,
|f | = f+ + f−.

The positive cone of a vector lattice E is denoted E+, that is,

E+ = {f ∈ E : 0 ≤ f} .
For a vector lattice the positive cone is generating, that is, it determines the
partial order on the space through

f ≤ g ⇔ g − f ∈ E+.
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The theory of vector lattices is considered by most to be more or less com-
plete. Most of the recent contributions to the field form part of a program
initiated by A. C. Zaanen, see [82]. The aim of this program is to reprove
the classical results using elementary methods without the use of cumbersome
representation theorems, see for instance [38]. The motivation for such an
investigation is that elementary methods reveal more of the underlying struc-
ture than proofs by representation. Other recent contributions include the
characterization of those vector lattices that can be represented as a space of
finite continuous functions on some topological space, [1].

1.2 Order Convergence

Our interest lies chiefly in the ‘convergence properties’ of a vector lattice, in
particular we are interested in order convergence of sequences. Our work can
therefore be viewed as a continuation, be it some seventy years later, of the
work of Kantorovitch. In particular, we are interested in the following notion
of convergence.

Definition 1.3 (i) The sequence (fn) on a (vector) lattice E is said to de-
crease to the element f ∈ E if fn+1 ≤ fn for every n ∈ N and f = inf {fn : n ∈ N}.
We denote this by fn ↓ f .
(ii) The sequence (fn) on a (vector) lattice E is said to increase to the element
f ∈ E if fn ≤ fn+1 for every n ∈ N and f = sup {fn : n ∈ N}. We denote this
by fn ↑ f .
(iii) A sequence (fn) on the (vector) lattice E order converges to f ∈ E if
there exists a sequence (λn) increasing to f and a sequence (µn) decreasing to
f such that

λn ≤ fn ≤ µn, n ∈ N.

We denote this by fn → f .

It should be noted that some authors use the term ‘order convergence’ to
mean some other type of convergence, see for instance [19]. The relation
between these different types of convergence is a subject of interest in its own
right and has been studied by several authors, including Kent [49] and May
and McArthur [56]. One can, for instance, define a notion of ‘order convergent
filter’, see [47], [48], [49] or [27]. The concept of order convergene given in
Definition 1.3 can be generalized in a straight forward way to nets, [19]. In
non-complete posets there are some disadvantages to using this generalization.
For instance, there are residually constant nets which do not converge. Rennie
introduced a modification which avoids such pathologies in [67]. Also in [67]
a definition of order convergent nets that is equivalent to order convergence of
filters is given. This definition is in general not equivalent to any of the other
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notions of order convergence on a poset. If, however, the poset is a complete
lattice, then they are all equivalent, see [27]. In the present work we make no
assumption on the completeness of the lattice structure and restrict ourselves
to Definition 1.3.
Definition 1.3 is mostly used in cases where no algebraic structure other

than the order relation is considered, for instance in [19]. On a vector lattice
Definition 1.3 is equivalent to the following, which is standard in vector lattice
theory and can be found in [52] or [31].

Definition 1.4 The sequence (fn) on a vector lattice E is said to order con-
verge to the element f ∈ E if there exists a sequence (µn) on E that decreases
to 0 such that

|f − fn| ≤ µn, n ∈ N. (1.2)

We denote this by fn → f .

Note that the convergence defined above is determined only by the elements
of the space itself and the order on the space. No other set is involved, nor
does the definition rely on some mapping from the set into the reals, or any
other set for that matter, as is the case for convergence in a metric space, for
instance. However, the basic notion of some eventual minimization involving
the terms of the sequence and its limit that is encountered in most forms of
convergence used in functional analysis is preserved. Indeed, for a metric space
(X, ρ) convergence in the metric is defined through

(xn)→ρ x⇐⇒
½
for each ε > 0 there is Nε ∈ N
such that ρ (x, xn) < ε, n ≥ Nε

. (1.3)

The eventual minimization in (1.3) takes place in R where as the sequence is
minimized (eventually) in the space E itself in (1.2).

1.3 Topological Type Structures

Our motivation for the investigation of convergence properties of vector lat-
tices is that convergence of topological type processes is one of the most basic
concepts connected with the theory of function spaces, and it is there that we
will also seek to apply our theory. The specific topological type processes that
are generally considered include sequences [30], nets (generalized sequences)
[46] and filters [39]. Within the classical functional analysis the convergence
is generally induced by a topology on the function space. The topology can
be defined through a norm, as is the case with the well known Lp-spaces where
the norm is given by

kfk :=
µZ

(f (x))p dx

¶1/p

.
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Alternatively, one can induce a locally convex topology through a family of
semi-norms. Here the weak∗-topology on the dual LE of a Banach space E is
a classical example, where the semi-norms are defined by

ρf (ϕ) := |ϕ (f)| ,ϕ ∈ LE

and f runs over all nonzero elements of E. It is worth noting that the majority
of the topologies usually considered on function spaces are locally convex. Of
particular interest to us here is the space C (X) of all continuous functions
defined on a topological space X. The most widely studied of these spaces
is the particular case when X is compact. It is usual, in this instance, to
consider the space C (X) equipped with the supremum-norm given by

kfk = sup {|f (x)| : x ∈ X} .

However, when the space X is not necessarily compact more general topolo-
gies are considered on C (X). There are two important groups of topologies
on C (X): The set-open topologies, and the uniform topologies. Set-open
topologies are defined in terms of networks [54] of subsets of X. In particular,
for a closed network α on X the set-open topology on C (X) with respect to α
is generated by the subbase

{[A, V ] : A ∈ α and V is open in R}

where [A,V ] = {f ∈ C (X) : f (A) ⊆ V }. Particularly common in application
are the compact-open topology and the point-open topology. The point-open
topology corresponds to pointwise convergence of sequences (or nets) in C (X).
The uniform topologies are defined similarly. All the topologies defined above
induce convergence classes on C (X) that are at least as restrictive as the point-
wise convergence. Hence the study of these spaces is called by some authors
[8] Cp-theory, where the ‘p’ indicates the connection with pointwise conver-
gence of sequences (or nets). This theory has been used as a powerful tool in
studying certain equivalences between topological spaces. A detailed survey
of the subject can be found in [8] and [54]. Since C (X) is a vector lattice we
can consider order convergence of sequences on it. This convergence, unlike
those described above, is more general than the pointwise convergence.
If (K, τ) is a topological space we denote the convergence of a sequence

(fn) on K to an element f ∈ K by fn →τ f . With every topological space
(K, τ) one can associate a mapping στ from K into the powerset of the set of
all sequences on K by

(fn) ∈ στ (f)⇔ fn →τ f.

The mapping στ satisfies the following properties, known as the Moore-Smith
Axioms, that were introduced in [57], see [46] or [74] for a more recent presen-
tation:

TOPOLOGICAL TYPE STRUCTURES 11
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MS1 (Constants) If (fn) is a sequence such that fn = f for every n, then
(fn) ∈ στ (f);

MS2 (Subsequences) If a sequence (fn) belongs to στ (f), then so does each
subsequence of (fn);

MS3 (Divergence) If a sequence (fn) does belong to στ (f), then there exists
a subsequence of (fn), no subsequence of which belongs to στ (f);

MS4 (Iterated limits) If for every n ∈ N the sequence (fn m) belongs to
στ (fn) and the sequence (fn) belongs to στ (f), then there exists a strictly
increasing mapping k : N → N such that the sequence (fn k(n)) belongs
to στ (f).

Condition (MS3) is also known as the Urysohn Property while condition
(MS4) is sometimes called the Diagonal Property.
Inversely, it may happen that a set S together with a mapping σ from S

into the powerset of the set of all sequence on S is given. The question here is
whether or not there exists a topology τ on S such that σ = στ . This need not
be the case, and a characterization of those mappings σ that can be identified
with a topology was obtained by Moore and Smith [57].

Theorem 1.1 Let σ be a mapping from the set S into the powerset of all
sequences on S. Then there exists a topology τ on S such that σ = στ if and
only if the mapping σ satisfies the Moore-Smith Axioms (MS1) to (MS4).

The characterization above was originally stated in terms of nets, but is
applies equally well to sequences. With this result the issue might seem to
be settled. There are, however, a large variety of examples, many of practical
importance, that do not satisfy all of the axioms. These include convergence
almost everywhere on the space of measurable functions on a measure space
(X,Λ, µ) and continuous convergence of sequences of continuous functions.
Within the classical topology [46] it seems that such structures are too weak
to allow for a general treatment by topological methods. If, however, one
considers a more general notion of a Topological Type Structure, namely that
of a convergence space, it is possible to develop quite a strong theory for many
of the Topological Type Structures that do not satisfy all the axioms (MS1) to
(MS4), as is demonstrated in [15].
The present work is largely concerned with order convergence on vector

lattices which in general is also not topological, see [19] and [78]. The order
convergence generally only satisfies the Axioms (MS1) and (MS2). These two
axioms define the rather weak concept of a sequential convergence structure,
see [15]. We show that order convergence on certain partially ordered sets
does, however, satisfy some additional properties which enables us to employ
methods from the theory of convergence spaces.

12 INTRODUCTION
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1.4 Convergence Spaces

Let a set K be given. A filter on K is a nonempty collection F of nonempty
subsets of K such that F is closed under finite intersections and the formation
of supersets. A filter F is said to be finer than a filter G if the inclusion G ⊆ F
holds. We also say that G is coarser than F . A filter is said to be an ultrafilter
if it is not properly contained in any other filter.
A subset B of a filter F is a filter base for F if every element of F contains

an element of B. We call F the filter generated by B and write F = [B].
Every subset B of K generates a filter called the filter generated by B and and
it is denotes [{B}] or [B] for short. In case B = {f} we write [f ] and call it
the filter generated by f .

Definition 1.5 A mapping λ from the set K into the power set of all filters
on K is called a convergence structure and the pair (K,λ) a convergence space
if the following conditions are satisfied:
(i) [f ] ∈ λ (f) for every f ∈ K;
(ii) F ∩ G ∈ λ (f) for every F ,G ∈ λ (f);
(iii) if G belongs to λ (f) then every finer filter F belongs to λ (f).

In order not to be entangled in cumbersome notation a convergence space
(K,λ) is often denoted simply by K.
The simplest example of a convergence structure is the one induced by a

topology.

Example 1.1 Let (K, τ ) be a topological space. Denote by Uτ (f) the neigh-
bourhood filter at f ∈ K with respect to τ . Define the mapping λτ from K
into the powerset of all filters on K as

F ∈ λτ (f)⇔ F ⊇ Uτ (f) .

It is easily verified that λτ does indeed define a convergence structure on K,
[15].

However, convergence structure is a more general concept than topology.
In fact, most convergence structures of practical importance cannot be defined
in terms of a topology as in Example 1.1. Consider the following example.

Example 1.2 Let M be the set of all real-valued measurable functions on a
measure space (Ω,A, µ). Define a convergence structure λ on M as follows:
a filter F converges to f in (M,λ) if F converges to f almost everywhere in
Ω. There is no topology on M that induces the convergence structure λ, see
[15] or [63].

CONVERGENCE SPACES 13
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From the above it is clear that the theory of convergence spaces contains
that of topological spaces as a special case. These spaces have been studied
for over fifty years, and as in Definition 1.5, are defined in terms of filter
convergence. It should be noted that some authors, [35] for instance, refer to a
convergence structure in the sense of [15] as a pseudo-topology while others use
this term to refer to a specific class of convergence space, the Choquet spaces
[34]. The term pseudo-topology is used in [70], [71] and [72] to indicate the
most general notion of a Topological Type Structure of wich convergence spaces
is a highly important special case. We will consider convergence structures
only in the sense of [18] and [15] and adopt the terminology of [15].
The classical topological methods have generally been available since the

appearance of Hausdorff’s book in 1914, but the notion of a convergent fil-
ter was defined only in 1937, see [23]. Filter convergence spaces were first
considered by Choquet in 1948, see [24], and initially studied by Fischer [29]
and Kowalsky [50], although their definitions do not coincide exactly with the
modern one. At first these spaces were mainly used in applications to analy-
sis and topology, notably in [11], [50], [79], [43], [44], [45] and in particular
in [18] during the 1960’s and 1970’s. During this time the field of conver-
gence spaces developed into an abstract theory. The concepts from classical
topology were generalized to the wider setting of convergence spaces, and by
the time of the second conference on convergence spaces and its applications
[36], a fully fledged theory had developed. Such problems as the validity of the
closed graph theorem [14], the extremal compactification of convergence spaces
[21] and generalizations of the Hahn-Banach extension theorem to convergence
vector spaces were considered, see [12],[13] and [55].
It is generally accepted that functional analysis was initiated by Banach

in 1932. In [10] such fundamental results as the Hahn-Banach Theorem, the
OpenMapping Theorem and the Principal of Uniform Boundedness are proved.
When mathematicians realized the power of these results, a way was sought in
which to generalize them. This generalization was obtained through the use
of topological spaces and, in particular, topological vector spaces. There are,
however, some difficulties when working exclusively with classical topological
structures of which we mention a few.
A very important concept in functional analysis is that of an inductive limit.

Within the framework of topological spaces, the limit is far removed from its
component spaces, as indicated in [17]. Hence there are some difficulties when
lifting properties to the components and properties of the components are not
well preserved by the limit. Convergence space inductive limits, on the other
hand, show remarkable permanence properties and properties of the limit are
easily lifted to the component spaces.
Another problem when dealing with topological vector spaces is that there

is no natural topology for the dual of a locally convex topological vector space.
Although there are many different possible topologies that can be defined on
the dual, for example the strong, the Mackey, the weak and the weak∗ topolo-
gies to name but a few, each of which has its advantages and disadvantages.

14 INTRODUCTION
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Convergence structures, through the continuous convergence structure, provide
a beautiful dual structure for locally convex topological vector spaces. In fact,
it was shown [20] that every complete locally convex topological vector space is
continuously reflexive, that is, every complete locally convex topological vector
space is isomorphic to its bidual, equipped with the continuous convergence
structure. Moreover, if the space is not complete, it can be embedded as a
dense subspace of its bidual which is isomorphic to the completion of the origi-
nal space. This was the first major result for convergence spaces in functional
analysis.
One of the most powerful tools available in normed or metrizable spaces is

the use of sequential arguments. In the more general setting of a topological
vector space, one must impose strong countability conditions on the space in
order to make use of these methods. But these conditions usually imply that
the space is a Fréchet space. Therefore sequential methods are rarely accessi-
ble to us there. The countability conditions in convergence vector spaces are
much more lax so that sequences come into play quite naturally in many in-
stances where they do not suffice in the topological case. In particular, Beattie
and Butzmann showed in [15] that the space Dc (Ω) of all test functions with
compact support on an open subset Ω of Rn is second countable, as is the space
of test functions Ec (Ω), considered with the continuous convergence structure.
They also showed that the spaces LcEc (Ω) and LcDc (Ω) of distributions and
distributions with compact support are second countable when considered with
the continuous convergence structure.
If, for a given set K, a mapping σ from K into the powerset of the set of all

sequences on K that does not satisfy (MS3) and (MS4) is given, it is natural
to ask whether or not there exists a convergence structure λ that induces σ
The characterization of such spaces is due to Butzmann, Beattie and Herrlich
[16]. Since this result will be applied in the current work we will discuss it in
some detail.

Definition 1.6 A mapping σ from a set K into the powerset of all sequences
on K is called a sequential convergence structure and the pair (K, σ) a sequen-
tial convergence space if the following conditions are satisfied:
(i) The constant sequence with value f belongs to σ (f).
(ii) If a sequence belongs to σ (f) then so does each of its subsequences.

Every convergence structure λ on a set K induces a sequential convergence
structure σλ on K in the following way. A sequence (fn) on a convergence
space (K,λ) converges to f ∈ K if and only the Fréchet filter generated by
(fn), that is, the filter

h(fn)i = [{{fn : n ≥ k} : k ∈ N}] (1.4)

converges to f . The sequence (fn) is said to belong to σλ (f) whenever it
converges to f .

CONVERGENCE SPACES 15
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For a given sequential convergence space (K, σ) the solution to the question
posed above, that is, the existence or not of a convergence structure λ on K
that induces σ, was solved in [16]. The solution is stated in terms of category
theory, but an alternative version of the result can be found in [15]. We give
the statement in the latter form.

Theorem 1.2 Let (K, σ) be a sequential convergence space. Then there exists
a convergence structure λ on K such that σ = σλ if and only if the following
is true for all f ∈ K and all sequences (fn) , (gn) on K:
(i) If (fn) belongs to σ (f) and h(fn)i = h(gn)i then (gn) belongs to σ (f);
(ii) If (fn) belongs to σ (f) and (gn) belongs to σ (f) then (fn)♦ (gn) belongs
to σ (f).
Here (fn)♦ (gn) denotes the trivial mixing of (fn) and (gn), i.e. ((fn)♦ (gn))2n−1 =
fn and ((fn)♦ (gn))2n = gn for all n ∈ N.

A sequential convergence space that satisfies the conditions of Theorem 1.2
is called an FS-space. For an arbitrary FS-space (K,σ) the convergence struc-
ture λ on K that induces σ, that is, the convergence structure λ such that
σλ = σ need not be unique. In fact, even if σ is topological, that is, it satisfies
the Moore-Smith Axioms (MS1) through (MS4), the topology that induces σ
is not uniquely determined. The plurality of convergence structures associated
with σ is due to the failure of convergence spaces, in general, to be completely
described by sequential convergence. However, if suitable countability condi-
tions are imposed on the required convergence structure λ the uniqueness of
such a structure follows quite naturally.

1.5 The Order Convergence Structure

As it was stated earlier, we are interested in order convergence on a lattice, and
in particular on a vector lattice. On a lattice (L,≤) or a vector lattice (E,≤)
there are various ways in which to define a notion of convergence of sequences
arising from the order on L ,respectively E.
It is well known, see [52] or [78], that order convergence is a Hausdorff

(separated) sequential convergence structure in the sense of Definition 1.6,
which we denote by σo. In general order convergence is non-topological in
that it fails to satisfy axioms (MS3) and (MS4) of the Moore-Smith Axioms.
In fact, to require that order convergence on an Archimedean vector lattice E
satisfy (MS4) is so strong as to force the convergence to be ‘uniform’, see [52]
and [80].

Example 1.3 Consider the space C (R) of all continuous real valued functions
on R. It is well known that C (R) is an Archimedean vector lattice when
considered with the pointwise operations and order. Define the sequence (fn) on
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C (R) in the following way. Divide the interval [0, 1] in half. Then divide each
of the intervals

£
0, 1

2

¤
and

£
1
2
, 1
¤
in half and continue this process indefinitely to

obtain a sequence of intervals (In) = [an, bn]. Let, for each n ∈ N, the function
fn be given by

fn (x) =


1− n (an − x) if an − 1

n
≤ x < an

1 if x ∈ In
1− n (x− bn) if bn < x ≤ bn + 1

n

0 otherwise

.

Clearly, for every x ∈ [0, 1], there are an infinite number of terms in the
sequence (fn (x)) such that fn (x) = 1. This implies that the sequence (fn)
can not order converge to 0. Now take any subsequence (fnk) of (fn) and
let (Ink) be the sequence of intervals associated with (fnk) as above. At least
one of the intervals I1 or I2 must contain infinitely many of the intervals Ink.
Assume that this is the case for I1. Again, at least one of the intervals I3 or
I4 must contain infinitely many of the intervals Ink. Assume that this is the
case for I3. In this way we obtain a sequence

¡
Inj
¢
such that

Inj+1 ⊂ Inj , j ∈ N. (1.5)

Let fnkj be the first term in (fnk) such that Inkj ⊂ Inj . Define the sequence
(µnkj

) by

µnkj
(x) = fnj (x) .

Using (1.5) it can easily be seen that the sequence (µnkj ) decreases to 0 and

satisfies fnkj ≤ µnkj so that (fnkj ) order converges to 0. Therefore order con-
vergence on C (R) does not satisfy Axiom (MS3) of the Moore-Smith Axioms.

The ‘topological properties’ of order convergence of filters, and in particular
its relation to certain topologies induced by the order relation, has been studied,
amongst others, in [27] for arbitrary posets and in [26] for complete lattices.
Of interest to us is the paper [65] where the topological completion of

commutative lattice groups under order convergence (in our sense) of nets and
sequences were discussed. The term ‘topological completion’ is very loosely
used there. Firstly, order convergence is in general non-topological. Secondly,
he constructs a ‘completion’ of a sequential convergence group. This is, in
general, of little interest as there are examples of sequential convergence groups
having no completion, see [33].
There have been some attempts to define convergence structures on a vector

lattice, see [28] and [37]. However, none of these structures induce sequential
convergence identical with the order convergence of sequences. The problem
of finding a convergence structure, if it exists, that induces order convergence
of sequences on a vector lattice remained an open problem. To formulate it
precisely, the question can be stated as follows: Given a vector lattice E, is it
possible to define a convergence structure λ on E such that σo = σλ.
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We will answer this question in the affirmative. In fact, we will prove a
stronger result than this. We show that if L is a σ-distributive lattice, that is,

g ∧ sup {fn : n ∈ N} = sup {g ∧ fn : n ∈ N} (1.6)

whenever the first supremum exists, then the sequential convergence space
(L,σo) is an FS-space. As a result of the strong distributive properties of
vector lattices, we will obtain the corresponding result for vector lattices as a
corollary to the above.
Having shown that for any σ-distributive lattice L there exists a conver-

gence structure λ that induces σo, we are interested in obtaining an explicit
description of λ. As we discussed in Section 1.4, there is, however, no unique
convergence structure that induces σo. We define a mapping λo from L into
the powerset of the set of all filters on L by requiring that F ∈ λo (f) whenever
there is a coarser filter with a countable basis consisting of appropriate order
intervals

[λ, µ] = {g ∈ E : λ ≤ g ≤ µ}
We will call the mapping λo ‘order convergence structure’ and deduce the
following fundamental properties:

• The mapping λo defines a convergence structure on L.

• The convergence structure λo induces the sequential convergence struc-
ture σo.

• The convergence structure λo is first countable.
• The convergence structure λo is regular and Hausdorff.

Definition 1.7 Let K be a convergence space.
(i) K is said to be first countable if, for each filter converging to a point f ,
there is a coarser one with a countable basis that still converges to f .
(ii) K is said to be first countable if there exists a countable basis at each
f ∈ E, that is, for every f ∈ E there exists a countable collection B of subsets
of K such that for every filter F that converges to f there is a coarser filter
with a basis from B.
Definition 1.8 A convergence space K is said to be
(i) T1 if every finite point set is closed;
(ii) Hausdorff if F → f and F → g imply that f = g;
(iii) regular if a (F), the filter generated by {a (F ) : F ∈ F} converges to a
point x ∈ X whenever F converges to x.

As is the case for topological spaces the implications

T1 +Regular⇒ Hausdorff⇒ T1 (1.7)

With every convergence structure one can associate a topology that is in
some sense ‘closest’ to it. This topology is introduced through the concept of
an open set, an extension of the familiar topological notion.
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Definition 1.9 Let (K,λ) be a convergence space.
(i) For every f ∈ K the filter

Vf =
\
{F : F ∈ λ (f)}

is called the neighbourhood filter at f and its elements are called the neighbour-
hoods of f .
(ii) A set U ⊆ K is said to be open if it is a neighbourhood of each of its
points.
(iii) For each subset A of K the set

a (A) = {f ∈ K : ∃F ∈ λ (f) on K such thatA ∈ F}
is called the adherence of A.
(iv) A set A ⊆ K is called closed if a (A) = A.

Although the concepts defined above coincide with the topological notions
of ‘open set’, ‘closed set’ and ‘closure’ when the convergence structure is in-
duced by a topology as in Example 1.1, there are, in general, significant dif-
ferences. The adherence operator is in general not indempotent so that the
adherence of a set is not necessarily closed while the neighbourhood filter of
a point need not converge. These phenomena are not at all pathological and
quite characteristic of convergence spaces.
With every convergence structure we now associate the following topology.

Definition 1.10 Let K be a convergence space. A set U is open in the asso-
ciated topology of K if it is an open set in the sense of Definition 1.9 (ii). We
call the set K equipped with the associated topology the topological modification
of K and denote it by o (K).

It is well known [19] that the following topology, called the order topology,
is the finest topology on a poset that preserves order convergence.

Definition 1.11 Let P be a poset. We say that a subset U of P is open in the
order topology if for every f ∈ U and every sequence (fn) on P such that (fn)
order converges to f there exists N ∈ N such that fn ∈ U for every n ≥ N .
We denote the order topology by τ o.

It is clear that there exists a strong connection between order convergence
structure λo on a σ-distributive lattice L and the order topology. We will
show in Section 2.2 that the order topology is in fact the associated topology
of λo. This result is representative of a number of statements that are ‘new’
in terms of the convergence structure λo, but are simply known results that
are restated in terms of convergence structures. The associated topology is of
interest mainly because it has exactly the same continuous functions (into a
topological space) than the convergence structure with which it is associated.
Recall the following definitions.

THE ORDER CONVERGENCE STRUCTURE 19

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  ddeerr  WWaalltt,,  JJ  HH    ((22000066))  



Definition 1.12 Let K and L be convergence spaces and ϕ : K → L a map-
ping.
(i) ϕ is continuous at f ∈ K if ϕ (F) converges to ϕ (f) in L whenever F
converges to f in K. It is continuous on K if it is continuous at every f ∈ K.
(ii) ϕ is sequentially continuous at f ∈ K if (ϕ (fn)) converges to ϕ (f) in L
whenever (fn) converges to f in K. It is sequentially continuous on K if it is
continuous at every f ∈ K.
(iii) ϕ is an embedding if it is continuous, injective and has a continuous in-
verse.
(iv) ϕ is a homeomorphism if it is a surjective embedding.

We now focus our attention on order convergence on a vector lattice. As
a consequence of the sequential continuity of the group structure of a vector
lattice with respect to order convergence, a fact that is well known [52], it is
also continuous with respect to order convergence structure. In general, scalar
multiplication is not continuous and hence some further assumption on the
vector lattice is required for order convergence structure to be compatible with
the linear structure. Indeed, we show that this holds true if and only if the
space is Archimedean.
In the case of a vector lattice, the associated topology of order convergence

structure, the order topology, is particularly well behaved as it is compatible
with the group structure of the space, see Section 2.2. Moreover, if the space
is Archimedean, we show that scalar multiplication is also continuous. This is
not simply a consequence of a general result for convergence vector spaces, as
there are examples of convergence vector spaces where the associated topology
is not compatible with the linear structure, see [15][Remark 4.3.31]. This
result implies very strong separation properties of order convergence structure.
In particular, we will show that, for a not necessarily Archimedean vector
lattice E the convergence space (E,λo) is functionally regular and functionally
Hausdorf.

Definition 1.13 Let K be a convergence space. Then K is said to be:
(i) functionally regular if, for each filter F that converges to f ∈ K, the filter

Fσ
=
£©
F

σ
: F ∈ Fª¤ ,

where F
σ
denotes the closure of F in the initial topology with respect to C (K)

on K, also converges to f ∈ K;
(ii) functionally Hausdorff if the initial topology on K with respect to C (K) is
Hausdorff.

Definition 1.14 Let K be a convergence space. A filter F on K converges
to f ∈ K in the initial topology σ with respect to C (K) on K whenever ϕ (F)
converges to ϕ (f) for every ϕ ∈ C (K).

20 INTRODUCTION

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  ddeerr  WWaalltt,,  JJ  HH    ((22000066))  



The importances of the concepts defined above can be seen in their appli-
cation to the characterization of an important class of convergence spaces, the
class of c-embedded convergence spaces, see [15]. Order convergence structure
in general does not belong to this class as it requires quite a strong restriction
on the nature of convergence in the space, namely, the space must also be
Choquet, see [24].
As mentioned above, if the vector lattice E is not Archimedean, then order

convergence structure is not compatible with the underlying linear structure
of the vector lattice E. The concept of a convergence vector space is a gener-
alization of the concept of a topological vector space, the latter being a gener-
alization of normed spaces. Normed spaces have been in use since Banach’s
1928 book, see [10]. The powerful results established there served to moti-
vate mathematicians to seek a means to generalize the concept of a normed
space. It was not until some twenty years later that topological vector spaces
were considered as a means to such a generalization. It is perhaps surprising
that such a long period of time elapsed before this generalization was made as
the machinery of general topology had been available since the appearance of
Hausdorff’s 1914 book. The further extension of the idea of a topological vec-
tor space came about in the late 1950s and the 1960s as a convergence vector
space.

Definition 1.15 A convergence structure λ on a real vector space E is called
a vector space convergence structure and the pair (E,λ) a convergence vector
space whenever the mappings

+ : E ×E → E

and
· : R×E → E

such that + : (f, g) 7−→ f + g and · : (α, f) 7−→ αf are continuous.

In Definition 1.15 above, the products E×E and R×E are equipped with
the product convergence structure which is defined as follows.

Definition 1.16 Let (Ki) be a family of convergence spaces. A filter F onQ
i∈I Ki converges to f ∈

Q
i∈I Ki in the product convergence structure if, for

all i ∈ I, there are filters Fi → f (i) in Ki such that F ⊇
Q
i∈I Fi. HereQ

i∈I Fi denotes the Tychonoff product of the filters Fi, that is, the filter based
on(Y

i∈I
Fi : Fi ∈ Fi for all i ∈ I, Fi 6= Ki for only finitely many i ∈ I

)
. (1.8)

The motivation for the generalization of topological vector spaces came by
and large from functional analysis and its applications, in particular form the
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theory of PDEs, see for instance [34] and [11]. Indeed, it came to light that
the classical topology fails to describe certain very interesting notions of con-
vergence. The most prominent example to date is the continuous convergence
structure [18] that has been shown to be very useful in applications, see [20]
and [15].
As far as the order convergence structure on a vector lattice is concerned it

has already been stated that topolocigal spaces, and hence topological vector
spaces, fails give an adequite desciption of order convergence. In Section 2.1
we show that if the vector lattice E is Archimedean, then order the conver-
gence structure is indeed a vector space convergence structure. Convergence
vector spaces therefore provides an appropriate context for the study of order
convergence on Archimedean vector lattices where topological vector spaces
fail to do so. Convergence vector spaces and order convergence have never
been associated in this way before and in this lies the novelty of our approach.
Moreover, it is shown that the convergence vector space (E,λo) is both locally
convex and locally bounded.

Definition 1.17 Let E be a convergence vector space.
(i) A subset B of E is bounded whenever the filter NB converges to 0.
(ii) A filter F on E is called bounded whenever the filter

NF = [{NF : N ∈ N , F ∈ F}]
converges to 0.
(iii) E is locally bounded if and only if every filter that converges in E contains
a bounded set.

Definition 1.18 A convergence vector space E is locally convex if for every
filter F which converges to 0 in E the filter co (F), the filter generated by
{co (F ) : F ∈ F}, also converges to 0. Here co (F ) denotes the convex hull of
F .

It should be noted that local convexity is not nearly as strong a property
in the convergence vector space setting as it is for the topological case.
The properties associated with bounded sets, on the other hand, are far

more significant as it is related to the problem of completing a given conver-
gence vector space. The key to solving this problem is that every Cauchy filter
must be bounded. In fact, in our definition of the order convergence structure
λo this is specifically kept in mind. Hence the use of order bounded sets in
the definition of a convergent filter.

Definition 1.19 Let E be a convergence vector space.
(i) A filter F on E is a Cauchy filter if the filter F −F converges to 0 in E.
(ii) A sequence (fn) on E is a Cauchy sequence if h(fn)i is a Cauchy filter.
(iii) E is a complete convergence vector space if every Cauchy filter on E
converges to some f ∈ E.

22 INTRODUCTION

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  ddeerr  WWaalltt,,  JJ  HH    ((22000066))  



For a given convergence vector space E, the objective is to construct a
convergence vector space eE with the following properties:
C1 eE is a complete Hausdorff convergence vector space.
C2 There exists a linear embedding i : E → eE such that i (E) is dense in eE

in the sense that a (i (E)) = eE where the adherence is taken in eE.
C3 If F is a complete Hausdorff convergence vector space and T : E → F a

continuous linear mapping, then there exists a continuous linear mappingeT : eE → F such that T (f) = eT (i (f)) for every f ∈ E.
In general, such a construction is not possible, see [35] where a character-

ization of those space that can be completed in this way is given. Here the
properties of the convergence vector space E as related to boundedness are
crucial. In fact, if E is a Hausdorff convergence vector space, then there exists
a convergence vector space eE, called the completion of E, that satisfies con-
ditions (C1) through (C3) if and only if every Cauchy filter on E is bounded,
see [35].
Indeed, let F be a Cauchy filter on E that is not bounded and suppose that

there exists a completion eE of E. Since eE is complete, the image filter i (F)
must converge to some ef ∈ eE. But every convergent filter is bounded so that
N i (F) = i (NF) must converge to 0 in eE. But since i is an embedding, it
follows that NF converges to 0 in E, a contradiction.
In the case of an Archimedean vector lattice E equipped with the order

convergence structure, we prove the following results in Section 2.3. First we
show that there exists a complete convergence vector space eE and a mapping
i : (E,λo)→ eE that satisfies the conditions (C1) through (C3). As there are
examples of Hausdorff convergence vector spaces that can not be completed,
this result is far from being trivial. Having established the existence of the
completion of (E,λo) it is of interest to find a concrete representation of the
completion eE. The abstract construction of the space eE follows closely the
procedure for completing a topological vector space, see for instance [46]. The
second result settles this question in a rather elegant way. We relate the
concepts of completeness and completion in terms of the order on E to the
convergence space completeness of (E,λo).

Definition 1.20 Let E be a vector lattice.
(i) E is said to be Dedekind σ-complete if every non-empty countable set that
is bounded from above has a least upper bound.
(ii) E is Dedekind complete if every non-empty subset of E that is bounded
from above has a least upper bound in E.
(iii) E is called order separable if every non-empty subset D of E possessing a
supremum contains an at most countable subset possessing the same supremum
as D.
(iv) E is called super Dedekind complete if it is Dedekind complete and order
separable.
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Indeed, it is shown that the space eE is isomorphic, in the sense of conver-
gence vector spaces, to the space

¡
E#,λo

¢
, where E# denotes the Dedekind

σ-completion of E, that is, the smallest Dedekind σ-complete vector lattice
that contains E as a vector lattice subspace. Incidentally, in the coarse of
studying the completion problem for (E,λo) we also solve a problem from the
theory of vector lattices. Zaanen [83] defines a notion of an order Cauchy
sequence on a vector lattice as follows.

Definition 1.21 Let E be a vector lattice.
(i) A sequence (fn) on E is order Cauchy whenever there exists a sequence
(µn) that decreases to 0 such that for every n ∈ N there exists Nn ∈ N such
that

|fm − fk| ≤ µn (1.9)

for every k,m ≥ Nn.
(ii) E is order complete if every order Cauchy sequence order converges in E.

In Section 2.3 we show that an Archimedean vector lattice E is order com-
plete if and only if E is Dedekind σ-complete.
Given a convergence space (K,λ) and a subset A of K, the convergence

structure λ on the larger set K induces a convergence structure on A in a
natural way.

Definition 1.22 Let K be a convergence space and A a subset of K. The
subspace convergence structure on A is the initial convergence structure with
respect to the inclusion mapping e : A → K. A filter F on A converges to f
in A if and only if [FK] converges to f in K.

When the convergence structure onK is defined through some special struc-
ture on K, the subset A usually inherits this structure. Hence we can define
a convergence structure on A with respect to the additional structure. How-
ever, the convergence structure so defined on A does not necessarily coincide
with the subspace convergence structure induced on A by (K,λ). Generally
one must make some additional assumptions on A to insure that the subspace
structure is identical with the convergence structure defined on A independent
of K.
Indeed, for the order convergence structure on an Archimedean vector lat-

tice such problems also arise. We study this problem through the concepts of
ideals, σ-ideals and bands.
On an algebraic ring it is of great interest to study ring ideals. For a

vector lattice one can define a notion of ideal analogous to that encountered
in ring theory, see [83]. Recall that a subring of a ring is an ideal if it absorbs
products. An (order) ideal in a vector lattice is defined similarly in requiring
that the vector sublattice ‘absorbs’ elements under the order relation.
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Definition 1.23 Let E be a vector lattice and A a linear subspace of E.
(i) A is called a vector sublattice of E if it is closed under the formation of
finite suprema.
(ii) A is called an ideal in E if it is a vector sublattice and it is solid, that is,
for any f ∈ A and any g ∈ E such that |g| ≤ |f | it follows that g ∈ A.
(iii) A is called a σ-ideal in E if it is an ideal and if it is closed under the
formation of countable suprema.
(iv) A is called a band in E if it is an ideal and if it is closed under formation
of arbitrary suprema.

The structure of ideals and bands of a vector lattice is much studied in the
literature, see for instance [52] and [83]. The motivation for such a study stems
from the close relationship that exist between ideals and Riesz homomorphisms.

Definition 1.24 Let E and F be vector lattices and π : E → F monotone
linear mapping, that is, πf ≤ πg in F whenever f ≤ g in E.
(i) The mapping π is a Riesz homomorphism if

π (f ∨ g) = (πf) ∨ (πg)

for all f, g ∈ E.
(ii) The mapping π is a Riesz isomorphism if it is a bijective Riesz homomor-
phism and its inverse T−1 is monotone.

Indeed, the kernel
ker π = {f ∈ E : πf = 0}

of a Riesz homomorphism is an ideal in E and the ideal-properties of kerπ
serve to characterize some further properties that π might satisfy.
Another motivation for the use of bands is that, for a large class of vector

lattices, it is possible to represent the space as the direct sum of two bands A
and Ad that are ‘orthogonal’ in the sense that

|f | ∧ |g| = 0

for every f ∈ A and g ∈ Ad, and A ∩ Ad = {0}. Hence every f ∈ E can be
decomposed in a unique way as a sum

f = f1 + f2

where f1 ∈ A and f2 ∈ Ad. For the details the reader is referred to [52][Section
2.4] or any text on vector lattices.
As is the case in ring theory, one can define for an ideal A of a vector lattice

E the quotient vector lattice E/A. This is the (algebraic) quotient space of
all equivalence classes modulo A. The element of E/A containing f ∈ E will
be denoted [f ]. Hence we have [f1] = [f2] if and only if f1 − f2 ∈ A. The
space E/A is made into a vector lattice in the following way.
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Definition 1.25 Let E be a vector lattice and A an ideal of E. Then [f ] ≤ [g]
in E/A whenever there exists f1 ∈ [f ] and g1 ∈ [g] such that f1 ≤ g1.

The interest in the quotient vector lattice is due to the fact that if π : E → F
is a Riesz homomorphism, then E/ kerπ is Riesz isomorphic to F .
We are interested in the behavior of ideals of the Archimedean vector lattice

E when considered as subspaces of (E,λo), as well as the relationship between
order convergence structure on E/A and the quotient convergence structure
induced on E/A by (E,λo).

Definition 1.26 Let K be a convergence space, A a set and a surjection q :
K → A. A filter F converges in the quotient convergence structure on A
to a point g ∈ A if and only if there are points f1, ..., fn ∈ K and for each
k a filter Fk which converges to fk such that q (fk) = g for all k and F ⊇
q (F1) ∩ ... ∩ q (Fn).

In general, order convergence on a subspace A, and even on an ideal, does
not coincide with the convergence induced on A by order convergence on E.
If, however, A is a band and E is Dedekind complete, the situation is much
improved. It is shown in Section 2.4 that if E is Dedekind σ-complete the ideal
A of E is a closed subspace of (E,λo) if and only if A is a σ-ideal. Moreover, if
A is a band and E is Dedekind complete, then A is a closed subspace of (E,λo)
and the order convergence structure on A, when considered as a vector lattice
on its own, coincides with the subspace structure it inherits from (E,λo). We
also show that if E is Dedekind σ-complete and A is a σ-ideal, then sequential
convergence induced from E coincides with order convergence of sequences on
A.
Let us now fix, once and for all, the following notation. If E is a vector

lattice and G is a vector sublattice of E, then by (G,λo) we mean the set F
equipped with order convergence structure as defined on it as a vector lattice
in its own right. If we refer to the subspace convergence structure inherited
from E, we will explicitly mention it.
Regarding the quotient space E/A, we will show in Section 2.4 that order

convergence of sequences on E/A coincides with sequential convergence with
respect to the quotient convergence structure on E/A, as induced fromE by the
quotient mapping q : E → E/A defined by q (f) = [f ], whenever E is Dedekind
σ-complete and A is a σ-ideal. The restriction on the completeness of E and A
is necessary for two reasons. Firstly, if A is not ru-complete, then the quotient
E/A need not be Archimedean. Therefore the order convergence structure
will not be a vector space convergence structure, while the convergence space
quotient is a convergence vector space. Secondly, if A is not a σ-ideal, then
the projection mapping πA : E → E/A, mapping f into [f ], is not necessarily
continuous.
As stated earlier, it is shown that the bounded subsets of (E,λo) are exactly

the order bounded subset of E. This fact becomes particularly relevant when
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applied to the study of bounded operators between (E,λo) and (F,λo). In
order to study bounded operators on a convergence vector space one considers
the following convergence structure, called the Mackey modification.

Definition 1.27 Let E be a convergence vector space and denote by B the set
of all bounded subsets of E. (i) A filter F converges to f ∈ E in the Mackey
convergence structure µ on E whenever there exists B ∈ B such that

F − f ⊇ NB.

The vector space E equipped with the Mackey convergence structure is called
the Mackey modification of E and is denoted µ (E).
(ii) Way say that E is a Mackey space if µ (E) = E.

Clearly µ (E) and E share the same bounded sets, µ (E) is first countable
and locally bounded. In Section 2.5 we use the fact that µ (E) is first countable
to characterize those Archimedean vector lattices for which µ (E) is complete
in terms of relatively uniform convergence.

Definition 1.28 Let E be a vector lattice. A sequence (fn) on E converges
relatively uniformly (ru) to f ∈ E whenever there exists µ ∈ E+ such that for
every ε > 0 there exists Nε ∈ N so that

|f − fn| < εµ

for every n ≥ Nε.

Note that (ru) convergence of a sequence implies order convergence to the
same limit, but the converse of this does not necessarily hold. Indeed, consider
the following simple example.

Example 1.4 Consider the set C (R) of all continuous functions on the real
line equipped with pointwise operations and order. This defines on C (R) the
structure of an Archimedean vector lattice. Define the sequence (fn) as

fn (x) =

½
1− n |x| if − 1

n
≤ x ≤ 1

n

0 otherwise
.

The sequence (fn) is positive and decreasing. Moreover, for every x 6= 0 the
sequence (fn (x)) decreases to 0. Therefore the sequence (fn) decreases to 0,
and hence it order converges to 0.
On the other hand, fn (0) = 1 for every n ∈ N so that (fn) can not converge
relatively uniformly to 0.

Also, if the space E is not Archimedean, then the limit of a (ru) convergent
sequence need not be unique. For Archimedean spaces the situation is much
better and limits are unique.
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Definition 1.29 Let E be an Archimedean vector lattice.
(i) A sequence (fn) on E is called (ru) Cauchy if there exists µ ∈ E+ so that
for every ε > 0 there exists Nε ∈ N such that

|fn − fm| < εµ

for every n ≥ Nε.
(ii) E is said to be (ru) complete if every (ru) Cauchy sequence converge (ru)
to some f ∈ E.

We show that the convergent sequences with respect to the Mackey conver-
gence structure are exactly the relatively uniformly convergent sequences on
E. Moreover, we show that µ (E) is complete if and only if E is (ru) complete.
In general the Mackey modification of a convergence vector space has a

relatively simple structure compared with the origenal convergence structure.
In the case of the order convergence structure this is also the case. In partic-
ular, we show in Section 2.5 that the Mackey modification of µ (E) of (E,λo)
is strongly first countable whenever E posseses a strong order unit.

Definition 1.30 Let E be a vector lattice. An element e ∈ E+ is called a
strong order if there exists for every f ∈ E+ a positive integer Nf such that

f ≤ Nfe.

In general the Mackey convergence structure does not satisfy such a strong
countability condition and hence our result is by no means a triviality.

1.6 Continuous and Bounded Operators

Since we are essentially performing a functional analysis on linear spaces it
is appropriate to consider the linear mappings between such spaces. Various
classes of linear mappings between vector lattices have been studied extensively,
particularly when the spaces are Banach lattices, that is, there is a norm on
the space that is compatible with the order structure, and the space is norm
complete, or the codomain is Dedekind complete We will consider the general
case of two Archimedean vector lattices E and F equipped with the order
convergence structure. We are specifically interested in the following classes
of operators, see [83].

Definition 1.31 Let E and F be vector lattices and T : E → F a linear
mapping.
(i) We call T order bounded if the image T (A) of every order bounded subset
A of E under T is an order bounded subset of F . The set of all order bounded
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operators from E into F is denoted Lb (E,F ).
(ii) We call T σ-order continuous if, for every sequence (fn) on E that satisfies
fn ↓ 0,

inf {|Tfn| : n ∈ N} = 0
in F . The set of all σ-order continuous operators from E into F is denoted
Lc (E,F ).

Note that an operator T : E → F is σ-order continuous whenever T maps
order convergent sequences into order convergent sequences, thus motivating
the terminology. The converse is true if T is positive or if F is Dedekind
complete.
There is a natural way in which to order the space Lb (E,F ). Define the

relation “≤” on Lb (E,F ) by saying that

T ≤ S ⇐⇒ ¡
f ∈ E+ =⇒ (S − T ) (f) ∈ F+

¢
(1.10)

The order (1.10) makes LB (E,F ) into a partially ordered vector space. The
inclusion

Lc (E,F ) ⊆ Lb (E,F )
therefore implies the same order structure on Lc (E,F ). In general, how-
ever, without further conditions on F , neither Lb (E,F ) nor Lc (E,F ) is a
vector lattice and hence order convergence need not be induced by a conver-
gence structure. In this general case we can therefore not consider the spaces
Lb (E,F ) and Lc (E,F ) with the order convergence structure. On the other
hand, if F is Dedekind complete, then Lb (E,F ) becomes a Dedekind complete
vector lattice and Lc (E,F ) is a band in Lb (E,F ), and hence also a Dedekind
complete vector lattice. In terms of the order convergence structure, we then
have the following interpretation of the above.
IfE and F are vector lattices with F Dedekind complete, then (Lb (E,F ) ,λo)

is a complete convergence vector space and (Lc (E,F ) ,λo) is a closed subspace
of (Lb (E,F ) ,λo). In particular, the spaces (Lb (E) ,λo) = (Lb (E,R) ,λo) and
(Lc (E) ,λo) = (Lc (E,R) ,λo) are both complete convergence vector spaces.
We are interested in operators T : E → F that are either bounded or

continuous with respect to the order convergence structure on the Archimedean
vector lattices E and F .

Definition 1.32 Let E and F be convergence vector spaces. The operator
T : E → F is said to be bounded if the image T (B) of any bounded subset B
of E under T is a bounded subset of F .

Unlike in the case of a normed space, boundedness of an operator does not
imply continuity. Indeed, even for locally convex topological vector spaces E
and F the implication

T bounded =⇒ T continuous
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does not generally hold. The inverse implication, however, still remains true
for convergence vector spaces, that is, if T : E → F is an operator, then

T continuous =⇒ T bounded.

We denote the set of all continuous operators from E into F by L (E,F ), and if
the space is equipped with the continuous convergence structure, it is denoted
Lc (E,F ). In particular, we write L (E) for L (E,K) and Lc (E) to mean
Lc (E,K). If instead L (E) is considered with the weak∗ topology, that is, the
topology induced by the semi norms

ρf : ϕ→ |ϕ (f)|

where the parameter f runs through all of E \{0}, we denote the space Ls (E).
As far as the set L (E,F ) is concerned, where bothE and F are Archimedean

vector lattices equipped with the order convergence structure, the main result
that we obtain is that L (E,F ) = Lc (E,F ) whenever F is Dedekind complete,
that is, the operator T : E → F is continuous if and only if it is sequentially
continuous. In particular, it follows, therefore, that L (E) consists of all the
σ-order continuous linear functionals. We will see an application of this fact
when we consider the problem of embedding E into L (E).
This is by no means a triviality. In general first countability of a conver-

gence space is not sufficient to ensure that the equivalence

T continuous⇐⇒ T sequentially continuous

holds. A stronger countability condition on the codomain space is usually
necessary.
If we consider Lc (E,F ), the set L (E,F ) equipped with the continuous

convergence structure as a subspace of Cc (E,F ), then we obtain a surprising
result. If F is Dedekind complete, so that (F,λo) is complete, then the space
Lc (E,F ) is a complete convergence vector space.

Definition 1.33 Let K and L be convergence spaces. Then a filter F on
C (K,L) converges to ϕ0 ∈ C (K,L) in the continuous convergence structure if
and only if ωK,L (F × Φ) converges to ϕ0 (f0) whenever Φ converges to f0 in
K. Here

ωK,L : C (K,L)×K → L

denotes the evaluation mapping defined by ωK,L (ϕ, f) = ϕ (f).

This is not the case for arbitrary convergence vector spaces E and F . For
an example of complete, Hausdorff, regular convergence vector spaces E and
F such that Lc (E,F ) is not complete, see [22].
As mentioned earlier, the Mackey modification µ (E) of a convergence vector

space E provides us with a useful tool with which to study bounded operators.
In fact, the novelty of the Mackey convergence structure is that an operator
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T : µ (E) → µ (F ) is continuous if and only if it is bounded. Since E and
µ (E) share the same bounded sets, it follows that the continuous operators
between µ (E) and µ (F ) are exactly the bounded operators from E into F .
Furthermore, if E and F are Mackey spaces, then an operator T : E → F is
continuous if and only if it is bounded.
Since, for an Archimedean vector lattice E the bounded subsets of (E,λo) is

exactly the order bounded subsets of E, it follows that the continuous mappings
from µ (E) into µ (F ), where F is another Archimedean vector lattice, are
exactly the order bounded operators from E into F , that is, L (µ (E) , µ (F )) =
Lb (E,F ).
One of the cornerstone theorems of functional analysis is the Banach-

Steinhaus theorem, also called the principle of uniform boundedness. This
result has been known to hold for Banach spaces since the 1920s, see [10], and
since then many variations of for more general spaces have appeared. The
most common variant is the following: If E and F are locally convex topolog-
ical vector spaces with E is barrelled, then every pointwise bounded subset of
L (E,F ) is equicontinuous.
Definition 1.34 Let E and F be convergence vector spaces. Then a subset
H ⊆ L (E,F ) is equicontinuous if the filter

H (F) = [{{Tf : T ∈ H} : F ∈ F}]
converges to 0 in F whenever the filter F converges to 0 in E.

Definition 1.35 A convergence vector space E is called barrelled if every bounded
subset of Ls (E) is equicontinuous.
In [15] the scope of this result is greatly enlarged to include many conver-

gence vector spaces. We apply the results obtained there to order convergence
on an Archimedean vector lattice E and its Mackey modification µ (E). The
first step in this direction is to show that both (E,λo) and µ (E) are barrelled.
We then apply this result, together with those obtained in [15], to find suffi-
cient conditions on a convergence vector space F such that ((E,λo) , F ) and
(µ (E) , F ) are Banach-Steinhaus pairs.

Definition 1.36 Let E and F be convergence vector spaces. The pair (E,F )
is called a Banach-Steinhaus pair whenever every bounded subset of Ls (E,F )
is equicontinuous.

The results described above then give rise to a Banach-Steinhaus type the-
orem for σ-order continuous operators between Archimedean vector lattices.
In particular, we obtain the following results:

BS Let E and F be Archimedean vector lattices, with F Dedekind complete
such that LcF separates the points of F . If the sequence (Tn) of σ-order
continuous operators Tn : E → F converges pointwise, with respect to
order convergence structure on E and F , to a linear mapping T : E → F ,
then T is σ-order continuous.
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Beside the Banach-Steinhaus theorems for convergence vector spaces, the
results described above also rely on a certain relationship between the conver-
gence vector space (E,λo) and its second dual space L (L (E,λo) ,λo). We
show that whenever the first dual separates the points of E, then there exists a
vector sublattice of the second dual that is isomorphic, as a convergence vector
space when equipped with order convergence structure to (E,λo). This is an
application of the duality theorems for vector lattices that can be found in [81].
There have been previous attempts at proving Banach-Steinhaus type the-

orems for vector lattices, see for instance [73] where a result similar to (BS)
is proved for order continuous operators. There, however, the further con-
dition that the space E is of ‘Grothendick type’ is imposed. Furthermore,
it is required that the limit operator already be order bounded. Our result
neither implies Schaefer’s result, nor does it follow from it. If, however, the
space F is super Dedekind complete and of Grothendick type the two results
are equivalent.

1.7 Hausdorff Continuous Functions

We consider functions on a topological space X with values extended closed
real intervals, that is, functions f : X → IR. Here IR denotes the set

IR =
©
[a, a] : a ≤ a ∈ R

ª
(1.11)

where R = R∪ {±∞}. A partial order was defined on IR by Markov in [53] as

[a, a] ≤ [c, c]⇔ a ≤ c, a ≤ c. (1.12)

With every interval a ∈ IR one can associate a nonnegative extended real
number ω (a), the width of a, which is defined as

ω (a) =

 a− a
∞
0

if a, a ∈ R
if a = +∞ or a = −∞
if a = a = ±∞

. (1.13)

By the absolute value of an interval a = [a, a] we mean the extended positive
real number defined by

|a| = max {|a| , |a|} . (1.14)

We denote by A (X) the set of extended closed real interval valued functions
on X, that is,

A (X) =
©
f : X → IR

ª
. (1.15)

By viewing every extended real number as an interval a = [a, a], R can be
treated as a subset of IR so that the set of extended real valued functions

A (X) = ©f : X → R
ª

(1.16)
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is contained in the set A (X). For any f ∈ A (X) and ε > 0 we denote by W ε
f

W ε
f = {x ∈ X : ω (f (x)) > ε} .

The set
Wf = {x ∈ X : ω (f (x)) > 0} (1.17)

on which f assumes proper interval values can be represented as

Wf =
[
ε>0

W ε
f . (1.18)

Using the partial order defined in (1.12) on IR, a partial order that extends
the usual one on A (X) may be defined on A (X) in a pointwise way as

f ≤ g ⇔ f (x) ≤ g (x) , x ∈ X. (1.19)

Note that since each f ∈ A (X) takes extended interval values, we may write
these functions in an interval way as f =

£
f, f

¤
where f ≤ f ∈ A (X). In

[9] Baire defined the operators I and S, known respectively as the lower and
upper Baire operators, for real valued functions of a real variable, but recently
the definitions were generalized to extended closed interval valued functions on
an arbitrary topological space, see [3]. The definitions may be written in the
following way:

I (f) (x) = sup
V ∈Vx

inf {z ∈ f (y) : y ∈ V } , x ∈ X (1.20)

S (f) (x) = inf
V ∈Vx

sup {z ∈ f (y) : y ∈ V } , x ∈ X (1.21)

Here Vx denotes the set of neighbourhoods at x ∈ X. The mappings I and S
are closely connected with the concept of semi-continuous functions as intro-
duced by Baire [9], for real valued functions of a real variable, and subsequently
generalized to more arbitrary spaces by several authors.

Definition 1.37 A function f ∈ A (X) is called lower semi-continuous at
x ∈ X if for every m < f (x) there exists V ∈ Vx such that m < f (y) for all
y ∈ V. If f (x) = −∞, then f is assumed lower semi-continuous at x.

Definition 1.38 A function f ∈ A (X) is called upper semi-continuous at
x ∈ X if for every m > f (x) there exists V ∈ Vx such that m > f (y) for all
y ∈ V. If f (x) = +∞, then f is assumed upper semi-continuous at x.

Semi-continuous functions are characterized as the fixed points of the op-
erators I and S, that is,

f is lower semi-continuous on X ⇔ I (f) = f (1.22)

f is upper semi-continuous on X ⇔ S (f) = f (1.23)
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From (1.20) through (1.21) it is clear that, for any f ∈ A (X) it holds that

I (f) ≤ S (f) . (1.24)

From (1.24) it is evident that the mapping F : A (X)→ A (X) defined by

F (f) = [I (f) , S (f)] (1.25)

is well defined. This mapping, called the Graph completion operator, was
first defined by Sendov in [75] for the special case where X is a closed real
interval, but the definition was again generalized to arbitrary topological spaces
in [3]. Through the Graph completion operator a notion of continuity of
interval valued functions was defined [75]. We recount this definition here as
it will come into play on several occasions.

Definition 1.39 A function f ∈ A (X) is said to be Sendov continuous, or
S-continuous for short, if it is a fixed point of the graph completion operator,
that is, if F (f) = f . We denote the set of S-continuous functions by F (X).

Remark 1.1 In the literature the S-continuous functions are often called seg-
ment continuous, or s-continuous for short. We adopt the current notation
in homage of B. Sendov who first defined this notion of continuity for interval
valued functions.

Also in [75], Sendov defined the concept of a Hausdorff continuous closed
extended interval valued functions of a real variable. Anguelov extended this
definition to arbitrary topological spaces in [3]. The definition is in terms of
a minimality condition imposed on the inclusion of interval functions. Alter-
native characterizations were obtained in [3], [78] and will be recounted in the
appendix.

Definition 1.40 A function f ∈ A (X) is called Hausdorff continuous, or H-
continuous for short, if for every g ∈ A (X) satisfying the inclusion g(x) ⊆
f(x), x ∈ X, we have that F (g)(x) = f(x), x ∈ X. We denote the set of all
H-continuous functions on X by H (X).

Remark 1.2 It is important to note that this concept of H-continuity differs
greatly form the H-continuous functions that is encountered in set valued analy-
sis.

Note that at first glance the definition does not involve neighbourhoods of
the points of X. However, it does involve the graph completion operator,
the definition of which does involve these neighbourhoods. This ensures that
a number of the properties of continuous functions are preserved by the H-
continuous functions. For instance, two H-continuous functions are equal if
and only if equality holds pointwise on a dense set.
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The Hausdorff continuous interval valued functions are mostly used in situ-
ations where certain discontinuities occur. Initially they were applied mainly
to problems in approximation theory, see [75] and [76]. The renewed interest
in the H-continuous functions is a result of several recent applications to other
areas in mathematics. It was shown in [3] that the Dedekind completion of
the space C (X) of continuous functions can be obtained though certain spaces
of H-continuous functions. In particular, if X is a metric space then the space
of all finite H-continuous functions

Hft (X) = {f ∈ H (X) : |f (x)| <∞, x ∈ X} (1.26)

is exactly the Dedekind completion of C (X). The Dedekind completion of
Cb (X), the set of bounded continuous functions, was previously characterized
as a space of ‘normal semi-continuous functions’ in [25]. The novelty of the
result obtained in [3] is that the entire space C (X), and not only its sub-
space Cb (X),is completed as a space of functions on the same topological space
X. The completion of Cb (X) is also characterized as the set of bounded H-
continuous functions. Another application of H-continuous functions is the
use of the space of nearly finite H-continuous functions, that is, the space

Hnf (X) = {f ∈ H (X) : |f (x)| <∞, x ∈ D - closed nowhere dense} , (1.27)
in the order completion method [62]. The order completion method is a power-
ful theory for solving arbitrary continuous nonlinear PDEs using only the usual
measurable functions. The regularity of the solutions obtained in this way has
been improved significantly, see [6], as the solutions can in fact be assimilated
using the nearly finite H-continuous functions. The applications mentioned
above all have at their centre the strong properties that the respective sets of
H-continuous functions exhibit when viewed as ordered spaces. Indeed, the
spaces Hft (X) and Hnf (X) are both Dedekind complete. It is for this rea-
son that the we are interested in the order convergence on these spaces. In
particular, we investigate order convergence on Hft (X). In [78] we considered
order convergence on the set Hft (X) of finite H-continuous functions where X
is an open subset of Rn. It was shown that order convergence satisfies neither
Axiom (MS3) nor Axiom (MS4) of the Moore-Smith Axioms. There, however,
the space Hft (X) is considered only as a lattice so that the results on order
convergence outlined above does not apply. In order to utilize the results on
order convergence on vector lattices in this work some further structure is re-
quired. In particular, it must be shown that Hft (X) is an Archimedean vector
lattice.
When defining the algebraic operations of a linear space on Hft (X) it is

desirable that they extend the pointwise operations on C (X). It is therefore
tempting to define the operations on Hft (X) in a pointwise way. For scalar
multiplication this does not pose significant problems. For addition, however,
one runs into trouble immediately. The function

(f + g) (x) =
£
f (x) + g (x) , f (x) + g (x)

¤
, x ∈ X (1.28)
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need not be H-continuous.

Example 1.5 Let X = [0, 1]. Consider the functions f and g on X defined
by

f (x) =

 0 if x < 0
[0, 1] if x = 0
1 if x > 0

and

g (x) =

 0 if x < 0
[−1, 0] if x = 0
−1 if x > 0

.

Adding f and g pointwise as in (1.28) yields

(f + g) (x) =

 0 if x < 0
[−1, 1] if x = 0
0 if x > 0

which is clearly not H-continuous.

Example 1.5 indicates that the difficulties in defining pointwise operations
on Hft (X) lies in the points where the functions assume proper interval values.
The obstruction is that the established operations of interval analysis does not
introduce a linear structure on the set IR of closed finite real intervals, see [5].
It would therefore be appropriate to somehow ‘remove’ the sets Wf andWg

when defining the sum ‘f + g’. Indeed, following this approach it was shown
that if X is an open subset of Rn, the space Hft (X) can be made into a linear
space such that the operations extend the pointwise operations on C (X), see
[77]. In fact, it was shown that, under certain mild assumptions, Hft (X) is
the largest real linear space that extends the pointwise operations on C (X).
That result is essentially based on the fact that any open subset of Rn is a
Baire space, that is, the complement of any set of first Baire category is dense.
The result can therefore be generalized to any Baire space X. However, when
X is not a Baire space the Baire category argument used in [77] and in this
work fails.
As we stated above, one of the most striking and important properties of

the set Hft (X) when compared with the function spaces usually studied in
functional analysis is that it is Dedekind complete with respect to the order
(1.19). It is therefore of considerable importance to study the relationship
between the order and the algebraic structure on Hft (X). We will show that
the desired connection exists in that Hft (X) possesses the structure of a vec-
tor lattice. In particular, since Hft (X) is Dedekind complete it follows by the
Main Inclusion Theorem, see Appendix A, that it is an Archimedean vector
lattice. The power of this result is twofold. Firstly, it allows for application of
the established theory of vector lattices to the H-continuous functions. More-
over, it enables us to make use of the theory of order convergence as developed
in Chapter 2 of this work.
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In addition to the general results on order convergence obtained in Chapter
2, this mode of convergence on the vector lattice Hft (X) satisfies a further
property when X is a compact metric space. One can characterize the order
convergent sequences on Hft (X) through the Hausdorff distance on Hft (X).
This characterization was obtained in [78] for X a compact subset of Rn. Here
we will extend it to arbitrary compact metric spaces.
The Hausdorff distance, as the name indicates, was introduced by Felix

Hausdorff in his famous 1914 book on topology, as a metric on the set of closed
subsets of a metric space (M, ρ). In particular, for any two closed subsets A
and B of M , the Hausdorff distance r (A,B) between them is defined as

r (A,B) = max

½
sup
a∈A
inf
b∈B

ρ(a, b), sup
b∈B
inf
a∈A

ρ(a, b)

¾
. (1.29)

Consider the set M = X × R endowed with the metric

ρ ((x1, y1) , (x2, y2)) = max {d (x1, x2) , |y1 − y2|} (1.30)

where d is the distance function on X×X. Then any f ∈ A (X) that assumes
only finite values satisfies

{(x, f (x)) : x ∈ X} ⊂M,
that is, the graph of f is a subset of M . If, therefore, f, g ∈ A (X) are finite
and their graphs are closed subsets of M , the Hausdorff distance

r (f, g) = max

½
sup
x∈X

inf
y∈X

ρ((x, f (x)) , (y, g (y))), sup
Y ∈x

inf
x∈X

ρ((x, f (x)) , (y, g (y)))

¾
(1.31)

is well defined. In particular, if we consider the set Fft (X) of all finite valued S-
continuous functions on X, we show that (1.31) defines a metric on that space.
It is call the Hausdorff distance, or H-distance for short. The definition of
this distance on Fft (X) is due to Sendov [76] for the particular case when
X is a compact interval in the real line. There it is shown that (Fft (X) , r)
is a complete metric space with the surprising property that the unit ball is
compact. Recall that in a normed space the compactness of the unit ball is
equivalent to the space being of finite dimension.
In [78] the work of Sendov was in part extended to the case when X is a

subset of Rn. Moreover, some relations between the Hausdorff distance and
order convergence on Hft (X) were established. Our goal here is the further
generalization of the results in [78] to arbitrary metric spaces.
A first step towards the generalization obtained in [78] was an alternative

expression for the H-distance. This is obtained through the so called δ-Baire
operators Iδ and Sδ. Although they were at first defined only for X a subset
of Rn, the expression remains unchanged for more general metric spaces. The
δ-lower Baire and δ-upper Baire operators Iδ and Sδ are defined as

Iδ(f)(x) = inf{z ∈ f(y) : y ∈ Bδ(x)}, (1.32)
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Sδ(f)(x) = sup{z ∈ f(y) : y ∈ Bδ(x)}, (1.33)

for any δ > 0 and f ∈ A (X). Note that since the open balls form a basis for
the topology induced on X by the metric, it holds that

I (f) (x) = sup
δ>0
Iδ(f)(x), x ∈ X (1.34)

and
S (f) (x) = inf

δ>0
Sδ(f)(x), x ∈ X (1.35)

for every f ∈ A (X). For any f, g ∈ Fft (X) define the one-sided H-distance
η (f, g) as

η (f, g) = inf {δ > 0 : Iδ(g)(x)− δ ≤ f (x) ≤ Sδ(g)(x) + δ, x ∈ X} . (1.36)

We show that the H-distance r (f, g) is given by

r (f, g) = max {η (f, g) , η (g, f)} (1.37)

For all f, g ∈ Fft (X). For functions f and g that are not S-continuous the
H-distance is defined as the H-distance between their completed graphs. That
is,

r (f, g) = r (F (f) , F (g)) . (1.38)

Note that the one-sided H-distance is not a metric (distance function) on
Fft (X), since there exist functions f, g ∈ Fft (X) such that

η (f, g) = 0, f 6= g.
We generalize a characterization of order convergent sequence on Hft (X)

in terms of the one-sided H-distance that was obtained in [78]. Furthermore,
we show that under certain conditions of equi-H-continuity, order convergence
and convergence in the H-distance are equivalent.

1.8 Order Convergence on C (X)

Consider the set C(X) of all continuous real functions defined on a given topo-
logical space X with a point-wise defined partial order, that is, for f, g ∈ C (X)

f ≤ g ⇐⇒ f(x) ≤ g(x), x ∈ X. (1.39)

It is well known, see for instance [52], that the pointwise operations and the
pointwise order (1.39) make C (X) into an Archimedean vector lattice. In fact,
a large number of vector lattices are Riesz isomorphic to a subspace of C (X)
for some topological space X, see [1]. Therefore, when we consider C (X) we
are actually working with quite a large class of vector lattices.
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Since C (X) is an Archimedean vector lattice, the theory of order conver-
gence developed in this work applies. Firstly, it follows that (C (X) ,σo), where
σo is the sequential convergence structure on C (X) given by the order conver-
gence with respect to the partial order (1.39), is a sequential convergence space.
As for Archimedean vector lattices in general, there is no topology on C (X)
that induces the sequential convergence structure σo, except in some special
cases. Indeed, in Example 1.3 we showed that σo violates the third Moore-
Smith Axiom (MS3) and in [78] it is shown that the fourth Moore-Smith Axiom
(MS4) also fails.
Let us note that since C (X) is a lattice, any finite subset of C (X) has both

supremum and infimum which are respectively the point-wise supremum and
infimum. However, the existence of supremum and infimum of infinite sets can-
not be guaranteed. In particular the supremum and infimum in the Definition
1.4 might not exist as the space C (X) is in general neither Dedekind complete
nor Dedekind σ-complete. In fact, a necessary and sufficient condition on the
topological space X for C (X) to be Dedekind complete is that X is completely
regular and extremely disconnected, see [52] [Section 43]. Furthermore, when
the supremum and/or infimum exist they are not necessarily equal to the point-
wise supremum and/or infimum of the respective sequences of functions as the
later ones might not be continuous functions at all. This is demonstrated in
the following example which also shows that the order convergence on C (X) is
not point-wise.

Example 1.6 Take X = R with the usual topology on R and consider the
sequence of functions (fn) given by

fn(x) =

½
1− n|x| if x ∈ ¡− 1

n
, 1
n

¢
0 otherwise

(1.40)

Let f denote the constant zero function, that is, f(x) = 0, x ∈ R. Then f
is the largest lower bound of the set {fn : n ∈ N} in C(R) with respect to the
partial order (1.39), that is, f = inf {fn : n ∈ N}. Using also that (fn) is a
decreasing sequence and taking λn = f and µn = fn, n ∈ N, we obtain from
Definition 1.4 that the sequence (fn)n∈N order converges to f . Note that f
is not a point-wise limit of (fn) and that the point-wise limit is actually not a
continuous function.

The above example shows that order convergence does not imply point-
wise convergence. The converse is also true, point-wise convergence does not
in general imply order convergence. However, under some assumptions on X,
e.g. X compact, and for certain classes of sequences, e.g. bounded sequences,
point-wise convergence implies order convergence.
Since C (X) is an Archimedean vector lattice we can define the order con-

vergence structure λo on it. However, since C (X) is in general not Dedekind
σ-complete, it follows that the order convergence structure is not complete.
We show that, under the additional assumption that X is a metric space, the
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set of all finite H-continuous functions considered with order convergence struc-
ture satisfies conditions (C1) through (C3). Hence every Cauchy sequence on
C (X), with respect to the order convergence structure, order converges to some
finite H-continuous function.

1.9 Summary of the Main Results

This work deals with three previously unrelated topics namely convergence
spaces, order convergence on vector lattices and Hausdorff continuous func-
tions. A consequence of this is that we obtain a large number of results, some
of greater interest than others. Therefore we highlight the more important
contributions.

MR1 Order convergence on a σ-distributive lattice, and hence on a vector
lattice, is an FS-convergence structure, that is, there exists a convergence
structure that induces the order convergence of sequences. One such
structure is the order convergence structure λo. Moreover, if the vector
lattice is Archimedean, then λo is a vector space convergence structure.

MR2 For an Archimedean vector lattice E there exists a complete convergence
vector space eE and a mapping i : E → eE that satisfy the conditions
(C1) through (C3). Indeed, we show that the space eE is isomorphic
to the Dedekind σ-completion of E equipped with the order convergence
structure.

MR3 If E and F are Archimedean vector lattices with F Dedekind complete,
then the linear operators from E into F continuous with respect to order
convergence structure are exactly the σ-order continuous operators. Fur-
thermore, the set Lc (E,F ) of all continuous linear operators equipped
with the continuous convergence structure is complete. We also obtain
the result that if the dual of (F,λo) separates the points of F , then the
pointwise limit of a sequence of σ-order continuous operators is a σ-order
continuous operator.

MR4 We extend the linear structure on the set of all finite H-continuous func-
tions, as defined in [77] for open subsets of Rn, to the more general case
where the functions are defined on a Baire space. We also show that the
linear structure is compatible with the order relation so that Hft (X) is
a Dedekind complete vector lattice.

MR5 Order convergence structure on C (X) is in general not a complete vector
space convergence structure. We show that for a Baire space X, the
completion can be obtained as a set of finite H-continuous functions on
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X. If X is a metric space we show that the space (Hft (X) ,λo) is the
completion of (C (X) ,λo).
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2. ORDER CONVERGENCE STRUC-
TURE ON A VECTOR LATTICE

2.1 The Order Convergence Structure

In this section we first consider order convergence on a σ-distributive lattice L.
One of the difficulties when dealing with order convergence, and non topological
convergence in general, is the absence of the diagonal property (MS4). We
therefore obtain a diagonal theorem for monotone sequences on a lattice that
serves as a powerful tool in obtaining further results for order convergence in
general.

Theorem 2.1 Let L be a lattice with respect to a given partial ordering ≤.
(i) For every n ∈ N let the sequence (fmn) be bounded and increasing and let

bfn = sup {fmn : m ∈ N} , n ∈ N,

efn = sup {fmn : m = 1, ..., n} , n ∈ N.

If the sequence
³ bfn´ is bounded and increasing and supnbfn : n ∈ N

o
exists,

then the sequence
³ efn´ is bounded and increasing and
sup

nbfn : n ∈ N
o
= sup

nefn : n ∈ N
o
.

(ii) For every n ∈ N let the sequence (fnm) be bounded and decreasing and let

bfn = inf {fmn : m ∈ N} , n ∈ N,

efn = inf {fmn : m = 1, ..., n} , n ∈ N.

If the sequence
³ bfn´ is bounded and decreasing and inf nbfn : n ∈ N

o
exists,

then the sequence
³ efn´ is decreasing and bounded and
inf
nbfn : n ∈ N

o
= inf

nefn : n ∈ N
o
.

Proof. Let the sequence
³ bfn´ be increasing and bounded such that f =

sup
nbfn : n ∈ N

o
exists. Using the monotonicity of the sequences (fmn)m∈N,
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n ∈ N, we have

efn = sup {fmn : m = 1, ..., n}
≤ sup {fmn+1 : m = 1, ..., n}
≤ sup {fmn+1 : m = 1, ..., n+ 1}
= efn+1

which implies that the sequence is increasing. We will show next that the
sequence

³ efn´ is bounded from above and that sup
nefn : n ∈ N

o
= f exists.

Since for each k ≤ n we have fkn ≤ bfk ≤ bfn it follows thatefn ≤ bfn ≤ f, n ∈ N.

Let ef be an upper bound for the sequence ³ efn´. Then it is easy to see that

fmk ≤ ef for every k,m ∈ N. Indeed,

k ≤ m =⇒ fkm ≤ efm ≤ ef
and

k > m =⇒ fkm ≤ fkk ≤ efk ≤ ef.
Therefore bfn = sup {fmn : m ∈ N} ≤ ef.
Hence every upper bound of

³ efn´ is an upper bound for ³ bfn´ so that every
upper bound ef of ³ efn´ satisfies f ≤ ef . Therefore supnefn : n ∈ N

o
= f .

(ii) This is proved in a similar way as (i) above.
Although the diagonal property (MS4) generally fails for order convergence,

Theorem 2.1 above allows us to obtain many interesting results. This is due to
the fact, as can be seen from Definition 1.3 (iii), that the monotone sequence
essentially determine the order convergent sequences.
This next result can be found for the specific case of a vector lattice in [52].

The proof employed there relies not so much on the distributive properties of
the lattice structure but follows a more algebraic approach. It is of interest
to us here as it permits a construction that is essential to the main result
of this section: Order convergence on a σ-distributive lattice defines an FS-
convergence structure.

Lemma 2.1 Let L be a σ-distributive lattice with (fn) and (gn) sequences on
L.
(i) If fn ↑ f and gn ↑ g then the sequences (h1

n) = (fn ∧ gn) and (h2
n) =

(fn ∨ gn) increase to h1 = f ∧ g and h2 = f ∨ g respectively.
(ii) If fn ↓ f and gn ↓ g then the sequences (h1

n) = (fn ∧ gn) and (h2
n) =

(fn ∨ gn) decrease to h1 = f ∧ g and h2 = f ∨ g respectively.
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Proof. (i) It is clear that (h2
n) = (fn ∨ gn) increases to h2

n = f ∨ g, so we
prove only that (h1

n) = (fn ∧ gn) increase to h1 = f ∧ g. Since fn ≤ fn+1 and
gn ≤ gn+1 for every n ∈ N it follows that fn ∧ gn ≤ fn+1 and fn ∧ gn ≤ gn+1

for every n ∈ N. Therefore h1
n ≤ h1

n+1 = fn+1 ∧ gn+1 for every n ∈ N. In the
same way h1

n ≤ f ∧ g, n ∈ N. Since L is σ-distributive, it follows from

sup {gn : n ∈ N} = g
that fn ∧ gm ↑ fn ∧ g for every n ∈ N. But since

sup {fn : n ∈ N} = f
we obtain fn ∧ g ↑ f ∧ g, again by the σ-distributivity of L. It now follows by
Theorem 2.1 (i) that the sequence (hn) defined by

hn = sup {fn ∧ gm : m ≤ n}
increases to f ∧ g. But

hn = sup {fn ∧ gm : m ≤ n} = fn ∧ gn = h1
n, n ∈ N

by the monotonicity of the sequence (gn). This yields the desired convergence.
(ii) This follows by similar arguments as (i) above.

Theorem 2.2 Let L be a σ-distributive lattice. Then order convergence on L
satisfies conditions (i) and (ii) of Theorem 1.2.

Proof. (i) Let (fn) and (gn) be sequences on L where fn → f and h(fn)i =
h(gn)i. Since the sequence (fn) converges to f there exists by Definition 1.3
(iii) sequences (λn) and (µn) such that λn ↑ f and µn ↓ f and

λn ≤ fn ≤ µn, n ∈ N.

Firstly, note that for every m ∈ N the elements λm and µm are respectively
lower and upper bounds for the set {fn : n ≥ m}. Indeed, we have

λm ≤ λn ≤ fn ≤ µn ≤ µm, n ≥ m.
Furthermore, since {fn : n ≥ m} ∈ h(fn)i = h(gn)i there exists km ∈ N such
that

{gn : n ≥ km} ⊆ {fn : n ≥ m} .
Then λm and µm are respectively lower and upper bounds of the set {gn : n ≥ km}.
Hence we can construct inductively an increasing sequence of naturals k1, k2, k3, ...
such that

λm ≤ gn ≤ µm, n ≥ km,m ∈ N. (2.1)

We can now define two new sequences (ln) and (un) as follows:

ln = inf {g1, ..., gk1−1,λ1} , n = 1, 2, ..., k1 − 1
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ln = λn, n = kn, kn + 1, ..., kn+1 − 1, n = 1, 2, ...

un = sup {g1, ..., gk1−1, µ1} , n = 1, 2, ..., k1 − 1

un = µn, n = kn, kn + 1, ..., kn+1 − 1, n = 1, 2, ...

Clearly, (ln) is increasing and (un) is decreasing. From the inequality (2.1) it
follows that

ln ≤ gn ≤ un, n ≥ m,m ∈ N.

We also have
sup {ln : n ∈ N} = sup {λn : n ∈ N} = f

and
inf {un : n ∈ N} = inf {µn : n ∈ N} = f

so that the sequence (gn) order converges to f by Definition 1.3 (iii).
(ii) Let (fn) and (gn) be sequence on L that order converges to f ∈ L. Now
consider the trivial mixing (hn) = (fn♦gn) defined by

h2n−1 = fn, h2n = gn. (2.2)

According to Definition 1.3 (iii) there exists sequences
¡
λ1
n

¢
and (µ1

n), and¡
λ2
n

¢
and (µ2

n) such that λ
1
n,λ

2
n ↑ f and µ1

n, µ
2
n ↓ f and

λ1
n ≤ fn ≤ µ1

n, n ∈ N, (2.3)

λ2
n ≤ gn ≤ µ2

n, n ∈ N.

Combining (2.2) through (2.3) we obtain

λ1
n ≤ h2n−1 ≤ µ1

n, (2.4)

λ2
n ≤ h2n ≤ µ2

n.

Define the sequence (µ∗n) as

µ∗n = sup
©
µ1
n, µ

2
n

ª
. (2.5)

By Lemma 2.1 (ii) this sequence decreases to sup {f, f} = f . If we now
consider the trivial mixing (µn) = (µ∗n♦µ∗n) of µ∗n with itself, then (2.4) and
(2.5) imply that

hn ≤ µn, n ∈ N

and it is obvious that µn ↓ f . In the same way an increasing sequence (λn)
can be constructed so that Definition 1.3 (iii) is satisfied. This completes the
proof.
We now obtain, as a Corollary to Theorem 2.2 above, the following result

for vector lattices.

Corollary 2.1 For any vector lattice E the sequential convergence space (E,σo)
is an FS-space.
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Proof. This follows on application of Theorems 2.2 and A.1.
In the introduction to this work it is mentioned that a given FS-convergence

structure is not induced by a unique convergence structure. There is, however,
a unique sequentially determined convergence structure that induces the FS-
convergence structure. For order convergence we will consider rather the fol-
lowing definition as it exhibits some strong properties related to boundedness.

Definition 2.1 Let L be a σ-distributive lattice. Define the mapping λo from
E into the powerset of all filters on E as follows. A filter F belongs to λo (f)
if and only if there exists a coarser filter G with a countable basis of the form

{[λn, µn] : n ∈ N}

where λn ↑ f and µn ↓ f .

We proceed to show that the mapping λo does indeed define a convergence
structure and induces the sequential convergence structure σo.

Lemma 2.2 Let L be a σ-distributive lattice. If a filter F ∈ λo (f) has a
countable basis {F1, F2, ...} where F1 is order bounded and F1 ⊇ F2 ⊇ ..., then
there exists a decreasing sequence (λn) and an increasing sequence (µn) such
that

λn ≤ g ≤ µn, g ∈ Fn, n ∈ N

and
f = sup {λn : n ∈ N} = inf {µn : n ∈ N} .

Proof. Let the filter F on L satisfy the conditions listed above. By
Definition 2.1 there exists a coarser filter G with a countable basis of the formnheλn, eµni : n ∈ N

o
such that eλn ↑ f and eµn ↓ f . As G is coarser than F there

exists for every n ∈ N a natural number kn such that Fkn ⊆
heλn, eµni. The

required sequence can now be constructed as follows:

λj =

(
inf
neλ1, g1

o
, j = 1, ..., k1 − 1eλn , j = kn, kn + 1, ..., kn+1 − 1

,

µj =

½
sup {eµ1, g2} , j = 1, ..., k1 − 1eµn , j = kn, kn + 1, ..., kn+1 − 1

,

where g1 ≤ g ≤ g2 for every g ∈ F1.

Theorem 2.3 The mapping λo from a σ-distributive lattice L into the power-
set of all filters on L defines a first countable convergence structure on L such
that σλo = σo.
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Proof. Conditions (i) and (iii) of Definition 1.5 are obvious so we will prove
only conditions (ii).

Let F1 and F2 be filters on E that converge to f ∈ L and let
³
λ(1)
n

´
,
³
µ

(1)
n

´
and³

λ(2)
n

´
,
³
µ

(2)
n

´
be the sequences associated with the filters F1 and F2 according

to Definition 2.1. Define the sequences (λn) and (µn) as follows:

λn = inf
n
λ(1)
n ,λ

(2)
n

o
,

µn = sup
©
µ(1)
n , µ

(2)
n

ª
.

By Theorem A.3 (i) and (ii) respectively λn ↑ f and µn ↓ f . Clearly the filter
generated by the base

{[λn : µn] : n ∈ N}
is coarser than the filter F = F1 ∩ F2 so it follows by Definition 2.1 that F
converges to f .
The convergence structure λo is first countable by definition. It remains to
prove that λo induces σo.
The implication ‘(fn) order converges to f implies (fn) converges to f in σo’ is
obvious. For the reverse implication, consider a sequence (fn) that converges
to f in σo. Let (eλn), (eµn) be the sequences associated with the filter

hfni = [{{fn : n ≥ m} : m ∈ N}]
in terms of Definition 2.1, that is, the filter G given by

G =
hnheλn, eµni : n ∈ N

oi
is coarser than hfni and eλn ↑ f and eµn ↓ f . Since hfni is finer than G it follows
that there exists m ∈ N such that {fn : n ≥ m} ⊆

heλ1, eµ1

i
. Since there are

only a finite number of terms of (fn) that is not in
heλ1, eµ1

i
it follows that (fn)

is bounded. Now we apply Lemma 2.2 to the filter h(fn)i. Accordingly, there
exists a increasing sequence (λn) and a decreasing sequence (µn) such that

λn ≤ fm ≤ µn,m ≥ n, n ∈ N

and
f = sup {λn : n ∈ N} = inf {µn : n ∈ N} .

It follows that (fn) order converges to f .
Again as a corollary to the above we obtain the corresponding result for

vector lattices.

Corollary 2.2 For a vector lattice E the mapping λo from the E into the
powerset of all filters on E defines a first countable convergence structure on
E such that σλo = σo.
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Proof. By Theorem A.1 E is distributive, and hence σ-distributive. The-
orem 2.3 now implies the desired result.
Having established that the convergence structure λo induces order con-

vergence of sequences we commence an investigation of the convergence space
properties of this structure. We begin this investigation with studying the
separation properties of order convergence structure. This investigation will
be continued in the next section in the particular case of a vector lattice.

Theorem 2.4 Let L be a σ-distributive lattice. Then (L,λo) is a regular
convergence space.

Proof. Let the filter F converge to f in (L,λo). By Definition 2.1 there
exist sequences λn ↑ f and µn ↓ f such that the filter generated by

{[λn, µn] : n ∈ N}
is coarser than F . Since (L,λo) is first countable (Theorem 2.3) it follows by
Proposition B.1 that for any subset A of L

a (A) = {f ∈ L : ∃ (fn) ⊆ A, fn → f} .
We first show that every interval [g1, g2] is closed. Let (fn) be a sequence
in [g1, g2] that converges to some f ∈ L. By Definition 2.1 (iii) there exists
sequences (λ0n) and (µ

0
n) such that λ

0
n ↑ f and µ0n ↓ f and

λ0n ≤ fn ≤ µ0n, n ∈ N. (2.6)

Suppose that g1 £ f . Since the sequence (µ0n) decreases to f it follows by (2.6)
and the inclusion (fn) ⊂ [g1, g2] that f < f ∨ g1 ≤ µ0n for every n ∈ N. But
f = inf {µ0n : n ∈ N}, a contradiction. Therefore our assumption that g1 £ f
is false so that g1 ≤ f . In the same way it follows that f ≤ g2 so that [g1, g2]
is closed.
Since the filter generated by

{[λn, µn] : n ∈ N}
is coarser than F , there exists for every n ∈ N a set F ∈ F such that [λn, µn] ⊆
F . But

a ([λn, µn]) = [λn, µn] ⊆ F ⊆ a (F ) .
Therefore the filter [{[λn, µn] : n ∈ N}] is coarser than a (F) so by Definition
2.1 a (F) converges to f .
Corollary 2.3 For a σ-distributive lattice L the convergence space (L,λo) is
Hausdorff.

Proof. Clearly the space (L,λo) is T1 and by Theorem 2.4 above it is
regular. By (1.7) (L,λo) is Hausdorff.
The corresponding result for vector lattices now follow as a straight forward

corollary to the above.

THE ORDER CONVERGENCE STRUCTURE 49

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  ddeerr  WWaalltt,,  JJ  HH    ((22000066))  



Corollary 2.4 For a vector lattice E the convergence space (E,λo) is regular
and Hausdorff.

Proof. This follows from Theorem 2.4 and Corollary 2.3.
We now turn our attention to the special case at hand, that is, order con-

vergence on a vector lattice and, in particular, an Archimedean vector lattice.
We proceed to show that, if a vector lattice is Archimedean, then the conver-
gence structure λo is compatible with the algebraic structure. This result fails
when the assumption that the vector lattice is Archimedean is relaxed as this
is equivalent to the sequential continuity of scalar multiplication.

Theorem 2.5 For an Archimedean vector lattice E the order convergence
structure λo is a vector space convergence structure so that the pair (E,λo)
is a convergence vector space.

Proof. Denote by d : E×E → E the addition mapping, that is, d (f1, f2) =
f1+ f2 for all f1, f2 ∈ E. Let π1, π2 : E ×E → E be the projection mappings
around the first and second coordinate respectively. Assume that F is a filter
on E×E that converges to (f1, f2) in the product convergence structure on E×
E. Since the product convergence structure is the initial convergence structure
on E × E with respect to the projections π1 and π2 it follows that πi (F) ∈
λo (fi), i = 1, 2. By Definition 2.1 there exists filters G1, G2 respectively
generated by the bases nh

λ(i)
n , µ

(i)
n

i
: n ∈ N

o
, i = 1, 2

where the sequences
³
λ(i)
n

´
, i = 1, 2, increase to fi, i = 1, 2, and the sequences³

µ
(i)
n

´
, i = 1, 2, decrease to fi, i = 1, 2. It is easy to see that the filter H on

E ×E generated by a basisnh
λ(1)
n , µ

(1)
n

i
×
h
λ(2)
n , µ

(2)
n

i
: n ∈ N

o
is coarser than F . Furthermore, since πi (H) = Gi, i = 1, 2, the filter H
converges to (f1, f2). The image filter d (H) is generated by the basisnh

λ(1)
n + λ(2)

n , µ
(1)
n + µ(2)

n

i
: n ∈ N

o
.

The sequential continuity of the addition mapping d implies that the increasing
sequence

³
λ(1)
n + λ(2)

n

´
and the decreasing sequence

³
µ

(1)
n + µ

(2)
n

´
both converge

to f1 + f2. Therefore the filter d (H) converges to f1 + f2 and since d (A) is
finer than d (H) it follows that d (A) also converges to f1+ f2 so that addition
is continuous.
The continuity of scalar multiplication follows by similar arguments.
The following result gives a more general criterion for a filter to be conver-

gent with respect to the order convergence structure. Its main use will be in
characterizing the filters that converge to 0 in such a way as to ease certain
manipulations.
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Proposition 2.1 Let E be a vector lattice. If the sequences (fn) and (gn)
both order converge to f ∈ E and satisfy

fn ≤ gn, n ∈ N,

then the filter [{[fn, gn] : n ∈ N}] converges to f in (E,λo).
Proof. By assumption the sequences (fn) and (gn) both converge to f ∈ E

so that there exists sequences
¡
λ1
n

¢
and

¡
λ2
n

¢
and (µ1

n) and (µ
2
n) such that

λ1
n,λ

2
n ↑ f and µ1

n, µ
2
n ↓ f and

λ1
n ≤ fn ≤ µ1

n, n ∈ N (2.7)

and
λ2
n ≤ gn ≤ µ2

n, n ∈ N. (2.8)

Define the sequences (λn) and (µn) as

λn = inf
©
λ1
n,λ

2
n

ª
, n ∈ N,

µn = sup
©
µ1
n, µ

2
n

ª
, n ∈ N.

By Theorem A.3 the sequence (λn) increases to f and the sequence (µn) de-
creases to f . It follows from (2.7) through (2.8) that

[fn, gn] ⊆ [λn, µn] , n ∈ N

and hence
[{[λn, µn] : n ∈ N}] ⊆ [{[fn, gn] : n ∈ N}] .

Therefore [{[fn, gn] : n ∈ N}] converges to f by Definition 2.1.
Proposition 2.2 Let E be an Archimedean vector lattice. Then a filter F on
E converges to 0 in (E,λo) if and only if there exists a sequence (eµn) such thateµn ↓ 0 and

[{[0, eµn] : n ∈ N}] ⊆ |F|
where |F| = [{|F | : F ∈ F}].
Proof. Let the filter F on E converges to 0 in (E,λo). By Definition 2.1

there exists sequences (λn) and (µn) such that λn ↑ 0 and µn ↓ 0 and
[{[λn, µn] : n ∈ N}] ⊆ F . (2.9)

By (2.9) above there exists for every n ∈ N an Fn ∈ F such that Fn ⊆ [λn, µn].
Hence the inclusion

|Fn| ⊆ [0, eµn] , n ∈ N (2.10)

where eµn = sup {|λn| , |µn|} follows. By Theorem A.2 (iv) and Theorem A.3
(ii) the sequence (eµn) decreases to 0. By Proposition 2.1 above it follows that
the filter [{[0, eµn] : n ∈ N}] converges to 0 and by (2.10)

[{[0, eµn] : n ∈ N}] ⊆ |F| .
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For the converse, suppose that there exists a sequence (eµn) such that eµn ↓ 0
and

[{[0, eµn] : n ∈ N}] ⊆ |F| (2.11)

Define the sequences (λn) and (µn) by λn = −µn and µn = eµn for every n ∈ N.
By Theorem A.2 (ii) the sequence (λn) increases to 0. But the inclusion (2.11)
implies that there exists, for every n ∈ N, an Fn ∈ F such that |Fn| ⊆ [0, µn].
But this implies that Fn ⊆ [λn, µn] and hence

[{[λn, µn] : n ∈ N}] ⊆ F .
This completes the proof.
Local convexity is strong property for a topological vector space to poses.

In fact, it is within the setting of locally convex spaces that functional analysis
is usually performed. For convergence vector spaces it is not as strong a
property. It is, however, useful when studying equicontinuity of sets of linear
mappings. In particular, in some cases it plays a role in obtaining a Banach-
Steinhauss theorem. It follows by an easy calculation that order convergence
is a locally convex vector space convergence structure.

Theorem 2.6 For any Archimedean vector lattice E the convergence vector
space (E,λo) is locally convex.

Proof. Let F converge to 0 in (E,λo). By Definition 2.1 there exists
sequences λn ↑ 0 and µn ↓ 0 such that the filter generated by

{[λn, µn] : n ∈ N}
is coarser than F . Since each interval [λn, µn] is convex it follows by Definition
1.18 that [λn, µn] ∈ co (F) for every n ∈ N so that [{[λn, µn] : n ∈ N}] is coarser
than co (F). Therefore co (F) converges to 0 in (E,λo) by Definition 2.1.
We proceed to characterize the bounded subsets with respect to order con-

vergence structure. The implication of this result is not immediately evident,
but its significance will becomes clear when we study the Mackey modification
µ (E) of (E,λo) and the completion of (E,λo).

Theorem 2.7 Let E be an Archimedean vector lattice. A subset B of E is
bounded in the order convergence structure if and only if it is order bounded,
that is, there exists f1, f2 ∈ E such that

f1 ≤ f ≤ f2, f ∈ B.
Proof. Suppose that the subset B of E is bounded with respect to λo.

According to Definition 1.3 (i) the filter NB converges to 0. By Definition 2.1
there exists sequence λn ↑ 0 and µn ↓ 0 such that the filter generated by

{[λn, µn] : n ∈ N}
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is coarser than NB. A basis for NB is given by the collection½µ
−1

n
,
1

n

¶
B : n ∈ N

¾
and since [{[λn, µn] : n ∈ N}] is coarser than NB it follows that there exists
m ∈ N such that µ

− 1

m
,
1

m

¶
B ⊆ [λ1, µ1] .

Therefore
1

m+ 1
B ⊆ [λ1, µ1]

so that f ≤ (m+ 1)µ1 and (m+ 1)λ1 ≤ f for every f ∈ B.
Conversely, assume that the setB is order bounded, that is, there exists f1, f2 ∈
E such that

f1 ≤ f ≤ f2, f ∈ B.
Let g = sup {|f1| , |f2|}. Then

−g ≤ f ≤ g, f ∈ B. (2.12)

Since E is Archimedean the sequence
³eλn´ = ¡− g

n

¢
increases to 0 and the

sequence (eµn) = ¡ gn¢ decreases to 0. But by (2.12)µ
−1

n
,
1

n

¶
B ⊆

·
−1

n
g,

1

n
g

¸
, n ∈ N

so NB converges to 0 by Definition 2.1. This completes the proof.

Corollary 2.5 For an Archimedean vector lattice E the convergence vector
space (E,λo) is locally bounded.

Proof. By Definition 2.1, if a filter F converges to, say f , then there exist
sequences λn ↑ f and µn ↓ f such that the filter generated by

{[λn, µn] : n ∈ N}

is coarser than F . Therefore [λ1, µ1] ∈ F and by Theorem 2.7 [λ1, µ1] is
bounded in (E,λo).

2.2 Continuous Functions on (E,λo)

We begin our investigation of the space C ((E,λo)) of all continuous real valued
functions defined on (E,λo) by determining the associated topology of the order
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convergence. In light of Proposition B.2 (iii) and Definition 1.11 it is not at
all surprising that it turns out to be the order topology. Our interest in
the associated topology stems from Proposition B.2, that is, the continuous
functions from a convergence space into the reals is exactly those real valued
mappings that are continuous with respect to the associated topology.

Theorem 2.8 Let E be a vector lattice. Then the associated topology of
(E,λo) is the order topology.

Proof. Suppose that U is an open set with respect to the associated topol-
ogy of (E,λo). Let f ∈ U and suppose that (fn) order converges to f . By
Theorem 2.3 the filter

hfni = [{fn : n ≤ k} : k ∈ N]

converges to f in (E,λo). By Definitions 1.9 and 1.10 U belongs to every filter
that converges to f so that U ∈ hfni. Therefore there exists k ∈ N such that
{fn : n ≤ k} ⊆ U . Since f ∈ U and the sequence (fn) were arbitrary it follows
by Theorem 1.11 that U is τ o-open so that o ((E,λo)) is coarser than the order
topology.
Now let U be a τ o-open subset of E and let f ∈ U . Let the filter F converge
to f . By Definition 2.1 there exists sequence λn ↑ f and µn ↓ f such that the
filter

[{[λn, µn] : n ∈ N}]
is coarser thanF . If we can show that there exists n ∈ N such that [λn, µn] ⊆ U
then U ∈ F . Since f and F were chosen in an arbitrary way, this implies that
U is open in o ((E,λo)) which completes the proof. So assume, for the sake
of obtaining a contradiction, that this is not the case, that is, for every n ∈ N
there exists fn ∈ [λn, µn] such that fn /∈ U . The sequence (fn) thus obtained
clearly order converges to f , but lies entirely outside of U . Therefore U can
not be τ o-open, contrary to our assumption. Therefore [λn, µn] ⊆ U for some
n ∈ N. This completes the proof.
This next result is quite special in that it is not true for convergence vector

spaces in general. We will show that the topological modification o (E) of
(E,λo) is a topological vector space. For an example of a convergence vector
space for which this does not hold, see [15][Remark 4.3.31]. This result has
significant consequences for the space C ((E,λo)) and its relation with (E,λo).
Theorem 2.9 Let E be an Archimedean vector lattice. Then (E, τ o) is a
topological vector space.

Proof. We must show that the mappings

+ : (E, τ o)× (E, τ o)→ (E, τ o)

and
· : (E, τ o)×R→ (E, τ o)
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are continuous. So let U be an open subset of (E, τ o).and consider its inverse
image under addition, that is, the set

V = {(f, g) ∈ E ×E : f + g ∈ U} . (2.13)

We must show that the set V is open in the product space (E, τ o) × (E, τ o).
This will hold if and only if there exists for every (f, g) ∈ V open subsets V1

and V2 of (E, τ o) such that f ∈ V1, g ∈ V2 and

V1 × V2 ⊆ V.

The set V1 is open if and only if for every f ∈ V1 and every sequence (fn) that
order converges to f there exists a natural number N such that fn ∈ V1 for
every n ≥ N and similarly for V2. Therefore the set V is open if and only if
for every (f, g) ∈ V and every sequence ( efn) = (fn, gn) on E × E such that
(fn) order converges to f and (gn) order converges to g there exists a natural
number N such that ( efn) ∈ V for every n ≥ N .
Let ( efn) = (fn, gn) be such a sequence. By Theorem A.4 the sequence (hn) =
(fn + gn) order converges to f + g. But f + g ∈ U by (2.13) and since U is
open by assumption, it follows by Definition 1.11 that there exists N1 ∈ N such
that

fn + gn = hn ∈ U, n ≥ N1. (2.14)

By (2.13) and (2.14) it follows that (fn, gn) ∈ V for every n ≥ N1 so that V is
open. Therefore ‘addition’ is continuous with respect to the order topology.
The proof that scalar multiplication is a continuous mapping from (E, τ o)×R
into (E, τ o) follows in the same way as above.
If we now recall Pontryagin’s theorem on the complete regularity of topo-

logical groups, that is, every topological group is completely regular, we obtain
the following corollary to Theorem 2.9 above.

Corollary 2.6 Let E be an Archimedean vector lattice. Then (E, τ o) is a
completely regular topological space.

Proof. This follows immediately from Pontryagin’s Theorem and Theorem
2.9.
We proceed to state a useful characterization of continuous functions on

(E,λo) into an arbitrary convergence space K.

Theorem 2.10 Let E be a vector lattice. Then a mapping ϕ : E → K, where
K is a convergence space, is continuous if and only if ϕ is countably contin-
uous, that is, if the filter F on E converges to f ∈ E in (E,λo) and has a
countable basis, then ϕ (F) converges to ϕ (f) in K.
If K is topological, then ϕ is continuous if and only if it is sequentially contin-
uous.
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Proof. If the mapping ϕ is continuous, then it is countably continuous.
Conversely, suppose ϕ is countably continuous and let the filter F converge to
f in (E,λo). By Theorem 2.3 (E,λo) is first countable so that there exists a
coarser filter G with a countable basis that converges to f . Obviously

ϕ (G) ⊆ ϕ (F) ,
and since ϕ (G) converges to ϕ (f) by assumption, it follows that by Definition
1.5 (iii) that ϕ (F) converges to ϕ (f) in K. Hence ϕ is continuous.
Now suppose that K is topological. It is sufficient to show that sequen-
tial continuity implies continuity as the converse is true by default. Let
ϕ : (E,λo) → K be a sequentially continuous mapping. By Definition 1.12
(ii) the sequence (ϕ (fn)) converges to ϕ (f) in K whenever (fn) converges to
f in (E,λo). By Corollary 2.2 (fn) converges to f in (E,λo) if and only if
(fn)order converges to f so that ϕ : (E, τ o)→ K is continuous by Proposition
A.3. But by Theorem 2.10 (E, τ o) = o ((E,λo)) so that Proposition B.2 (ii)
implies that ϕ : (E,λo)→ K is continuous.
As particular cases of the above we now have the following.

Corollary 2.7 Let E be an Archimedean vector lattice. Then a mapping
ϕ : E → R is continuous in the order convergence structure on E if and only
if ϕ (fn) converges to ϕ (f) in R whenever (fn) order converges to f in E.

Proof. This is a direct consequence of Theorem 2.10 above.
As a result of Corollary 2.6 above we obtain the following separation result

for the space (E,λo). The significance of such a result is clear as it is a
necessary condition for a convergence space to be c-embeddeble. Although
(E,λo) in in general not c-embeddable this result would still be of some use
when studying nonlinear phenomena.

Theorem 2.11 For an Archimedean vector lattice E the convergence vector
space (E,λo) is functionally regular and functionally Hausdorff.

Proof. We start by showing that, for any f ≤ g ∈ E the interval [f1, f2] is
closed in (E, σ). By Theorem A.2 (v) and Proposition A.2 [f1, f2] is τ o-closed.
By Corollary 2.6 and Proposition B.2 (ii) there exists for every h /∈ [f1, f2] some
ϕ0 ∈ C ((E,λo)) such that ϕ0 (h) = 0, ϕ0 ([f1, f2]) = {1} and 0 ≤ ϕ0 (g) ≤ 1
for every g ∈ E. Therefore½

g ∈ E : |ϕ0 (g)| <
1

2

¾
⊂ E \ [f1, f2]

so that E \ [f1, f2] is σ-open by Definition 1.14 (ii) so that [f1, f2] is σ-closed.
Now let the filter F converge to f in (E,λo). By Definition 2.1 there exists
sequences λn ↑ f and µn ↓ f such that

[{[λn, µn] : n ∈ N}] ⊆ F .
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But each interval [λn, µn] is closed in (E, σ) so it follows by Definition 1.13 that

[{[λn, µn] : n ∈ N}] ⊆ Fσ
.

Again by Definition 2.1 the filter Fσ
converges to f in (E,λo) so that (E,λo)

is functionally regular.
We proceed to show that (E,σ) is Hausdorff. By Corollary 2.7 a function
C ((E,λo)) = C ((E, τ o)) and by Corollary 2.6 (E, τ o) is completely regular.
Therefore, for every f 6= g ∈ (E,λo) there exists ϕ1 ∈ C ((E,λo)) such that
ϕ1 (f) = 0, ϕ1 (g) = 1 and 0 ≤ ϕ1 (h) ≤ 1 for every g ∈ E. Therefore the
σneighborhoods

U =

½
h ∈ E : |ϕ1 (h)| <

1

3

¾
and

V =

½
h ∈ E : |ϕ1 (h)| >

1

3

¾
of f and g respectively are disjoint. This completes the proof.

2.3 Convergence Space Completion of (E,λo)

The aim of this section is to give a concrete description of the convergence
vector space (E,λo). We will achieve this goal in four steps. First we charac-
terize the Cauchy sequences on (E,λo) through order conditions. We proceed
to determine exactly those Archimedean vector lattices for which (E,λo) is
complete. In the third step we establish the existence of a convergence vector
space G that satisfies conditions (C1) through (C3) as stated in Section 1.6.
Finally we present the concrete description of this completion G.

Theorem 2.12 Let E be an Archimedean vector lattice. Then a sequence
(fn) is Cauchy in (E,λo) if and only if it is order Cauchy.

Proof. First note that (1.9) of Definition 1.21 is equivalent to

fm − fk ≤ µn,m, k ≥ n. (2.15)

Indeed, if (2.15) holds then

fk − fm ≤ µn,m, k ≥ n.

By (1.1) we then have

|fm − fk| = sup {(fm − fk) ,− (fm − fk)} ≤ µn,m, k ≥ n.
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The inverse implication is obvious.
It is clear that an order Cauchy sequence is Cauchy with respect to the con-
vergence structure λo.
Now suppose that the sequence (fn) is Cauchy in (E,λo), that is, the filter
h(fn)i is Cauchy. By Definition 1.19 (i) the filter h(fn)i− h(fn)i converges to
0 in (E,λo). Therefore there exists a coarser filter G with a countable basis
of the form {[eλn, eµn] : n ∈ N} where the sequence (eλn) increases to 0 and
the sequence (eµn) decreases to 0. The filter h(fn)i − h(fn)i has as base the
collection

{{fm − fk : m, k ≥ l} : l ∈ N} .
Since G is coarser than h(fn)i− h(fn)i there exists for every n ∈ N an ln ∈ N
such that

{fm − fk : m, k ≥ ln} ⊆ [eλn, eµn].
Therefore there exists l1 ∈ N such that

{fm − fk : m,k ≥ l1} ⊆ [eλ1, eµ1].

Therefore only a finite number of terms of the form fm − fk are not in the in-
terval

heλ1, eµ1

i
. Since E is a lattice it follows that the set {fm − fk : m, k ∈ N}

is order bounded. Lemma 2.2 therefore implies the existence of the desired
sequence.

Theorem 2.13 Let E be an Archimedean vector lattice. Then the convergence
vector space (E,λo) is complete if and only if E is Dedekind σ-complete.

Proof. Suppose that E is Dedekind σ-complete. Now let (fn) be an in-
creasing Cauchy sequence on E. As in the proof of Theorem 2.12 it follows
that (fn) is bounded. But E is Dedekind σ-complete so that (fn) has a supre-
mum f , and hence (fn) converges to f . By Theorem A.6 E is order complete
and hence by Theorem 2.12 every Cauchy sequence in (E,λo) converges in E.
By Proposition B.5 (E,λo) is a complete convergence vector space since λo is
a first countable vector space convergence structure by Theorems 2.2 and 2.5.
Conversely, suppose that (E,λo) is complete but not Dedekind σ-complete.
Let E# be the Dedekind σ-completion of E. We first show that (E,λo) is a
subspace of

¡
E#,λo

¢
. For this purpose it is sufficient to show that if a filter

F converges to f in
¡
E#,λo

¢
, then the restriction F |E of F to E converges

to f in (E,λo). By Definition 2.1 there exists sequences (λn) and (µn) on E
#

such that λn ↑ f and µn ↓ f and

[{[λn, µn] : n ∈ N}] ⊆ F . (2.16)

Since E# is the Dedekind σ-completion of E there exists, for every n ∈ N,
a sequence (λ0n m) on E such that λ0n m ↑ λn. By Theorem 2.1 (ii) we can

construct a sequence
³eλn´ on E in such a way that eλn ≤ λn, n ∈ N and
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eλn ↑ f . Similarly we can define a sequence (eµn) on E in such a way that
µn ≤ eµn, n ∈ N and eµn ↓ f . By (2.16) there exists for every n ∈ N a set
Fn ∈ F such that Fn ⊆ [λn, µn]. But

[λn, µn] |E ⊆
heλn, eµni , n ∈ N (2.17)

where the second interval is taken in E. Combining (2.17) with the inclusion
Fn ⊆ [λn, µn] yields the desired convergence of F |E so that (E,λo) is a sub-
space of

¡
E#,λo

¢
.

Since (E,λo) is complete it follows by Proposition and the above that it is
a closed subspace of

¡
E#,λo

¢
. But since E 6= E# there exists an increasing

sequence (fn) on E and f ∈ E# \ E such that fn ↑ f . This contradicts the
fact that (E,λo) is closed. Therefore E = E# which completes the proof.

Lemma 2.3 Let E be an Archimedean vector lattice. A filter F on E is
bounded with respect to λo if and only if there exists g1 ≤ g2 ∈ E and F ∈ F
such that F ⊆ [g1, g2].

Proof. Suppose that the filter F is bounded. Then by Definition 1.3 (ii)
and Proposition 2.2 there exists a sequences (µn) such that µn ↓ 0 and

[{[0, µn] : n ∈ N}] ⊆ |NF| .
Hence there exists for every n ∈ N two sets Nn ∈ N and Fn ∈ F such that

|NnFn| = |Nn| |Fn| ⊆ [0, µn] .
But there exists εn > 0 such that [0, εn] ⊆ |Nn| so that

[0, εn] |Fn| ⊆ [0, µn] .
Therefore

0 ≤ εn |f | ≤ µn, f ∈ Fn
so that

0 ≤ |f | ≤ 1

εn
µn, f ∈ Fn.

The desired inclusion is obtained when setting

g1 = − 1

εn
µn, g2 =

1

εn
µn.

Conversely, suppose that there exists F ∈ F and g1 ≤ g2 ∈ E such that
F ⊆ [g1, g2]. By Theorem 2.7 and Definition 1.3 (i) the filter NF converges to
0. But NF is coarser than NF so that NF converges to 0. This completes
the proof.

Theorem 2.14 Let E be an Archimedean vector lattice. Then there exists a
convergence vector space eE that satisfies (C1) through (C3).
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Proof. We must show that (E,λo) satisfies the condition of Theorem
B.1. By Corollary 2.3 it suffices to show that every Cauchy filter on (E,λo) is
bounded. So let F be a Cauchy filter on (E,λo) and consider the filter

NF = [{NF : N ∈ N , F ∈ F}]

where N denotes the zero neighbourhood filter of R. Since F is Cauchy the
filter

F −F = [{F1 − F2 : F1, F2 ∈ F}]
converges to 0. By Definition 2.1 there exists a sequences (µn) and (λn) such
that (λn) increases to 0 and (µn) decreases to 0 and

[{[λn, µn] : n ∈ N}] ⊆ F −F .

Therefore, for every n ∈ N, there exists F n1 , Fn2 ∈ F such that F n1 − F n2 ⊆
[λn, µn]. Let g ∈ Fn2 be given. Then for every f ∈ F n1

λn ≤ f − g ≤ µn
so that λn + g ≤ f ≤ µn + g. By Lemma 2.3 every Cauchy filter on (E,λo) is
bounded so that the desired completion eE exists.
Theorem 2.15 Let E be an Archimedean vector lattice and denote by E#

its Dedekind σ-completion. Then
¡
E#,λo

¢
is the convergence vector space

completion of (E,λo). That is,
¡
E#,λo

¢
satisfies (C1) through (C3).

Proof. We first show that (E,λo) is a dense subspace of
¡
E#,λo

¢
. It

must be shown that the convergence structure induced on E as a subspace of¡
E#,λo

¢
is the order convergence structure on E. If a filter F converges to

f ∈ E in (E,λo) then it obviously converges to f in
¡
E#,λo

¢
. Conversely,

suppose that the filter F converges to f ∈ E with respect to the subspace
structure induced on E by

¡
E#,λo

¢
. By Definitions 1.22 and 2.1 there exists

sequences (λn) and (µn) on
¡
E#,λo

¢
such that λn ↑ f and µn ↓ f and

[{[λn, µn] : n ∈ N}] ⊆ [F ]E# .

Since E# is the Dedekind σ-completion of E there exists for every n ∈ N
sequence (λnm) and (µnm) on E such that (λnm) increases to λn and (µnm)

decreases to µn. Theorem 2.1 guarantees the existence of sequences
³eλn´ and

(eµn) on (E,λo) such that eλn ↑ f and eµn ↓ f and [λn, µn] ⊆ heλn, eµni when
the second interval is considered as a subset of E#. Therefore the following
inclusions hold:hnheλn, eµni : n ∈ N

oi
⊆ [{[λn, µn] : n ∈ N}] ⊆ [F ]E# .
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But this implies that hnheλn, eµni : n ∈ N
oi
⊆ F

when the intervals are taken in E. Therefore (E,λo) is a subspace of
¡
E#,λo

¢
.

The denseness follows by Theorem 2.2 and Proposition B.1.
Now let F be a complete Hausdorff convergence vector space and T : E → F
linear and continuous. First note that if the sequence (fn) is Cauchy on (E,λo)
then its image under T , that is, the sequence (Tfn), is Cauchy in F . Since F
is Hausdorff and complete by assumption, the sequence (Tfn) converges to a
unique f0 ∈ F . For every f ∈ E# let (λn) and (µn) be sequences on E such
that λn ↑ f and µn ↓ f . Obliviously the filter

F = [{[λn, µn] : n ∈ N}]

is a Cauchy filter on E and hence the filter T (F) is a Cauchy filter on F , and
since F is complete T (F) converges to some gf ∈ F . For every f ∈ E# define
the mapping T# : E# → F by

T#f = gf .

The definition is independent of the particular choice of sequences (λn) and
(µn). To see this, let (λ

0
n) and (µ

0
n) be different from (λn) and (µn) such that

λ0n ↑ f and µ0n ↓ f , and define the filter F 0 in the same way as F . Theorems
A.2 (i), (ii) and A.4 together with the inclusion

F −F 0 ⊇ [{[λn − µ0n, µn − λ0n] : n ∈ N}]

implies that the filter F −F 0 converges to 0 in E so that T (F − F 0) converges
to 0 in F . But

T (F −F 0) = [{T (F − F 0) : F ∈ F ∈, F 0 ∈ F 0}]
= T (F)− T (F 0)

and since T (F) converges to gf in F , it follows that T (F 0) also converges to
gf in F .
To see that T is linear, let the sequences (λn) and (µn) be as before and let
(λ0n) and (µ

0
n) be sequences on E such that λ

0
n ↑ f 0 and µ0n ↓ f 0. By Theorems

A.2 (i), (ii) and A.4 (λn + λ0n) increases to f + f
0 and (µn + µ

0
n) decreases to

f + f 0. Define the filters F and F 0 on E as before. Clearly

T (F + F 0) = T (F) + T (F 0) .

But T (F) converges to T#f and T (F 0) converges to T#f 0 and T (F + F 0)
converges to T# (f + f 0) since the filter

F + F 0 ⊇ [{[λn + λ0n, µn + µ
0
n] : n ∈ N}] .
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In the same way it can be shown that T (αf) = αTf for every f ∈ E and any
scalar α.
It is clear that Tf = T#f for every f ∈ E, so it remains to show that T# is
continuous. By Definition 2.1 we need only consider filters on E# of the form

F = [{[λn, µn] : n ∈ N}]

where (λn) and (µn) are sequences on E
# that increase to f ∈ E# and decrease

to f ∈ E# respectively. Since, for each n ∈ N, we can approximate λn by an
increasing sequence and µn by an decreasing sequence on E, by Theorem 2.1
we can construct sequences

¡
λ#
n

¢
and

¡
µ#
n

¢
on E such that

λ#
n ≤ λn ≤ µn ≤ µ#

n , n ∈ N

and
¡
λ#
n

¢
increases to f and

¡
µ#
n

¢
decreases to f . Define the filter F# on E

by
F# =

£©£
λ#
n , µ

#
n

¤
: n ∈ N

ª¤
.

Then T
¡F#

¢
converges to T#f by definition. But

T
¡F#

¢ ⊆ T#
¡F#

¢ ⊆ T# (F)

so that T# (F) converges to T#f . This completes the proof.

2.4 Subspaces and Quotient Spaces

In this section we discuss the permanence properties of the order convergence
structure related to the formation of subspaces and quotients. For the general
case of filter convergence strong results can only be obtained under rather re-
strictive conditions. The situation is much better when we consider sequential
convergence, which seems to indicate that the sequentially determined conver-
gence structure λσo may be better suited to a study of subspaces and quotients.

Theorem 2.16 Let E be an Archimedean vector lattice, A an ideal in E and
(fn) a sequence on A. Then the following holds.
(i) If E is Dedekind σ-complete, then A is a closed subspace of (E,λo) if and
only if A is a σ-ideal in E.
(ii) If E is Dedekind σ-complete and A is a σ-ideal in E, then (fn) order
converges in E if and only if (fn) order converges in A.
(iii) If E is Dedekind complete and A is a band in E, then order convergence on
structure on A coincides with the subspace convergence structure on A induced
by (E,λo).
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Proof. (i) Let A be a σ-ideal in E and consider a sequence (fn) on A such
that converges to some f ∈ E. By Proposition B.1 we must show that f ∈ A.
By Definition 1.23 (iii)

g1 = inf {fn : n ∈ N} ∈ A

and
g2 = sup {fn : n ∈ N} ∈ A

so that g = sup {|g1| , |g2|} is in A+. The above supremum and infimum exist
since (fn) is bounded and E is Dedekind σ-complete. But g1 ≤ f ≤ g2 so that
|f | ≤ g. By Definition 1.23 (ii) f belongs to A.
Conversely, suppose that the ideal A is a closed subspace of (E,λo). By
Proposition B.1 A contains all the limits of convergent sequences contained
in A. Now consider the subset {fn : n ∈ N} of A with the property that

f = sup {fn : n ∈ N} exists. The sequence
³ efn´ on A defined by

efn = sup {fk : k ≤ n} , n ∈ N

is increasing a bounded from above by f . In fact, efn ↑ f . To see this,
suppose the opposite, that is, there exists an upper bound g ∈ E of

³ efn´ such
that f · g. Then it is clear that g is an upper bound of {fn : n ∈ N} so
that inf {f, g} < f is also an upper bound for {fn : n ∈ N}, contrary to the
assumption that f was the least upper bound of {fn : n ∈ N}. The sequence³ efn´ therefore converges to f so that f ∈ A.
(ii) Let (fn) order converge to f ∈ A in E. Since E is Dedekind σ-complete
Theorem applies. Therefore

fn ≥ λn = inf {fk : k ≥ n} ↑ f

and
fn ≤ µn = sup {fk : k ≥ n} ↓ f.

But since A is a σ-ideal, λn, µn ∈ A for every n ∈ N. Therefore Definition 1.3
(iii) implies that (fn) order converges to f in A. The inverse implication is
trivial.
(iii) Let A be a band in E and let the filter F converge to 0 in the subspace
convergence structure induced on A from E, that is, the filter [F ]E converges
to 0 in E. By Proposition 2.2 there exists a sequence (µn) on E

+ such that
µn ↓ 0 and

[{[0, µn] : n ∈ N}] ⊆ |[F ]E| = [|F|]E .
Therefore there exists, for every n ∈ N an element Fn ∈ F such that

|Fn| ⊆ [0, µn] . (2.18)

SUBSPACES AND QUOTIENT SPACES 63

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  ddeerr  WWaalltt,,  JJ  HH    ((22000066))  



Since A is a band in E (2.18) implies that eµn = sup |Fn| ∈ A. But 0 ≤ eµn ≤ µn
and µn ↓ 0 so that eµn ↓ 0 and

|Fn| ⊆ [0, eµn] , n ∈ N.

Hence [{[0, eµn] : n ∈ N}] ⊆ |F| and by Proposition 2.2 F converge to 0 in
(A,λo). For the general case where F converge to f ∈ A we consider the filter
F − f which converges to 0. The inverse implication is obvious.
We proceed by considering the quotient space associated with an ideal as

described in Section 1.5. In general, the quotient vector lattice so obtained
need not even be Archimedean. Moreover, some assumptions on the vector
lattice E and the ideal A of E are necessary for the quotient mapping to be
continuous with respect to order convergence. The result we obtain therefore
does not apply to general Archimedean vector lattices.

Theorem 2.17 Let E be a Dedekind σ-complete vector lattice and let A be a
σ-ideal in E. Then a sequence converges in the quotient convergence structure
on E\A with respect to the order convergence structure on E whenever it order
converges on E \ A.

Proof. Let the sequence ([fn]) order converge to 0 on E \A. By Definition
1.3 (iii) there exists sequences ([λn]) and ([µn]) such that ([λn]) increases to [0]
and ([µn]) decreases to [0] and

[λn] ≤ [fn] ≤ [µn] , n ∈ N.

Since the projection πA is a surjection and E is Dedekind σ-complete, Propo-
sition A.4 implies the existence of sequences (λ0n) and (µ

0
n) on E such that, for

every n ∈ N, πA (λ0n) = [λn] and πA (µ
0
n) = [µn] and (λ

0
n) increases to 0 and

(µ0n) increases to 0. Because πA is a surjection there exists a sequence (f
0
n) on

E such that πA (f 0n) = [fn] for every n ∈ N. Define the sequence (fn) through

fn = (f
0
n ∨ λ0n) ∧ µ0n, n ∈ N.

Clearly (fn) satisfies
λ0n ≤ fn ≤ µ0n, n ∈ N (2.19)

and by Definition 1.24 (i)

πA (fn) = πA ((f
0
n ∨ λ0n) ∧ µ0n) (2.20)

= πA (f
0
n ∨ λ0n) ∧ πA (µ

0
n)

= πA (f
0
n) ∨ πA (λ

0
n) ∧ πA (µ

0
n)

= [fn] ∨ [λn] ∧ [µn]
= [fn]
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for every n ∈ N. By (2.19) the sequence (fn) order converges to 0. But from
(2.20) it follows that

πA (h(fn)i) = [[{{πA (fn) : n ≥ k} : k ∈ N}]]
= [[{{[fn] : n ≥ k} : k ∈ N}]]
= h([fn])i

so that Proposition B.4 implies that ([fn]) converges to [0] in the quotient
convergence structure on E \ A.
Conversely, suppose that the sequence ([fn]) converges to [0] in the quotient
convergence structure on E \A. By Proposition B.4 there exists a filter F on
E such that F converges to 0 and πA (F) ⊆ h([fn])i. By Definition 2.1 there
exists sequences (λn) and (µn) on E such that λn ↑ 0 and µn ↓ 0 and

{[λn, µn] : n ∈ N} ⊆ F .
Therefore, for every n ∈ N, there exists kn ∈ N such that

{[fn] : n ≥ kn} ⊆ πA ([λn, µn]) = [πA (λn) ,πA (µn)] .

where the equality above is a result of the surjectivety of πA. Hence we obtain
inductively an increasing sequence of naturals k1, k2, k3, ... such that

πA (λn) ≤ [fn] ≤ πA (µn) , n ≥ kn. (2.21)

Now define the sequence ([µ0n]) on E \ A by
[µ0n] = sup {[f1] , ..., [fk1−1] ,πA (µ1)} , n = 1, 2, ..., k1 − 1

[µ0n] = πA (µn) , n = kn, kn + 1, ..., kn+1 − 1, n = 1, 2, ...

Since A is a σ-ideal, it follows that πA is a Riesz σ-homomorphism so that
the sequence ([µ0n]) decreases to [0], and by the construction and (2.21) [fn] ≤
[µ0n] , n ∈ N. In the same way we can construct a sequence ([λ0n]) such that
([λ0n]) increases to [0] and [λ

0
n] ≤ [fn] , n ∈ N so that [fn] order converges to [0].

Since A is a σ-ideal Theorem A.9 implies that E \ A is Archimedean so that
order convergence structure is compatible with the linear structure. But by
Proposition B.4 the quotient convergence structure is a vector space conver-
gence structure so that the result follows by linearity and the above.

2.5 The Mackey Modification of (E,λo)

As we discussed in Section 1.5, for every convergence vector space F we can
define a vector space convergence structure, called the Mackey modification of
F , that has exactly the same bounded subsets as F . In the context of order
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convergence on an Archimedean vector lattice this has a particularly interesting
application.
The next result is analogue to Proposition 2.2 and proves equally useful in

simplifying the technical nature of many arguments.

Proposition 2.3 Let E be an Archimedean vector lattice. Then a filter F on
E converges to 0 in µ (E) if and only if there exists f ∈ E+ such that·½½

αng : 0 ≤ g ≤ f, 0 < αn <
1

n

¾
: n ∈ N

¾¸
⊆ |F|

where |F| = [{|F | : F ∈ F}].

Proof. Let the filter F converge to 0 in µ (E). By Definition 1.17 (iii)
there exists a bounded subset B of (E,λo) such that

NB ⊆ F .

But by Theorem 2.7 there exists f ∈ E+ such that B ⊆ [−f, f ]. But this
implies that·½½

αng : 0 ≤ g ≤ f, 0 < αn <
1

n

¾
: n ∈ N

¾¸
⊆ N |B|

and since

N |B| =
·½½

αnh : h ∈ B, 0 < αn <
1

n

¾
: n ∈ N

¾¸
⊆ |F|

the result follows.
Conversely, suppose that there exists f ∈ E+ such that·½½

αng : 0 ≤ g ≤ f, 0 < αn <
1

n

¾
: n ∈ N

¾¸
⊆ |F| .

Then for every n ∈ N there exists Fn ∈ F such that

Fn ⊆
½
αng : −f ≤ g ≤ f, 0 < αn <

1

n

¾
and hence N [−f, f ] ⊆ F . But by Theorem 2.7 [−f, f ] is bounded in (E,λo)
so that F converges to 0 in µ (E). This completes the proof.

Corollary 2.8 Let E be an Archimedean vector lattice. Then a filter F on
E converges to f ∈ E in µ (E) if and only if there exists λ ≤ f ≤ µ ∈ E such
that ·½½

αnh : h ∈ [λ, µ] , 0 < αn <
1

n

¾
: n ∈ N

¾¸
⊆ F .
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Proof. Let the filter F on E converges to f ∈ E in µ (E). Then the filter
F − f converges to 0 so that Proposition 2.3 implies that there exists g ∈ E+

such that·½½
αnh : 0 ≤ h ≤ g, 0 < αn <

1

n

¾
: n ∈ N

¾¸
⊆ |F − f | . (2.22)

If we now set λ = f − g and µ = f + g it follows from (2.22) that, for every
n ∈ N, there exists Fn ∈ F such that

Fn ⊆
½
αnh : 0 ≤ h ≤ g, 0 < αn <

1

n

¾
so that the result follows.
The inverse direction follows immediately from Definition 1.27 (i) and Theorem
2.7.
By Proposition B.6 the Mackey modification µ (F ) of a convergence vector

space F is first countable. Hence sequential convergence suffices to deter-
mine adherences and completeness. The characterization of the convergent
sequences in µ (F ) is therefore a matter deserving of investigation.

Proposition 2.4 Let E be an Archimedean vector lattice. A sequence (fn) on
E converges to f ∈ E in µ (E) if and only if it converges relatively uniformly
to f .

Proof. Suppose that the sequence (fn) converges to f ∈ E in µ (E).
Therefore the Fréchet filter

h(fn)i = [{{fn : n ≥ k} : k ∈ N}] (2.23)

converges to f in µ (E) so that the filter h(fn)i − f converges to 0. By
Proposition 2.3 there exists g ∈ E+ such that·½½

αnh : 0 ≤ h ≤ g, 0 < αn <
1

n

¾
: n ∈ N

¾¸
⊆ |h(fn)i− f | .

Then for each n ∈ N there exists Fn ∈ h(fn)i such that

|Fn − f | ⊆
½
αnh : 0 ≤ h ≤ g, 0 < αn <

1

n

¾
. (2.24)

From (2.23) and (2.24) it follows that there exists for each n ∈ N a natural
number Kn such that

{|f − fn| : n ≥ Kn} ⊆ |Fn − f | ⊆
½
αnh : 0 ≤ h ≤ g, 0 < αn <

1

n

¾
. (2.25)

Now take any ε > 0 and select Nε ∈ N such that 1
Nε
< ε. Set N 0

ε = KNε.
Then (2.25) implies that

|f − fn| ≤ 1

Nε
g < εg, n ≥ N 0

ε
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so that (fn) converges relatively uniformly to f .
Conversely, assume that the sequence (fn) converges relatively uniformly to
f ∈ E. By Definition 1.28 there exists g ∈ E+ with the property that for
every ε > 0 there exists Nε ∈ N such that

|f − fn| < εg, n ≥ Nε.

Setting ε = 1
n
it is clear that

|Fn − f | ⊆
½
αnh : 0 ≤ h ≤ g, 0 < αn <

1

n

¾
where

Fn =
n
fk : k ≤ N 1

n

o
so that |h(fn)i− f | converges to 0 in µ (E) and hence h(fn)i converges to f in
µ (E). This completes the proof.
We now apply Proposition 2.4 above to form a characterization of those

Archimedean vector lattices E for which µ (E) is complete.

Theorem 2.18 Let E be an Archimedean vector lattice. Then µ (E) is a com-
plete convergence vector space if and only if E is relatively uniformly complete.

Proof. Since µ (E) is first countable by Proposition B.6, it suffices by
Proposition B.5 and Definition 1.29 (i) to show that the Cauchy sequences of
µ (E) are exactly the relatively uniformly Cauchy sequences.
Let (fn) be a Cauchy sequence on µ (E). By Definition 1.19 (ii) the filter
h(fn)i − h(fn)i converges to 0. By Proposition 2.3 there exists g ∈ E+ such
that there exists for every n ∈ N a natural number Kn such that

{|fm − fk| : m, k ≥ Kn} ⊆
½
αnh : 0 ≤ h ≤ g, 0 < αn <

1

n

¾
. (2.26)

Now take any ε > 0 and select Nε ∈ N such that 1
Nε
< ε and set N 0

ε = KNε.
Then it follows by (2.26) that |fm − fk| ≤ εg for all m,k ≥ N 0

ε. Therefore the
sequence (fn) is relatively uniformly Cauchy.
Now assume that the sequence (fn) is relatively uniformly Cauchy. By Defi-
nition 1.29 (i) there exists g ∈ E+ such that for every ε > 0 there is a natural
number Nε such that

|fk − fm| < εg

for all m, k ≥ Nε. Since the filter h(fn)i− h(fn)i is based on the collection of
sets

{{fk − fm : k ≥ k1,m ≥ k2} : k1, k2 ∈ N}
it follows upon setting ε = 1

n
that

{|fk − fm| : k,m ≥ Nε} ⊆
½
αnh : 0 ≤ h ≤ g, 0 < αn <

1

n

¾
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for every n ∈ N so that·½
αnh : 0 ≤ h ≤ g, 0 < αn <

1

n
: n ∈ N

¾¸
⊆ |h(fn)i− h(fn)i| .

By Proposition 2.3 the filter h(fn)i − h(fn)i converges to 0 so that h(fn)i is a
Cauchy filter. This completes the proof.
The Mackey modification µ (E) has a relatively simple structure when com-

pared with the order convergence structure. Moreover, it exhibits unusually
strong countability properties under some mild assumptions on E. In partic-
ular, the following result holds.

Theorem 2.19 Let E be an Archimedean vector lattice with a strong order
unit e. Then the Mackey modification µ (E) of (E,λo) is strongly first count-
able.

Proof. Consider the collection

B0 =

½½
αnf : f ∈ [−m0e,m0e] , 0 < αn <

1

n

¾
: n,m ∈ N

¾
of subsets of E. We will show that B is a basis for µ (E) at 0. Let the filter
F converge to 0 in µ (E). By Corollary 2.8 there exists λ ≤ 0 ≤ µ ∈ E such
that ·½½

αnf : f ∈ [λ, µ] , 0 < αn <
1

n

¾
: n ∈ N

¾¸
⊆ F .

Since e is a strong order unit there exists m0 ∈ N such that

−m0e ≤ λ ≤ µ ≤ m0e. (2.27)

From (2.27) it now follows that½
αnf : f ∈ [λ, µ] , 0 < αn <

1

n

¾
⊆
½
αnf : f ∈ [−m0e,m0e] , 0 < αn <

1

n

¾
so that the filter·½½

αnf : f ∈ [−m0e,m0e] , 0 < αn <
1

n

¾
: n ∈ N

¾¸
(2.28)

is coarser than F . But by Corollary 2.8 the filter (2.28) converges to 0 so that
B is a basis for µ (E) at 0. It now follows by linearity that

Bg =
½½

αnf + g : f ∈ [−m0e,m0e] , 0 < αn <
1

n

¾
: n,m ∈ N

¾
is a basis for µ (E) at every g ∈ E.
It is therefore of interest to determine the conditions on E that ensure that

µ (E) and (E,λo) are identical.
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Theorem 2.20 Let E be an Archimedean vector lattice. Then (E,λo) is a
Mackey space if and only if order convergence on E is stable.

Proof. Suppose that order convergence is stable. Let the filter F converges
to 0 in (E,λo). By Definition 2.1 there exist sequences λn ↑ 0 and µn ↓ 0 such
that the filter generated by

{[λn, µn] : n ∈ N}

is coarser than F . Without loss of generality we can choose λn = −µn. By
assumption, there exists a sequence of real numbers 0 < αn ↑ ∞ such that
αnµn → 0. Therefore there exists a sequence eµn ↓ 0 such that αnµn ≤ eµn, or
equivalently,

µn ≤
1

αn
eµn ≤ 1

αn
eµ1, n ∈ N.

Similarly,

− 1

αn
eµ1 ≤ −

1

αn
eµn ≤ λn, n ∈ N.

The collection ½·
− 1

αn
eµ1,

1

αn
eµ1

¸
: n ∈ N

¾
forms a base for the filter N [−eµ1, eµ1]. Since

[λn, µn] ⊆
·
− 1

αn
eµ1,

1

αn
eµ1

¸
, n ∈ N

it follows that N [−eµ1, eµ1] ⊆ F . On the other hand, if a filter F is finer than
NB for some bounded set B, it converges to 0 since NB converges to 0 by
Definition 1.3 (i).
Conversely, suppose that the convergence vector space (E,λo) is a Mackey
space and let the sequence (fn) order converge to f . Then the filter h(fn)i
based on the collection

{{fn : n ≥ k} : k ∈ N}
converges to 0. Hence there exists a bounded set B such that NB is coarser
than h(fn)i. Since the filter NB is based on the collection½µ

− 1

m
,
1

m

¶
B : m ∈ N

¾
it follows that for every m ∈ N there exists km ∈ N such that

{fn : n ≥ km} ⊆
µ
− 1

m2
,
1

m2

¶
B ⊆

·
− 1

m2
g,

1

m2
g

¸
where g > 0 and −g ≤ f ≤ g, f ∈ B. If there exists m0 such that km = km+1

for every m ≥ m0 then fn = 0 for every n ≥ km0 and we are done. So assume
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the opposite, that is, km ↑ ∞. Now construct the sequence (αn) as follows.
For n ≥ k1 let

αn = m,km ≤ n < km+1

and for n < k1 let αn = 1. Then αn ↑ ∞ and

− 1

m
g ≤ αnfn ≤ 1

m
g, n ≥ km.

Because E is Archimedean, it follows that αnfn → 0. This completes the
proof.
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3. A BANACH-STEINHAUS THEOREM

3.1 Linear Mappings on (E,λo)

The purpose of this section is to characterize the continuous linear operators
mapping (E,λo) into (F,λo), where both E and F are Archimedean vector
lattices, in terms of order-theoretic conditions. Indeed, we show that the
continuous operators are σ-order continuous. The converse of this is generally
not true. However, for positive operators σ-order continuity is equivalent to
continuity in the order convergence structure. Moreover, if the codomain space
is Dedekind complete, we show that the continuous operators are exactly the
σ-order continuous operators. This is equivalent to the statement that every
sequentailly continuous operator is continuous. In general, first countability
is not a strong enough condtion to ensure this equivalence between continuity
and sequential continuity.

Proposition 3.1 Let E be an Archimedean vector lattice and F a convergence
vector space. A linear mapping T : E → F is continuous with respect to the
order convergence structure if and only if the filter

[{T ([0, µn]) : n ∈ N}]

converges to 0 in F whenever the sequence (µn) on E
+ decreases to 0.

Proof. Suppose that the filter F converges to 0 in E. By Definition 2.1
there exists sequences (λ0n) and (µ

0
n) such that (λ

0
n) increases to 0 and (µ

0
n)

decreases to 0 and
[{[λ0n, µ0n] : n ∈ N}] ⊆ F .

By assumption the filters

[{T ([0, µ0n]) : n ∈ N}]

and
[{T ([0,−λ0n]) : n ∈ N}]

both converge to 0 in F . But by the linearity of T

[{T ([0,−λ0n]) : n ∈ N}] = − [{T ([λ0n, 0]) : n ∈ N}]

so that the filter
[{T ([λ0n, 0]) : n ∈ N}]
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also converges to 0. Therefore the filter

G = [{T ([λ0n, 0]) : n ∈ N}] ∩ [{T ([0, µ0n]) : n ∈ N}]
converges to 0 by Definition 1.5. For each G ∈ G there exists m,n ∈ N such
that

T ([λm, µn]) ⊆ G.
Without loss of generality we may assume that m ≤ n. Then by virtue of the
monotonicity of the sequences (λ0n) and (µ

0
n) it follows that

T ([λ0n, µ
0
n]) ⊆ G.

It follows that
G ⊆ [{T ([λ0n, µ0n]) : n ∈ N}] ⊆ T (F)

so that T (F) converges to 0. Since the filter F was arbitrary, it follows that
T is continuous at 0 and hence on E.
The inverse implication is trivial.
The above proposition provides us with a tool to analise the relationship

between the σ-order continuous operators between two vector lattices and the
operators continuous with respect to the order convergence structure. In
general, the set of sequentially continuous mappings between two first countable
convergence vector spaces is properly larger than the set of continuous linear
mappings. Part (iii) of the result which we state below is therefore nontrivial.

Theorem 3.1 Let E and F be Archimedean vector lattices and T : E → F a
linear mapping.
(i) If T is continuous with respect to the order convergence structure on E and
F then T is σ-order continuous.
(ii) If T is positive and σ-order continuous, then T is continuous with respect
to the order convergence structure on E and F .
(iii) If F is Dedekind complete, then T is continuous if and only if it is σ-order
continuous.

Proof. (i) Let (µn) decrease to 0 in E. By assumption (Tµn) and hence
(|Tµn|) order converges to 0 in F . Therefore, by Definition 1.4, there exists a
sequence (λn) on F that decreases to 0 such that

0 ≤ |Tµn| = |0− |Tµn|| ≤ λn

Therefore inf {|Tµn| : n ∈ N} = 0 and hence T is σ-order continuous.
(ii) Let T be positive and σ-order continuous and let the sequence (µn) on E
decrease to 0. Consider the filter

F = [{T ([0, µn]) : n ∈ N}]
on F . By the monotonicity of T it follows that

F ⊇ [{[0, Tµn] : n ∈ N}]
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as T ([0, µn]) ⊆ [0, Tµn] for every n ∈ N. But (Tµn) decreases to 0 since T
is positive and σ-order continuous. Therefore F converges to 0 so that T is
continuous by Propostition 3.1.
(iii) Asume that F is Dedekind complete and T : E → F is σ-order continuous.
By Theorem A.10

T = T+ − T− (3.1)

where T+ and T− are positive and σ-order continuous. Consider a sequence
(µn) on E that decreases to 0. By Proposition 3.1 it is sufficient to show that

F = [{T ([0, µn]) : n ∈ N}]

converges to 0 in (F,λo). By the decompostion (3.1)

F ⊇ £©T+ ([0, µn]) : n ∈ N
ª¤− £©T− ([0, µn]) : n ∈ N

ª¤
. (3.2)

By the monotonicity of the operators T+ and T− it follows that

T+ ([0, µn]) ⊆
£
0, T+µn

¤
, T− ([0, µn]) ⊆

£
0, T−µn

¤
(3.3)

for every n ∈ N. Combining (3.2) and (3.3) we obtain

F ⊇ £©£0, T+µn
¤
: n ∈ N

ª¤− £©£0, T−µn¤ : n ∈ N
ª¤
. (3.4)

But (T+µn) and (T
−µn) both decrease to 0 so that (3.4) implies that T is

continuous.
A natural order exists on the set of σ-order continuous operators, but it

does not make these spaces into vector lattices unless F is Dedekind complete.
Hence the order convergence structure, which would seem to be a natural
choice, can not be defined on them. In case F is Dedekind complete, one can
define the order convergence structure on L (E,F ). The resulting convergence
space (L (E,F ) ,λo) complete convergence vector space with all the properties
discussed in Chapter 2.
Our interest in this chapter is to obtain a Banach-Steinhaus type theorem.

A major tool in doing so will be the continuous convergence structure. As
an application of Theorem 3.1 above we show that Lc (E,F ), the set L (E,F )
equipped with the continuous convergence structure is complete whenever F
is Dedekind complete. In general, the space Lc (E,F ) is not complete, even
when F is. Our result is therefore highly non-trivail and its applicability
is demonstrated by its use in proving our Banach-Steinhaus theorem. It is
unknown at this time whether or not Lc (E,F ) is complete for Dedekind σ-
complete F .

Theorem 3.2 Let E and F be vector lattices with F Dedekind complete. Then
Lc (E,F ) is a complete convergence vector space.
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Proof. Let Ψ be a Cauchy filter on Lc (E,F ) and let (fn) converge to
f ∈ E in (E,λo). Then the filter

Ψ (h(fn)i) = [{{S (fn) : n ≥ k, S ∈ Ψ} : k ∈ N,Ψ ∈ Ψ}]
is Cauchy in (F,λo). To see this, recall that by Definition 1.19 (ii) the filter Ψ
is Cauchy if and only if Ψ −Ψ converges to 0. But by Definition 1.33 Ψ −Ψ
converges to 0 if and only if ωE,F (Ψ −Ψ ,F) converges to 0 in F for every
filter F that converges to f ∈ E in (E,λo). But

ωE,F (Ψ −Ψ , h(fn)i) ⊆ Ψ (h(fn)i)−Ψ (h(fn)i)
so that Ψ (h(fn)i) is Cauchy in F . By assumption F is Dedekind complete
and hence, by Theorem A.7 Dedekind σ-complete. It now follows by Theorem
2.13 that (F,λo) is complete so that Ψ (h(fn)i) converges to some fΨ ∈ F .
Define the mapping T : E → F by

T : f → fΨ .

We show that Tf is independant of the specific choice of the sequence (fn).
Let (fn) and (hn) both converge to f ∈ E in (E,λo). Then (fn − hn) converges
to 0 in (E,λo) so that Ψ (h(fn − hn)i) converges to 0 in F . But

Ψ (h(fn − hn)i) ⊆ Ψ (h(fn)i)−Ψ (h(hn)i)
so that the latter filter also converges to 0. Since bothΨ (h(fn)i) andΨ (h(hn)i)
converge in F it follows that they converge to the same limit. The linearity of
T follows in the same way. The mapping T is therefore a well-defined linear
mapping from E into F . We will show that T is continuous and that the filter
Ψ converges to T .
Let the sequence (fn) decrease to 0 in (E,λo) and suppose, for the sake of ob-
taining a contradiction, that inf {|Tfn| : n ∈ N} = h > 0. The infimum exists
on account of the Dedekind completeness of F . By the above it follows that
the filter

|Ψ (fn)| = [{{|Sfn| : S ∈ Ψ} : Ψ ∈ Ψ}]
converges to |Tfn| in (F,λo) for every n ∈ N. By Definition 2.1 there exists for
every n ∈ N sequences (λnm) and (µnm) with the property that (λnm) increases
to |Tfn| and (µnm) decreases to |Tfn| and there exixsts for every m ∈ N a
Ψn
m ∈ Ψ with the property that

{|Sfn| : S ∈ Ψn
m} ⊆ [λnm, µnm] .

Note that we can choose the sequences (λnm) such that

0 ≤ λnm, n,m ∈ N. (3.5)

Also, since 0 < h ≤ |Tfn| for every n ∈ N, it follows that for every n ∈ N there
exists mn ∈ N such that

0 < λnm,m ≥ mn. (3.6)
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However, since (fn) decreases to 0 the filter|Ψ (h(fn)i)| converges to 0 in (F,λo)
so that there exists a sequence (µ0n) that decreases to 0 with the property that
for every n ∈ N there exists Ψn ∈ Ψ and kn ∈ N such that

{|Sfk| : S ∈ Ψn, k ≥ kn} ⊆ [0, µ0n] . (3.7)

Define the sets Ψ0
n ∈ Ψ as

Ψ0n = Ψn ∩Ψn
mn

for every n ∈ N. Since Ψ0
n ⊆ Ψn for every n ∈ N it follows by (3.7) that

{|Sfk| : S ∈ Ψ0
n, k ≥ kn} ⊆ [0, µ0n] .

Therefore the filter

[{{|Sfk| : S ∈ Ψ0
n, k ≥ kn} : n ∈ N}] (3.8)

converges to 0 in (F,λo). Define the sequence (λn) by

λn = sup {λkmk
: k ≤ n} . (3.9)

Clearly the sequence (λn) is increasing and

λn ≤ |Sfn| , S ∈ Ψ0
n

for every n ∈ N. It now follows by (3.5) and (3.9) that 0 ≤ λn for every
n ∈ N. But the convergence of the filter (3.8) now forces the equality λn = 0.
However, it follows from (3.6) and (3.9) that 0 < λn for every n ∈ N which is
clearly a contradiction. The assumption that inf {|Tfn| : n ∈ N} = h > 0must
therefore be untrue, and hence it must be true that inf {|Tfn| : n ∈ N} = 0.
Since the sequence (fn) that decreases to 0 was arbitrary the mapping T is σ-
order continuous and hence by Theorem 3.1 (iii) it is continuous with respect
to the order convergence structure on E and F .
Let the filter F converge to f ∈ E in (E,λo). By Definition 2.1 there exists
sequences (λn) and (µn) that respectively increase and decrease to f such that

G = [{[λn, µn] : n ∈ N}] ⊆ F .
Wemust show that ωE,F (Ψ ,F) converges to Tf in (F,λo). Since ωE,F (Ψ ,G) ⊆
ωE,F (Ψ ,F) it is sufficient to consider ωE,F (Ψ ,G). It follows in the same way
as above that the filter ωE,F (Ψ ,G) converges to some g ∈ F . But Ψ (h(µn)i)
converges to Tf by our definition of the mapping T . It follows from the
inclusion G ⊆ h(µn)i that

ωE,F (Ψ ,G) ⊆ Ψ (h(µn)i) .
Therefore it follows by Definition 1.5 (iii) that the Ψ (h(µn)i) converges to some
g ∈ F in (F,λo). But by Corollary 2.4 (F,λo) is Hausdorff so that g = Tf .
Since f ∈ E and the filter F were arbitrary it follows that Ψ converges to T
in Lc (E,F ) so that Lc (E,F ) is complete.
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3.2 A Duality Theorem for (E,λo)

Throughout this section we assume that E is an Archimedean vector lattice
that also satisfies the following additional property.

SP1 LcE = LE separates the points of E.
We show that under condition (SP1) the space (E,λo) is isomorphic to a

space (σ (E) ,λo) where σ (E) is a vector lattice subspace of (LLE,λo). We
are interested in such a theorem only because it will prove to be a vital step in
proving a Banach-Steinhaus theorem for σ-order continuous operators which
is the main result of this chapter.
The result described above is a consequence of the classical embedding

results in vector lattice theory, as described in Appendix A, and the following
proposition on isomorphisms.

Proposition 3.2 Let E and F be Archimedean vector lattices and π : E → F
a Riesz isomorphism. Then π : (E,λo) → (F,λo) is a convergence space iso-
morphism.

Proof. By Definition 1.24 (ii) the mapping π is a bijective Riesz homo-
morphism such that π−1 is monotone. It remains to show that π and π−1

are continuous. Let the filter F converge to 0 in (E,λo), that is, there exists
sequences (λn) and (µn) such that (λn) increases to 0 and (µn) decrease to 0
in E and

G = [{[λn, µn] : n ∈ N}] ⊆ F .
Now, by the monotonicity and surjectiveness of π it follows that

π ([λn, µn]) = [πλn, πµn] , n ∈ N.

It remains to show that (πλn) increases to 0 and (πµn) decreases to 0. Since
π is monotone, it follows that (πµn) is decreasing and positive in F . Supose
that there exists f > 0 in F such that f ≤ πµn for every n ∈ N. Since π−1 is
monotone, and surjective it follows that

0 < π−1f ≤ π−1 (π (µn)) = µn, n ∈ N.

But then it is not true that (µn) decreases to 0 in E, a contradiction. Therefore
(πµn) decreases to 0 in F . In a similar way (πλn) increases to 0 so that π is
continuous.
The continuity of π−1 follows in the same way.
With our isomorphism theorem in place, we now proceed to define a map-

ping σ : E → LLE. Recall that for every f ∈ E the the mapping f ∗ : LE → R
defined by

f ∗ (ϕ) = ϕ (f) ,ϕ ∈ LE
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is linear. Since LE = LcE is a band in LbE, Theorems A.10 and A.12 apply
so that f∗ ∈ LLE = Lc (LcE). Therefore the mapping σ : E → L (LE,λo)
given by

σ (f) = f∗

is well defined. The following is the main result of this section.

Theorem 3.3 Let E be an Archimedean vector lattice. If E satisfies (SP1),
then there exists a vector sublattice σ (E) of L (LE,λo) such that (E,λo) is
isomorphic to (σ (E) ,λo).

Proof. According to Theorem 3.1 LE = LcE and by Theorem A.10 LcE
is a band in LbE, and hence an ideal. By Theorem A.12 the mapping σ is a
Riesz isomorphism into Ln (LcE). But by Theorem A.10 Ln (LcE) is a band
in Lc (LcE), and by Theorem 3.1 Lc (LcE) = L (LE,λo). By Proposition 3.2
it follows that (E,λo) is isomorphic to (σ (E) ,λo) where σ (E) is the image of
E under σ.
The above result will be applied in Section 3.4 to obtain a Banach-Steinhaus

type theorem for σ-order continuous operators.

3.3 Some Banach-Steinhaus Pairs of the Form
(µ (E) , F )

Before we prove our main result in the next section, we give some results on
bounded operators. We will first characterize the bounded operators mapping
(E,λo) into (F,λo), with both E and F Archimedean vector lattices, in terms
the partial orders on E and F .

Theorem 3.4 Let E and F be Archimedean vector lattices. Then the linear
operator T : E → F is continuous with respect to the Mackey modification
µ (E) and µ (F ) if and only if it is order bounded.

Proof. By Propostion B.7 T is continuous if and only if it maps bounded
subsets of µ (E) into bounded subsets of µ (F ). But by Propostion B.6 the
bounded subsets of µ (E) and µ (F ) are exactly the bounded subsets of E and
F respectively. But by Theorem 2.7 the bounded subsets of (E,λo) and (F,λo)
are exactly the order bounded subsets of E and F respectively. By Definition
1.31 (i) it follows that T is continuous if and only if it is order bounded.
The central result of this section is on the equicontinuity of pointwise

bounded subsets of the dual of µ (E). In particular, we show that µ (E)
is barrelled. This allows us to formulate sufficient conditions on a convergence
vector space F for (µ (E) , F ) to be a Banach-Steinhaus pair.
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Theorem 3.5 Let E be an Archimedean vector lattice. Then the convergence
vector space µ (E) is barreled.

Proof. First note that according to Theorems 3.4 and A.10, L (µ (E))
is exactly the Dedekind complete vector lattice of all order bounded linear
functionals on E. By Definition 1.35 we must show that every bounded subset
of Ls (µ (E)) is equicontinuous. Let the subset H of Ls (µ (E)) be bounded.
Then by Theorem A.11 there exists ψ1 ∈ Ls (µ (E)) such that ϕ ≤ ψ1 for every
ϕ ∈ H and writing

sup {−ϕ : ϕ ∈ H} = − inf {ϕ : ϕ ∈ H}

if follows, again by Theorem A.11, that there exists ψ0 ∈ Ls (µ (E)) such that
ψ0 ≤ ϕ for every ϕ ∈ H. Therefore

ϕ+ = ϕ ∨ 0 ≤ ψ1 ∨ 0 = ψ+
1 (3.10)

and
ϕ− = (−ϕ ∨ 0) ≤ (−ψ0 ∨ 0) = ψ−0 (3.11)

for every ϕ ∈ H. Now let the filter F on E converge to 0 in µ (E). It is easily
checked that

H (F) = [{{ϕ (f) : f ∈ F,ϕ ∈ H} : F ∈ F}]
=

£©©
ϕ+ (f)− ϕ− (f) : f ∈ F,ϕ ∈ Hª : F ∈ Fª¤

⊇ H+ (F)−H− (F)

where H+ = {ϕ+ : ϕ ∈ H} and H− = {ϕ− : ϕ ∈ H}. It is therefore sufficient
to prove that both H+ (F) and H− (F) converge to 0. By Corollary 2.8 there
exists λ ≤ 0 ≤ µ ∈ E such that

G =
·½½

αnf : λ ≤ f ≤ µ, |αn| < 1

n

¾
: n ∈ N

¾¸
⊆ F .

By (3.10) and the monotonicity of ψ+
1 and the ϕ

+ it follows that

H+ (G) =

·½½
αnϕ

+ (f) : λ ≤ f ≤ µ,ϕ ∈ H, |αn| < 1

n

¾
: n ∈ N

¾¸
⊇

·½½
αnβ : ψ

+
1 (λ) ≤ β ≤ ψ+

1 (µ) , |αn| <
1

n

¾
: n ∈ N

¾¸
so that H+ (G) converges to 0 in R. In the same way, using (3.11), H− (G)
converges to 0 in R so that H (G) converges to 0 in R. This completes the
proof.
As a Corollary to the above, we now obtain the following sufficient cond-

tions on a convergence vector space F in order for (µ (E) , F ) to be a Banach-
Steinhaus pair.
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Corollary 3.1 Let E be an Archimedean vector lattice and F a convergence
vector space. Then (µ (E) , F ) is a Banach-Steinhaus pair in each of the
following cases:
(i) F is a locally convex topological vector space
(ii) F = LcG where G is either a first countable or locally bounded convergence
vector space. In particular, G is an Archimedean vector lattice equiped with the
Mackey modification of order convergence structure or the order convergence
structure itself.

3.4 A Banach-Steinhaus Theorem for (E,λo)

We follow the standard approach in proving a Banach-Steinhaus type theorem
and first consider the dual space. In particular, we show that (E,λo) is
barrelled. This is a prerequisite for more general results, for if (E,R) fails
to be a Banach-Steinhaus pair, it is not to be expected that such a result
should hold for a more general space than R.

Theorem 3.6 Let E be an Archimedean vector lattice. Then the convergence
vector space (E,λo) is barreled.

Proof. First note that according to Theorems 3.1 and A.10, L (E) is
exactly the Dedekind complete vector lattice of all σ-order continuous linear
functionals on E. By Definition 1.35 we must show that every bounded subset
of Ls (E) is equicontinuous. Let the subset H of Ls (E) be bounded. Since
Ls (E) ⊆ Ls (µ (E)) it follows that H is bounded in Ls (µ (E)). Then by
Theorems 3.4 and A.11 there exists ψ1 ∈ Ls (µ (E)) such that ϕ ≤ ψ1 for every
ϕ ∈ H and writing

sup {−ϕ : ϕ ∈ H} = − inf {ϕ : ϕ ∈ H}
if follows, again by Theorem A.11, that there exists ψ0 ∈ Ls (µ (E)) such that
ψ0 ≤ ϕ for every ϕ ∈ H. Therefore

0 ≤ ϕ+ = ϕ ∨ 0 ≤ ψ1 ∨ 0 = ψ+
1 (3.12)

and
0 ≤ ϕ− = (−ϕ ∨ 0) ≤ (−ψ0 ∨ 0) = ψ−0 . (3.13)

By Theorems 3.1 (iii), 3.4 and A.10 L (E) is a band in the Dedekind complete
vector lattice L (µ (E)) so that ψ+

1 and ψ−0 can be taken to be σ-order contin-
uous, and hence by Theorem 3.1 (iii) continuous on (E,λo). Now let the filter
F on E converge to 0 in (E,λo). It is easily checked that

H (F) = [{{ϕ (f) : f ∈ F,ϕ ∈ H} : F ∈ F}]
=

£©©
ϕ+ (f)− ϕ− (f) : f ∈ F,ϕ ∈ Hª : F ∈ Fª¤

⊇ H+ (F)−H− (F)
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where H+ = {ϕ+ : ϕ ∈ H} and H− = {ϕ− : ϕ ∈ H}. It is therefore sufficient
to prove that both H+ (F) and H− (F) converges to 0. By Definition 2.1
there exists sequences (λn) and (µn) that respectively increase and decrease to
0 such that

G = [{[λn, µn] : n ∈ N}] ⊆ F .
By (3.12) and the monotonicity of ψ+

1 and the ϕ
+ it follows that

H+ (G) =
£©©

ϕ+ (f) : λn ≤ f ≤ µn,ϕ ∈ H
ª
: n ∈ N

ª¤
⊇ £©£

ψ+
1 (λm) ,ψ

+
1 (µn)

¤
: n ∈ N

ª¤
so that H+ (G) converges to 0 in R. In the same way, using (3.13), H− (G)
converges to 0 in R. so that H (G) converges to 0 in R. The result follows.

Corollary 3.2 Let E be an Archimedean vector lattice and F a convergence
vector space. Then ((E,λo) , F ) is a Banach-Steinhaus pair in each of the
following situations.
(i) F is a locally convex topological vector space;
(ii) F = LcG where G is either a first countable or locally bounded convergence
vector space. In particular, G is an Archimedean vector lattice equiped with
order convergence structure;

Corollary 3.2 states that if E and F are Archimedean vector lattices,
equiped with order convergence structure, then (E,LcF ) is a Banach-Steinhuas
pair. However, both the spaces LG and L (E,LG) carry a natural order struc-
ture that makes them into Dedekind complete vector lattices. Hence we can
equip them both with order convergence structure. We now utilize this fact,
together with some results from vector lattice theorey, to obtain a Banach-
Steinhaus type theorem for order convergence structure.

Proposition 3.3 Let E be an Archimedean vector lattice. Then the order
convergence structure on LE is finer than the continuous convergence structure.

Proof. Let the filter Ψ on LE converge to ϕ ∈ LE in order convergence
structure. By Definition 2.1 there exists sequences (ψn) and (φn) on LE such
that (ψn) increases to ϕ and (φn) decreases to ϕ and

Φ = [{[ψn,φn] : n ∈ N}] ⊆ Ψ .

Now let the filter F on E converge to f ∈ E in the order convergence structure.
Again by Definition 2.1 there exists sequences (λn) and (µn) such that (λn)
increases to f and (µn) decreases to f and

G = [{[λn, µn] : n ∈ N}] ⊆ F .
It suffices to show that

Φ (G) = [{{ς (g) : ψn ≤ ς ≤ φn,λk ≤ g ≤ µk} : n, k ∈ N}]
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converges to ϕ (f). Since LE is the Dedekind compelete vector lattice of all
σ-continuous linear functionals on E by Theorems 3.1 (iii) and A.10 we have
a decompostion

φ = φ+ − φ−

of any φ ∈ L (E) into a difference of positive functionals. Hence we obtain the
inclusion

Φ (G) ⊇ £©©
ς+ (g) : ψn ≤ ς ≤ φn,λk ≤ g ≤ µk

ª
: n, k ∈ N

ª¤
− £©©ς− (g) : ψn ≤ ς ≤ φn,λk ≤ g ≤ µk

ª
: n, k ∈ N

ª¤
.

But a similar decompostion f = f+ − f− holds in E so that
Φ (G) ⊇ £©©

ς+
¡
g+
¢
: ψn ≤ ς ≤ φn,λk ≤ g ≤ µk

ª
: n, k ∈ N

ª¤
− £©©ς+

¡
g−
¢
: ψn ≤ ς ≤ φn,λk ≤ g ≤ µk

ª
: n, k ∈ N

ª¤
− £©©ς− ¡g+

¢
: ψn ≤ ς ≤ φn,λk ≤ g ≤ µk

ª
: n, k ∈ N

ª¤
+
£©©

ς− (g)− : ψn ≤ ς ≤ φn,λk ≤ g ≤ µk
ª
: n, k ∈ N

ª¤
.

By Propositions A.1 the above reduces to

Φ (G) ⊇ £©£
ψ+
n

¡
λ+
k

¢
,φ+

n

¡
µ+
k

¢¤
: n, k ∈ N

ª¤
(3.14)

− £©£ψ+
n

¡
µ−k
¢
,φ+

n

¡
λ−k
¢¤
: n, k ∈ N

ª¤
− £©£φ−n ¡λ+

k

¢
,ψ−n

¡
µ+
k

¢¤
: n, k ∈ N

ª¤
+
£©£

φ−n
¡
λ+
k

¢
,ψ−n

¡
µ+
k

¢¤
: n, k ∈ N

ª¤
.

Since, by Proposition A.1 and Theorem A.2 (iii) and monotonicity, for every
k ∈ N the sequence

¡
ψ+
n

¡
λ+
k

¢¢
increases to ϕ+

¡
λ+
k

¢
, and the sequence

¡
ϕ+
¡
λ+
k

¢¢
increases to ϕ+f , there exists, according to Theorem 1.1 and (MS4), for every
n ∈ N a natural number kn such that kn ≤ kn+1 and

¡
ψ+
n

¡
λ+
kn

¢¢
converges to

ϕ+f+. By Theorem A.5 it follows that the sequence (gm) defined by

gm = inf
©
ψ+
n

¡
λ+
kn

¢
: n ≥ mª

increases to ϕ+f+. But (gm) also satisfies the inequality

gm ≤ ψ+
m

¡
λ+
km

¢
,m ∈ N. (3.15)

In the same way we can construct a sequence (hn) that decreases to ϕ+f+ and
satisfies

φ+
m

¡
µ+
km

¢ ≤ hm,m ∈ N. (3.16)

By (3.15) and (3.16) the inclusion£©£
ψ+
n

¡
λ+
k

¢
,φ+

n

¡
µ+
k

¢¤
: n, k ∈ N

ª¤ ⊇ £©£
ψ+
n

¡
λ+
kn

¢
,φ+

n

¡
µ+
kn

¢¤
: n ∈ N

ª¤
⊇ [{[gn, hn] : n ∈ N}]

holds. But [{[gn, hn] : n ∈ N}] converges to ϕ+f+ so that£©£
ψ+
n

¡
λ+
n

¢
,φ+

n

¡
µ+
n

¢¤
: n ∈ N

ª¤→ ϕ+
¡
f+
¢
.
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In the same way we also obtain£©£
ψ+
n

¡
µ−n
¢
,φ+

n

¡
λ−n
¢¤
: n ∈ N

ª¤→ ϕ+
¡
f−
¢
,£©£

φ−n
¡
λ+
n

¢
,ψ−n

¡
µ+
n

¢¤
: n ∈ N

ª¤→ ϕ−
¡
f+
¢

and £©£
φ−n
¡
µ−n
¢
,ψ−n

¡
λ−n
¢¤
: n ∈ N

ª¤→ ϕ−
¡
f−
¢

where the convergence above takes place in R. Hence the inclusion (3.14)
implies that Φ (G) converges to

ϕ+
¡
f+
¢− ϕ+

¡
f−
¢− ϕ−

¡
f+
¢
+ ϕ−

¡
f−
¢
= ϕ+ (f)− ϕ− (f) = ϕ (f) .

This completes the proof.
By Proposition 3.3 above it follows that

L ((E,λo) , (LF,λo)) ⊆ L ((E,λo) ,LcF ) . (3.17)

This is the first step in obtaining the desired Banach-Steinhuass theorem for σ-
order continuous operators. The next step is to show that L ((E,λo) , (LF,λo))
is a closed subspace of Lc ((E,λo) ,LcF ).

Proposition 3.4 Let E and F be Archimedean vector lattices. Then the
continuous convergences structure on L ((E,λo) , (LF,λo)) is coarser than the
subspace convergence structure inherrited from Lc ((E,λo) ,LcF ) and

a (L ((E,λo) , (LF,λo))) = L ((E,λo) , (LF,λo))
where the adherence is taken in Lc ((E,λo) ,LcF ).

Proof. Let the filter Ψ with a trace on L ((E,λo) , (LF,λo)) converge to
T ∈ Lc ((E,λo) ,LcF ). By Definition 1.33 the filter

ω (Ψ ×F) = [{{Sg : S ∈ Ψ, g ∈ F} : Ψ ∈ Ψ , F ∈ F}]

converges to Tf for every filter F on (E,λo) that converges to f . Consider
the trace filter Ψ |A on L ((E,λo) , (LF,λo)) and the filter

ω ((Ψ |A −Ψ |A)×F) = [{{Sg − Ug : S ∈ Ψ1, U ∈ Ψ2, g ∈ F}
: Ψ1,Ψ2 ∈ Ψ |A ,F ∈ F}]
⊇ [{{Sg : S ∈ Ψ, g ∈ F} : Ψ ∈ Ψ |A ,F ∈ F}]
− [{{Sg : S ∈ Ψ, g ∈ F} : Ψ ∈ Ψ |A ,F ∈ F}]

⊇ ω (Ψ ×F)− ω (Ψ ×F) .

Therefore ω ((Ψ |A −Ψ |A)×F) converges to 0 and hence, since F is an
arbitrary convergent filter, it follows that Ψ |A − Ψ |A converges to 0 in
Lc ((E,λo) , (LF,λo)) so that Ψ |A is a Cauchy filter. But by Theorem 3.2 the
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space Lc ((E,λo) , (LF,λo)) is complete since LF is Dedekind complete. There-
fore Ψ |A converges to some S ∈ Lc ((E,λo) , (LF,λo)). But ω (Ψ ×F) ⊆
ω (Ψ |A ×F) and hence T = S so that Lc ((E,λo) , (LF,λo)) is coarser than
L ((E,λo) , (LF,λo)) equiped with the subspace convergence structure inherr-
ited from Lc ((E,λo) ,LcF ).
Since every filter that contains a set has a trace on it the above implies that
L ((E,λo) , (LF,λo)) is closed.
Propositions 3.3 and 3.4 above now enable us to proof the following result

which is our main tool in studying the Banach-Steinhaus theorem for the order
convergence structure.

Proposition 3.5 Let E and F be Archimedean vector lattices. If (Tn) is a
sequence in L ((E,λo) , (LF,λo)) that converges pointwise to a linear mapping
T : E → LF , then T ∈ L ((E,λo) , (LF,λo)) and (Tn) converges continuously
to T .

Proof. By Corollary 3.2 (ii) ((E,λo) ,LcF ) is a Banach-Steinhaus pair.
But by (3.17) it follows that

(Tn) ⊂ L ((E,λo) ,LcF ) .

But by Proposition B.3 LcF is regular and Choquet. Therefore Theorem B.3
implies that T : E → LcF is a continuous linear mapping and (Tn) converges
continuously to T . Propostion 3.4 now implies the desired result.
We now prove the main result of the chapter. We show that pointwise

convergence of a sequence of positive operators implies that the limit is contin-
uous. Moreover, if the space F is Dedekind complete, then this is true even
when the operators involved are not positive.

Theorem 3.7 Let E and G be Archimedean vector lattices such that LG sep-
arates the points of G.
(i) If (Tn) is a sequence of postive operators in L ((E,λo) , (G,λo)) that con-
verges pointwise to a linear mapping T : E → G, then T ∈ L ((E,λo) , (G,λo)).
(ii) If (Tn) is a sequence in L ((E,λo) , (G,λo)) that converges pointwise to a
linear mapping T : E → G, then T is σ-order continuous. If F is Dedekind
complete, then T ∈ L ((E,λo) , (G,λo)).

Proof. (i) By Theorem 3.3 (Tn) is contained in L ((E,λo) , (LLG,λo)).
In Proposition 3.5 above, set F = LG. Then T ∈ L ((E,λo) , (LLG,λo)) and
(Tn) converges continuously to T . Now T takes all of its values in the subspace
σ (G) of (LLG,λo), where σ : G→ LLG is the Riesz isomorphism of Theorem
3.3. By Theorem 3.1 (i) T : E → LLG is σ-order continuous. Hence, for
every sequence (µn) such that µn ↓ 0, we have

inf {|Tµn| : n ∈ N} = 0.
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But T (E) ⊆ σ (G) and since σ (G) is a vector lattice subspace of LLG it
follows that T : E → G is σ-order continuous. Applying Theorem 3.1 (ii)
completes the proof.
(ii) By Theorem 3.3 (Tn) is contained inL ((E,λo) , (LLG,λo)). In Proposition
3.5 above, set F = LG. Then T ∈ L ((E,λo) , (LLG,λo)) and (Tn) converges
continuously to T . Now T takes all of its values in the subspace σ (G) of
(LLG,λo), where σ : G → LLG is the Riesz isomorphism of Theorem 3.3.
By Theorem 3.1 (i) T : E → LLG is σ-order continuous. Hence, for every
sequence (µn) such that µn ↓ 0, we have

inf {|Tµn| : n ∈ N} = 0.

But T (E) ⊆ σ (G) and since σ (G) is a vector lattice subspace of LLG it
follows that T : E → G is σ-order continuous. If F is Dedekind complete, the
desired result follows upon application of Theorem 3.1 (iii).
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4. HAUSDORFF CONTINUOUS FUNC-
TIONSANDTHECONVERGENCESPACE
COMPLETION OF (C (X) ,λO)

4.1 Extension and Restriction of H-continuous
Functions

Throughout this section we denote by X an arbitrary topological space. It
is well known that if f is a continuous function on a dense subset D of X
then there need not exists a continuous extension to all of X. On the other
hand, the restriction of a continuous function g on X to a subset A of X is
always continuous on A. The situation for H-continuous functions, however, is
inverse to the above. As a motivation for the content of this section, consider
the following examples.

Example 4.1 Let X be the real line R and D = R \ {0}. Define the function
f ∈ C (D) as

f (x) =

½ −1
1

if x < 0
if x > 0

.

Suppose that f has an extension to X that is continuous at x = 0. Then for
every ε > 0 there exists δε > 0 such that

|f (x)− f (y)| < ε

whenever |x− y| < δε. But |f (−δ/2)− f (δ/2)| = |−1− 1| = 2 for every
δ > 0. So if we take 0 < ε < 2 then there is no δε > 0 that satisfies the above
condition, contrary to our assumption of continuity at 0.
On the other hand, consider the finite H-continuous function

ef (x) =
 −1[−1, 1]

1

if x < 0
if x = 0
if x > 0

which is clearly an extension of f to X.

Example 4.2 Again let X be the real line R. Let A be the subset (0,+∞] of
X. Define the H-continuous function f on X as

f (x) =

 −1[−1, 1]
1

if x < 0
if x = 0
if x > 0

.
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We show that the restriction

f|A (x) =
½
[−1, 1]
1

if x = 0
if x > 0

of f to A is not H-continuous. Consider the interval valued function

g (x) =

½
[0, 1]
1

if x = 0
if x > 0

.

Clearly the inclusion g (x) ⊆ f|A (x) holds for every x ∈ A and g is S-continuous
on A. Therefore F (g) (x) = g (x) , x ∈ X. But g (x) 6= f|A (0) so that f|A
can not be H-continuous on A.

The definition of our extension operator makes use of a generalization of the
graph completion operator. This generalization is obtained by only considering
function values on a dense subset of X.
Let D be a dense subset of X. Then the generalized lower and upper Baire

operators, as defined in [77], are given by

I (D,X, f) (x) = sup
V ∈Vx

inf {z ∈ f (y) : y ∈ V ∩D} , x ∈ X, (4.1)

S (D,X, f) (x) = inf
V ∈Vx

sup {z ∈ f (y) : y ∈ V ∩D} , x ∈ X, (4.2)

for very f ∈ A (D). Clearly,

I (D,X, f) (x) ≤ S (D,X, f) (x) , x ∈ X, (4.3)

for each f ∈ A (D). It follows that the mapping F : A (D) → A (X), called
the extended graph completion operator, defined by

F (D,X, f) (x) = [I (D,X, f) (x) , S (D,X, f) (x)] , x ∈ X, f ∈ A (D) (4.4)

is well defined and the inclusion

f (x) ⊆ F (D,X, f) (x) , x ∈ D, (4.5)

holds. When D = X the mappings defined above reduce to the classical
Baire Operators and Graph Completion Operator as defined by (1.20) through
(1.25). In [77] the following properties of the operators introduced in (4.1)
through (4.5) are listed:

GP1 The extended upper Baire, lower Baire and graph completion operators
are all monotone increasing with respect to their functional argument,
that is, ifD is a dense subset ofX, then for any two functions f, g ∈ A (D)
we have

f (x) ≤ g (x) , x ∈ D ⇒
 I (D,X, f) (x) ≤ I (D,X, f) (x) , x ∈ X
S (D,X, f) (x) ≤ S (D,X, f) (x) , x ∈ X
F (D,X, f) (x) ≤ F (D,X, f) (x) , x ∈ X

(4.6)

88 HAUSDORFF CONTINU-
OUS FUNCTIONS AND THE CONVERGENCE SPACE COMPLETION OF (C (X) ,λO)

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  ddeerr  WWaalltt,,  JJ  HH    ((22000066))  



GP2 The graph completion operator is inclusion isotone with respect to the
functional argument, that is, if f, g ∈ A (D) where D is a dense subset
of X, then

f (x) ⊆ g (x) , x ∈ D⇒ F (D,X, f) (x) ⊆ F (D,X, f) (x) , x ∈ X. (4.7)

GP3 The graph completion operator is inclusion isotone with respect to the
set D in the sense that if D1 and D2 are dense subsets of X and f ∈
A (D1 ∪D2) then

D1 ⊆ D2 ⇒
½
F (D1,X, f) (x) ⊆ F (D2, X, f) (x) , x ∈ X
F (D2,X, ·) ◦ F (D1,X, ·) = F (D1, X, ·) . (4.8)

In particular, this means that for any dense subset D of X and any
f ∈ A (X) we have

F (D,X, f) (x) ⊆ F (f) (x) , x ∈ X. (4.9)

The next two theorems are proved in [4] and [77] for the special case where
X = Ω is an open subset of Rp. The arguments differ little, if at all, from
those used for the specific case considered there.

Theorem 4.1 Let D be a dense subset of X and f ∈ A (D). Then F (D,X, f)
is S-continuous on X.

Proof. By Definition 1.39 we must show that F (F (D,X, f)) = F (D,X, f).
But F (f) = F (X,X, f) and D ⊆ X so (4.8) implies

F (F (D,X, f)) = F (X,X, f) ◦ F (D,X, f) = F (D,X, f)
which completes the proof.
As a result of the next result we will be able to easily establish certain

extension theorems for H-continuous functions. It also provides a crucial link
with the usual point-valued functions.

Theorem 4.2 Let D be a dense subset of X and f ∈ C (D). Then the fol-
lowing statements hold:
(i) F (D,X, f) (x) = f (x) , x ∈ D;
(ii) F (D,X, f) ∈ H (X).

Proof. (i) Since f is continuous on D it follows that

F (D,X, f) (x) = F (D,D, f) (x) = f (x)

for every x ∈ D.
(ii) Theorem 4.1 states that F (D,X, f) is S-continuous, so by Theorem C.7
we need only show that, for any g ∈ F (X) the inclusion

g (x) ⊆ F (D,X, f) (x) , x ∈ X (4.10)
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implies that f (x) = g (x) , x ∈ X. Since f is continuous on D it assumes
degenerate interval values on D. Therefore the inclusion (4.10) and (i) imply
that

g (x) = f (x) , x ∈ D.
Hence we have

g (x) ⊆ F (D,X, f) (x) = F (D,X, g) (x) ⊆ F (g) (x) = g (x) , x ∈ X

where the last inclusion follows by (4.9). It follows that f (x) = g (x) , x ∈ X.
This completes the proof.
Motivated by Example 1.6 we make the following definition and prove the

resulting theorem.

Definition 4.1 For any dense subsetD ofX define the mapping ED : H (D)→
A (X), which we shall call the extension mapping, as

ED (f) (x) = F (D,X, f) (x) , x ∈ X.

Theorem 4.3 Let D be a dense subset of X. The extension mapping ED :
H (D)→ A (X) of Definition 4.1 maps H (D) into H (X) and

ED (f) (x) = f (x) , x ∈ D.

Proof. By Theorem 4.1 the function ED (f) is S-continuous on X. Let
g ∈ F (X) be such that

g (x) ⊆ ED (f) (x) , x ∈ X.

By Theorem C.7 we need only show that g (x) = ED (f) (x) , x ∈ X. Since f
is H-continuous, and hence S-continuous, it follows that

ED (f) (x) = F (D,X, f) (x) = F (D,D, f) (x) = f (x) , x ∈ D.

Therefore the inclusion g (x) ⊆ f (x) holds for every x ∈ D. But Proposition
C.1 implies that g is S-continuous onD. By Theorem C.7 and the H-continuity
of f it follows that g (x) = f (x) , x ∈ D. But by (4.8) and the S-continuity of
g

ED (f) (x) = F (D,X, g) (x) ⊆ F (g) (x) = g (x) ⊆ ED (f) (x) .
Therefore g (x) = ED (f) (x) , x ∈ X so that ED (f) is H-continuous.

Theorem 4.4 For any f ∈ H (X) and any subset A ofX such that (A \ intA)∩
Wf = ∅ the restriction f|A of f to A is H-continuous on A.
In particular, the restriction of f to any open subset of X is H-continuous.
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Proof. First note that if intA = ∅ then our assumption on the set A
implies that f is point valued at each point of A and hence by Theorem C.6
(ii) continuous on A. The restriction f|A is therefore continuous and hence
H-continuous on A.
So assume that intA 6= ∅. We proceed as follows: First we show that the
restriction of f to intA is H-continuous. It then follows by Theorem 4.3 that
we can extend this function to an H-continuous function on A. We then show
that this function is the desired restriction.
By Proposition C.1 and Theorem C.2 we know that f|intA is S-continuous on
intA. Therefore I

¡
f|intA

¢
(x) = f |intA

(x) , x ∈ intA and S
¡
f|intA

¢
(x) =

f |intA (x) , x ∈ intA so that

F
¡
I
¡
f|intA

¢¢
(x) =

h
f |intA

(x) , S
³
f |intA

´
(x)
i

(4.11)

and
F
¡
S
¡
f|intA

¢¢
(x) =

£
I
¡
f |intA

¢
(x) , f |intA (x)

¤
. (4.12)

Suppose that S(f |intA
) (x) 6= f |intA (x) for some x ∈ intA. By the monotonic-

ity (Theorem C.1) of the operator S it follows that S(f |intA
) (x) ≤ f |intA (x) =

f (x). Therefore there must exists a neighbourhood U of x such that

sup
n
f |intA

(y) : y ∈ U ∩ intA
o
< f (x) .

But then

sup
n
f |intA

(y) : y ∈ U ∩ intA
o
< sup

©
f (y) : y ∈ V ª , V ∈ Vx (4.13)

since S
¡
f
¢
(x) = f (x). Since intA is open in X we have U ∩ intA ∈ Vx. But

then the inequality (4.13) can not hold, a contradiction. Therefore

S
³
f |intA

´
(x) = f |intA (x) , x ∈ A.

In the same way we can show that

I
¡
f |intA

¢
(x) = f |intA

(x) , x ∈ intA.

Therefore (4.11) and (4.12) imply that F
¡
I
¡
f|intA

¢¢
(x) = F

¡
S
¡
f|intA

¢¢
(x) , x ∈

intA. By Theorem C.4 the function f|intA is H-continuous on intA.
Now consider the H-continuous extension of f|intA to A, call it ef . We need to
show that ef (x) = f (x) , x ∈ A\ intA. By the S-continuity of f|A (Proposition
C.1 and Theorem C.2) and (4.8)ef (x) = F ¡intA,A, f|intA

¢
(x) ⊆ F ¡f|A¢ (x) = f|A (x) , x ∈ A.

But by assumption A \ intA∩Wf = ∅ so that f|A is point valued on A \ intA.
The above inclusion then implies that ef (x) = f (x) , x ∈ A \ intA.
EXTENSION AND RESTRICTION OF H-CONTINUOUS FUNCTIONS 91

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  ddeerr  WWaalltt,,  JJ  HH    ((22000066))  



If A is open, then the condition (A \ intA)∩Wf = ∅ is automatically satisfied
since A = intA. This completes the proof.
We introduce a new class of H-continuous functions that appears in connec-

tion with the extension of finite H-continuous functions. If D a dense subset
of X, then the boundary of D in X is defined to be the set

∂D = X \D. (4.14)

A nearly finite H-continuous function f belongs to the set Hft (X)
(∂D) if it

assumes finite values everywhere except possibly on the boundary ∂D of D.

Theorem 4.5 Let D be an open and dense subset of X. The extension map-
ping ED satisfies the following:
(i) The mapping ED : H (D)→ H (X) is a bijection.
(ii) The restriction ED : Hnf (D)→ Hnf (X) is a bijection.
(iii) The restriction ED : Hft (D)→ Hft (X)

(∂D) is a bijection.

Proof. (i) Suppose there are f 6= g ∈ H (D) such that ED (f) = ED (g).
By Theorem 4.3

f (x) = ED (f) (x) = ED (g) (x) = g (x) , x ∈ D

which is clearly a contradiction.
For any f ∈ H (X) take the restriction f|D of f to D. By Theorem 4.4 f|D is
H-continuous on D. By Theorem 4.3 its extension ED

¡
f|D
¢
to X satisfies

ED
¡
f|D
¢
(x) = f|D (x) = f (x) .x ∈ D.

But by assumption D is dense in X so that we have equality on X by Theorem
C.10 (ii).
(ii) Since

D0 = {x ∈ D : ω (f (x)) 6=∞}
is open and dense in D for every f ∈ Hnf (D) it follows by the denseness of
D in X that D0 is also dense in X. But ED (f) (x) = f (x) , x ∈ D so that
Theorem C.11 implies that ED (f) is nearly finite on X.
Conversely, suppose that f is nearly finite on X. Since D is open, and since
f is finite on an open and dense subset of X, it follows that the same is true
for f|D.
(iii) Since

ED (f) (x) = f (x) , x ∈ D
for every f ∈ Hft (X) it follows by the denseness of D in X and the fact that
f is finite that ED (f) belongs to Hft (X)

(∂D). Conversely, if f ∈ Hft (X)
(∂D)

then f|D is finite on D so the result follows by (i).
We conclude this section with the following example involving the Stone-

Čhech compactificantion of a completely regular space.
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Example 4.3 Recall the classical Stone-Čech Theorem: If X is a completely
regular space, then there exists a compact space βX such that:
(i) There is a continuous mapping ∆ : X → βX with the property that
∆ : X → ∆ (X) is a homeomorphism.;
(ii) ∆ (X) is dense in βX;
(iii) If f ∈ Cb (X), then there is a continuous map fβ : βX → R such that
fβ ◦∆ = f .
Moreover, if Y is a compact space having these properties, then Y is homeo-
morphic to βX.
Let X be a completely regular space and let βX denote its Stone-Čhech com-
pactificantion. We will regard X as a subspace of βX. Every continuous
function on X can be uniquely extended to a nearly finite H-continuous func-
tion f# on βX such that fβ ◦∆ = f . Moreover, if f ∈ Cb (X) then f# = fβ.
Indeed, the first statement is evident from Theorem 4.5 (ii). The second state-
ment follows by the denseness of X and Theorem C.10 (ii). Note that we can
now express the function fβ as

fβ (x) = EX (f) (x) = F (X, βX, f) (x) , x ∈ βX.

4.2 The Vector Lattice Hft (X)

In [77] a linear structure was introduced on the space Hft (X). This structure
was only defined for the special case when X = Ω is an open subset of Rp. We
extend it to the more general case where X is a Baire space. The definition of
the operations as defined in [77] for X = Ω an open subset of Rp is extended
in a straight forward way. In fact, the proof [77] that the operations there
defined introduce on Hft (X) the structure of a linear space can be applied
with minimal modification.
The operations are defined in terms of the extended graph completion op-

erator as introduced in Section 4.1 of this work and is not defined pointwise.
However, if the pointwise sum yields an H-continuous function then it is the
same as the sum.

Definition 4.2 For any f, g ∈ Hft (X) the sum f ⊕ g of f and g is defined as
(f ⊕ g) (x) = F (D,X, f + g) (x) , x ∈ X

where Dfg = X \ (Wf ∪Wg).
For α ∈ R the scalar product αf is defined by

(αf) (x) =
£
min

©
αf (x) ,αf (x)

ª
,max

©
αf (x) ,αf (x)

ª¤
.

Theorem 4.6 Let X be a Baire space. Then the operations ‘addition’ and
‘scalar multiplication’ of Definition 4.2 introduce on Hft (X) the structure of a
vector space.
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Proof. By Theorem C.9 the setsWf andWg are both of first Baire category
so that Wf ∪Wg is also of first Baire category and hence D = X \ (Wf ∪Wg)
is dense in X. It therefore follows that the mapping

F (D,X, ·) : A (D)→ F (X)

is well defined. According to Theorem C.6 (ii) both f and g are continuous
on D so that Theorem 4.2 implies that f ⊕ g is H-continuous on X. We now
show that f ⊕ g is finite. Note that for every x ∈ X there exists V ∈ Vx and
ε > 0 such that

|f (y)| < ε, y ∈ V 0. (4.15)

Indeed, if this were not the case then for every V ∈ Vx and ε > 0 there would
exists yε ∈ V such that

|f (yε)| > ε.

But then either

f (x) = I (f) (x) = sup
V ∈Vx

inf
©
f (y) : y ∈ V ª = −∞

or
f (x) = S (f) (x) = inf

V ∈Vx
sup

©
f (y) : y ∈ V ª =∞

contrary to our assumption that f is finite. Similarly there exists V 00 ∈ Vx
and ε0 > 0 such that

|g (y)| < ε0, y ∈ V 00. (4.16)

Hence it follows by (4.15), (4.16) and Definition 4.2 that

f ⊕ g (x) = inf
V ∈Vx

sup
©
f (y) + g (y) : y ∈ V ∩Dª

= inf
V ∈Vx

sup
©
f (y) + g (y) : y ∈ V ∩ V 0 ∩ V 00 ∩Dª

< ∞

and

f ⊕ g (x) = sup
V ∈Vx

inf
©
f (y) + g (y) : y ∈ V ∩Dª

= inf
V ∈Vx

sup
©
f (y) + g (y) : y ∈ V ∩ V 0 ∩ V 00 ∩Dª

> −∞.

We have shown that the mapping ⊕ : Hft (X) × Hft (X) → Hft (X) is well
defined. To see that αf ∈ Hft (X) for every f ∈ Hft (X) and α ∈ R, observe
that

(αf) (x) =

½ £
αf (x) ,αf (x)

¤
if α ≥ 0£

αf (x) ,αf (x)
¤
if α < 0

, x ∈ X.
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Consider the case α ≥ 0. Then
I (αf) (x) = sup

©
inf
©
αf (y) : y ∈ V ª : V ∈ Vxª

= sup
©
α inf

©
f (y) : y ∈ V ª : V ∈ Vxª

= α sup
©
inf
©
f (y) : y ∈ V ª : V ∈ Vxª

= αI (f) (x)

for every x ∈ X. In the same way it follows that
F (I (αf)) (x) = αF (I (f)) (x) , x ∈ X

and
F (S (αf)) (x) = αF (S (f)) (x) , x ∈ X.

Applying Theorem C.4 twice yields αf ∈ Hft (X). The case α < 0 follows in
the same way.
We show that the associative law

(f ⊕ g)⊕ h = f ⊕ (g ⊕ h) (4.17)

is satisfied. It follows by Theorems C.6 (ii) and 4.2 (i) that

((f ⊕ g)⊕ h) (x) = f (x) + g (x) + h (x) = (f ⊕ (g ⊕ h)) (x)
for every x ∈ X \ (Wf ∪Wg ∪Wh). But since Wf ∪Wg ∪Wh is of first Baire
category by Theorem C.9 it follows that X \ (Wf ∪Wg ∪Wh) is dense in X.
The identity (4.17) now follows by Theorem C.10 (ii).
The other axioms of a linear space follow in the same way.

Theorem 4.7 The linear space Hft (X) equipped with the partial order (1.19)
is a Dedekind complete vector lattice.

Proof. By Theorem C.12 any finite subset B of Hft (X) has a supremum.
Therefore Hft (X) is a lattice.
Consider any f, g, h ∈ Hft (X) such that f ≤ g and any α > 0.
Since both the order relation and scalar multiplication are defined in a pointwise
way, it follows easily that αf ≤ αg.
By Definition 4.2 the sums f ⊕ h and g ⊕ h are given by

(f ⊕ h) (x) = F (D1,X, f + h) (x) , x ∈ X
and

(g ⊕ h) (x) = F (D2,X, g + h) (x) , x ∈ X
where D1 = X \ (Wf ∪Wh) and D2 = X \ (Wg ∪Wh). However, by Theorem
C.9 and the fact that X is a Baire space the set

D = X \ (Wf ∪Wg ∪Wh) ⊆ D1,D (4.18)
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is dense in X. By Theorem C.6 (ii) the functions f, g and h are continuous
on D so that Theorem 4.2 (i) implies that

F (D,X, f + h) (x) = f (x)+h (x) ≤ g (x)+h (x) = F (D,X, g + h) (x) (4.19)
for every x ∈ D. But in the same way

(f ⊕ h) (x) = f (x) + h (x) , x ∈ D1 (4.20)

and
(g ⊕ h) (x) = g (x) + h (x) , x ∈ D2. (4.21)

It now follows by (4.18) through (4.21) that

(f ⊕ h) (x) ≤ (g ⊕ h) (x) , x ∈ D
and since D is dense in X Theorem C.10 (i) implies

(f ⊕ h) (x) ≤ (g ⊕ h) (x) , x ∈ X.
By Theorem C.12 Hft (X) is Dedekind complete which completes the proof.
We are now in a position to apply the results of Chapter 2 to the set of finite

H-continuous functions. In doing so we obtain the following comprehensive
result.

Theorem 4.8 Order convergence of sequences on Hft (X) introduces the struc-
ture of an FS-convergence structure on the set. Moreover, the convergence
space (Hft (X) ,λo) is a locally bounded, locally convex, first countable, Haus-
dorff, regular, functionally regular and complete convergence vector space.

WhenX is a metric space, one can define vector space operations onHft (X)
in an order theoretic way.
It was shown in [3] that the Hft (X) is the Dedekind completion of C (X)

when X is a metric space. It is, however, well known that C (X) is a vector
lattice when considered with the pointwise operations and partial ordering. It
is therefore standard practice to extend the operations on C (X) to Hft (X) in
the following way. For every f, g ∈ Hft (X) and real number α > 0 we define
the sum and scalar product as follows:

f ⊕0 g = sup {u+ v : u, v ∈ C (X) , u ≤ f, v ≤ g} (4.22)

= inf {u+ v : u, v ∈ C (X) , f ≤ u, g ≤ v}

αf = sup {αu : u ∈ C (X) , u ≤ f} (4.23)

= inf {αu : u ∈ C (X) , f ≤ u}
The above defines a vector space structure on Hft (X). Note that the addition
(4.22) should not be confused with the pointwise addition of H-continuous
functions.
The linear structure of Definition 4.2 relates to pointwise operations and

the operations (4.22) through (4.23) as follows.
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Proposition 4.1 For any f.g ∈ Hft (X) the inclusion

(f ⊕ g) (x) ⊆ £f (x) + g (x) , f (x) + g (x)¤ = (f + g) (x) , x ∈ X
holds.

Proof. This is a direct consequence on (4.9) and Definition 4.2.

Theorem 4.9 Let X be a complete metric space. Then (4.22) through (4.23)
are equivalent to Definition 4.2.

Proof. For any u, v ∈ C (X) such that u ≤ f and v ≤ g it follows by (1.12)
and (1.19)

u (x) + v (x) ≤ (f + g) (x) , x ∈ X.
On the other hand, if u0, v0 ∈ C (X) is such that f ≤ u and g ≤ v then

(f + g) (x) ≤ u0 (x) + v0 (x) , x ∈ X.

By Proposition 4.1 it now follows that

u (x) + v (x) ≤ (f ⊕ g) (x) ≤ u0 (x) + v0 (x) , x ∈ X.

Therefore

f ⊕ g ≤ f ⊕0 g = sup {u+ v : u, v ∈ C (X) , u ≤ f, v ≤ g}

and
f ⊕0 g = inf {u0 + v0 : u0, v0 ∈ C (X) , f ≤ u0, g ≤ v0} ≤ f ⊕ g

so that f ⊕ g = f ⊕0 g.
The equivalence of the two definitions of scalar multiplication follows in the
same way.

4.3 The Hausdorff Distance

Throughout this section we will assume X to be a metric space. In [76] it is
shown that Fft (X) equipped with the H-distance is a complete metric space
when X is a compact interval of the real line. We generalize this result as
follows: For an arbitrary metric space X we show that Fft (X) is a metric
space. Moreover, we show that Fft (X) is a complete metric space whenever
X is compact. The verification of the metric space axioms follows closely
the argument employed in [76]. In order to prove completeness we make use
of the characterization of the H-distance in terms of the one sided H-distance.
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In order to obtain the desired equivalence we assume that the space X × R is
equipped with the square metric

ρ ((x1, y1) , (x2, y2)) = max {d (x1, x2) , |y1 − y2|} (4.24)

where d (·, ·) denotes the metric on X. Recall also that for any subsets A and
B of a metric space (X, d) the ‘distance’ d (A,B) is defined as

d (A,B) = inf
a∈A
inf
b∈B
d (a, b) . (4.25)

Theorem 4.10 Let f and g be finite S-continuous functions on X. Then

r (f, g) = max {η (f, g) , η (g, f)} .

Proof. It is sufficient to prove that

η (f, g) = sup
A∈g

inf
B∈f

ρ(A,B) (4.26)

and
η (g, f) = sup

A∈f
inf
B∈g

ρ(A,B) (4.27)

for any f, g ∈ Fft (X). Let

sup
A∈g

inf
B∈f

ρ(A,B) = δ.

We will show that

Iδ+ε (g) (x)− (δ + ε) ≤ f (x) ≤ Sδ+ε (g) (x) + (δ + ε) , x ∈ X (4.28)

for any ε > 0 and that

f (x) * [Iδ+ε (g) (x)− (δ − ε) , Sδ+ε (g) (x) + (δ − ε)] (4.29)

for every 0 < ε < δ and some x0 ∈ X.
We first establish the left inequality in (4.28). For the sake of obtaining a
contradiction, suppose that there exists x ∈ X such that

Iδ+ε (g) (x)− (δ + ε) > f (x) .

By (1.32) it follows that

inf {z ∈ g (y) : d (x, y) < δ + ε}− (δ + ε) > f (x)

so that
z − z0 > δ + ε (4.30)

for all z ∈ g (y) where d (x, y) < δ + ε and z0 ∈ f (x). Set
A = {(x, z0) : z0 ∈ f (x)} ∈ f.
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Then for any B ∈ g (4.24) and (4.25) imply that

ρ(A,B) = inf
a∈A
inf
b∈B

ρ (a, b)

= inf
a∈A
inf
b∈B
max {d (x, y) , |z − z0| : a = (x, z0) , b = (y, z)} .

The implication
d (x, y) < δ + ε⇒ |z − z0| > δ + ε

now follows by (4.30) so that ρ(A,B) ≥ δ + ε for any B ∈ g. Therefore

sup
A∈g

inf
B∈f

ρ(A,B) ≥ δ + ε > δ.

contrary to our assumption. The second inequality in (4.28) follows in the
same way so that (4.28) must hold.
Now suppose that

f (x) ⊆ [Iδ+ε (g) (x)− (δ − ε) , Sδ+ε (g) (x) + (δ − ε)] , x ∈ X

for some 0 < ε < δ. Then according to (1.32)

inf {z ∈ g (y) : d (x, y) < δ − ε}− (δ − ε) ≤ f (x) , x ∈ X

so that, as above,
z − z0 < δ − ε (4.31)

for all z ∈ g (y) where d (x, y) < δ − ε and z0 ∈ f (x). Consider any

A = {(x, z0) : z0 ∈ f (x)} ∈ f

and choose
B = {(y, z) : z ∈ g (y)} ∈ g

such that d (x, y) < δ − ε. As above

ρ(A,B) = inf
a∈A
inf
b∈B

ρ (a, b)

= inf
a∈A
inf
b∈B
max {d (x, y) , |z − z0| : a = (x, z0) , b = (y, z)}

so that (4.31) implies ρ(A,B) < δ − ε. Hence for any A ∈ f

sup
A∈g

inf
B∈f

ρ(A,B) < δ − ε.

contrary to our assumption. Therefore (4.29) must be true. Equation (4.26)
is now a straight forward consequence of (4.28) through (4.29) and (1.36).
The same arguments apply to η (g, f) so that (4.27) also holds. This completes
the proof.

THE HAUSDORFF DISTANCE 99

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  ddeerr  WWaalltt,,  JJ  HH    ((22000066))  



Theorem 4.11 The Hausdorff distance satisfies the axioms of a metric on
Fft (X). Moreover, if the metric space X is compact then (Fft (X) , r) is a
complete.

Proof. The Hausdorff distance satisfies the axioms of a metric on the set
of closed subsets of X × R, and its restriction to any family of closed subsets
will also be a metric. Therefore, it suffices to show that the graph of each
S-continuous function f is a closed subset of X ×R.
To this end, let (xk) be a sequence on X and for each k let yk ∈ f (xk).
Suppose the sequence ((xk, yk)) on X×R converges to (x0, y0). We must show
that y0 ∈ f (x0). Since

f (x) = F (f) (x) = [I (f) (x) , S (f) (x)] ,

we have for each k that

I (f) (xk) ≤ yk ≤ S (f) (xk) . (4.32)

By the lower semi-continuity of I (f), the upper semi-continuity of S (f) and
(4.32)

I (f) (x0) ≤ y0 ≤ S (f) (x0) ,

or equivalently, y0 ∈ F (f) (x0) = f (x0). It remains to show that (Fft (X) , r)
is complete.
Let X be compact and (fn) be a Cauchy sequence on Fft (X). Then for every
ε > 0 there exists Nε ∈ N such that

r (fm, fn) < ε (4.33)

for all m,n ≥ Nε. Since X is compact every semi-continuous function on X is
bounded, and hence by Theorem C.2 so is every S-continuous function. Upon
applying Theorem 4.10 it follows by (1.37) and (4.33) that

η (fm, fn) , η (fn, fm) < ε

By (1.36)
Iε(fm)(x)− ε ≤ fn (x) ≤ Sε(fm)(x) + ε, x ∈ X (4.34)

and
Iε(fn)(x)− ε ≤ fm (x) ≤ Sε(fn)(x) + ε, x ∈ X (4.35)

for every m,n ≥ Nε. Define g, h ∈ A (X) by
h (x) = inf

©
sup

©
fm (x) : m ≥ n

ª
: n ∈ N

ª
(4.36)

and
g (x) = sup

n
inf
n
f
m
(x) : m ≥ n

o
: n ∈ N

o
. (4.37)

Since the sequence (fn) is bounded, both h and g are finite and bounded and

g (x) ≤ h (x) , x ∈ X.
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Theorem C.1 (i) implies that

I (g) (x) ≤ S (h) (x) , x ∈ X
so that the function f =

£
f, f

¤
where,

f (x) = I (g) (x) , x ∈ X
and

f (x) = S (h) (x) , x ∈ X
is well defined and S-continuous by Theorems C.1 (iii) and C.2 and (C.1)
through (C.2). It now follows by (4.34) and (4.36) through (4.37) that

Iε(f)(x)− ε ≤ fn (x) ≤ Sε(f)(x) + ε, x ∈ X
for every n ≥ Nε. In a similar way it follows that

Iε(fn)(x)− ε ≤ f (x) ≤ Sε(fn)(x) + ε, x ∈ X
for every n ≥ Nε. This completes the proof.
We proceed to characterize the H-continuous functions in terms of the H-

distance, motivating the terminology. The characterization will be of some use
later in this chapter. First, however, we determine the relationship between
the order (1.19) on the set Aft (X) and the H-distance.

Theorem 4.12 Let f1, f2, g1, g2 ∈ Aft (X) such that f1 ≤ g1 ≤ f2 and f1 ≤
g2 ≤ f2. Then r (g1, g2) ≤ r (f1, f2).

Proof. By Theorem C.1 (i) F (f1) ≤ F (g1) ≤ F (f2) and F (f1) ≤ F (g2) ≤
F (f2), but r (g1, g2) = r (F (g1) , F (g2)) and r (f1, f2) = r (F (f1) , F (f2)). By
Theorem C.1 (iii) F (F (f1)) = F (f1) and similarly for the other functions so
that F (f1) , F (f2) , F (g1) , F (g2) ∈ Fft (X). If we can prove the statement for
arbitrary S-continuous functions, then it holds for all interval valued functions.
So suppose that f1, f2, g1, g2 ∈ Fft (X). Denote by ∆ the set

∆ = {δ > 0 : Iδ (f2) (x)− δ ≤ f1 (x) ≤ Sδ (f2) (x) + δ,

Iδ (f1) (x)− δ ≤ f2 (x) ≤ Sδ (f1) (x) + δ, x ∈ X}
By (1.37) it is clear that

r (f1, f2) = inf∆. (4.38)

For any δ ∈ ∆

Iδ (g1) (x)− δ ≤ Iδ (f2) (x)− δ ≤ f1 (x) ≤ g2 (x) , x ∈ X, (4.39)

and

g2 (x) ≤ f2 (x) ≤ Sδ (f1) (x) + δ ≤ Sδ (g1) (x) + δ, x ∈ X, (4.40)
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Inequalities (4.39) and (4.40) imply that

∆ ⊆ {δ > 0 : Iδ (g1) (x)− δ ≤ g2 (x) ≤ Sδ (g1) (x) + δ} . (4.41)

From (4.38) and (4.41) we obtain

η (g2, g1) = inf {δ > 0 : Iδ (g1) (x)− δ ≤ g2 (x) ≤ Sδ (g1) (x) + δ}
≤ inf∆

= r (f1, f2) .

In the same way
η (g1, g2) ≤ r (f1, f2)

so that
r (g1, g2) = max {η (g1, g2) , η (g2, g1)} ≤ r (f1, f2) .

Theorem 4.13 Let f =
£
f, f

¤
be an S-continuous function. Then the follow-

ing are equivalent:
(i) The function f is H-continuous;
(ii) r

¡
f, f

¢
= 0.

Proof. (i)⇒(ii) We will show that if f is H-continuous, then for every
g ∈ A (X) such that g (x) ⊆ f (x) , x ∈ X,

r (f, g) = 0.

Assume that f is H-continuous. Then, by Definition 1.40, for every g ∈ A (X)
such that g (x) ⊆ f (x) , x ∈ X,

F (g) (x) = f (x) .x ∈ X. (4.42)

By (1.38) and the S-continuity of f

r (f, g) = r (F (f) , F (g)) = r (f, F (g))

By Theorem 4.11 and (4.42)
r (f, g) = 0.

By (1.38) and Theorem 4.11

r
¡
f, f

¢
= r

¡
F
¡
f
¢
, F
¡
f
¢¢ ≤ r ¡F ¡f¢ , f¢+ r ¡f, F ¡f¢¢ ,

and by Theorem C.1 (ii) and the S-continuity of f F
¡
f
¢
(x) , F

¡
f
¢
(x) ⊆ f (x)

for every x. Therefore r
¡
f, f

¢
= 0.

(ii)=⇒(i) We will show that f is H-continuous if, for every g ∈ A (X) such
that g (x) ⊆ f (x) , x ∈ X,

r (f, g) = 0.
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Assume that
r (f, g) = r (f, F (g)) = 0

for every g ∈ A (X) such that g (x) ⊆ f (x) , x ∈ X. Then by Theorem 4.11

f (x) = F (f) (x) = F (g) (x) , x ∈ X

for all such g. Therefore f is H-continuous.
Let g ∈ A (X) be any function satisfying the inclusion

g (x) ⊆ f (x) , x ∈ X.

Then f ≤ g ≤ f , and also f ≤ f ≤ f , so it follows by Theorem 4.12 that

r (f, g) ≤ r ¡f, f¢ .
By assumption

r
¡
f, f

¢
= 0

so that r (f, g) = 0. Therefore f is H-continuous.
Theorems 4.10, 4.11 and 4.13 above are the fundamental results, for the

purpose of our study, concerning the H-distance on Fft (X) and its subset
Hft (X). We will apply them in the next section to the order convergence of
sequences of H-continuous functions.

4.4 Order Convergence and the Hausdorff Dis-
tance

This section has as its gaol the investigation of the relationship between order
convergence and the H-distance. There are two paths that we will explore.
The first seeks to characterize order convergence in terms of the one-sided H-
distance. The other endeavours to find sufficient conditions on a sequence
of H-continuous functions for convergence in the H-distance to coincide with
order convergence.
For the purpose of attaining the former aim we generalize the idea of order

convergence on Hft (X) by considering the ‘fat’ order limit introduced in [4].
Let (fn) be a sequence on Hft (X) that is bounded in the sense that there exists
g, h ∈ Hft (X) such that

g ≤ fn ≤ h, n ∈ N. (4.43)

For each m ∈ N define the functions f (u)
m and f (l)

m as

f (u)
m =

h
f (u)

m
, f

(u)

m

i
= sup {fn : n ≤ m} ,m ∈ N, (4.44)
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f (l)
m =

h
f (l)

m
, f

(l)

m

i
= inf {fn : n ≤ m} ,m ∈ N. (4.45)

Each of these sequences are monotone. The sequence (f (u)
m ) is decreasing while

the sequence (f (l)
m ) is increasing in the sense of Definition 1.3. It is clear that

sup {inf {fn : n ≥ m} : m ∈ N} = sup©f (l)
m : m ∈ N

ª
, (4.46)

inf {sup {fn : n ≥ m} : m ∈ N} = inf ©f (u)
m : m ∈ N

ª
(4.47)

The sequences of real valued functions (f (l)

m
) and (f

(u)

m ) are both monotone and
bounded and hence pointwise convergent in the sense that

sup
n
inf
n
f (l)

n
(x) : n ≥ m

o
: m ∈ N

o
= inf

n
sup

n
f (l)

n
(x) : n ≥ m

o
: m ∈ N

o
and

sup
n
inf
n
f

(u)

m (x) : n ≥ m
o
: m ∈ N

o
= inf

n
sup

n
f

(u)

m (x) : n ≥ m
o
: m ∈ N

o
for every x ∈ X. We now come to the “fat” order limit mentioned above.

Definition 4.3 Let (fn) be a sequence on Hft (X). Then the function f ∗ =
[f∗, f

∗
] where

f∗ (x) = lim
n∈N
f (l)

n
(x) , x ∈ X, (4.48)

f
∗
(x) = lim

n∈N
f

(u)

n (x) , x ∈ X. (4.49)

is called the “fat” order limit of the sequence (fn)

The function f ∗ might as well be considered as the pointwise supremum of

the set of lower semi-continuous functions
n
f (l)

n
(x) : n ∈ N

o
. By Theorem C.3

this implies that f ∗ is lower semi-continuous. Similarly the function f
∗
is up-

per semi-continuous. Theorem C.2 now implies that the function f∗ = [f ∗, f
∗
]

is S-continuous, but need not be H-continuous. The next two theorems were
established in [4] for compact subsets Ω of Rn. We consider the natural gen-
eralization to arbitrary compact metric spaces. The proof, however, changes
little and makes use of the following lemma, again a generalization of a result
obtained in [4].

Lemma 4.1 Let (fn) be a sequence of functions in A (X), X a compact metric
space, that converges pointwise to a function f ∈ A (X).
(i) If the sequence (fn) is monotonically decreasing and the function fn, n ∈ N,
are all upper semi-continuous then for every δ > 0 and ε > 0 there exists
N0 ∈ N such that

f (x) ≤ fn (x) ≤ Sδ (f) (x) + ε, x ∈ X

104 HAUSDORFF CONTINU-
OUS FUNCTIONS AND THE CONVERGENCE SPACE COMPLETION OF (C (X) ,λO)

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  ddeerr  WWaalltt,,  JJ  HH    ((22000066))  



whenever n ≥ N0.
(ii) If the sequence (fn) is monotonically increasing and the function fn, n ∈ N,
are all lower semi-continuous then for every δ > 0 and ε > 0 there exists
N0 ∈ N such that

Iδ (f) (x)− ε ≤ fn (x) ≤ f (x) , x ∈ X
whenever n ≥ N0.

Proof. (i) Assume the opposite, that is, there exists δ > 0 and ε > 0 such
that, for every N0 ∈ N, there is n ≥ N0 and xn ∈ X such that

fn (xn) > Sδ (f) (xn) + ε.

We construct a subsequence (fnk) in the following way. Take any N0 ∈ N.
There exists n1 ∈ N and x1 ∈ X such that fn1 (x1) > Sδ (f) (xn) + ε. Now
take n1 ∈ N. According to the assumption there exists n2 ∈ N and x2 ∈ X
such that fn2 (x2) > Sδ (f) (x2) + ε. In the same way if nk ∈ N is already
determined, we obtain from our assumption that there exists nk+1 ∈ N and
xk+1 ∈ X such that fnk+1

(xk+1) > Sδ (f) (xk+1) + ε. Thus the subsequence
(fnk) is constructed inductively. SinceX is compact there exists a subsequence
(xkm) of the sequence (xk) which converges to a point x0 ∈ X. This implies
that there exists M0 ∈ N such that xkm ∈ Bδ (x0) whenever m > M0. Hence

fkm (xkm) > Sδ (f) (xkm) + ε ≥ f (x0) + ε

Let l > M0 be fixed. Using the monotonicity of the sequence (fn), for m > l
we have

fnkl (xkm) ≥ fnkm (xkm) > f (x0) + ε.

Hence
Sδ

³
fnkl

´
(x0) ≥ fnkl (xkm) > f (x0) + ε.

Taking the infimum over all δ > 0 the upper semi-continuity of fnkl we obtain

gnkl (x0) = S
³
gnkl

´
(x0) ≥ f (x0) + ε.

But (gnkl (x0)) converges to f (x0) so that we obtain a contradiction. This
proves (i).
(ii) The proof follows in the same way as (i) above.

Theorem 4.14 Consider a sequence (fn) on Hft (X) where X is a compact
metric space. Let f ∗ = [f ∗, f

∗
] be the function defined by (4.44) through (4.49).

Then for every δ > 0 and ε > 0 there exists N0 ∈ N such that

Iδ
¡
f∗
¢
(x)− ε ≤ f (l)

n (x) ≤ fn (x) ≤ f (u)
n (x) ≤ Sδ

³
f
∗´
(x) + ε, x ∈ X (4.50)

whenever n > N0.

ORDER CONVERGENCE AND THE HAUSDORFF DISTANCE 105

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  ddeerr  WWaalltt,,  JJ  HH    ((22000066))  



Proof. We will prove the first and last inequalities in (4.50). Choose δ > 0
and ε > 0. The sequence (f

(u)

n ) converges pointwise to the function f
∗
and

satisfies the conditions of Lemma 4.1 (i). Hence there exists N (u)
0 ∈ N such

that
f

(u)

n (x) ≤ Sδ (f ∗) (x) + ε, x ∈ X (4.51)

whenever n > N (u)
0 . In the same way there exists N (l)

0 ∈ N such that

Iδ (f
∗) (x)− ε ≤ f (l) (x) , x ∈ X (4.52)

whenever n > N (l)
0 . Setting N0 = max{N (u)

0 , N (l)
0 } it follows by (4.51) through

(4.52) that

Iδ
¡
f ∗
¢
(x)− ε ≤ f (l)

n
(x) ≤ f (u)

n (x) ≤ Sδ
³
f
∗´
(x) + ε, x ∈ X.

Since the remaining inequalities in (4.50) are trivially true the result follows.

Theorem 4.15 Consider a sequence (fn) on Hft (X) where X is a compact
metric space. Let f ∗ = [f ∗, f

∗
] be the function defined by (4.44) through (4.49).

Then
sup {inf {fn : n ≥ m} : m ∈ N} (x) ⊆ f∗ (x) , x ∈ X, (4.53)

inf {sup {fn : n ≥ m} : m ∈ N} (x) ⊆ f∗ (x) , x ∈ X. (4.54)

Furthermore, if the sequence (fn) order converges to the function f ∈ Hft (X)
then f is the unique H-continuous function satisfying the inclusion f (x) ⊆
f ∗ (x) , x ∈ X.
Proof. Let δ and ε be arbitrary positive real numbers. It follows from

Theorem 4.14 that there exists N0 ∈ N such that the inequalities in (4.50) are
satisfied whenever n > N0. Let n > N0 be fixed. From (4.50) we obtain

Iδ
¡
f ∗
¢
(x)− ε ≤ sup {inf {fn : n ≥ m} : m ∈ N} (x)

≤ inf {sup {fn : n ≥ m} : m ∈ N} (x)
≤ Sδ

³
f
∗´
(x) + ε

for every x ∈ X. Allowing δ and ε to approach 0 and using that the function
f ∗ is S-continuous we have

f ∗ (x) ≤ sup {inf {fn : n ≥ m} : m ∈ N} (x)
≤ inf {sup {fn : n ≥ m} : m ∈ N} (x)
≤ f

∗
(x)

which is equivalent to the inclusions (4.53) and (4.54).
Now let the sequence (fn) order converge to f ∈ Hft (X) and let

h ∈ {g ∈ Hft (X) : f (x) ⊆ f∗ (x) , x ∈ X} .
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Then for every n ∈ N we have

f (l)
n (x) ≤ f ∗ (x) ≤ h (x) ≤ f ∗ (x) ≤ f (u)

n (x) , x ∈ X.

It follows by (4.46) and (4.47) that

sup {inf {fn : n ≥ m} : m ∈ N} (x) = sup©f (l)
n : n ∈ N

ª
(x) ≤ h (x) (4.55)

and

h (x) ≤ inf ©f (u)
n : n ∈ N

ª
(x) = inf {sup {fn : n ≥ m} : m ∈ N} (x) (4.56)

for every x ∈ X. Since Hft (X) is Dedekind complete Theorem A.5 applies so
that

sup {inf {fn : n ≥ m} : m ∈ N} = f = inf {sup {fn : n ≥ m} : m ∈ N} .
(4.57)

The result now follows upon combining (4.55) through (4.57).
We have the following characterization of the order convergent sequences

on Hft (X) in terms of the one-sided Hausdorff distance (1.36).

Theorem 4.16 Consider a sequence (fn) on Hft (X). The following are
equivalent:
(i) The sequence (fn) order converges to f ∈ Hft (X) ;
(ii) There exists an S-continuous function g such that the one-sided Hausdorff
distance η (fn, g) tends to zero, that is, for every ε > 0 there exists an Nε ∈ N
such that, for every n ≥ Nε,

η (fn, g) < ε,

and the set
{ϕ ∈ Hft (X) : ϕ (x) ⊆ g (x) , x ∈ X} (4.58)

has one and only one element.

Proof. (i)=⇒(ii) By Theorem 4.14, for every ε > 0 there exists an Nε ∈ N
such that

Iε
¡
f∗
¢
(x)− ε ≤ f (l)

n (x) ≤ fn (x) ≤ f (u)
n (x) ≤ Sε

³
f
∗´
(x) + ε, x ∈ X. (4.59)

whenever n ≥ Nε. By (4.59) and (1.36) it follows that for every ε > 0 there
exists an Nε ∈ N such that η (fα, f) < ε for every n ≤ Nε. Furthermore,
by Theorem 4.15 the set {ϕ ∈ Hft (X) : ϕ (x) ⊆ f (x) , x ∈ X} has exactly one
element.
(ii)=⇒(i) By assumption, for every ε > 0 there exists an Nε ∈ N such that for
every n > Nε

η (fα, g) <
ε

2
.
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Hence by (1.36)

Iε (g) (x)− ε ≤ fn (x) ≤ Sε (g) (x) + ε, x ∈ X.
Taking the supremum over n > Nε we find that

sup {fn : n ≤ Nε} (x) ≤ Sε (g) (x) + ε, x ∈ X.
If we now take the infimum over all Nε ∈ N, or equivalently, over all ε > 0, by
(1.35)

h (x) = inf {sup {fn : n ≤ Nε} : Nε ∈ N} (x) ≤ S (g) (x) , x ∈ X. (4.60)

Taking the infimum over n > Nε

inf {fn : n ≤ Nε} (x) ≤ Iε (g) (x)− ε, x ∈ X.

Now take the supremum over all Nε ∈ N, or equivalently, over all ε > 0, and
again by (1.35)

h0 (x) = sup {inf {fn : n ≤ Nε} : Nε ∈ N} ≥ I (g) (x) , x ∈ X. (4.61)

Clearly h0 (x) ≤ h (x) for every x ∈ X so that (4.60) through (4.61) implies

I (g) (x) ≤ h0 (x) ≤ h (x) ≤ S (g) (x) , x ∈ X,
or equivalently, and since g ∈ Fft (X),

h (x) ⊆ [I (g) (x) , S (g) (x)] = F (g) (x) = g (x) , x ∈ X,
h0 (x) ⊆ [I (g) (x) , S (g) (x)] = F (g) (x) = g (x) , x ∈ X.

But by TheoremC.12, and because the set {ϕ ∈ Hft (X) : ϕ (x) ⊆ g (x) , x ∈ X}
has exactly one element, the result follows immediately.
The above result shows that the order limit of a sequence of finite H-

continuous functions is contained uniquely in a pointwise way in the ‘fat’ order
limit. However, there is a stronger connection between the two limiting func-
tions. Indeed, the ‘fat’ order limit equals the order limit on a dense set. In
order to establish this result we state the following lemma. Although we only
use it for the case when X is a compact metric space we prove it for the most
general case currently known.

Lemma 4.2 Let X any topological space and g finite and S-continuous on X.
(i) If the set Dg = X \Wf is dense in X, then the set

{ϕ ∈ Hft (X) : ϕ (x) ⊆ g (x) , x ∈ X} (4.62)

has exactly one element.
(ii) If X is a Baire space the converse of (i) also holds.
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Proof. (i) Suppose that f1 and f2 are distinct H-continuous functions that
satisfy the inclusion (4.62). Then

g (x) ≤ f1 (x) , f2 (x) ≤ g (x) = g (x) , x ∈ Dg
so that f1 (x) = f2 (x) = g (x) for every x ∈ Dg. Since Dg is dense in X Theo-
remC.10 (ii) implies that f1 = f2. The set {ϕ ∈ Hft (X) : ϕ (x) ⊆ g (x) , x ∈ X}
can therefore have no more than one element. Set

f (x) = F (I (S (g))) (x) , x ∈ X.
By Theorem C.8 f is H-continuous and by Theorem C.1 (ii) f satisfies the
desired inclusion.
(ii) By Theorem C.8 the functions f1 = F

¡
S
¡
I
¡
g
¢¢¢

and f2 = F (I (S (g)))
are both H-continuous and

F
¡
S
¡
I
¡
g
¢¢¢ ≤ F (I (S (g))) .

Since g and g are respectively lower and upper semi-continuous, this reduces
to f1 = F

¡
S
¡
g
¢¢
and f2 = F (I (g)). Since g (x) ⊆ g (x) and g (x) ⊆ g (x) for

every x ∈ X, it follows by Theorem C.1 (i) and (ii) that

f1 (x) , f2 (x) ⊆ g (x) , x ∈ X.
Then by our assumption,

f1 (x) = F
¡
S
¡
g
¢¢
(x) = F (I (g)) (x) = f2 (x) , x ∈ X.

By (1.25) and Theorem C.1 (iii),£
I
¡
S
¡
g
¢¢
(x) , S

¡
g
¢
(x)
¤
= [I (g) (x) , S (I (g)) (x)] , x ∈ X.

Consider the set Dε = X \ W ε
g for some ε > 0 and suppose that W ε

g is not
nowhere dense in X. Then, since there exists a ∈ X and V 0 ∈ Va that is
contained in W ε

g . By (4.42)

ω (g (x)) = g (x)− g (x) ≥ ε, x ∈ V 0,
or equivalently,

g (x) ≥ g (x) + ε, x ∈ V 0.
For every x ∈ V , there exists V 00 ∈ Vx such that V 00 ⊂ V 0. Since g is upper
semi-continuous (1.23) implies that

g (x) = S (g) (x) = inf {sup {g (y) : y ∈ V } : V ∈ Vx}
= inf {sup {g (y) : y ∈ V } : V ⊂ V 00}
≥ inf

©
sup

©
g (y) + ε : y ∈ V ª : V ⊂ V 00ª

= inf
©
sup

©
g (y) : y ∈ V ª : V ⊂ V 00ª+ ε

= S
¡
g
¢
(x) + ε, x ∈ V 0.
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Also, for any x ∈ V 0

I (g) (x) = sup {inf {g (y) : y ∈ V } : V ∈ Vx}
= sup {inf {g (y) : y ∈ V } : V ⊂ V 00}
≥ sup

©
inf
©
S
¡
g
¢
(y) + ε : y ∈ V ª : V ⊂ V 00ª

= sup
©
inf
©
S
¡
g
¢
(y) : y ∈ V ª : V ⊂ V 00ª+ ε

= I
¡
S
¡
g (x)

¢¢
+ ε, x ∈ V 0.

This is clearly a contradiction, so that W ε
g is nowhere dense in X. Also, it is

clear that
X \W ε

g = {x ∈ X : ω (g (x)) > ε}
is open in X, so that W ε

g is closed in X. Consequently, the set

Wg =
∞[
n=1

W
1
n
g

is of first Baire category in X. Since X is a Baire space it follows that
Dg = X \Wg is dense in X.

Theorem 4.17 Let X be a compact metric space. Let the sequence (fn) on
Hft (X) order converges to f ∈ Hft (X). Then the ‘fat’ order limit f ∗ associated
with (fn) satisfies

f ∗ (x) = f (x) , x ∈ D
where D is a dense subset of X.

Proof. By the Baire Category Theorem X is a Baire space. By Theorem
4.16 f is the unique H-continuous function that satisfies the inclusion

f (x) ⊆ f∗ (x) , x ∈ X. (4.63)

By Lemma 4.2 the set Df∗ is dense in X so that the result follows by the
inclusion (4.63).
It is possible, through the upper and lower δ-Baire operators, see (1.32) and

(1.33), to define a modulus of continuity. This was done in the case where X
is a compact interval of the real line in [76], but in the general case we define
the modulus of continuity as

ωδ(f) = sup
x∈X

£
Sδ/2 (f) (x)− Iδ/2 (f) (x)

¤
. (4.64)

A function f ∈ A (X) is continuous if and only if ωδ(f)→ 0 as δ → 0+. The
modulus of H-contnuity was defined similarly in [76] when X is a subset of the
real line, and in general the modulus of H-continuity is

τ δ (f) = r
¡
Sδ/2 (f) , Iδ/2 (f)

¢
. (4.65)

As a first application of the modulus of H-continuity, we have the following
characterization of H-continuous functions.
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Theorem 4.18 Let f be an S-continuous function defined on the metric space
X. Then f is H-continuous whenever

τ δ (f)→ 0

as δ → 0+ in the natural metric on R. Moreover, if X is compact the converse
of this also holds.

Proof. By (1.32) through (1.35) it is clear that

Iδ/2 (f) ≤ I (f) ≤ f ≤ S (f) ≤ Sδ/2 (f) (4.66)

for every δ > 0. By assumption, for every ε > 0 there exists a δε > 0 such
that

τ δ (f) = r
¡
Iδ/2 (f) , Sδ/2 (f)

¢
< ε

for every δ < δε. By (4.66) and the proof of Theorem 4.12

r (I (f) , S (f)) = r (F (I (f)) , F (S (f))) < ε

for every ε > 0. Therefore

r
¡
f, f

¢
= r (F (I (f)) , F (S (f))) = 0,

and by Theorem 4.13 f is H-continuous.
Conversely, suppose that X is compact and f is finite and H-continuous. By
(1.38) and (4.65)

τ δ (f) = r
¡
Sδ/2 (f) , Iδ/2 (f)

¢
= r

¡
F
¡
Sδ/2 (f)

¢
, F
¡
Iδ/2 (f)

¢¢
so that it follows by Theorem 4.11 that

τ δ (f) ≤ r
¡
F
¡
Sδ/2 (f)

¢
, f
¢
+ r

¡
f, F

¡
Iδ/2 (f)

¢¢
Note that

S
¡
Sδ/2 (f)

¢
(x) ↓ f (x) as δ ↓ 0, (4.67)

I
¡
Sδ/2 (f)

¢
(x) ↓ f (x) as δ ↓ 0, (4.68)

S
¡
Iδ/2 (f)

¢
(x) ↑ f (x) as δ ↓ 0 (4.69)

and
I
¡
Iδ/2 (f)

¢
(x) ↑ f (x) as δ ↓ 0. (4.70)

Indeed, it follows from (1.33) and (1.35) that

δ < δ0 ⇒ Sδ/2 (f) (x) ≤ Sδ0/2 (f) (x) ≤ S (f) (x) , x ∈ X
so that Theorems C.1 (i) and C.4 imply

δ < δ0 ⇒
½

f (x) ≤ S ¡Sδ/2 (f)¢ (x) ≤ S ¡Sδ0/2 (f)¢ (x)
f (x) = I (S (f)) (x) ≤ I ¡Sδ/2 (f)

¢
(x) ≤ I ¡Sδ0/2 (f)¢ (x) , x ∈ X.
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Now suppose there exists x ∈ X and c ∈ R such that

f (x) < c < S
¡
Sδ/2 (f)

¢
(x) , δ > 0. (4.71)

By (1.33) and (1.35)

S
¡
Sδ/2 (f)

¢
(x) = inf

©
sup

©
sup

©
f (z) : z ∈ Bδ/2 (y)

ª
: y ∈ Bε (x)

ª
: ε > 0

ª
= inf

©
sup

©
f (y) : y ∈ Bδ/2+ε (y)

ª
: ε > 0

ª
It now follows by (4.71) that

f (x) < c ≤ inf ©S ¡Sδ/2 (f)¢ (x) : δ > 0ª = S (f) (x) = f (x)
which is clearly a contradiction so that (4.67) must hold. Similar arguments
show that (4.68) through (4.70) hold.
Since X is compact the convergence (4.67) through (4.70) is uniform so that
for every ε > 0 there exists δε > 0 such that

δ < δε ⇒
½
S
¡
Sδ/2 (f)

¢
(x)− f (x) < ε

2

f (x)− I ¡Iδ/2 (f)¢ (x) < ε
2

, x ∈ X.

Therefore there exists for every ε > 0 a δε > 0 such that

S
¡
Sδ/2 (f)

¢
(x) < Sε

¡
f
¢
(x) + ε, x ∈ X (4.72)

and
Iε
¡
f
¢
(x)− ε < I

¡
Iδ/2 (f)

¢
(x) , x ∈ X (4.73)

whenever δ < δε. But

I
¡
Iδ/2 (f)

¢
(x) ≤ S ¡Iδ/2 (f)¢ (x) ≤ f (x) , x ∈ X (4.74)

and
f (x) ≤ I ¡Sδ/2 (f)

¢
(x) ≤ S ¡Sδ/2 (f)

¢
(x) , x ∈ X. (4.75)

Combining (4.72) through (4.75), we obtain

Iε
¡
f
¢
(x)− ε ≤ I ¡Sδ/2 (f)¢ (x) ≤ S ¡Sδ/2 (f)¢ (x) < Sε ¡f¢ (x) + ε, x ∈ X

and

Iε
¡
f
¢
(x)− ε < I

¡
Iδ/2 (f)

¢
(x) ≤ S ¡Iδ/2 (f)

¢
(x) ≤ Sε

¡
f
¢
(x) + ε, x ∈ X.

It now follows by (1.36) that

η
¡
F
¡
Sδ/2 (f)

¢
, f
¢→ 0 and η

¡
F
¡
Iδ/2 (f)

¢
, f
¢→ 0

as δ →+ 0. In the similar way as above it follows that

η
¡
f, F

¡
Sδ/2 (f)

¢¢→ 0 and η
¡
f, F

¡
Iδ/2 (f)

¢¢→ 0

as δ →+ 0. This completes the proof.
Just as in the study of spaces of continuous functions in the Functional

Analysis there is a concept of equi-continuity, we may introduce a similar con-
cept, that of equi-H-continuity.
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Definition 4.4 A set {fα} ⊂ Hft (X) is said to be equi-H-continuous if for
every ε > 0 there exists a δε > 0 such that, for every δ < δε

τ δ (fα) < ε

for every α. Here τ δ denotes the modulus of H-continuity defined in (4.65).

Theorem 4.19 Let (fn) be a sequence on Hft (X) and let g ∈ Fft (X) be the
Hausdorff limit of (fn), that is, for every ε > 0 there exists an Nε ∈ N such
that

r (fn, g) < ε

for every N ≥ Nε. Also suppose that the set {fn : n ∈ N} is equi-H-continuous.
Then g ∈ Hft (X) and (fn) order converges to g.

Proof. Because the set {fn : n ∈ N} is equi-H-continuous, it follows by
Definition 4.4 that for every ε > 0 there exists a δε > 0 such that

r
¡
Iδ/2 (fn) , Sδ/2 (fn)

¢
< ε.

for every δ < δε and every n ∈ N. Since g is the Hausdorff limit of the sequence
(fn), we have by (1.36) and (1.37) that there exists an N0 ∈ N such that

Iδ/2 (fn) (x)− δ/2 ≤ g (x) ≤ g (x) ≤ Sδ/2 (fn) (x) + δ/2, x ∈ X

whenever n ≤ N0. By Theorem 4.12 it follows that

r
¡
g, g
¢
< ε.

Since this holds for any ε > 0

r
¡
g, g
¢
= 0

so that g is H-continuous by Theorem 4.13. Furthermore, the set

{ϕ ∈ Hft (X) : ϕ (x) ⊆ g (x) , x ∈ X}

contains only one element, namely g. Since the sequence (fn) converges to g
in the Hausdorff distance if and only if both the one-sided Hausdorff distances

h (fα, g) , h (g, fα)

tends to zero, it follows by Theorem 4.16 that the sequence (fn) order converges
to some ϕ ∈ H (X) with the property that

ϕ (x) ⊆ g (x) , x ∈ X.

Therefore ϕ = g and we are done.
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4.5 The Completion of C (X)

As shown by Example 1.3 in the introduction to this work, it is not possible
to have on C (X) a topology which induces the order convergence of sequences.
However, using the results of Chapter 2 we can show that there exists a conver-
gence structure on C (X) which induces the order convergence. Indeed, since
C (X) is a real vector lattice with the point-wise defined addition, scalar multi-
plication and order, see [81][Example 4.2(6)], it follows from Corollary 2.1 that
(C (X) ,σo) is an FS-space. Hence, there exists a convergence structure on
C (X) which induces σo. In fact, it follows by Corollary 2.2 that the mapping
λo, as defined in Definition 2.1, defines a first countable convergence structure
on C (X) and induces σo. Furthermore, using that C (X) is an Archimedean
vector lattice we have that (C (X) ,λo) is a convergence vector space.
It is shown in [15][Proposition 3.6.5] that for a first countable convergence

vector space completeness and sequential completeness are equivalent. Since
the convergence vector space (C (X) ,λo) is first countable it is sufficient to
use sequential arguments with regard to its completeness. However we should
recall that the Cauchy sequences are defined through λo not just σo. Consider
the following example.

Example 4.4 Let the sequence (gn) on C(R) be given by

gn(x) =

 −1 if x ≤ − 1
n

nx if − 1
n
< x < 1

n

1 if x ≥ 1
n

The filter h(gn)i−h(gn)i is generated by the basis {{gm−gk : m,k ≥ n} : n ∈ N}.
It is easy to see that for any n ∈ N we have

−fn ≤ gm − gk ≤ fn, m ≥ n, k ≥ n,
where (fn) is the sequence given in Example 1.6. Since (fn) is a decreasing
sequence with an infimum equal to the constant zero function, (−fn) and (fn)
are sequences that can be associated with the filter h(gn)i − h(gn)i in terms of
Definition 2.1. Hence the filter h(gn)i − h(gn)i order converges to 0, which
implies that (fn) is a Cauchy sequence.
On the other hand it is quite clear that this sequence is not order convergent

in C(X).

Example 4.4 shows that the convergence vector space (C(X),λo) is not
complete.
The main aims of the this section is to construct a completion of the conver-

gence vector space (C(X),λo) as a set of functions defined on the same domain
X. Since the convergence structure λo is defined through the partial order on
C(X) it is natural to consider the Dedekind order completion of C(X). In [3]
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the Dedekind order completion of C(X) was represented as a subset of the set
of all finite Hausdorff continuous functions Hft(X). It was also shown that in
the special case when X is a metric space the Dedekind order completion of
C(X) is exactly Hft(X). Let us note that the Dedekind order completion of
a poset does not give automatically a completion with respect to any uniform
convergence structure defined through the order. In fact, it is shown in [64]
that convergence with respect to the order topology on the Dedekind order
completion of a poset does not imply convergence with respect to the order
topology on the original poset. Hence the results given in the sequel with
regard to the completion of C(X) through Hausdorff continuous functions are
highly nontrivial.
It was shown in Section 4.2 that the set Hft(X) can be made into a linear

space whenever X is a Baire space by defining ‘the sum’ of two H-continuous
functions f and g as

(f ⊕ g) (x) = F (D,X, f + g) (x) , x ∈ X (4.76)

where D = X \ (Wf ∪Wg). It is easily seen that the above is an extension of
the pointwise operations on C(X). Indeed, since the continuous functions are
the real valued H-continuous functions on X, it follows that D = X in (4.76)
for all continuous f and g so that the sum reduces to

(f ⊕ g) (x) = F (f (x) + g (x)) = f (x) + g (x) , x ∈ X.
Since we defined scalar multiplication on Hft(X) in a pointwise way, it is also
extends the operation on C (X) so that C (X) is a linear subspace of Hft(X).
We also showed that Hft(X) is a Dedekind complete vector lattice. But

the order (1.19) is an extension of the pointwise order (1.39) on C (X). As
C (X) is a lattice it now follows that C (X) is a vector sublattice of Hft(X).
According to our results in Section 2.3, in particular Theorem , the comple-

tion of the convergence vector space (C(X),λo) is
¡C(X)#,λo¢, where C(X)#

denotes the Dedekind σ-completion of C(X). By definition, C(X)# is the
smallest Dedekind σ-complete vector lattice, with respect to inclusion, that
contains C(X) as a vector lattice subspace. Since the Dedekind complete
vector lattice Hft(X) contains C (X) as a vector sublattice it follows that

C (X)# ⊆ Hft(X) (4.77)

whenever X is a Baire space. By (4.77) it follows that there exists a vector
sublattice H1

ft(X) of Hft(X) such that
¡
H1
ft(X),λo

¢
is the convergence vector

space completion of (C(X),λo). Note that the convergence structure onH1
ft(X)

is not necessarily the subspace structure inherited from (Hft(X),λo).
It is not known, however, wether or not equality always holds in (4.77).

However, when X is a metric space, we have the following result.

Theorem 4.20 Let X be a metric space. Then Hft(X) is the Dedekind σ-
completion of C(X) as a vector lattice.

THE COMPLETION OF C (X) 115

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  VVaann  ddeerr  WWaalltt,,  JJ  HH    ((22000066))  



Proof. Let f = [f, f ] ∈ Hft(X). We will prove the existence of an
increasing sequence (ψn) of continuous functions on X such that

f = sup {ψn : n ∈ N} .
Let ρ be the metric on X. We will use the function h : R → (−1, 1) ⊂ R
defined by

h(z) =
z

1+ |z| , z ∈ R.

This real function is continuous and strictly increasing. The inverse function
h−1 : (−1, 1)→ R is given by

h−1(z) =
z

1− |z| , z ∈ (−1, 1),

and is also continuous and strictly increasing.
Consider the functions ϕn : X ×X → R defined by

ϕn(t, x) = h(f(t)) + nρ(t, x) =
f(t)

1+ |f(t)| + nρ(t, x), n ∈ N. (4.78)

It is easy to see that the function ϕn is bounded from below. Indeed, since the
value of the metric ρ is always nonnegative and the fraction in (4.78) is greater
than -1 we have ϕn(t, x) > −1. Then we can define

ψn(x) = inf{ϕn(t, x) : t ∈ X}, n ∈ N.

First we will show that for every n ∈ N the function ψn is continuous on X.
From the triangular inequality of the metric ρ for every x, y, t ∈ X we have

ρ(t, y)− ρ(x, y) ≤ ρ(t, x) ≤ ρ(t, y) + ρ(x, y).

Therefore

ϕn(t, y)− nρ(x, y) ≤ ϕn(t, x) ≤ ϕn(t, y) + nρ(x, y).

Taking the infimum on t ∈ X we obtain

ψn(y)− nρ(x, y) ≤ ψn(x) ≤ ψn(y) + nρ(x, y).

Hence we have the inequality

|ψn(x)− ψn(y)| ≤ nρ(x, y) , x, y ∈ X ,

which implies that the function ψn is continuous on X.
Our second step is to prove that ψn satisfies the inequalities

−1 < ψn(x) ≤
f(x)

1+ |f(x)| < 1, x ∈ X. (4.79)
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For every x ∈ X we have

ψn(x) = inf{ϕ(t, x) : t ∈ X} ≤ ϕ(x, x) = h(f(x)) =
f(x)

1+ |f(x)| . (4.80)

Furthermore, since −1 is a lower bound of ϕn(t, x) the inequality

ψn(x) ≥ −1

also holds. It remains to prove that ψn(x) 6= −1. Let us assume that there
exists x ∈ X such that ψn(x) = −1. Let the real number µ be such that
−1 < µ < f(x)

1+|f(x)| . Then we have

h(f(x)) =
f(x)

1+ |f(x)| > µ > −1.

Using standard techniques one can easily see that the function h ◦ f is lower
semi-continuous. Hence there exists ε > 0 such that

f(t)

1+ |f(t)| = h(f(t)) > µ whenever ρ(t, x) < ε. (4.81)

Let now δ = min{nε, µ+ 1}. Since ψn(x) is defined as an infimum on t ∈ X,
there exists tδ ∈ X such that

−1 = ψn(x) ≤ ϕn(tδ, x) ≤ ψn(x) + δ = −1+ δ

or, more precisely,

−1 ≤ f(tδ)

1+ |f(tδ)| + nρ(tδ, x) ≤ −1+ δ.

Using simple manipulations we obtain

0 ≤ ρ(tδ, x) ≤ 1

n

µ
δ −

µ
1+

f(tδ)

1+ |f(tδ)|
¶¶

<
δ

n
≤ ε (4.82)

−1 ≤ f(tδ)

1+ |f(tδ)| ≤ −1+ δ ≤ µ (4.83)

The contradiction between inequalities (4.82), (4.83) on the one side and the
condition (4.81) on the other side show that the assumption that ψn(x) = −1
for some x ∈ X is false. Therefore fn(x) > −1, x ∈ X.
We will show that (fn) where

fn(x) = h
−1(ψn(x)) =

ψn(x)

1− |ψn(x)|
, x ∈ X, n ∈ N, (4.84)
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is the required sequence. Due to inequalities (4.79) the function fn is well
defined for every x ∈ X and n ∈ N. Moreover, fn is continuous on X
because ψn is continuous on X. Using the fact that the function h

−1 is strictly
increasing on the interval (−1, 1) and that the sequence (ϕn)n∈N is increasing
with n we obtain that (fn) is an increasing sequence. Furthermore from the
middle inequality in (4.79) we obtain

fn(x) = h
−1(ψn(x)) ≤ h−1

µ
f(x)

1+ |f(x)|
¶
= h−1

¡
h(f(x)

¢
= f(x) ≤ f(x), x ∈ X, n ∈ N.

It remains to prove that f = sup {fn : n ∈ N}. We will show first that f is
the point-wise supremum of the sequence (fn), that is,

f(x) = sup
n∈N

(fn(x)) , x ∈ X. (4.85)

Let x ∈ X and let ε > 0 be arbitrary. Using that the function h ◦ f is lower
semi-continuous there exists ν > 0 such that h(f(t)) > h(f(x)) − ε whenever

ρ(t, x) < ν. Let m ∈ N be such that m ≥ h(f(x))− ε+ 1

ν
. It is easy to see

that
ϕn(t, x) ≥ h(f(x))− ε , t ∈ X, n ≥ m. (4.86)

Indeed, if

(a) ρ(t, x) ≥ ν then ϕn(t, x) > −1+nν ≥ −1+
h(f(x))− ε+ 1

ν
ν = h(f(x))−ε;

(b) ρ(t, x) < ν then ϕn(t, x) ≥ h(f(x))− ε+ nρ(t, x) ≥ h(f(x))− ε.
Using (4.86) for n ≥ m we have

ψn(x) = inf
t∈X

ϕn(t, x) ≥ h(f(x))− ε.

Therefore
sup
n∈N

(ψn(x)) ≥ h(f(x))− ε.

Since ε in the above inequality is arbitrary and using also (4.80) we obtain

sup
n∈N

(ψn(x)) = h(f(x)).

The function h−1 used in the definition of fn, see (4.84), is continuous and
strictly increasing. Then we have

sup
n∈N
(fn(x)) = sup

n∈N
(h−1(ψn(x))) = h

−1(sup
n∈N
(ψn(x))) = h

−1(h(f(x))) = f(x),

which proves (4.85). Finally using Theorems C.12 and C.5 it follows from
(4.85) that

sup
n∈N

fn = F (S(f)) = F (f) = f.
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A in a similar way we can construct a decreasing sequence (f 0n) of continuous
functions such that

f = inf
n∈N
f 0n.

Now suppose that there exists H1
ft(X) ⊂ Hft(X) that is Dedekind σ-complete

and C (X) ⊂ H1
ft(X). Let f ∈ Hft(X) \ H1

ft(X). By the above there exists
an increasing sequence (fn) on C (X) such that

f = sup
n∈N

fn.

But there also exists f 0 ∈ C (X) such that f ≤ f 0. Hence the sequence (fn) is
bounded from above in C (X) so that

f = sup
n∈N

fn ∈ H1
ft(X).

Since we choose f /∈ H1
ft(X) this is a contradiction so that H1

ft(X) = Hft(X).
The linear operations are extended to Hft(X) as in (4.22) though (4.23). This
completes the proof.
The completion of (C (X) ,λo) is now obtained as a straight forward corol-

lary to the above.

Corollary 4.1 Let X be a metric space. Then (Hft(X),λo) is the convergence
space completion of (C (X) ,λo) in the sense of (C1) through (C3).

Proof. By Theorems 4.20 Hft(X) is the Dedekind σ-completion of C (X).
The result now follows upon application of Theorem 2.15.
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5. CONCLUSION

The broad context of this work is a thorough treatment of order convergence
of sequences on an Archimedean vector lattice within the framework of con-
vergence structures. The motivation of this investigation is twofold. The
first indication that such an investigation would be appropriate is to be found
in [78] where we considered order convergence on sets of Hausdorff continuous
functions. There, however, no further structure other than the order relation
is assumed. With the introduction of a linear structure on the set of finite
H-continuous functions on open subsets of Rn it became clear that the theory
of vector lattices would supply a suitable abstract framework in which to study
this phenomenon.
The second, far more specific problem that stirred our interest was that of

finding a ‘completion’ with respect to order convergence on the set C (X) of all
continuous functions. In order to define a satisfactory notion of ‘Cauchyness’
one must leave the realm of sequences and consider more arbitrary topological
type processes. Moreover, sequential structures are ill-suited to the construc-
tion of ‘completions’. In fact, there are examples of sequential convergence
groups that have no completion at all, see [33]. A suitable theory for construct-
ing such a completion was to be found in the theory of convergence spaces, see
[15]. This second problem is solved here and in [7] where it is shown that for
a metric space X the desired completion of C (X) is exactly the set Hft(X)
of all finite H-continuous functions on X. This result has been generalized
slightly. It was shown that if a topological space X is a Baire space, then
the completion of (C (X) ,λo) is a vector sublattice of the Dedekind complete
vector lattice Hft(X).
The obstacles to obtaining this result in its full generality is twofold. Firstly,

it is unknown whether or not Hft(X) is the Dedekind completion of C (X) for
any space X more arbitrary than a metric space. Secondly, some difficulties
are encountered when defining algebraic operations on Hft(X) when X is nei-
ther a Baire space nor a metric space. Determining sufficient conditions on X
to allow for a linear structure on Hft(X) is an open problem.
We considered the problems related to order convergence in full generality.

That is, we studied the order convergence of sequences on an Archimedean
vector lattice E. The key result that we obtained in this respect is that order
convergence is induced by a convergence structure. In fact, we constructed
such a convergence structure λo and showed that it is compatible with the linear
structure of the space E. This is the first time that the concept of order con-
vergence on a vector lattice has been linked to that of a convergence structure.
Generalizing the result obtained in [7], we showed that every Archimedean
vector lattice E equipped with the order convergence structure λo can be com-
pleted in the sense of (C1) through (C3) by the Dedekind σ-completion of
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E.
Closely connected with order convergence is the concept of relatively uni-

form (ru) convergence. As is the case with order convergence, (ru) convergence
generally fails to be topological. However, as we showed, it is induced by a
convergence structure. Moreover, this convergence structure is exactly the
Mackey modification of the order convergence structure λo. The construction
of the completion of of this convergence structure is still an open problem.
We have only managed to show that completeness in the sense of convergence
spaces is identical to the concept of (ru) completeness of the vector lattice.
The concrete description of the completion has not been achieved, but it is our
intention to pursue this in future research.
The convergence vector space (E,λo) and its Mackey modification µ (E),

where E is an Archimedean vector lattice, provides an appropriate setting in
which to study the order bounded and σ-order continuous operators. In partic-
ular, if F is a Dedekind compete vector lattice then the continuous operators
between (E,λo) and (F,λo) are precisely the σ-order continuous operators,
and the continuous operators between µ (E) and µ (F ) are exactly the order
bounded operators. Since the space Lb (E,F ) of order bounded operators and
the space Lc (E,F ) of σ-order continuous operators are both Dedekind com-
plete vector lattices, the order convergence structure can be defined on both,
introducing the structure of a complete convergence vector space.
A particular novelty of this view of the σ-order continuous operators is

that it allows for the use of the continuous convergence structure. It is shown
that the space Lc (E,F ) is a complete convergence vector space when equipped
with the continuous convergence structure. The interplay between these two
convergence structures considered on Lc (E,F ) results in a Banach-Steinhaus
type theorem. In particular, we show that if the dual of (F,λo) separates
the points of F , then the pointwise limit of a sequence of σ-order continuous
operators Tn : E → F is also σ-order continuous. Further research will seek
to apply this result where appropriate.
In this work we only considered real vector lattices. However, complex vec-

tor lattices are of considerable interest in analysis as many important spaces are
complex vector spaces. Moreover, the functional calculus is developed within
the setting of complex vector lattices. It is therefore particularly relevant to
investigate the possibilities for extending and applying the results obtained in
this work for real spaces to complex vector lattices. In particular, one would
consider the functional calculus mentioned above and how it relates to the
convergence structures considered here.
The present work deals only with order convergence of sequences. In the

Chapter 1, however, we mentioned other modes of convergence induced by an
order relation. In particular, on a vector lattice one often considers directed
sets, and specifically the upward and downward directed sets. This gives rise
to a notion of order convergence of generalized sequences in much the same
way as monotone sequences are employed in the definition of order convergent
sequences, see Definition 1.3. We suggest that a convergence structure can be
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defined in the same spirit as the order convergence structure λo that will induce
this convergence of generalized sequences. We believe that a theory similar
to that developed here can be developed. This, with the proper completeness
assumptions, would place the order continuous operators within the context of
convergence vector spaces and perhaps the results developed for σ-order con-
tinuous operators in this work can be reworked to apply to the order continuous
operators. Such an investigation is merited by the applications of the order
continuous operators to functional analysis, for instance in integration theory
and the theory of Banach lattices.
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“A problem left to itself dries up or goes rotten. But fertilize a problem with
a solution- you’ll hatch out dozens.”

-N. F. Simpson
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A. VECTOR LATTICES

The following results are standard in vector lattice theory. Proofs can be found
in [52] and [81]. A more recent presentation can be found in [83].

Theorem A.1 Let E be a vector lattice. Then E is distributive as a lattice,
and hence also σ-distributive.

Proposition A.1 Let E be a vector lattice and f ≤ g ∈ E. Then f+ ≤ g+

and g− ≤ f−.
Theorem A.2 Let E be a vector lattice and let (fn) and (gn) be sequences on
E.
(i) The sequence (fn) increases to f if and only if (−fn) decreases to −f .
(ii) The sequence (gn) decreases to f if and only if (−gn) increases to −f .
(iii) If fn → f and gn → g then the sequence (hh) = (sup {fn, gn}) converges
to h = sup {f, g}. In particular, f+

n → f+ and f−n → f−.
(iv) If fn → f then |fn|→ |f |. In particular, if fn ↑ 0 then |fn| ↓ 0.
(v) If fn → f and fn ≥ g for every n ∈ N then f ≥ g.
(vi) If fn → f and fn → g then f = g.

Theorem A.3 Let E be a vector lattice.
(i) If fn ↑ f and gn ↑ g then

sup {fn, gn} ↑ inf {f, g} ,
inf {fn, gn} ↑ inf {f, g} .

(ii) If fn ↓ f and gn ↓ g then
sup {fn, gn} ↓ inf {f, g} ,
inf {fn, gn} ↓ inf {f, g} .

Theorem A.4 In a vector lattice E the operation addition is sequentially con-
tinuous with respect to order convergence, that is, if fn → f and gn → g then
fn + gn → f + g.
Moreover, if E is Archimedean, then scalar multiplication is also sequentially
continuous with respect to order convergence, that is, if fn → f in E and
αn → α in R then the sequence (αnfn) order converges to αf .

Theorem A.5 Let E be a Dedekind σ-complete lattice. Then the sequence
(fn) on E order converges to f ∈ E if and only if

sup {inf {fn : n ≥ k} : k ∈ N} = inf {sup fn : n ≥ k : k ∈ N} .
The sequence (f 0k) = (inf {fn : n ≥ k}) increases to f and the sequence (f 00k ) =
(sup {fn : n ≥ k}) decreases to f .
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Theorem A.6 For a vector lattice E the following conditions are equivalent.
(i) E is order complete;
(ii) Every increasing order Cauchy sequence has a supremum;
(iii) Every order Cauchy sequence has a supremum;

Proposition A.2 An equivalent formulation of Definition 1.11 is the follow-
ing: A subset A of P is closed in the order topology if and only if, for every
sequence (fn) ⊆ A the convergence fn → f implies that f ∈ A.

Proposition A.3 Let E be a vector lattice and K a topological space. A map-
ping ϕ : E → K is continuous in the order topology if and only if (ϕ (fn)).converges
to ϕ (f) in K whenever (fn) order converges to f ∈ E.

Theorem A.7 (Main Inclusion Theorem) Let E be a vector lattice. Then
the following implications hold:

Super Ded. comp. =⇒ Ded. comp.
=⇒
=⇒

De. σ-comp.
Proj. prop.

=⇒ Princ. proj. prop. =⇒ Arch.

Theorem A.8 Let E and F be vector lattices and π : E → F a Riesz ho-
momorphism. Then π is a Riesz σ-homomorphism if and only if ker π is a
σ-ideal.

Proposition A.4 If π is a Riesz homomorphism from the Dedekind σ-complete
vector lattice L onto the vector lattice F and if (fn) is a sequence in F sat-
isfying fn ↓ 0, then thre exists a sequence (gn) in E+ such that gn ↓ 0 and
fn = πgn for every n ∈ N.

Theorem A.9 Let E be an Archimedean vector lattice and A a σ-ideal of E.
Then E/A is an Archimedean vector lattice.

Theorem A.10 Let E and F be vector lattices. Then Lc (E,F ) and Ln (E,F )
are linear subspaces of Lb (E,F ). If F is Dedekind complete Lb (E,F ) is a
Dedekind complete vector lattice. The spaces Lc (E,F ) and Ln (E,F ) are both
bands in Lb (E,F ).

Theorem A.11 Let E be a vector lattice and A a subset of LbE. Then A is
bounded by a bounded linear functional if and only A is pointwise bounded.

Theorem A.12 Let E be a vector lattice such that the ideal A of LbE separates
the points of E. Then the mapping σ : E → LbB is a Riesz isomorphism. In
fact, σ (E) is contained in the set LnB of all order continuous linear functionals
on B.
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B. CONVERGENCE SPACES

This Appendix contains miscelenous results from the theory of convergence
spaces that are applied in the main body of the present work. All results are
taken from [15], except for Theorem B.1 which is taken from [35], where the
proofs may also be located.

Proposition B.1 For a subset A of a first countable convergence space K
a point f belongs to a (A) if and only if there exists a sequence in A which
converges to f .

Proposition B.2 Let K and L be convergence spaces and ϕ a mapping from
K into L.
(i) If ϕ : K → L is continuous then so is ϕ : o (K)→ o (L).
(ii) If L is topological, then ϕ : K → L is continuous if and only if ϕ : o (K)→
o (L) = L is continuous.
(iii) o (K) is the finest topological convergence structure on the same set that
is coarser than K.

Proposition B.3 Let K and L be convergence vector spaces. Then Cc (K,L)
is Hausdorff, regular or Choquet whenever L is. In particular, Cc (K) is Haus-
dorff, regular and Choquet.

Proposition B.4 Let E be a convergence vector space, F a vector space and
p : E → F a surjection. Then the quotient convergence structure on F is a
vector space convergence structure and a fitler Q on F converges to p(f) ∈ F
in the quotient convergence structure if and only if there exists a filter F on E
that converges to f such that p (F) ⊆ Q.
Proposition B.5 Let E be a first countable convergence vector space. Then
E is complete if and only if E is sequentially complete, that is, every Cauchy
sequence is convergent.

Theorem B.1 Let E be a Hausdorff convergence vector space. Then there
exists a complete, Hausdorff convergence vector space eE such that conditions
(i) and (ii) above are satisfied. Furthermore, E is isomorphic to a dense
subspace of eE if and only if every Cauchy filter on E is bounded.

Proposition B.6 Let E be a convergence vector space. Then µ (E) is locally
bounded and first countable. Moreover, µ (E) and E share the same bounded
sets.

Proposition B.7 Let E and F be convergence vector spaces. Then a linear
mapping T : E → F is bounded if and only if T : µ (E)→ µ (F ) is continuous.
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Theorem B.2 Let E and F be convergence vector spaces with E barrelled.
Then (E,LcF ) is a Banach-Steinhaus pair in each of the following two cases:
(i) F is locally bounded.
(ii) E and F are first countable.

Corollary B.1 Let E be a barrelled convergence vector space and F a locally
convex topological vector space. Then (E,F ) is a Banach-Steinhaus pair.

Theorem B.3 Let (E,F ) be a Banach-Steinhaus pair and F regular and Cho-
quet. If (Tn) is a sequence in L (E,F ) that converges pointwise to a linear
mapping T : E → F , then T is continuous and (Tn) converges continuously to
T .
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C. HAUSDORFF CONTINUOUS FUNC-
TIONS

The following is a collection of results on interval valued functions, and H-
continuous functions in particular, that are used in this work. Proofs can be
found in [3], [2] and [4].

Theorem C.1 Concerning the mappings I, S and F , the following is true:
(i) The operators I, S and F are all monotone with respect to the partial order
(1.19), that is, for any two functions f, g ∈ A (X)

f ≤ g ⇒ I (f) ≤ I (g) , S (f) ≤ S (g) , F (f) ≤ F (g) ;

(ii) The operator F is monotone with respect to the relation inclusion, that is,
for any two functions f, g ∈ A (X)

f (x) ⊆ g (x) , x ∈ X ⇒ F (f) (x) ⊆ F (g) (x) , x ∈ X;

(iii) The operators I, S and F are all indempotent, that is, for any f ∈ A (X)

I (I (f)) = I (f) , S (S (f)) = S (f) , F (F (f)) = F (f) .

There is a close connection between S-continuous functions and semi-continuous
functions, and indeed H-continuous functions. For that reason we recall the
definitions of semi-continuous functions, see [9].
The following fact is easily verified:

f is lower semi-continuous on X ⇔ I (f) = f, (C.1)

f is upper semi-continuous on X ⇔ S (f) = f. (C.2)

Theorem C.2 Every pair consisting of a lower semi-continuous function f
and an upper semi-continuous function f such that f ≤ f defines an S-
continuous function f (x) =

£
f (x) , f (x)

¤
, x ∈ X. Furthermore, if the set©

ϕ ∈ A (X) : f ≤ ϕ ≤ fª
does not contain any lower or upper semi-continuous functions, except for f
and f , respectively, then the function f is H-continuous.
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Proposition C.1 If f is an upper semi continuous (respectively lower semi
continuous) function on X then its restriction to any subset A of X is upper
semi continuous (respectively lower semi continuous) on A.

Theorem C.3 We have the following:
(i) Let L ⊆ A (X) be a set of lower semi-continuous functions. Then the
function l defined by

l (x) = sup {f (x) : f ∈ L}
is lower semi-continuous.
(ii) Let U ⊆ A (X) be a set of upper semi-continuous functions. Then the
function u defined by

u (x) = inf {f (x) : f ∈ U}
is upper semi-continuous.

Theorem C.4 Let f ∈ A (X). The following conditions are equivalent.
(i) the function f is H-continuous;
(ii) F (I (f)) = F (S (f)) = f ;
(iii) S (I (f)) = S (f) , I (S (f)) = I (f) and f is S-continuous.

Theorem C.5 Let f =
£
f, f

¤ ∈ A (X). Then f is H-continuous if and only
if

f is upper semi-continuous

f is lower semi-continuous

f = F (f) = F (f)

Theorem C.6 Let f =
£
f, f

¤
be a H-continuous function on X.

(i) If f or f is continuous at a point x ∈ X then f (x) = f (x).
(ii) If f (x) = f (x) for some x ∈ X then both f and f is continuous at x.

Theorem C.7 A function f ∈ A (X) is H-continuous if and only if the fol-
lowing two conditions are satisfied
(i) f is S-continuous;
(ii) for any S-continuous function g the inclusion g (x) ⊆ f (x) , x ∈ X, implies
g (x) = f (x) , x ∈ X.
Theorem C.8 Letf ∈ A (X). Both the functions F (S (I (f))) and F (I (S (f)))
are H-continuous and

F (S (I (f))) ≤ F (I (S (f))) .
Theorem C.9 Let f ∈ H (X). Then the set W ε

f is closed nowhere dense in
X. Consequently, the set

Wf =
[
n∈N

W
1
n
f

is of first Baire category.
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Theorem C.10 Let f, g ∈ H (X) and D a dense subset of X. If
(i) f (x) ≤ g (x) for each x ∈ D, then f (x) ≤ g (x) for each x ∈ X;
(ii) f (x) = g (x) for each x ∈ D, then f (x) = g (x) for each x ∈ X;

Theorem C.11 For an H-continuous function f to be finite it is suficient that
f asumes finite values on a dense subset that need not be open.

Theorem C.12 Let B be a bounded subset of Hft(X) and let the functions
ϕ,ψ ∈ A(X) be defined by

ϕ(x) = inf{f(x) : f = [f, f ] ∈ B} , ψ(x) = sup{f(x) : f = [f, f ] ∈ B} , x ∈ X.

Then both inf B and supB exists and

inf B = F (I(ϕ)), supB = F (S(ψ)).

Furthermore if the set B is finite then

inf B = F (ϕ), supB = F (ψ).
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Summary

We consider here three as of yet unrelated concepts. That of order con-
vergence on a vector lattice, convergence structures and Hausdorff continuous
functions. It is shown that order convergence of sequences on a vector lattice
is induced by a convergence structure. Such a convergence structure, called
the order convergence structure, is defined and and we study its properties.
In particular, it is shown that if the vector lattice is Archimedean then the
order convergence structure is a vector space convergence structure and the
completion the resulting convergence vector space is attained. This theory of
order convergence is applied to obtain a Banach-Steinhaus theorem for σ-order
continuous operators. We show that the set of all finite Hausdorff continuous
functions defined on a Baire space constitutes a Dedekind complete vector lat-
tice. Hence the theory developed for order convergence on Archimedean vector
lattices is applicable. The completion of the order convergence structure on
C (X) is obtained as a set of Hausdorff continuous functions.
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