
CHAPTERTHREE
GEOMETRIC MODELLING

3.1 INTRODUCTION

In a traditional macro-cell type wireless communication scheme, the base station would be on

some elevated tower and not be surrounded by many close local scatterers, while the receiver

would most probably be at ground level, either in a building, automobile or on the street, which

would be surrounded by many local scatterers. Investigations in [37, 64, 82] focused on the

spatial correlation effects for the above scenario, where the scattering could vary from isotropic

to highly non-isotropic scattering.

With the opportunity for wireless local area networks achieving very high data rates for

multiple users, the space-time correlation of such channels needs to be investigated [82]

so that adequate and appropriate channel models can be adopted. The geometrically based

modelling approach used in [64, 83, 84] is considered, but applied specifically for an indoor

fixed wireless environment [85] with different scattering PDF configurations at the transmitter

and receiver, with the derivation of space-time correlation function. For the fixed wireless

scenario considered herein, isotropic scattering at the transmitter end is considered, while

the angular distribution of the scatterers at the receiver follows the von Mises probability

distribution function (PDF) [64]. The approach used here is to derive the joint space-time

correlation function and then separate the transmit antenna and receive antenna correlation.

Consequently one derives expressions for the transmit antenna correlation in terms of antenna

element spacing and the receive antenna correlation in terms of the scattering parameter k,

antenna element spacingdpn, dmn and mean direction of angle of arrival (AOA),φR. The
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closedform solutions herein presented enables one to determine the effect on the capacity in

such a system based on the effects of scattering, antenna element spacing, angular orientation

of antenna array and number of antenna elements employed.

3.2 MODEL DESCRIPTION

The new geometric MIMO channel model was initially described after which the mathematical

analysis was developed. The new antenna cross correlation function is derived from the

mathematical analysis and is based on the below mentioned assumptions.

The new geometric model for a two element transmit antenna and a two element receive

antenna (referred here-in as a 2 x 2 MIMO channel, shown in Figure 3.1) is developed by

using the multi-element antenna system in [64] as a basis. The fixed receiver/user has a

multi-element antenna system with receiver elementsREm, REn, ...REx; wherex = 2 here.

In this case the 2 x 2 MIMO channel antenna elements form a uniform linear array (ULA) of

monopoles that radiate omni-directionally. From the scatterers atTSl, from the transmitter

there is a very narrow dominant beamwidth and the receiver obtains the signal from a large

number of surrounding local scatterers, that need not necessarily be isotropic, but the scatterers

impinge at pointRSi, as shown in Figure 3.1. It is also assumed that theith scatterer is planar

and could be the sum of different coherent scatterers, which can be of distance R from the

centerOR of the RX antenna array.

D is the distance between the transmitter and the receiver and the anglesαpq andβmn are

the angles the antenna arrays form with the horizontal axis at the transmitter and receiver,

respectively. The planar wave formed by the scattering around the receiver can be represented

as the angle from the pointφR to the pointRSi. Similarly there arel omnidirectional scatterers

at the TX and they lie on a ring of radius L. Thelth scatterer at the TX is denoted byTSl, and

θT is the angle from the horizontal axis of the antenna array and this scatterer. It is assumed

that in this indoor environment the local scattering at the TX is omni-directional and the radius

of scatters is very small, that isL ¿ D andL < R. It is also assumed that the angle of the arc

thatOT would form on the circumference of circleOR is small (typically less than150) [86],

for D À R, that is the angle formed betweenTSl andRSi is small. In this model the line of

sight (LOS) component is not considered, but a Rayleigh PDF in a picocell type environment is
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FIGURE 3.1: Geometric Model for a 2x2 MIMO channel

assumed. This MIMO system can be written using the complex baseband notation as

y(t) = H(t) ∗ x(t) + n(t) (3.1)

whereH(t) is the channel matrix of complex path gainshij(t) betweenTXj andRXi, n(t)

is the complete envelope of the AWGN with zero mean from each receive element,x(t) is the

transmit vector made up of the signal transmitted from each TX,nt × 1 antenna element and

y(t) is the receive vector made up of the signal from each pointRSi.

It is assumed that any gain and phase shift introduced by a scatterer at the transmitter is

different to that received at pointRSi. Also, the scatterers at pointRSi are of approximately the

same angle, implying that the gain and phase shift is the same at pointRSi and the scatterers

do not change with time (that is fixed) in this case. It is also assumed that

lim
L,N→∞

1

L

1

N

L∑
i=1

N∑
i=1

E[g2
il] = 1 (3.2)

wheregil is the amplitude of the wave that comprises of the joint gain of scatterersTSl and

RSi andL,N are the number of independent scatterersTSl around the TX, andRSi around

the RX, respectively.

Based on the statistical properties of the described channel, the central limit theorem implies

that hmp is a low pass, zero mean, complex Gaussian random process. This means that the

envelope|hmp(t)| is a Rayleigh (fading) process. Hence, for the above no line of sight (NLOS),
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frequency non-selective, MIMO fading channel propagation scenario, the channel gain,hmp(t),

for the linkTEp −REm as shown in Figure 3.1, can be written as

hmp(t) =
√

Ωmp lim
L,N→∞

1√
LN

L∑

l=1

N∑
i=1

gil × exp

{
jψil − j2π

λ
[εlp + εil + εmi]

}
(3.3)

whereψil is the joint phase shift introduced by thelth scatterer atTSl and theith scatterer

atRSi, {ψil}∞i,l=1 is theiid random process with uniform distribution over the interval[−π, π],

εlp, εil and εmi are the distances as shown in Figure 3.1 which are functions of the angle of

departure (AOD) and angle of arrival (AOA),Ωmp is the power transferred through the link

from transmit antennap, through to receive antenna m andλ is the wavelength of the carrier

RF signal.

The transpose of the channel gain,hnq(t), for the linkTEq −REn shown in Figure 3.1 is

h∗nq(t) =
√

Ωnq lim
L,N→∞

1√
LN

L∑

l=1

N∑
i=1

gil × exp

{
−jψil +

j2π

λ
[εlq + εil + εni]

}
(3.4)

whereΩnp is the power transferred through the link from TX antenna q, through to RX

antenna n.

3.3 MODEL ANALYSIS

Using the geometric model described in the previous section as a basis, a joint space-time cross

correlation function is derived.

The space-time correlation between the two links,TEp −REm andTEq −REn, as shown

in Figure 3.1, can be defined as

ρmp,nq(τ) = E[hmp(t).h
∗
nq(t + τ)/

√
ΩmpΩnq] (3.5)

whereτ is an arbitrary time delay,∗ indicates the complex conjugate andΩmp,nq is the

power transfer throughTE −RE in a specificTEp,q −REm,n antenna link element.

The cross correlation function for the scenario in Figure 3.1 can be represented

independently of D accordingly as

ρmp,nq(τ) = lim
L,N→∞

1

L

1

N

L∑

l=1

N∑
i=1

E[g2
il]× exp

{−j2π

λ
[εlp − εlq + εmi − εni]

}
(3.6)
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For large number of scatterers L and N and considering the fact the channel is in a

quasi-static state, with the receiver at a fixed position, one can write

ρmp,nq(τ, t) = ρmp,nq(τ) = ρmp,nq (3.7)

and hence re-write (3.6) as an integral form of

ρmp,nq =

∫ π

−π

∫ π

−π

exp

{−2πj

λ
[εlp − εlq + εmi − εni]

}
×p(θT )p(φR)dθT dφR (3.8)

wherep(θT ) is the probability distribution function of the uniform scatterers at the TX and

p(θR) is the probability distribution function of the scatterers at the RX respectively.

Equation (3.8) can now be written in terms of the scatterer angles shown in Figure 3.1 as

ρmp,nq =

∫ π

−π

∫ π

−π

exp

{−2πj

λ
[εθp − εθq + εmφ − εnφ]

}
×p(θT )p(φR)dθT dφR (3.9)

whereεθp,q is the distance fromTEp,q to the ring of scatterersTSl at an angleθT from the

scattering center,OT , andεφm,n is the distance fromREm,n to the ring of scatterersRSi at an

angleφR from the scattering centerOR.

Using Figure 3.1 one can write the distances in (3.9) for the TX and RX side using the

Cosine Law as

ε2
lp = L2 +

d2
pq

4
− dpqL cos(αpq − θT ) (3.10)

ε2
θp = L2 +

d2
pq

4
− dpqL cos(αpq − θT ) (3.11)

ε2
lq = L2 +

d2
pq

4
+ dpqL cos(αpq − θT ) (3.12)

ε2
θq = L2 +

d2
pq

4
+ dpqL cos(αpq − θT ) (3.13)

ε2
mi = R2 +

d2
mn

4
− dmnR cos(φ− βmn) (3.14)
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ε2
mφ = R2 +

d2
mn

4
− dmnR cos(φ− βmn) (3.15)

ε2
ni = R2 +

d2
mn

4
+ dmnR cos(φ− βmn) (3.16)

ε2
nφ = R2 +

d2
mn

4
+ dmnR cos(φ + βmn) (3.17)

AssumingthatR > L, L À dpq, dmn andR À dpq, dmn, such that
d2

pq

4
is negligible with respect

to the other terms, one can re-write equations (3.11), (3.13), (3.15), (3.17) as

ε2
θp

L2
= 1− dpq cos(αpq − θT )

L
(3.18)

ε2
θq

L2
= 1 +

dpq cos(αpq − θT )

L
(3.19)

ε2
mφ

R2
= 1− dmn cos(φ− βmn)

R
(3.20)

ε2
nφ

R2
= 1 +

dmn cos(φ + βmn)

R
(3.21)

Now using the relation
√

1 + x ≈ 1 + x
2

for |x|¿1, the above equations (3.18)− (3.21)

can be simplified to

εθp ≈ L− dpq

2
cos(αpq − θ) (3.22)

εθq ≈ L +
dpq

2
cos(αpq − θ) (3.23)

εmφ ≈ R− dmn

2
cos(φ− βmn) (3.24)

εnφ ≈ R +
dmn

2
cos(φ− βmn) (3.25)

Onecan write the joint correlation in (3.7) as an approximate product of transmit antenna and

receiver antenna correlation [1, 64, 71].
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ρmp,nq = ρTX
pq ρRX

mn (3.26)

Hence

ρTX
pq =

π∫

−π

exp

{−j2π

λ
[εθp − εθq]

}
p(θT )dθT (3.27)

and

ρRX
mn =

π∫

−π

exp

{−j2π

λ
[εmφ − εnφ]

}
p(φR)dφR (3.28)

It is assumed that this TX could be for example in a wide-open hallway, where there is

uniform (isotropic) scattering around the close proximity of L for this uniform linear array.

This will herein be represented by a PDF [37],p(θT ) = 1
2π

. Substituting(3.22) and (3.23) and

for p(θT ) into (3.27), one can re-write (3.27) as

ρTX
pq =

π∫

−π

exp

{−j2π

λ
[−dpq cos(αpq − θT )]

}
1

2π
dθT (3.29)

By applying the trigonometric functions in [87], one can reduce (3.29) to

ρTX
pq =

1

2π

π∫

−π

exp jcpq [sin αpq sin θT + cos αpq cos θT ]dθT (3.30)

wherecpq = 2πdpq

λ

Assumingthat the scattering distribution at the RX side follows the von Mises PDF [64]

given as:

p(φ) =
exp [k cos(φ− µ)]

2πI0(k)
(3.31)

whereI0(·) is the zero-order modified Bessel function,φ ∈ [−π, π), µ ∈ [−π, π) is the

mean direction of the AOA seen by the user, andk is the isotropic scattering parameter.
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Substituting(3.31) into (3.28), one can re-write (3.28) as

ρRX
mn =

1

2πIo(k)

π∫

−π

exp

{
j2πdmn

λ
cos(φR − βmn

}
exp {k cos(φR − µ)dφR} (3.32)

Settingbmn = 2πdmn

λ
, (3.32) can be written as

ρRX
mn =

1

2πIo(k)

π∫

−π

exp {jbmn cos(φR − βmn) + k cos(φR − µ)} dφR (3.33)

Using the trigonometric functions in [87], (3.33) can be reduced to

ρRX
mn =

1

2πIo(k)

π∫

−π

exp {sin φR [jbmn sin βmn + sin µ]}×exp {cos φR [jbmn cos βmn + k cos µ]} dφR

(3.34)

Using the integration rule in [87], equation3.338− 4, page336 is given as
∫ π

−π

exp(y sin x + z cos x).dx = 2πI0(γ) (3.35)

whereγ =
√

y2 + z2.

Henceone can express (3.30) as

ρTX
pq = I0(jcpq) (3.36)

Similarly (3.35) can be applied to (3.34) to give

ρRX
mn =

1

2πI0(k)

π∫

−π

exp {(jbmn cos (φR − βmn)) + k cos (φR − µ)}dφR (3.37)

which is reduced to

ρRX
mn =

1

I0(k)
I0((jbmn sin βmn + k sin µ)2 + (jbmn cos βmn + k cos µ)2)1/2 (3.38)

Applying the basic trigonometric identities to (3.38) and simplifying it gives

ρRX
mn =

1

I0(k)
I0

(
k2 − b2

mn + j2kbmn cos(µ− βmn

)1/2 (3.39)

wherebmn = 2πdmn

λ
.

The closed form expressions for the antenna correlations are represented in equations

(3.36) and (3.39) for the TX and RX respectively. This allows one to solve these expressions

analytically in order to determine some of the model characteristics and its impact on the

capacity of the MIMO system.
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3.4 RESULTS

The spatially and temporally correlated variates are generated by generating annR×nT matrix

U, of random, independent and zero mean complex Gaussian variates with unit variance. Using

X = U
√

RT , thenR×nT with the desired transmit antenna correlation is calculated.RT is the

nT × nT matrix of the transmit antenna correlation, with matrix elementsρTX
pq calculated from

(3.39). MatrixH is then calculated usingX as the input vector with the desired correlation

matrix elements calculated from (3.39).

The normalized MIMO channel capacity, C, in b/s/Hz for a particular realizationH can be

expressed [9, 15] as

C = log2 det

(
InR

+
ρ

nT

HHH

)
(3.40)

whereHH is the conjugate transpose,det is the determinant of the matrix,InR
is anR× nT

identity matrix, and,ρ is the average SISO SNR at each of thenR elements.

Many different random channel realizations were considered and the capacity for each of

these realizations were computed and then statistically distributed. From this, the cumulative

distribution function (cdf) for the capacity was calculated by taking into account the effects of

the various parameters derived in the model.

Uniform linear arrays (ULA’s) were considered in this case with the following general

parameters applied to this model.

SNR =ρ = 20 dB

TX carrier frequency = 2.4 GHz

αpq = βmn = π/2

k = 0.25

D = 20 metres

R = 0.2 metres

Figure 3.2 shows the complimentary cumulative distribution function (ccdf) versus capacity

for varying number of TX,nT , and receiver,nR, antenna elements. Hereµ = π, λ = 0.125,
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FIGURE 3.2: ccdf versus capacity for varying antenna elements,nT = nR

dmn = dpq = 0.5λ, ρ = 20 dB andk = 25. One observes [37] that the capacity increases as

the number of antenna elements in the MIMO system increases from two to eight elements

for some fixed outage probability. Increasing the number of antenna elements, both at the

transmitter and receiver ends, makes the greatest impact on the channel capacity when compared

to the other parameters. Based on the indoor MIMO measurement campaign undertaken and

described herein and in [88], it was observed that fornR = nT = 8, with SNR = 20 dB,

the capacity was 95% accurate for an outage probability greater than 90% for location 2 [89],

having characteristics almost identical to the described model.

Figure 3.3 indicates the ccdf for the case where the antenna element spacingdmn is varied

from 0.25λ up to 4λ, referred to as d in Figure 3.3. The SNR=20 dB,k = 25, µ = π,

dpq = 0.5λ andnR = nT = 2 were used in the computation.

For the above chosen parameters, one observes that for an outage probability of greater than

95%, the capacity can vary by approximately 2b/s/Hz for0.25λ 6 d 6 4.0λ. The RX antenna

array element spacing ofdmn > 4.0λ and fordmn < 0.25λ resulted in a negligible effect on
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FIGURE 3.3: ccdf versus capacity for varying antenna spacing, d=dmn
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FIGURE 3.4: ccdf versus capacity for varying scattering parameter,k
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thecapacity for a specific outage probability. As expected, increasing the element spacingdpq

resulted in a trend similar to that in Figure 3.3, except that it occurred at a higher capacity.

Figure 3.4 shows the effect of the scattering parameterk on the capacity of the 2× 2 MIMO

system where the SNR=20 dB anddmn = dpq = 0.5λ. From the isotropic scattering(k = 0)

case to the highly non-isotropic scattering at the RX, the capacity could decrease by less than

2.5 b/s/Hz for an outage probability beyond95%. One observes that fork > 50 the capacity

does not vary significantly for some fixed high outage probability. This implies that in an indoor

environment where there are significantly large number of local scatterers, using ak value of

greater than 50 should not have any significant impact upon the degradation in channel capacity.

For k = 25, nR = nT = 2, dmn = dpq = λ andρ = 20 dB the plot of capacity outage

probability for the variation in RX antenna array orientation,βmn was determined as shown

in Figure 3.5. For the antenna orientation variation fromπ/2 to 0 radians, the capacity could

decrease by less than 3.0 b/s/Hz for an outage probability of greater than95%. As expected

from a uniform linear antenna array, rotating the RX antenna array betweenπ andπ/2 radians

has a similar effect to that as shown in Figure 3.5.

Figure 3.6 validates the developed model behavioral characteristics and confirms the effect

of SNR on the channel capacity as proposed in [9]. This was simulated for the parametric

settings ofdmn = dpq = 0.5λ, nR = nT = 2 andk = 25. One also observes, as expected, that

for an increase of SNR by 3dB the capacity maximally increased by approximately 1 b/s/Hz for

an outage probability beyond90%.
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FIGURE 3.5: ccdf versus capacity for varying RX antenna orientation,β
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FIGURE 3.6: ccdf versus capacity for varying SNR(ρ) in dB
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3.5 CONCLUSION

Performance gains of MIMO systems have been explored by theoretical studies involving

stochastic channel models, ray tracing techniques and direct channel measurements. Arguably

geometric modelling could be the most cost effective and time efficient technique. A

geometrically based model as a way to characterize a MIMO channel in a fixed wireless

indoor environment has successfully been derived. The geometric model that was presented

led to the derivation of the joint correlation function as well as the receiver and transmitter

antenna correlation functions in a neat, compact and closed form. The model incorporates key

characteristics such as the type of antennas, configuration of the antenna array, the number

of antenna elements, antenna element spacing, degree of scattering at the receive antenna and

antenna orientation so as to exploit the MIMO channel performance gains. In comparison to

all the described parameters, the increase in the number of antenna elements made the greatest

impact and contribution to the increase in channel capacity while antenna spacing affecting the

spatial correlation was another significant contributor.
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