
CHAPTER 5
RECIPROCITY-EXPRESSION-BASED

APPROACH FOR MUTUAL ADMITTANCE
BETWEEN CPW-FED SLOTS ON

CONDUCTOR-BACKED TWO-LAYER
SUBSTRATES

5.1 INTRODUCTION

In this chapter, a computational strategy, based on a well-known reciprocity-based expression, is

developed for finding the mutual admittance between CPW-fed slots on a two-layer parallel-plate

substrate. The geometry is shown in Fig. 5.1.1 The mutual admittance between the slots can be

viewed as the sum of external and internal mutual admittances: the external mutual admittance is

due to coupling that takes place in the half-space adjacent to the slots, while the internal mutual

admittance is due to coupling inside the substrate.

The method for calculating mutual admittance that is developed here is intended to serve

as a simpler alternative to a moment-method-based approach, yet of comparable accuracy.

Moment-method-based techniques have been used for finding mutual coupling between various

kinds of planar radiating elements, including CPW-fed slots on multi-layer dielectric substrates

without a back conductor [38], rectangular centre-fed slots on planar substrates [57, 61], and

microstrip-fed printed antennas [62–64]. Mutual coupling in planar multi-port circuits have similarly

been accounted for [65].

Of particular interest amongst the above is the rigorous moment-method analysis of CPW-fed

twin slot antennas on multi-layer dielectric substrates without a back plane in [38]. In order to

obtain the two-port impedance-matrix (Z) parameters for a particular twin slot configuration, the
1 It differs from the twin slots of Fig. 4.1 only in allowing for different radiating slot dimensions.
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FIGURE 5.1: Top and side views of broadside (non-identical) CPW-fed twin slot antennas on
conductor-backed two-layer substrate. L1, L2 ≡ half-lengths and W1, W2 ≡ widths of radiating
slots; d ≡ distance between radiating slots; s ≡ slot width and w ≡ centre strip width of feed lines;
h1, h2 ≡ dielectric layer heights; εr1, εr2 ≡ relative dielectric constants; lf ≡ feed line lengths. The
ground plane containing the slots coincides with the plane z = 0. A coordinate system is defined with
its origin at the centre of slot 1; the z axis points into the page.

moment method matrix equation is solved twice, once for an even excitation and once for an

odd excitation (these labels refer to the phase relationship between the current sources placed at

the terminals of each CPW-fed slot). Input impedances are calculated for each case, and used in

simple algebraic equations to obtain the two-port Z parameters. Because of the symmetry of the

twin slots, only two independent excitations are required (a more general procedure applied to

non-symmetrical microstrip-fed planar dipoles can be found in [64]). A notable finding in [38]

pertains to a simplification that involves removing the CPW feed lines and exciting the radiating slots

by delta-gap current sources at their centres (this presumably involves forming single rectangular

radiating slots from the two half-lengths of each of the former CPW-fed slots). The finding was

that the phases of S parameters, and hence resonant frequencies, could only be predicted with

sufficient accuracy for oscillator applications if the condition w + 2s
λeff

< 1
50 held, where λeff

presumably is the wavelength of the slotline corresponding to the radiating slot – in other words if

very narrow CPW feeds were used. This appears to be interpreted in [10] as support for the notion

that network-based simplifications do not apply as well to CPW-fed slots as to slots fed by other

means, and that a complete full-wave, finely-meshed analysis of both the radiating slots and their

CPW feeds is necessary when characterizing CPW-fed twin slot and double-slot (i.e., H-configured)
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antennas.2

Iterative array design algorithms require that the mutual admittance between all possible slot

pairs in the array be calculated during every iteration, e.g., [35]. For example, a linear array of N

slots requires N(N−1)/2 mutual admittance calculations per iteration.3 (In certain cases, the mutual

coupling between slots that are far enough apart may be neglected.) Slot dimensions evolve over

iterations until the algorithm converges to a solution that is satisfactory with respect to both the input

impedance and aperture distribution requirements of the array. Carrying out a full moment-method

analysis for each of these mutual admittance calculations would be very cumbersome.

In Chapter 1, it was noted that [35] reduces the problem of finding the mutual admittance between

slots in a linear CPW-fed array on an electrically thin single-layer substrate to an equivalent problem

that involves finding the mutual impedance between two wire dipoles in a homogeneous medium

using a well-known variational formula derived for the latter purpose [18]. The Green’s function of

the substrate is not used. It was also observed that the validity of the relevant approximations and

assumptions remains to be tested via the design of a non-uniform array subject to a stringent sidelobe

level requirement; the approximations include replacing the array by its complementary strip-dipole

array, and assuming a homogeneous medium with effective permittivity εeff , where εeff is the

geometrical mean of the various slot effective permittivities. In the present work, no approximations

regarding the inhomogeneous nature of the medium will be made; instead, the conductor-backed

two-layer substrate will be rigorously accounted for by use of the appropriate Green’s function.

The organization of the chapter is as follows. In Section 5.2, an approach that relies on a standard

reciprocity-based expression is developed for finding the mutual admittance between CPW-fed twin

slots on an infinite conductor-backed two-layer substrate. Section 5.3 contains an original derivation

of the spatial-domain Green’s function for two-layer parallel-plate substrates that is required for

implementing the internal mutual admittance formulation that forms part of Section 5.2. Section 5.4

presents and discusses results for broadside CPW-fed twin slots and non-identical slot pairs on a

variety of two-layer parallel-plate substrates. These results are compared to moment-method-based

simulations using IE3D [60] and a measurement. Conclusions are stated in Section 5.5.
2 As an alternative to the above full-wave analysis, the authors [10] introduce a new analysis for CPW-fed slots on
semi-infinite substrates that reduces the number of unknowns but has the same accuracy as a finely-meshed MoM; the
analysis relies on the representation of equivalent magnetic currents in terms of entire-domain basis functions defined
in terms of analytical Green’s functions of canonical geometries such as an infinite slotline.
3 This number takes into account that Ymn = Ynm due to reciprocity.
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5.2 FORMULATION OF RECIPROCITY-EXPRESSION APPROACH

FOR MUTUAL ADMITTANCE BETWEEN CPW-FED SLOTS ON

CONDUCTOR-BACKED TWO-LAYER SUBSTRATE

5.2.1 Mutual admittance between centre-fed slots radiating into half-space

Consider two narrow rectangular slots labeled 1 and 2 in an infinite, perfectly conducting ground

plane at z = 0 that radiate into the half-space z > 0, as shown in Fig. 5.2(a). The slots are assumed

to be center-fed via two-wire lines by lumped voltage sources. The slots are backed by an arbitrary

substrate (for example, the substrate could be an air half-space, as in the case of center-fed narrow

slots in an infinite ground plane which is the dual of slender electric dipoles in free space, or a layered

substrate such as the conductor-backed two-layer substrate of Fig. 5.1). The tangential electric field

components in the slots are denoted E1,slot and E2,slot.

An equivalent problem that pertains to the region z > 0 may be set up as follows. Using the

surface equivalence theorem [52], the slots may be replaced by two equivalent magnetic surface

current densities M1,eq = E1,slot × ẑ and M2,eq = E2,slot × ẑ on an infinite ground plane radiating

into the half-space z > 0, as shown in Fig. 5.2(b). These equivalent currents ensure that the

electromagnetic fields in the half-space z > 0 remain unchanged from their values in the situation of

Fig. 5.2(a). (Details of applying the surface equivalence theorem are presented in Section 5.2.2.1.)

Based on a standard formulation [66], the mutual admittance between slots 1 and 2 of Fig. 5.2

due to coupling in the half-space z > 0 can be expressed as

Y12 = − 1
V1V ′

2

∫

S2

H21 ·M′
2dS2 (5.1)

with

H21 the magnetic field of magnetic current M1 at the position of slot 2 when slot 1 is

excited and radiates in isolation (M1 is the equivalent magnetic current representing slot

1 when slot 1 is excited and radiates in isolation)

M′
2 the equivalent magnetic current representing slot 2 when slot 2 is excited and radiates

in the presence of a short-circuited slot 1

V1 the terminal voltage of slot 1, or the total magnetic current through the terminals of

slot 1, when slot 1 is excited and radiates in isolation

V ′
2 the terminal voltage of slot 2, or the total magnetic current through the terminals of

slot 2, when slot 2 is excited and radiates in the presence of a short-circuited slot 1

S2 the surface area of slot 2
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E1,slot x yz

M1,eq x yz
E2,slotSlot 1 Slot 2 (a)

(b)M2,eq
FIGURE 5.2: (a) Two narrow center-fed slots on a perfectly conducting ground plane radiating into
the half-space z > 0. (b) The equivalent problem: two magnetic currents on a perfectly conducting
ground plane. The dashed lines indicate the positions of the slots represented by the magnetic
currents.

Crucial to the derivation of Eq. (5.1) is that the slots are center-fed by infinitesimal sources, which

permits the introduction of terminal voltages and currents (hence the appearance of V1 and V2 in

the equation). Noting that computation of H′
21 requires use of the vector potential F for a magnetic

current density radiating into a half-space on an infinite perfect electric conductor (PEC), Eq. (5.1) is

consistent with [67, Eq. (14)].

If it can be assumed that the shape of the electric field in slot 2 when radiating in isolation is not

significantly different when slot 2 radiates in the presence of a short-circuited slot 1, Eq. (5.1) can be

expressed in a form that is more readily implemented:

Y12 = − 1
V1V2

∫

S2

H21 ·M2dS2 (5.2)

with

H21 the magnetic field of magnetic current M1 at the position of slot 2 when slot 1 is

excited and radiates in isolation (M1 is the equivalent magnetic current representing slot
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1 when slot 1 is excited and radiates in isolation)

M2 the equivalent magnetic current representing slot 2 when slot 2 is excited and radiates

in isolation

V1 the terminal voltage of slot 1, or the total magnetic current through the terminals of

slot 1, when slot 1 is excited and radiates in isolation

V2 the terminal voltage of slot 2, or the total magnetic current through the terminals of

slot 2, when slot 2 is excited and radiates in isolation

S2 the surface area of slot 2

5.2.2 Mutual admittance between CPW-fed slots on conductor-backed two-layer

substrate

Consider now two CPW-fed slots on a two-layer parallel-plate substrate that radiate into the

half-space z < 0, as shown in Fig. 5.1.4 Each slot can be conceived of as center-fed by a voltage

(or current) source in the sense of Fig. 5.3. In other words, the CPW feed line can be thought of

as originating from a short section of slotline which is excited at its centre by a lumped voltage

source; the section of slotline is then extended via 90◦ angles to form the CPW. This excitation

technique is consistent with the excitation of CPW and/or CPW-fed slots in moment-method-based

analyses [68]. Since the overall composite slot is center-fed, the implication is that Eq. (5.1) can be

used to find the mutual admittance between CPW-fed slots as well. The more complex shape of these

slots (compared to center-fed rectangular slots) does not affect the form of that equation. For the

relatively narrow CPW-fed slots on a two-layer parallel-plate substrate considered in this thesis, the

shape of the electric field in slot 2 when radiating in isolation is not significantly different from the

field when slot 2 radiates in the presence of a short-circuited slot 1; this was confirmed using IE3D.

Hence Eq. (5.2) can be used instead of Eq. (5.1).

In Sections 5.2.2.1 and 5.2.2.2 below, equivalent problems are formulated for the external and

internal mutual admittance between CPW-fed slots on a two-layer parallel-plate substrate. For each

equivalent problem, Eq. (5.2) can be used in conjunction with the appropriate Green’s function to

find the relevant contribution to the total mutual admittance, i.e., external or internal. In both the

external and internal cases, the following assumptions and conventions are adopted.

First, in order to simplify the integration in Eq. (5.2), the effects of mutual coupling between the

respective CPW feed lines (including the originating slotline sections), and between CPW feed lines

and radiating slots are assumed to be negligible. Mutual coupling between the originating slotline
4 Denoting the air half-space by z < 0, as opposed to the above z > 0, is done for mathematical convenience and
makes no difference to the argument that follows.
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FIGURE 5.3: Top view of CPW-fed slot on conductor-backed two-layer substrate. The slot can be
thought of as center-fed by a localized infinitesimal voltage source. L ≡ half-length and W ≡ width
of radiating slot; s ≡ slot width and w ≡ centre strip width of CPW feed line.

sections (cf. Fig. 5.3) and radiating slots is also considered negligible (this assumption follows if the

CPW feeds are sufficiently long). Hence for the purposes of evaluating the above reaction integral,

only the radiating portions of CPW-fed slots 1 and 2 are taken into account, as illustrated in Fig. 5.4.

Second, the mutual admittance Y12 is referred to positions on the CPW feed lines that are some

distance lf away from radiating slot centres. Fig. 5.5 shows these reference planes, labelled 11′ and

22′; the terminal voltages V1 and V2 of Eq. (5.2) would need to be determined at these planes for each

slot radiating in isolation. The tangential electric field in a CPW-fed slot (including the feed line)

can be determined using the moment method [14, 15]; Figs. 4.9 and 4.10 show radiating slot fields

obtained using IE3D. When for instance slot 1 is analyzed (in isolation) in IE3D, the excitation port

can be user-defined to coincide with reference plane 11′.5 IE3D finds the port voltage – which is the

same as the terminal voltage V1 – in addition to the slot tangential electric field. It was verified that

the port voltage is the integral of the electric field in one of the two CPW slots over the width of the

slot. For example, if a moment-method discretization allowing for only one cell across the slot width

is assumed, V1 = wECPW
1x at terminal plane 11′, with w the slot width and ECPW

1x x̂ the electric

field in the centre of the slot.6 The implementation of terminal voltages will be discussed further in

Section 5.4.1.
5 It is assumed that the results of the manner in which IE3D excites the slot and the manner suggested in Fig. 5.3 will
be the same at the reference planes and beyond (i.e., towards the radiating slot).
6 A discretization using edge cells in IE3D resulted in only a marginal difference in the port voltage.
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FIGURE 5.4: Top and side views of broadside slots on conductor-backed two-layer substrate. The
CPW feed lines have been removed. L1, L2 ≡ half-lengths and W1, W2 ≡ widths of radiating slots;
d ≡ distance between radiating slots; h1, h2 ≡ dielectric layer heights; εr1, εr2 ≡ relative dielectric
constants. The ground plane containing the slots coincides with the plane z = 0; the z axis points
into the page.
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FIGURE 5.5: Broadside CPW-fed slot antennas on conductor-backed two-layer substrate with
terminal reference planes 11′ and 22′. Each slot can be thought of as being excited in the manner
shown in Fig. 5.3.

5.2.2.1 External mutual admittance formulation

In this section, it is showed how Eq. (5.2) may be applied to find the external mutual admittance

between two CPW-fed slots on an infinite two-layer parallel-plate substrate. This involves setting
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up equivalent problems for finding the quantities H21 and M2 that appear in the integral. Here, the

quantities will be referred to as Hext
21 and Mext

2 in order to distinguish them from the internal problem.

Hence,

Y ext
12 = − 1

V1V2

∫

S2

Hext
21 ·Mext

2 dS2 (5.3)

With respect to the equivalent problem required to find Hext
21 , consider Fig. 5.6(a), which is based

on a side view of the two-layer parallel-plate substrate containing radiating slots only (cf. Fig. 5.4).

Slot 2 has been removed, i.e., replaced by conductor, in order to adhere to the definition of Hext
21 in

Eq. (5.2) as the magnetic field due to slot 1 at the position of slot 2 when slot 1 radiates in isolation.

The ground plane containing slot 1 is situated at z = 0. The half-space external to the slots is denoted

by z < 0; hence the unit surface normal vector n̂ points in the negative z direction. The tangential

components of the electric field in the aperture of slot 1 are assumed to be known and given by E1,slot.

z

n̂

E1,slot

(a)

n̂

(b)

M1
ext= -nxE1,slot^

Js
ext

Js
ext

Js
ext
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Js
ext
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ext=0
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ext
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εo εr1 εr2 εo εo
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ext= -nxE1,slot^

y

x

y y

S

FIGURE 5.6: Steps in setting up an external equivalent model for one slot on a two-layer parallel-plate
substrate. In (a)–(c), electromagnetic fields are the same in the region z < 0.

Fig. 5.6(b) and (c) demonstrate application of the surface equivalence theorem [69] to the slot of

Fig. 5.6(a). In Fig. 5.6(b), an imaginary closed surface S, which is a plane of infinite extent, replaces

the conducting plane containing the slot. Equivalent magnetic and electric surface current densities

Mext
1 and Jext

s are formed on this surface to ensure that the electromagnetic fields in the half-space
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z < 0 remain unchanged from their values in the situation of Fig. 5.6(a). Mext
1 is non-zero only over

the position of slot 1, while Jext
s is non-zero everywhere. If it is assumed that E1,slot = E1y,slotŷ,

and since n̂ = −ẑ for the external problem,

Mext
1 = −n̂×E1y,slotŷ = −E1y,slotx̂ = M ext

1x x̂ (5.4)

(The above assumption regarding aperture electric field components will be adhered to throughout.

An investigation using IE3D of the centre fields along the lengths of representative CPW-fed

slots revealed that the x̂ component is in fact negligible.) In 5.6(c), a perfectly conducting plane

approaches S from the right, shorting out Jext
s everywhere but leaving Mext

1 intact.

In a half-space consisting of air over a PEC, the magnetic field H due to a general magnetic

current density M can be calculated from

H = −jωF− j
1

ωµ0ε0
∇(∇ · F) (5.5a)

where the vector potential F is given as

F(x, y, z) =
ε0

2π

∫

V

M(x′, y′, z′)
e−jk0R

R
dV ′ (5.5b)

In the above, R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2, and k0 = ω
√

µ0ε0 is the free-space

wave-number. Eqs. (5.5a) and (5.5b) correspond to [69, eqs. (6-109), (6-111)] except for the factor
1
2π in Eq. (5.5b) which reflects the fact that the magnetic current radiates in a half-space bordered by

an infinite ground plane instead of free-space (cf. [70]).

The equivalent problem for Mext
2 , which entails that slot 2 radiates in isolation, is derived in

the same manner as that for slot 1. The result is identical to that presented in Fig. 5.6(c) except

that the equivalent magnetic surface current density is Mext
2 at the position of slot 2. Assuming that

E2,slot = E2y,slotŷ,

Mext
2 = −E2y,slotx̂ = Mext

2x x̂ (5.6)

Based on Eq. (5.6), Eq. (5.3) reduces to (cf. Fig. 5.4)
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Y ext
12 = − 1

V1V2

∫

S2

Hext
21xM ext

2x dS2

= − 1
V1V2





−(w
2

+s)∫

x=−(w
2

+s+L2)

d+
W2
2∫

y=d−W2
2

Hext
21xM ext

2x dxdy

+

w
2

+s+L2∫

x=w
2

+s

d+
W2
2∫

y=d−W2
2

Hext
21xM ext

2x dxdy





(5.7)

By combining Eqs. (5.4), (5.5b) and (5.5a) and considering rectangular vector components

separately, Hext
21x can be expressed as (cf. [69, Eqs. (6-111a), (6-108d), (6-108e)])

Hext
21x(x, y, z) = − j

2πk0η0

∫

S1

[G1M
ext
1x (x′, y′) + (x− x′)2G2M

ext
1x (x′, y′)]e−jk0Rdx′dy′ (5.8a)

with

G1 =
−1− jk0R + k2

0R
2

R3
(5.8b)

G2 =
3 + j3k0R− k2

0R
2

R5
(5.8c)

In the above, η0 =
√

µ0
ε0

is the intrinsic impedance of free space, and R =
√

(x− x′)2 + (y − y′)2

(i.e., in the plane of slot 2).

5.2.2.2 Internal mutual admittance formulation

Eq. (5.2) may be used in a similar manner to find the internal mutual admittance Y int
12 between two

CPW-fed slots on an infinite two-layer parallel-plate substrate. In particular,

Y int
12 = − 1

V1V2

∫

S2

Hint
21 ·Mint

2 dS2 (5.9)

(Eq. (5.2) holds even though the slots are now considered to be radiating into the substrate, as the

validity of the Lorentz reciprocity theorem, from which Eq. (5.2) is derived, extends to isotropic

media that may be inhomogeneous [69].)

An equivalent problem for finding Hint
21 , which involves slot 1 radiating in isolation, is set up as

follows. Fig. 5.7(a) shows a side view of the two-layer parallel-plate substrate containing radiating

slots only with slot 2 removed. The unit surface normal vector n̂ now points into the substrate. As

before, the tangential electric field in slot 1 is E1,slot.
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FIGURE 5.7: Steps in setting up an internal equivalent model for one slot on a two-layer parallel-plate
substrate. In (a)–(c), electromagnetic fields are the same in the region 0 < z < h1 + h2.

Application of the surface equivalence theorem yields equivalent currents in the place of slot 1

such that the fields inside the substrate, i.e., for 0 < z < h1 +h2, remain unchanged from their values

in Fig. 5.7(a). Fig. 5.7(b) shows an imaginary closed surface S, which is an infinite plane, replacing

the conducting plane containing the slot. Equivalent magnetic and electric current densities Mint
1

and Jint
s are formed on this surface on the side facing the substrate. Mint

1 is non-zero only over the

positions of slot 1, while Jint
s is non-zero everywhere. If E1,slot = E1y,slotŷ, and since n̂ = ẑ,

Mint
1 = −n̂×E1y,slotŷ = E1y,slotx̂ = M int

1x x̂ (5.10)

It is then assumed that an imaginary conducting plane approaches S from the left, shorting out Jint
s

everywhere but leaving Mint
1 intact, as shown in Fig. 5.7(c).

The equivalent problem for Mint
2 is derived in the same manner as for slot 1. The result only

differs from that presented in Fig. 5.7(c) in that the equivalent magnetic current density is Mint
2 at the

position of slot 2. Assuming that E2,slot = E2y,slotŷ,

Mint
2 = E2y,slotx̂ = M int

2x x̂ (5.11)
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Substituting Eq. (5.11) into Eq. (5.9) yields

Y int
12 = − 1

V1V2

∫

S2

H int
21xM int

2x dS2

= − 1
V1V2





−(w
2

+s)∫

x=−(w
2

+s+L2)

d+
W2
2∫

y=d−W2
2

H int
21xM int

2x dxdy

+

w
2

+s+L2∫

x=w
2

+s

d+
W2
2∫

y=d−W2
2

H int
21xM int

2x dxdy





(5.12)

H int
21x can be found from

H int
21x(r) =

∫

S1

GHM
xx (r, r′)M int

1x (r′)dS′1 (5.13a)

which in the plane of the slots becomes

H int
21x(x, y, 0) =

∫

S1

GHM
xx (x, y, 0;x′, y′, 0)M int

1x (x′, y′)dx′dy′

=

−(w
2

+s)∫

x′=−(w
2

+s+L1)

W1
2∫

y′=−W1
2

GHM
xx (x, y, 0;x′, y′, 0)M int

1x (x′, y′)dx′dy′

+

w
2

+s+L1∫

x′=w
2

+s

W1
2∫

y′=−W1
2

GHM
xx (x, y, 0;x′, y′, 0)M int

1x (x′, y′)dx′dy′ (5.13b)

In the above, GHM
xx (x, y, 0;x′, y′, 0) is the x̂ component of the spatial-domain magnetic field due to

an x̂-directed horizontal magnetic dipole (HMD) at (x′, y′, 0) on the ground plane adjacent to the

higher-permittivity dielectric layer inside a two-layer parallel-plate substrate (primed and unprimed

coordinates correspond to source and observation coordinates respectively). Section 5.3 is devoted to

the derivation of GHM
xx .

5.3 SPATIAL-DOMAIN GREEN’S FUNCTION FOR CONDUCTOR-BACKED

TWO-LAYER SUBSTRATE

In this chapter, a spatial-domain expression is derived for the magnetic field Hx due to an x̂-directed

horizontal magnetic dipole (HMD) placed against the top plate inside a two-layer parallel-plate

substrate (by “top plate” is meant the conducting plane that borders the higher-permittivity layer, i.e.,

layer 1). The position of the HMD coincides with the origin of the coordinate axes. Fig. 5.8 shows
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the substrate and the placement of the HMD (cf. Fig. 5.1). It is only necessary to account for Hx at

points in the plane of the magnetic dipole (i.e., z = 0), since Eq. (5.12) requires the x̂-component of

the magnetic field due to slot 1 at the position of slot 2, with both slots situated in the plane z = 0;

hence the objective is to find Hx(x, y, 0).

z

M

x

εr2, h2

εr1, h1

y

layer 2

layer 1

FIGURE 5.8: x̂-directed horizontal magnetic dipole (HMD) inside a two-layer parallel-plate substrate.
εr1 and εr2 are relative dielectric constants; µ = µ0 in all layers.

The process of determining Hx is divided into two stages. First, the spectral-domain equivalent

of Hx is found in closed form from general spectral-domain field expressions for multilayered media

derived by Bhattacharrya [71].7 Second, the spatial domain field Hx is obtained from its spectral

domain equivalent by means of an inverse Fourier transform (e.g., [71]), resulting in expressions

containing Sommerfeld integrals that need to be evaluated numerically. To the author’s knowledge,

the spatial domain expressions for a two-layer parallel-plate substrate excited by a HMD that result

from applying this procedure, and details of the treatment of the singularities in the integrals, are not

currently available in the literature.8,9

For the sake of completeness, Bhattacharrya’s method for finding the fields in a planar

multilayered medium consisting of an arbitrary number of layers excited by planar electric and/or

magnetic current distributions is now briefly outlined (full details can be found in [71, Chapters 1

and 2]). The geometry of such a medium is shown in Fig. 5.9. Its non-homogeneity pertains to

its permittivity which can be expressed as ε = ε(z), where z is the direction perpendicular to the

interfaces between layers. The non-homogeneity is stepwise in nature, i.e., within layer i of height

hi, ε(z) = ε0εri, which is a constant (εri is the relative permittivity in layer i, and ε0 is the permittivity

of free space). For the purposes of the present work, it can be assumed without a loss of generality
7 A comprehensive review of techniques for finding Green’s functions in planar layered media can be found in [72].
8 The spectral-domain Green’s function for the two-layer parallel-plate substrate presented in [73] appears to be
incorrect.
9 The spatial-domain Green’s function for a single-layer parallel-plate substrate can be determined either in integral
form or as a double infinite series [74]. Another instance of the latter form is the Green’s function for an infinite
periodic two-layer parallel-plate waveguide that can be determined in infinite-series form employing hybrid modes
[75].
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that the permeability µ = µ0 everywhere.

z

x

εr2, h2

εr1, h1

y
εr,-1, h-1

layer 2

layer 1

layer -1

.

.

.

.

.

.

FIGURE 5.9: Geometry of a planar multilayered structure consisting of an arbitrary number of layers.
µ = µ0 in all layers.

In the above medium, the electromagnetic field outside of the source region can be decomposed

into transverse magnetic (TM) and transverse electric (TE) components with respect to a reference

direction perpendicular to the layer interfaces, i.e., the ẑ-direction in Fig. 5.9. The total field can be

expressed as the sum of TMz and TEz modes;10 the subscript z will be suppressed in what follows.

For TM mode fields, once the longitudinal component of the electric flux density vector, DTM
z is

known, the remaining field components DTM
x , DTM

y , BTM
x , and BTM

y can be found (BTM
z = 0).

Similarly for TE mode fields, if the longitudinal component of the magnetic flux density vector, BTE
z

is known, BTE
x , BTE

y , DTE
x , and DTE

y can be determined.

Bhattacharrya [71] derives spatial-domain non-linear, non-homogeneous differential equations

for each of DTM
z and BTE

z that are valid everywhere in the substrate. Two-dimensional

Fourier transforms of DTM
z (x, y, z) and BTE

z (x, y, z) with respect to their transverse coordinates

x and y yield their spectral-domain equivalents, D̃TM
z (kx, ky, z) and B̃TE

z (kx, ky, z), with the

two-dimensional Fourier transform of a function f(x, y) defined as

f̃(kx, ky) = F{f(x, y)} =
1

4π2

∞∫

−∞

∞∫

−∞
f(x, y)ejkxxejkyydxdy (5.14a)

and the inverse transform as

f(x, y) = F−1{f̃(kx, ky)} =

∞∫

−∞

∞∫

−∞
f̃(kx, ky)e−jkxxe−jkyydkxdky (5.14b)

10 For some combinations of multilayered media and sources, the independent existence of either TMz or TEz waves
is possible; this however does not apply to the present problem.
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Replacing DTM
z and BTE

z with their inverse transforms in the above differential equations and taking

the forward transforms yield differential equations for D̃TM
z (z) and B̃TE

z (z). Each differential

equation can be combined with the Fourier transform of the appropriate Maxwell’s divergence

equation to yield a pair of transmission line equations in the spatial variable z, one pair containing

D̃TM
z (z) and the other pair containing B̃TE

z (z). Within each pair, D̃TM
z (z) and B̃TE

z (z) are

equivalent to the voltage V (z) along the line, for which Bhattacharrya [71] presents closed-form

solutions for planar electric and magnetic sources respectively.

These general solutions in the spectral domain, valid for an arbitrary number of dielectric layers

excited by planar electric or magnetic sources, are used in the present work as a point of departure for

deriving spatial-domain solutions HTM
x and HTE

x in the two-layer parallel-plate substrate of Fig. 5.8

due to a x̂-directed HMD at the origin (see Sections 5.3.1 and 5.3.2), from which Hx can then be

found in the plane of the slots (i.e., z = 0) as

Hx(x, y, 0) = HTM
x (x, y, 0) + HTE

x (x, y, 0) (5.15)

In what follows, the parallel plates of the two-layer parallel-plate substrate are assumed to be perfect

electric conductors (PECs), and the dielectrics are assumed to be lossless.

5.3.1 HTM
x for x̂-directed HMD against top conducting plate inside two-layer

parallel-plate substrate

Consider the two-layer parallel-plate structure of Fig. 5.8. The substrate is excited by a HMD at the

origin which can be expressed as a volume current density,

M = δ(x)δ(y)δ(z)x̂ (5.16a)

or equivalently a surface current density in the plane z = 0,

Ms = Msxx̂ = δ(x)δ(y)x̂ (5.16b)

The preceding equations are related by M = Msδ(z).

The objective is to find D̃TM
z from which all remaining TM field components, including HTM

x ,

can be determined [71, p. 5] (for the sake of succinctness, the superscript TM is omitted for the

remainder of the section). Dz and D̃z are a Fourier transform pair related according to Eq. (5.14),

D̃z(kx, ky, z) =
1

4π2

∞∫

−∞

∞∫

−∞
Dz(x, y, z)ejkxxejkyydxdy (5.17a)
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Dz(x, y, z) =

∞∫

−∞

∞∫

−∞
D̃z(kx, ky, z)e−jkxxe−jkyydkxdky (5.17b)

In layer i, Hx can be expressed directly in terms of D̃z [71, p. 23] as follows:

Hx(x, y, z) = ω

∞∫

−∞

∞∫

−∞

kyD̃z(kx, ky, z)
k2

i − k2
iz

e−jkxxe−jkyydkxdky (5.18)

In the above inverse Fourier transform, kiz =
√

k2
i − k2

x − k2
y where ki = ω

√
µiεi = ω

√
µ0ε0εri is

the wave number for dielectric layer i, and i = 1 or 2.

For a two-layer parallel-plate substrate, the general multilayer TM mode spectral domain

equivalent transmission line circuit ( [71], Fig. 2.3) reduces to the circuit shown in Fig. 5.10, where

the transmission line voltage V (z) equals D̃z(kx, ky, z) of Eq. (5.18). The sections of transmission

line with characteristic admittances ym
01 and ym

02 correspond to substrate layers 1 and 2 respectively.

The parallel plates of the substrate (cf. Fig. 5.8), which are PECs, are represented by open circuits

in the equivalent circuit. This is required since the component of an electric field perpendicular to a

PEC (Dz in this case) is a maximum on the PEC.

yin
+

z=0 z=h1 z=h1+h2

y01 y02

yin
-

I0

open 

circuit

open 

circuit

+

-

V(0)

z

m m

yin
(1)

FIGURE 5.10: TM mode spectral domain equivalent circuit for two-layer parallel-plate substrate with
planar magnetic current excitation at z = 0.

As only points in the plane z = 0 plane need to be considered, Eq. (5.18) reduces to

Hx(x, y, 0) = ω

∞∫

−∞

∞∫

−∞

kyD̃z(kx, ky, 0)
k2

i − k2
iz

e−jkxxe−jkyydkxdky

= ω

∞∫

−∞

∞∫

−∞

kyV (0)
k2

i − k2
iz

e−jkxxe−jkyydkxdky (5.19)
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In Eq. (5.19), V (0) can be determined from [71, Eqs. (2.25) and (2.43)]; that is,

V (0) =
I0

ym
in

(5.20)

In the preceding equation, I0 is the value of the current source in the equivalent circuit, and ym
in =

y+
in + y−in is the total input admittance at the source, with y+

in and y−in the input admittances seen when

looking from the source into the transmission line in the +z and −z directions. I0 in Eq. (5.20) can

be found from [71, Table 2.1] as

I0 = j(kρ × M̃s) · ẑ (5.21a)

In Eq. (5.21a), kρ = kρρ̂ = kxx̂ + kyŷ, and the Fourier transform of Eq. (5.16b) yields

M̃sx =
1

4π2
(5.21b)

Hence

I0 = −j
ky

4π2
(5.21c)

ym
in in Eq. (5.20) can be found by noting that y−in = 0, and calculating y+

in using standard transmission

line theory. In particular,

y+
in = ym

01

y
(1)
in + jym

01 tan k1zh1

ym
01 + jy

(1)
in tan k1zh1

(5.22a)

with

y
(1)
in = jym

02 tan k2zh2 (5.22b)

In the preceding two equations, ym
0i = jkiz/εi is the (TM) characteristic admittance of transmission

line i [71, Table 2.1] and kiz =
√

k2
i − k2

x − k2
y =

√
k2

i − k2
ρ, where i = 1 or 2. From

Eqs. (5.22a)–(5.22b) and y−in = 0 follows

ym
in =

k1z

ε1

DTM

ε2k1z − ε1k2z tan k1zh1 tan k2zh2
(5.22c)

In Eq. (5.22c), DTM is the TM characteristic equation of the two-layer parallel-plate substrate [56],

namely

DTM = −ε1k2z tan k2zh2 − ε2k1z tan k1zh1 (5.22d)

Combining Eqs. (5.21), (5.22), (5.20), and (5.19) yields

Hx(x, y, 0) =
ω

j4π2

∞∫

−∞

∞∫

−∞

k2
y

k2
ρ

1
ym

in(kx, ky)
e−jkxxe−jkyydkxdky (5.23)
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Now make the change of variables

x = ρ cosφ (5.24a)

y = ρ sinφ (5.24b)

kx = kρ cosα (5.24c)

ky = kρ sinα (5.24d)

in Eq. (5.23) in order to effect a transformation in the spectral domain from rectangular coordinates

(kx, ky) to cylindrical coordinates (kρ, α). This gives

Hx(ρ, φ, 0) = C

2π∫

α=0

∞∫

kρ=0

k2
ρ sin2 α

k2
ρ

1
ym

in(kρ)
e−j(kρ cos α·ρ cos φ+kρ sin α·ρ sin φ)kρdkρdα

= C

∞∫

0

1
ym

in(kρ)

2π∫

0

sin2 αe−jkρρ cos(α−φ)dαkρdkρ

= C

∞∫

0

1
ym

in(kρ)
Iα(kρ)kρdkρ

(5.25a)

with

Iα(kρ) =

2π−φ∫

−φ

sin2(α + φ)e−jkρρ cos αdα (5.25b)

In the above, C = ω
j4π2 , ρ =

√
x2 + y2, and kρ =

√
k2

x + k2
y . Substituting the identity (cf. [56,

Eq. (5-101)])

e−jkρρ cos α =
∞∑

n=−∞
j−nJn(kρρ)ejnα (5.26a)

into Eq. (5.25b) yields

Iα(kρ) =
∞∑

n=−∞
j−nJn(kρρ)e−jnφ

2π∫

0

ejnα sin2 α dα (5.26b)

The integral on the right hand side of Eq. (5.26b) can be solved using a standard identity [76, Eq.

14.523] in conjunction with l’Hospital’s rule, giving

2π∫

0

ejnα sin2 αdα =




−

π, n = 0
π
2 , n = −2, 2

0, otherwise

(5.26c)

Substitution of Eq. (5.26c) into Eq. (5.26b) yields

Iα(kρ) =
π

2
J−2(kρρ)ej2φ + πJ0(kρρ) +

π

2
J2(kρρ)e−j2φ (5.26d)
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From the identity J−n(x) = (−1)nJn(x) [69, Eq. (IV-8)], it follows that J−2(x) = J2(x).

Substitution in Eq. (5.26d) gives

Iα(kρ) = πJ0(kρρ) + πJ2(kρρ) cos 2φ (5.26e)

Substitution of Eq. (5.26e) in Eq. (5.25a) gives

Hx(ρ, φ, 0) = Cπ

∞∫

0

1
ym

in(kρ)
J0(kρρ)kρdkρ

+ Cπ cos 2φ

∞∫

0

1
ym

in(kρ)
J2(kρρ)kρdkρ

=

∞∫

0

F0(kρ)dkρ + cos 2φ

∞∫

0

F2(kρ)dkρ

= I0(ρ) + cos 2φ I2(ρ) (5.27a)

Using Eq. (5.22c), the integrands F0(kρ) and F2(kρ) in Eq. (5.27a) may be expressed as

F0(kρ) = Cπ
kρε1

k1z

ε2k1z − ε1k2z tan k1zh1 tan k2zh2

DTM
J0(kρρ) (5.27b)

F2(kρ) = Cπ
kρε1

k1z

ε2k1z − ε1k2z tan k1zh1 tan k2zh2

DTM
J2(kρρ) (5.27c)

The integrals I0(ρ) and I2(ρ) in Eq. (5.27a) are Sommerfeld integrals that need to be evaluated

numerically. While the integration path could be deformed (e.g., [77]), the most straightforward

approach is to integrate over the positive <e(kρ) axis (e.g., [78]).11 Each integrand potentially

is multi-valued (i.e., four-valued) because of the two possible values each of k1z = ±
√

k2
1 − k2

ρ

and k2z = ±
√

k2
2 − k2

ρ. However, closer inspection of Eqs. (5.27b) and (5.27c) reveals that both

integrands are even functions of k1z and k2z; hence there are no branch points associated with

kρ = k1 and kρ = k2.12 Plots of the (purely imaginary) integrands F0(kρ) and F2(kρ) are shown

in Figs. 5.11–5.14 at f = 10 GHz for h1 = 0.813 mm = 0.05λd, h2 = 5 mm = λ0/6, εr1 = 3.38, and

εr2 = 1 (i.e., Substrate I described in Section 5.4.2.1 below; λd is the wavelength in the dielectric at

10 GHz, and λ0 the free-space wavelength). The plots in Figs. 5.11 and 5.12 correspond to ρ = 20

mm, while those in Figs. 5.13 and 5.14 are for ρ = 64.5 mm; the increased frequency of oscillation

in the latter case is due to the larger arguments of the Bessel functions in Eqs. (5.27b) and (5.27c).

(These ρ values approximately correspond to the beginning and final inter-slot distance value d in
11 In general, kρ = k′ρ+jk′′ρ ; however, since the integration path does not involve imaginary values of kρ, the integration
variable will be denoted as kρ throughout.

12 This is consistent with the observation by Chew [79, p. 113] that branch points are physically associated with lateral
waves that are only possible if the outer layers of the substrate are unbounded.
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Figs. 5.24–5.40 of Chapter 5.)

Each of the integrations I0(ρ) and I2(ρ) can be divided into three regions that are evaluated

separately [78]; the regions are 0 ≤ kρ ≤ k2 (Region 1), k2 ≤ kρ ≤ k1 (Region 2), and k1 ≤ kρ

(Region 3). Total answers are obtained by adding the contributions from the three regions. Region

boundaries are indicated in Figs. 5.11–5.14.13

The numerical integration in Region 1 is straightforward; while a change of integration variable

kρ = k2 cos t can be performed in order to render the integrand more smooth [78], it is not strictly

necessary here.

In Region 2, where k2 ≤ kρ ≤ k1, the singularities at the poles kρ = kρo,0 (cf. Figs. 5.11 and 5.13)

and kρ = kρo,2 (cf. Figs. 5.12 and 5.14) require special attention. A familiar singularity extraction

procedure [78, pp. 253-256] [80] is followed, which entails that a function containing the singularity

is subtracted from the integrand (which may be F0 or F2), and then added to it. The integral of the

function containing the singularity can be evaluated analytically, while the difference between the

integrand and the function containing the singularity is an analytical function that can be integrated

numerically. Thus,

Fi(kρ) = [Fi(kρ)− Fsing,i(kρ)] + Fsing,i(kρ)

= Fd,i(kρ) + Fsing,i(kρ) (5.28a)

where Fi is the integrand, Fd,i = Fi(kρ)− Fsing,i(kρ) is the function from which the singularity has

been extracted that can be integrated numerically, and Fsing,i is the function containing the singularity

given by

Fsing,i =
Ri

kρ − kρo,i
(5.28b)

In the above, Ri is the residue of the integrand Fi at the pole kρo,i where i = 0 or 2. Hence the integrals

Ii in Eq. (5.27a) can be expressed in Region 2 as (cf. [78])

Ii = Id,i + Ising,i (5.29a)

with

Id,i =

k1∫

k2

[Fi(kρ)− Fsing,i(kρ)]dkρ (5.29b)

and

Ising,i =

k1∫

k2

Fsing,i(kρ)dkρ = Ri ln
(

k1 − kρo,i

kρo,i − k2

)
(5.29c)

13 Since k1 =
√

εr1k0 and k2 = k0 for the present substrate, k1 > k2.
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FIGURE 5.11: The integrand F0(kρ), the function containing the singularity Fsing,0(kρ), and their
difference. f = 10 GHz, ρ = 20 mm, h1 = 0.813 mm = 0.05λd, h2 = 5 mm = λ0/6, εr1 = 3.38, εr2 = 1.
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FIGURE 5.12: The integrand F2(kρ), the function containing the singularity Fsing,2(kρ), and their
difference. f = 10 GHz, ρ = 20 mm, h1 = 0.813 mm = 0.05λd, h2 = 5 mm = λ0/6, εr1 = 3.38, εr2 = 1.

The smoothness of the difference function Fd,i can be enhanced by the change of variables

kρ = k0 cosh t [78]. Eq. (5.29b) then becomes (similar to [78, Eq. (7.90)])14

14 In Eq. (7.90) of [78], the radical sign in the upper boundary has erroneously been omitted.
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FIGURE 5.13: The integrand F0(kρ), the function containing the singularity Fsing,0(kρ), and their
difference. f = 10 GHz, ρ = 64.5 mm, h1 = 0.813 mm = 0.05λd, h2 = 5 mm = λ0/6, εr1 = 3.38, εr2 =
1.
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FIGURE 5.14: The integrand F2(kρ), the function containing the singularity Fsing,2(kρ), and their
difference. f = 10 GHz, ρ = 64.5 mm, h1 = 0.813 mm = 0.05λd, h2 = 5 mm = λ0/6, εr1 = 3.38, εr2 =
1.

Id,i =

cosh−1√εr1∫

0

[Fi(k0 cosh t)− Fsing,i(k0 cosh t)]k0 sinh tdt (5.29d)
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The residue Ri in Eq. (5.29c) may be evaluated by noting that if a complex function f(kρ) can be

written as a quotient f(kρ) = g(kρ)
h(kρ)

with g(kρ) and h(kρ) analytical at kρ = kρo, and if h has a zero

of order 1 at kρ = kρo such that f has a simple pole at kρ = kρo, then

Res(f(kρ), kρo) =
g(kρo)
h′(kρo)

(5.30)

where Res(f(kρ), kρo) is the residue of f at the pole kρo [81, p. 875]. From Eqs. (5.27b)–(5.27c), the

integrand Fi, where i = 0 or 2, can be expressed as

Fi(kρ) =
gi(kρ)
h(kρ)

(5.31a)

with

gi(kρ) = Cπε1(jε2k1z − jε1k2z tan k1zh1 tan k2zh2)Ji(kρρ)kρ (5.31b)

h(kρ) = jk1zDTM (5.31c)

The residue Ri of Fi at the pole kρo,i is given by

Ri = Res(Fi, kρo,i)

=
gi(kρo,i)
h′(kρo,i)

(5.32)

In the above, the numerator gi(kρo,i) can be found from Eq. (5.31b), while the denominator h′(kρo,i)

can be expressed as

h′(kρo,i) =
[
DTM

d

dkρ
{jk1z}+ jk1z

d

dkρ
{DTM}

]

kρ=kρo,i

(5.33a)

The derivatives in Eq. (5.33a) can be determined as follows. First,

d

dkρ
{jk1z} = −j

kρ

k1z
(5.33b)

Second,
d

dkρ
{DTM} =

d

dkρ
{DTM1}+

d

dkρ
{DTM2} (5.33c)

In the preceding equation,

DTM1 = −ε1k2z tan k2zh2

DTM2 = −ε2k1z tan k1zh1 (5.33d)

and

d

dkρ
{DTM1} = −ε2[−kρh1 sec2 k1zh1 − kρ

k1z
tan k1zh1]

d

dkρ
{DTM2} = −ε1[−kρh2 sec2 k2zh2 − kρ

k2z
tan k2zh2] (5.33e)
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In Region 3, the integrands F0 and F2 are slowly converging oscillating functions that can be

difficult to integrate numerically.15 The corresponding integrals Ii in Eq. (5.27a) can be expressed as

Ii =

kρ,upper∫

k1

Fi(kρρ)dkρ (5.34)

where i = 0 or 2. In order to determine how large the upper integration boundary kρ,upper had to

be set, an iterative procedure suggested by Davidson [78, p. 257] was implemented. This involves

repeatedly evaluating the integral with an increasing upper bound until a further increase in the upper

bound makes no significant difference to the answer. In particular, the integral was initially evaluated

for kρ,upper = 10k2(= 10k0) and kρ,upper = 20k2. The difference between the results was computed

and normalized by the magnitude of the integral in Region 2, which typically contributes the most to

the total integral due to the presence of the pole. If the normalized difference was above a threshold

value (which always was the case), the upper integration limits were doubled, i.e., to kρ,upper = 20k2

and kρ,upper = 40k2 for the second iteration, and a new normalized difference computed for

comparison to the threshold. This procedure was repeated until the normalized difference was below

the threshold value (typically 2% of the magnitude of the integral in Region 2). Similar results were

obtained by independently using a strategy based on the method of weighted averages for evaluating

the tails of Sommerfeld integrals described in [80] and explained in greater detail in [83].

Since the integrals I0 and I2 in Eq. (5.27a) are functions of ρ only, it was only necessary to

evaluate them once for a suitable range of ρ, and then store the resulting values in a lookup table from

where they could be retrieved and/or interpolated in the course of evaluating Y int
12 (cf. Eqs. (5.12) and

(5.13b)).

5.3.2 HTE
x for x̂-directed HMD against top conducting plate inside two-layer

parallel-plate substrate

Consider the two-layer parallel-plate substrate of Fig. 5.8. As before, the substrate is excited by a

HMD at the origin,

Ms = Msxx̂ = δ(x)δ(y)x̂ (5.35)

The objective is to find B̃TE
z from which all remaining TE field components can be determined (the

superscript TE will be omitted for the remainder of the section). Bz and B̃z are a Fourier transform

pair (cf. Eq. (5.14)). In layer i, Hx can be expressed directly in terms of B̃z [71, p. 28] as follows:

Hx(x, y, z) = − j

µ0

∞∫

−∞

∞∫

−∞

kx

k2
i − k2

iz

∂B̃z(kx, ky, z)
∂z

e−jkxxe−jkyydkxdky (5.36)

15 Integration of the oscillating tails of Sommerfeld integrals is discussed at length in [82].

UNIVERSITY OF PRETORIA – ELECTRICAL, ELECTRONIC & COMPUTER ENGINEERING 69

 
 
 



CHAPTER 5 RECIPROCITY-EXPRESSION APPROACH FOR MUTUAL ADMITTANCE

In the above, kiz =
√

k2
i − k2

x − k2
y where ki = ω

√
µiεi = ω

√
µ0ε0εri is the wavenumber of

dielectric layer i, and i = 1 or 2.

For a two-layer parallel-plate substrate, the general multilayer TE mode spectral domain

equivalent transmission line circuit ( [71], Fig. 2.2) reduces to the circuit shown in Fig. 5.15, where

the transmission line voltage V (z) equals B̃z(kx, ky, z) of Eq. (5.36). The parallel-plates of the

substrate are represented by short circuits in the equivalent circuit. This is required since Bz , the

component of the magnetic field normal to the plates, is zero on them. The voltage at the input to the

transmission line is denoted V (0+) (as opposed to V (0) in the TM equivalent circuit of Fig. 5.10), as

a discontinuity in voltage is presented by the series voltage source V0.

yin
+ yin

z=0+ z=h1 z=h1+h2

y01 y02

yin
-

Vo
short 

circuit

+

V(0+)

-

- +

short 

circuit
e e

(1)

z

Γ1
e

FIGURE 5.15: TE mode spectral domain equivalent circuit for two-layer parallel-plate substrate with
planar magnetic current excitation at z = 0.

If only points in the plane z = 0 are considered, Eq. (5.36) reduces to16

Hx(x, y, 0+) = − j

µ0

∞∫

−∞

∞∫

−∞

kx

k2
1 − k2

1z

[
∂B̃z(kx, ky, z)

∂z

]

z=0+

e−jkxxe−jkyydkxdky

= − j

µ0

∞∫

−∞

∞∫

−∞

kx

k2
1 − k2

1z

[
∂V1(z)

∂z

]

z=0+

e−jkxxe−jkyydkxdky (5.37a)

In Eq. (5.37a), V1(z) is the transmission line voltage corresponding to layer 1. V1(z) can be found

from [71, Eq. (2.25)] as

V1(z) = V (0+)
e−jk1z(z−h1) + Γe

1e
jk1z(z−h1)

ejk1zh1 + Γe
1e
−jk1zh1

(5.37b)

16 For practical purposes there is negligible difference between Hx evaluated at z = 0+ and z = 0 due to continuity of
the tangential magnetic field. The former form is however preferred for mathematical convenience as it lends itself to
ready application of certain mathematical identities.
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In Eq. (5.37b), Γe
1 is given by

Γe
1 =

ye
01 − y

(1)
in

ye
01 + y

(1)
in

(5.37c)

where y
(1)
in = −jye

02 cot k2zh2, ye
0i = jkiz/µ0 is the (TE) characteristic admittance of transmission

line i, and i = 1 or 2. Differentiating Eq. (5.37a) once with respect to z yields
[
dV1(z)

dz

]

z=0+

= jk1zV (0+)
−1 + Γe

1e
−2jk1zh1

1 + Γe
1e
−2jk1zh1

= jk1zV0
−1 + Γe

1e
−2jk1zh1

1 + Γe
1e
−2jk1zh1

(5.37d)

In the above, V0 is the value of the voltage source in the equivalent circuit, given by [71, Table 2.1] as

V0 = ρ̃ms (5.38a)

In the above, ρ̃ms is the Fourier transform of ρms, the magnetic surface charge density of the source.

ρms can be related to the magnetic surface current density Ms by means of the continuity relation

∇ ·Ms = −jωρms (5.38b)

Taking the two-dimensional Fourier transform of Eq. (5.38b) yields

−jωρ̃ms = −jkρ · M̃s (5.38c)

Combining Eqs. (5.21b), (5.38a) and (5.38c) gives

V0 =
kx

4π2ω
(5.38d)

and combining Eqs. (5.38d), (5.37d), and (5.37a) yields

Hx(x, y, 0+) = − j

4π2ωµ0

∞∫

−∞

∞∫

−∞

k2
x

k2
1 − k2

1z

jk1zV0
−1 + Γe

1e
−2jk1zh1

1 + Γe
1e
−2jk1zh1

e−jkxxe−jkyydkxdky (5.39)

Now substitute Eq. (5.24) in Eq. (5.39) in order to effect a transformation in the spectral domain

from rectangular coordinates (kx, ky) into cylindrical coordinates (kρ, α). This gives

Hx(x, y, 0+) = C

2π∫

α=0

∞∫

kρ=0

k2
ρ cos2 α

k2
ρ

G(kρ)e−j(kρ cos α·ρ cos φ+kρ sin α·ρ sin φ)kρdkρdα

= C

∞∫

0

G(kρ)

2π∫

0

cos2 α e−jkρρ cos(α−φ)dα kρdkρ

= C

∞∫

0

G(kρ)Iα(kρ)kρdkρ

(5.40a)

UNIVERSITY OF PRETORIA – ELECTRICAL, ELECTRONIC & COMPUTER ENGINEERING 71

 
 
 



CHAPTER 5 RECIPROCITY-EXPRESSION APPROACH FOR MUTUAL ADMITTANCE

In Eq. (5.40a), C = 1
4π2ω

,17 while G(kρ) and Iα(kρ) are given by

G(kρ) = k1z
−1 + Γe

1e
−2jk1zh1

1 + Γe
1e
−2jk1zh1

(5.40b)

Iα(kρ) =

2π−φ∫

−φ

cos2(α + φ)e−jkρρ cos αdα (5.40c)

Substituting the identity Eq. (5.26a) into Eq. (5.40c) yields

Iα(kρ) =
∞∑

n=−∞
j−nJn(kρρ)e−jnφ

2π∫

0

ejnα cos2 α dα (5.41a)

The integral on the right-hand side of Eq. (5.41a) can be solved using a standard identity [76, Eq.

14.524] in conjunction with l’Hospital’s rule:

2π∫

0

ejnα cos2 αdα =





π, n = 0
π
2 , n = −2, 2

0, otherwise

(5.41b)

Substituting Eq. (5.41b) into Eq. (5.41a) yields

Iα(kρ) = −π

2
J−2(kρρ)ej2φ + πJ0(kρρ)− π

2
J2(kρρ)e−j2φ (5.41c)

Since J−2(x) = J2(x), Eq. (5.41c) becomes

Iα(kρ) = πJ0(kρρ)− πJ2(kρρ) cos 2φ (5.41d)

Substitution of Eq. (5.41d) in Eq. (5.40a) gives

Hx(x, y, 0+) = Cπ

∞∫

0

G(kρ)J0(kρρ)kρdkρ

− Cπ cos 2φ

∞∫

0

G(kρ)J2(kρρ)kρdkρ

=

∞∫

0

F0(kρ)dkρ − cos 2φ

∞∫

0

F2(kρ)dkρ

= I0(ρ)− cos 2φI2(ρ) (5.42a)

Using Eq. (5.40b), the integrands F0(kρ) and F2(kρ) in Eq. (5.42a) may be written as

F0(kρ) = Cπkρk1z
−1 + Γe

1e
−2jk1zh1

1 + Γe
1e
−2jk1zh1

J0(kρρ) (5.42b)

17 Note that this value of C is different from the corresponding quantity in the derivation of HTM
x in Section 5.3.1.
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F2(kρ) = Cπkρk1z
−1 + Γe

1e
−2jk1zh1

1 + Γe
1e
−2jk1zh1

J2(kρρ) (5.42c)

The integrals I0(ρ) and I2(ρ) in Eq. (5.42a) are Sommerfeld integrals that need to be evaluated

numerically, integrating over the positive <e(kρ) axis. The possible multi-valued nature of the

integrands was investigated given that k1z and k2z each have two possible values. However,

inspection of Eqs. (5.42b) and (5.42c) revealed that both integrands are even functions of k1z and

k2z; hence as in the TM case, there are no branch points associated with kρ = k1 and kρ = k2. Plots

of the integrands F0(kρ) and F2(kρ) are shown in Fig. 5.16 at f = 10 GHz for ρ = 20 mm, h1 = 0.813

mm = 0.05λd, h2 = 5 mm = λ0/6, εr1 = 3.38, and εr2 = 1 (i.e., Substrate I of Section 5.4). The figure

confirms that the integrands F0(kρ) and F2(kρ) are non-convergent, rendering the integrals I0(ρ) and

I2(ρ) singular and therefore unsuitable for direct numerical integration (cf. [79, p. 118]).
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FIGURE 5.16: Plots of the TE integrands F0(kρ) and F2(kρ) for the two-layer parallel-plate substrate
of Fig. 5.8. f = 10 GHz, ρ = 20 mm, h1 = 0.813 mm = 0.05λd, h2 = 5 mm = λ0/6, εr1 = 3.38, εr2 = 1.

The evaluation of singular integrals of this nature, which typically arise when source and

observation points lie in the same plane, is treated by Hansen [84] for substrates that have a conductor

on one side only. The strategy implemented here to solve I0 and I2 in Eq. (5.42a) follows a broadly

similar approach, requiring two further results. The first result entails expressions in integral form as
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well as closed form for HTE
x due to an x̂-directed HMD placed at the origin of a homogenous medium

with dielectric parameters (ε0εr1, µ0). The second is HTE
x in integral form due to an x̂-directed HMD

inside the two-layer parallel-plate substrate of Fig. 5.8 with the conducting plane on the side of the

source removed, and the adjacent half-space filled by a dielectric (ε0εr1, µ0) (the HMD is placed

where it would have resided in the original two-layer parallel-plate substrate). These two results are

derived in Sections 5.3.2.1 and 5.3.2.2 respectively. In Section 5.3.2.3, it is shown how they may be

applied towards evaluating I0 and I2 in Eq. (5.42a).

5.3.2.1 HTE
x of x̂-directed HMD in homogenous medium

Consider a homogenous medium with permittivity ε1 = ε0εr1 and permeability µ0 that is excited by

a HMD at the origin, Ms = Msxx̂ = δ(x)δ(y)x̂. As before, the objective is to find B̃TE
z from which

all TE field components can be determined (the superscript TE will be omitted for the remainder

of the section). In half-space 1 corresponding to z > 0, Hx can be expressed directly in terms of

B̃z [71, p. 28]; that is,

Hx(x, y, z) = − j

µ0

∞∫

−∞

∞∫

−∞

kx

k2
1 − k2

1z

∂B̃z(kx, ky, z)
∂z

e−jkxxe−jkyydkxdky (5.43)

In the above, k1z =
√

k2
1 − k2

x − k2
y where k1 = ω

√
µ0ε1 is the wave number.

For this medium, the general multilayer TE mode spectral domain equivalent transmission line

circuit ( [71], Fig. 2.2) reduces to the circuit shown in Fig. 5.17, which consists of two semi-infinite

transmission lines fed by a series voltage source. The transmission line voltage V (z) equals

B̃z(kx, ky, z) of Eq. (5.43). Hence, for half-space 1 the latter equation becomes

Hx(x, y, z) = − j

µ0

∞∫

−∞

∞∫

−∞

kx

k2
1 − k2

1z

∂V1(z)
∂z

e−jkxxe−jkyydkxdky (5.44a)

V1(z) in Eq. (5.44a) can be determined from [71, Eq. (2.25)] as follows:

V1(z) = V (0+)e−jk1zz (5.44b)

Since the characteristic admittances ye
01 and ye

0,−1 are equal, voltage division yields

V (0+) =
V0

2
(5.44c)

Combining the first derivative of Eq. (5.44b) with Eq. (5.44c) yields

dV1(z)
dz

= −jk1z
V0

2
e−jk1zz (5.44d)
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yin
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z=0+

yin
-

V0

+

V(0+)

-

+-

y01
e

y0,-1
e

z

FIGURE 5.17: TE mode spectral domain equivalent circuit for homogeneous full-space with planar
magnetic current excitation at z = 0.

Furthermore, combining Eqs. (5.38d), (5.44d) and (5.44a) gives

Hx(x, y, z) =
1

8π2ωµ0

∞∫

−∞

∞∫

−∞

k2
x

k2
1 − k2

1z

(−k1ze
−jk1zz)e−jkxxe−jkyydkxdky (5.45)

Now substitute Eq. (5.24) in Eq. (5.45) in order to effect a transformation in the spectral domain

from rectangular to cylindrical coordinates. A manipulation similar to that used to derive Eq. (5.42)

from Eq. (5.40) gives

Hx(ρ, φ, z) = CHπ

∞∫

0

(−k1ze
−jk1zz)J0(kρρ)kρdkρ

− CHπ cos 2φ

∞∫

0

(−k1ze
−jk1zz)J2(kρρ)kρdkρ

= CHπ[iH0 (ρ, z)− cos 2φ iH2 (ρ, z)] (5.46a)

In the preceding equation, CH = 1
8π2ωµ0

and

iH0 (ρ, z) =

∞∫

0

(−k1ze
−jk1zz)J0(kρρ)kρdkρ (5.46b)

iH2 (ρ, z) =

∞∫

0

(−k1ze
−jk1zz)J2(kρρ)kρdkρ (5.46c)
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Restricting Eq. (5.46a) to points in the plane z = 0+ results in

Hx(ρ, φ, z = 0+) = lim
z→0+


CHπ

∞∫

0

(−k1ze
−jk1zz)J0(kρρ)kρdkρ




− lim
z→0+


CHπ cos 2φ

∞∫

0

(−k1ze
−jk1zz)J2(kρρ)kρdkρ




= lim
z→0+

CHπ[iH0 (ρ, z)− cos 2φ iH2 (ρ, z)]

= IH
0 (ρ)− cos 2φ IH

2 (ρ) (5.47a)

The objective is to find IH
0 (ρ) and IH

2 (ρ) in closed form; this entails determining closed-form

expressions for

lim
z→0+

iH0 (ρ, z) = lim
z→0+



∞∫

0

(−k1ze
−jk1zz)J0(kρρ)kρdkρ




=
IH
0 (ρ)
CHπ

=
1

CHπ

∞∫

0

FH
0 (kρ)dkρ (5.47b)

and

lim
z→0+

iH2 (ρ, z) = lim
z→0+



∞∫

0

(−k1ze
−jk1zz)J2(kρρ)kρdkρ




=
IH
2 (ρ)
CHπ

=
1

CHπ

∞∫

0

FH
2 (kρ)dkρ (5.47c)

In Eqs. (5.47b) and (5.47c), the integrands FH
0 and FH

2 can be expressed as

FH
0 (kρ) = lim

z→0+
(−kρk1ze

−jk1zz)J0(kρρ) (5.47d)

FH
2 (kρ) = lim

z→0+
(−kρk1ze

−jk1zz)J2(kρρ) (5.47e)

lim
z→0+

iH0 (ρ, z) in Eq. (5.47b) can be found by utilizing the identity [85, Eq. (A3)]

− lim
z→0+

∫ ∞

0
dkρkρkzJ0(kρρ)e−jkzz = (

k

ρ2
− j

ρ3
)e−jkρ (5.48a)

which in turn is derived from the Sommerfeld identity [86, Eq. (A1)]
∫ ∞

0
dkρ

kρ

kz
e−jkzzJ0(kρρ) =

je−jkr

r
(5.48b)

UNIVERSITY OF PRETORIA – ELECTRICAL, ELECTRONIC & COMPUTER ENGINEERING 76

 
 
 



CHAPTER 5 RECIPROCITY-EXPRESSION APPROACH FOR MUTUAL ADMITTANCE

where r =
√

ρ2 + z2, by differentiating twice with respect to z and then taking the limit z → 0+. In

particular,

lim
z→0+

iH0 (ρ, z) = (
k1

ρ2
− j

ρ3
)e−jk1ρ

=
IH
0 (ρ)
CHπ

(5.48c)

The derivation of lim
z→0+

iH2 (ρ, z) in Eq. (5.47c), on the other hand, requires more effort due to the

presence of J2(kρρ) in the integrand. Subtracting the identities [87, Eq. 9.1.27]

J ′1(z) = J0(z)− 1
z
J1(z) (5.49a)

J ′1(z) = −J2(z) +
1
z
J1(z) (5.49b)

yields

J2(z) = −J0(z) +
2
z
J1(z) (5.49c)

Substituting Eqs. (5.49c) into (5.46c) gives

iH2 = iH21 −
2
ρ
iH22 (5.50a)

with

iH21 =
∫ ∞

0
dkρkρk1ze

−jk1zzJ0(kρρ) (5.50b)

iH22 =
∫ ∞

0
dkρk1ze

−jk1zJ1(kρρ) (5.50c)

Combining Eqs. (5.50b) and (5.48a) gives

lim
z→0+

iH21(ρ, z) = (
j

ρ3
− k1

ρ2
)e−jk1ρ (5.51)

lim
z→0+

iH22(ρ, z) can be determined as follows. Noting from the identity [87, Eq. 9.1.28 ] that

J ′0(z) =
dJ0(z)

dz
= −J1(z) (5.52)

it follows that Eq. (5.50c) can be expressed as

iH22 =
∫

u(kρ)v′(kρ)dkρ (5.53a)

with

u(kρ) = k1ze
−jk1zz (5.53b)

v(kρ) = −1
ρ
J0(kρρ) (5.53c)
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(the chain rule of differentiation applied to Eq. (5.53c) gives v′(kρ) = J1(kρρ)). Applying the

integration-by-parts formula [88]
∫

u(kρ)v′(kρ)dkρ = u(kρ)v(kρ)−
∫

u′(kρ)v(kρ)dkρ (5.54)

to the right-hand side Eq. (5.50c) expressed in the form of Eq. (5.53) gives

iH22 = fH
22 − iH221 (5.55a)

with

fH
22 = −1

ρ

[
k1ze

−jk1zzJ0(kρρ)
]kρ=∞

kρ=0
(5.55b)

iH221 =

∞∫

0

u′(kρ)v(kρ)dkρ (5.55c)

Combining Eq. (5.53b), (5.53c) and (5.55c) yields

iH221 =
1
ρ

∫ ∞

0
dkρ

kρ

k1z
e−jk1zzJ0(kρρ)− jz

ρ

∫ ∞

0
dkρkρe

−jk1zzJ0(kρρ)

=
j

ρ

e−jk1r

r
− jz2

ρ
(

1
r3

+
jk1

r2
)e−jk1r (5.56)

To arrive at the above result, use was made of the Sommerfeld identity Eq. (5.48b) as well as the

identity ∫ ∞

0
dkρkρe

−jkzzJ0(kρρ) = z(
1
r3

+
jk

r2
)e−jkr (5.57)

which can be obtained by differentiating the Sommerfeld identity once with respect to z. From

Eq. (5.56) it follows that

lim
z→0+

iH221(ρ, z) =
je−jk1ρ

ρ2
(5.58)

Taking the limit z → 0+ with respect to Eq. (5.55b) yields

lim
z→0+

fH
22(ρ, z) = − lim

z→0+,kρ→∞
1
ρ

[
k1ze

−jk1zzJ0(kρρ)
]

+ lim
z→0+,kρ→0

1
ρ

[
k1ze

−jk1zzJ0(kρρ)
]

(5.59)

The negative root k1z = −
√

k2
1 − k2

ρ is now chosen. If kρ →∞, then

k1z ≈ −
√
−k2

ρ = −jkρ (5.60a)

Furthermore,

lim
kρ→0

k1z = −
√

k2
1 = −k1 (5.60b)
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Combining Eqs. (5.60) and (5.59) gives

lim
z→0+,

fH
22 = lim

z→0+,kρ→∞
j

ρ

[√
kρe

−kρz

√
2
πρ

cos(kρρ− π/4)
]

+ lim
z→0+

1
ρ

[
−k1e

jk1z · 1
]

= 0− k1

ρ

= −k1

ρ
(5.61)

In finding the preceding result, the small and large-argument forms of the zero-order Bessel function

J0 was used [56].

In summary, the integrals IH
0 (ρ) and IH

2 (ρ) in Eq. (5.47a) can be expressed in closed form as

follows. From Eq. (5.48c),

IH
0 (ρ) = CHπ lim

z→0+
iH0 (ρ, z) = (

k1

ρ2
− j

ρ3
)e−jk1ρ (5.62a)

while combining Eqs. (5.50a), (5.51), (5.55a), (5.58), and (5.61) gives

IH
2 (ρ) = CHπ lim

z→0+
iH2 (ρ, z) =

2k1

ρ2
+ (

3j

ρ3
− k1

ρ2
)e−jk1ρ (5.62b)

5.3.2.2 HTE
x of x̂-directed HMD inside two-layer parallel-plate substrate with top conducting

plate removed

Consider a substrate that is identical in every respect to the two-layer parallel-plate substrate of

Fig. 5.8 except for the conducting plane adjacent to the εr1 dielectric layer having been removed, and

the half-space z < 0 being filled by the same dielectric material as layer 1. As before, the substrate is

excited by a HMD at the origin, Ms = Msxx̂ = δ(x)δ(y)x̂. For this substrate, the general multilayer

TE mode spectral domain equivalent transmission line circuit ( [71], Fig. 2.2) reduces to the circuit

shown in Fig. 5.18.

As in the case of the previous substrates, Hx in layer 1 can be expressed in terms of the equivalent

transmission line voltage V1 (i.e., the voltage in the section of transmission line with characteristic

admittance ye
01) as follows:

Hx(x, y, z) = − j

µ0

∞∫

−∞

∞∫

−∞

kx

k2
1 − k2

1z

∂V1(z)
∂z

e−jkxxe−jkyydkxdky (5.63)

If only points in the plane z = 0 are considered, Eq. (5.63) reduces to

Hx(x, y, 0+) = − j

µ0

∞∫

−∞

∞∫

−∞

kx

k2
1 − k2

1z

[
∂V1(z)

∂z

]

z=0+

e−jkxxe−jkyydkxdky (5.64a)
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+
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y01y01
e
y01
e
y01y01

e

- +

yin
(1)

FIGURE 5.18: TE mode spectral domain equivalent circuit for two-layer parallel-plate substrate with
top conducting plate removed.

In Eq. (5.64a), V1(z) can be found from [71, Eq. (2.25)] as

V1(z) = V (0+)
e−jk1z(z−h1) + Γe

1e
jk1z(z−h1)

ejk1zh1 + Γe
1e
−jk1zh1

(5.64b)

In Eq. (5.64b), which is the same as the corresponding equation for the two-layer-parallel-plate case,

Γe
1 is given by

Γe
1 =

ye
01 − y

(1)
in

ye
01 + y

(1)
in

(5.64c)

with y
(1)
in = −jye

02 cot k2zh2, and ye
0i = jkiz/µ0 the (TE) characteristic admittance of transmission

line i, where i = 1 or 2. Differentiating Eq. (5.64b) once with respect to z yields
[
dV1(z)

dz

]

z=0+

= jk1zV (0+)
−1 + Γe

1e
−2jk1zh1

1 + Γe
1e
−2jk1zh1

(5.64d)

V (0+) in Eq. (5.64d) can be found from voltage division (see Fig. 5.18) as

V (0+) = V0

1
y+

in

1
y+

in

+ 1
y−in

= V0
y−in

y−in + y+
in

(5.65a)

In the preceding equation, V0 is the value of the voltage source in the equivalent circuit, while y−in and

y+
in are given by

y−in = ye
0,−1 = ye

01 (5.65b)

y+
in = ye

01

y
(1)
in + jye

01 tan k1zh1

ye
01 + jy

(1)
in tan k1zh1

= ye
01

−jye
02 cot k2zh2 + jye

01 tan k1zh1

ye
01 + ye

02 cot k2zh2 tan k1zh1
(5.65c)
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In Eq. (5.65b), ye
0,−1 is the (TE) characteristic admittance of transmission line -1 corresponding to

the half-space z < 0.

Substituting Eqs. (5.65) and (5.64d) into Eq. (5.64a), and then implementing the change of

variables Eq. (5.24) in order to effect a transformation in the spectral domain from rectangular to

cylindrical coordinates ultimately gives

Hx(ρ, φ, 0+) =

∞∫

0

FA
0 (kρ)dkρ − cos 2φ

∞∫

0

FA
2 (kρ)dkρ

= IA
0 (ρ)− cos 2φIA

2 (ρ) (5.66a)

The integrands FA
0 (kρ) and FA

2 (kρ) in Eq. (5.66a) may be expressed as

FA
0 (kρ) = CAπkρk1z

ye
01

ye
01 + y+

in

−1 + Γe
1e
−2jk1zh1

1 + Γe
1e
−2jk1zh1

J0(kρρ) (5.66b)

FA
2 (kρ) = CAπkρk1z

ye
01

ye
01 + y+

in

−1 + Γe
1e
−2jk1zh1

1 + Γe
1e
−2jk1zh1

J2(kρρ) (5.66c)

In Eqs. (5.66b) and (5.66c), CA = 1
4π2ωµ0

.

5.3.2.3 Evaluation of singular integrals for HTE
x of x̂-directed HMD against top conducting

plate inside two-layer parallel-plate substrate

The integrands of the integrals required to find Hx for each of the three substrates discussed

above (i.e., the two-layer parallel-plate substrate, the homogeneous full-space and the two-layer

parallel-plate substrate with top plate removed) are F0, F2, FH
0 , FH

2 , FA
0 , and FA

2 ; they are given

in Eqs. (5.42b), (5.42c), (5.47d), (5.47e), (5.66b), and (5.66c) respectively. By combining these

equations with Eq. (5.42a), the TE magnetic field due to an x̂-directed HMD at the origin of the

two-layer parallel-plate substrate of Fig. 5.8 can be expressed as follows:

Hx(ρ, φ, 0) =

∞∫

0

F0(kρ)dkρ − cos 2φ

∞∫

0

F2(kρ)dkρ

=

∞∫

0

[
(F0 − FA

0 − FH
0 ) + (FA

0 − FH
0 ) + 2FH

0

]
dkρ

− cos 2φ

∞∫

0

[
(F2 − FA

2 − FH
2 ) + (FA

2 − FH
2 ) + 2FH

2

]
dkρ

= I0,1 + I0,2 + 2IH
0 − cos 2φ(I2,1 + I2,2 + 2IH

2 ) (5.67a)

with

I0,1 =

∞∫

0

(F0 − FA
0 − FH

0 )dkρ (5.67b)
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I0,2 =

∞∫

0

(FA
0 − FH

0 )dkρ (5.67c)

I2,1 =

∞∫

0

(F2 − FA
2 − FH

2 )dkρ (5.67d)

I2,2 =

∞∫

0

(FA
2 − FH

2 )dkρ (5.67e)

Figure 5.19 shows graphs of the various substrate integrands F0, FH
0 and FA

0 as well as the difference

functions F0−FA
0 −FH

0 and FA
0 −FH

0 that are the integrands in Eqs. (5.67b) and (5.67c) respectively.

The graphs were calculated at f = 10 GHz for ρ = 20 mm, h1 = 0.813 mm = 0.05λd, h2 = 5 mm = λ0/6,

εr1 = 3.38, and εr2 = 1 (i.e., Substrate I of Section 5.4.2.1 below; ρ is in the vicinity of λCPW , the

wavelength at 10 GHz of a 50 Ω CPW on Substrate I). Figure 5.20 shows the corresponding graphs of

F2, FH
2 and FA

2 and the difference functions F2−FA
2 −FH

2 and FA
2 −FH

2 that are the integrands in

Eqs. (5.67d) and (5.67e). Similar graphs for ρ = 64.5 mm = 3λCPW are given in Figs. 5.21 and 5.22.

While the integrands Fi, FH
i and FA

i where i = 0 or 2 are singular in the sense that they increase

indefinitely as kρ → ∞, the difference functions Fi − FA
i − FH

i and FA
i − FH

i are decaying

oscillating functions for kρ > k1 that converge relatively quickly (i.e., compared to the Sommerfeld

integral tails in the TM case). Hence the integrals I0,1, I0,2, I2,1, and I2,2 were repeatedly evaluated

with finite but increasing upper bounds kρ,upper in the manner of the TM Region 3 integrals of

Section 5.3.1, until increasing the upper bound further made no significant difference to the answer;

a maximum upper bound of kρ,upper = 200k0 was sufficient. It should be noted that Eq. (5.67a) can

be implemented only because closed-form expressions for IH
0 and IH

2 in its third and sixth terms are

available (cf. Eq. (5.62)).

Since the integrals I0,1, I0,2, I2,1, and I2,2 in Eq. (5.67) are functions of ρ only, it is sufficient to

evaluate them once for a suitable range of ρ and then store the resulting values in a lookup table from

where they can be retrieved and/or interpolated in the course of evaluating Y int
12 .
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FIGURE 5.19: Plots of the TE integrands F0 − FA
0 − FH

0 and FA
0 − FH

0 , and their constituent
functions F0, FA

0 , and FH
0 . The vertical lines (from left to right) correspond to kρ = k2 and kρ = k1

respectively. f = 10 GHz, ρ = 20 mm, h1 = 0.813 mm = 0.05λd, h2 = 5 mm = λ0/6, εr1 = 3.38, εr2 =
1.
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FIGURE 5.20: Plots of the TE integrands F2 − FA
2 − FH

2 and FA
2 − FH

2 , and their constituent
functions F2, FA

2 , and FH
2 . The vertical lines (from left to right) correspond to kρ = k2 and kρ = k1

respectively. f = 10 GHz, ρ = 20 mm, h1 = 0.813 mm = 0.05λd, h2 = 5 mm = λ0/6, εr1 = 3.38, εr2 =
1.
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FIGURE 5.21: Plots of the TE integrands F0 − FA
0 − FH

0 and FA
0 − FH

0 , and their constituent
functions F0, FA

0 , and FH
0 . The vertical lines (from left to right) correspond to kρ = k2 and kρ = k1

respectively. f = 10 GHz, ρ = 64.5 mm, h1 = 0.813 mm = 0.05λd, h2 = 5 mm = λ0/6, εr1 = 3.38, εr2

= 1.
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FIGURE 5.22: Plots of the TE integrands F2 − FA
2 − FH

2 and FA
2 − FH

2 , and their constituent
functions F2, FA

2 , and FH
2 . The vertical lines (from left to right) correspond to kρ = k2 and kρ = k1

respectively. f = 10 GHz, ρ = 64.5 mm, h1 = 0.813 mm = 0.05λd, h2 = 5 mm = λ0/6, εr1 = 3.38, εr2

= 1.
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5.4 IMPLEMENTATION AND RESULTS

5.4.1 Implementation strategy

The present section gives details of the implementation of the reciprocity-based formulation

developed in Section 5.2 for finding the mutual admittance between broadside CPW-fed slots on a

two-layer parallel-plate substrate. It is also described how the moment-method-based simulator IE3D

was used to generate results against which the reciprocity-formulation results could be compared.

The actual computed results are presented in Section 5.4.2.

Mutual admittance Y12 as a function of broadside inter-slot distance d was computed at 10 GHz

for slots on three substrates, namely

• Substrate I: h1 = 0.813 mm = 0.05λd; h2 = 5 mm = λ0/6; εr1 = 3.38; εr2 = 1

• Substrate II: h1 = 1.21 mm = 0.1λd; h2 = 5 mm = λ0/6; εr1 = 6.15; εr2 = 1

• Substrate III: h1 = 0.254 mm = 0.013λd; h2 = 5 mm = λ0/6; εr1 = 2.2; εr2 = 1

(in the above, λd is the wavelength in the top dielectric layer, and λ0 the free-space wavelength

at 10 GHz). Substrate I, the substrate chosen as reference, was used in an earlier successful

implementation of an 8-element uniform linear CPW-fed array [36]. Substrates II and III had top

dielectric layers that were electrically significantly thicker and thinner, respectively, than that of

Substrate I, i.e., 0.1λd and 0.013λd as opposed to 0.05λd. All substrates had an air bottom layer with

an electric height of λ0/6, and allowed for propagation of the TM0 two-layer parallel-plate mode only.

Also computed was Y12 against frequency for a twin slot configuration on Substrate I where all

dimensions including d were kept constant. This result was compared with a measurement to be

discussed in Section 5.4.2.5.

Details of using IE3D to find Y12 against d for two CPW-fed slots on any of the above substrates

at 10 GHz were as follows. Using a moment-method-based approach implies that the entire two-slot

structure needs to be solved for each instance of d. Ports were defined at the ends of CPW feed

lines that were lf = λCPW /2 long; feed lines thus only extended as far as the terminal planes in

Fig. 5.5 (λCPW is the CPW wavelength at 10 GHz). From the full-wave solution, IE3D calculates the

two-port admittance matrix, or Y parameters of the structure referred to the above ports (choosing

lf = λCPW /2 ensured that Y parameters were referred to the centres of radiating slots). While

Y12 = Y21 was the parameter of interest, the two-port self-admittances Y11 = Y22 were used in

interpreting some of the results presented in Section 5.4.2. (A separation into external and internal
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mutual admittances was of course not possible.)

When implementing the reciprocity-expression approach to find Y12 against d, each of the two

CPW-fed slots were first simulated in isolation using IE3D.18 The geometry of isolated CPW-fed

slot m is shown in Fig. 5.23, where m = 1 or 2. The CPW feed line length was lf = λCPW /2.

In IE3D, a port was defined at the end of the feed line, which coincided with the terminal voltage

reference plane mm′, as noted in Section 5.2.2. Analyzing slot m in IE3D yielded the tangential

electric field along the centre of the radiating slot, Em,slot = Emy,slotŷ (the longitudinal centre of

the radiating slot coincides with the x axis in Fig. 5.23).19 A discretization allowing for only one cell

across the width of the radiating slot was adopted. This facilitated implementation of the simplifying

assumption that the transverse component of the slot field was constant, having its longitudinal centre

value across the width of the slot. The analysis also yielded the terminal voltage Vm at terminal plane

mm′.

Wm
s
wLm xy
m m′ lfuo

FIGURE 5.23: Top view of isolated CPW-fed slot m, where m = 1 or 2. Lm ≡ half-length and
Wm ≡ width of radiating slot; s ≡ slot width and w ≡ centre strip width of feed line; lf ≡ length of
feed line; uo ≡ distance from outer edge.

From the electric fields in the isolated slots, external and internal equivalent magnetic currents

M ext
1x , M ext

2x , M int
1x , and M int

2x were obtained using Eqs. (5.4), (5.6), (5.10), and (5.11). M ext
1x and

M int
1x are required to find Hext

21x and H int
21x using Eqs. (5.8a) and (5.13b) respectively. Subsequently,

Y ext
12 and Y int

12 in Eqs. (5.7) and (5.12) were evaluated for each instance of slot separation d, and the

total mutual admittance Y12 was found from Y12 = Y ext
12 + Y int

12 . In accordance with the definition

of the quantities that constitute Eq. (5.2), M ext
1x , M ext

2x , M int
1x , M int

2x , V1 and V2 were kept the same

for all values of d. The actual implementation of integrals in the preceding equations were done in

Matlab using the NAG routine D01FCF [89].

18 In the case of twin slots, only one slot needed to be simulated.
19 As noted before, the x̂-component of the field was considered negligible.
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Further comment is in order regarding the terminal voltage Vm of an isolated slot m (cf. Fig. 5.23;

m = 1 or 2). Consider first a narrow rectangular slot on an infinite ground plane in free space

that is fed at its centre by means of two wires. The aperture tangential electric field can be be

approximated in an accurate manner by a piecewise sinusoidal function. If the field is assumed

constant across the width of the slot, the slot’s terminal voltage is readily calculated as the product

of the field at the centre of the slot, and the slot width. The calculation procedure does not depend

on slot length;20 the terminal voltage is always determined from the field value at the centre of the slot.

An exploratory numerical investigation was carried out to determine whether the terminal voltage

of an isolated CPW-fed slot on a two-layer parallel-plate substrate (i.e., the voltage seen at the

reference plane mm′ in Fig. 5.23) could be determined in a like manner from its radiating slot

electric field. First, IE3D was used to design an isolated slot with a width W = 0.4 mm on Substrate

I to be at its second resonance at 10 GHz; this resulted in a half-length of Lres = 10.87 mm and a

resonant self-impedance of about 14 Ω (cf. Section 4.2.2). The CPW feed line was lf = λCPW /2

long. Subsequently, IE3D was used to analyze eleven slots that were identical in all respects to the

above resonant slot except for their half-lengths L that varied in the range 0.85Lres ≤ L ≤ 1.15Lres

(as before, the moment-method discretization was done such that only one cell was allowed across

the radiating slot width.) For each L, the longitudinal tangential electric field in the centre of the slot,

as well as the port voltage Vt was recorded; the port was defined at the terminal plane mm′ shown in

Fig. 5.23 (the IE3D port voltage Vt is the same as the terminal voltage Vm, and includes the effect of

the CPW-to-radiating-slot transition). The aim was to find out whether (and where) for a particular

slot length a radiating slot voltage could be found that was equal to the (CPW slot) terminal voltage.

Here, the radiating slot voltage Vslot at a position x in the slot is defined as Vslot(x) = W ·Ey,slot(x),

where Ey,slot(x)ŷ is the slot tangential electric field (the field is assumed constant in the transverse

direction). Hence, for each L, a V o
slot = Vslot(xo) was determined, which was the value of Vslot(x)

closest to the terminal voltage Vt out of all possible Vslot(x) (V o
slot was located at x = xo).

In Table 5.1, the position of V o
slot, expressed as normalized distance from the radiating slot outer

edge uo/L (see Fig. 5.23), is listed against L/Lres. Two measures pertaining to the closeness between

V o
slot and Vt is also given. These reveal a generally close correspondence between V o

slot and Vt; the

biggest difference in magnitude occurred for L = Lres, where |V o
slot| was about 7% smaller than

|Vt|. If the right half of the CPW-fed slot of Fig. 5.23 is considered, the position where V o
slot must

be “read off” coincides with the boundary between the CPW slot and radiating slot for all L. The

implication is that, if the reciprocity-based expressions are intended to be used in an array design

algorithm requiring multiple evaluations, it will be straightforward to establish terminal voltages once
20 Center-fed slots in an infinite ground plane are normally assumed to operate around their first resonant lengths.
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slot electric fields are known. Slot field information can be obtained at the same time lookup tables

for the self-admittances of isolated slots are compiled via moment-method-based calculations (e.g.,

[19,35]). Alternatively, only the complex amplitude of the slot field (as opposed to the complete field

distribution) can be obtained from the isolated slot analysis, and then used to scale generic functions

that approximate the slot field; for example, it is relatively simple to relate piecewise sinusoidal

functions to slot field magnitudes.

TABLE 5.1: Position in slot of radiating slot voltage closest to terminal voltage for various slot
half-lengths, and difference between radiating slot voltage and terminal voltage. uo is distance from
the radiating slot outer edge. W = 0.4 mm; h1 = 0.813 mm; h2 = 5 mm; εr1 = 3.38; εr2 = 1.

L
Lres

uo
L

|Vslot| − |Vt|
|Vt| ∠(Vslot)− ∠(Vt)

(%) (deg.)

0.85 1.00 3.7 -3.9

0.88 1.00 2.1 -4.2

0.91 1.00 -0.2 -4.3

0.94 1.00 -3.2 -3.7

0.97 1.00 -6.5 -1.8

1.00 1.00 -7.4 0.0

1.03 1.00 -5.9 1.7

1.06 0.99 -3.5 2.3

1.09 0.99 -1.6 2.1

1.12 0.99 -2.1 1.1

1.15 0.99 -1.2 0.8

5.4.2 Results

In this section, results are presented for the computation of Y12 against d for slots on Substrates I, II,

and III (Sections 5.4.2.1, 5.4.2.2 and 5.4.2.3), and for Y12 against frequency for twin slots with a fixed

spacing on Substrate I (Section 5.4.2.5). In all cases, results obtained using the reciprocity-expression

approach are compared to moment-method-based results computed using IE3D.

5.4.2.1 Substrate I: h1 = 0.05λd, h2 = λ0/6, εr1 = 3.38, εr2 = 1

A 50 Ω CPW feed line was designed on this substrate in IE3D with w = 3.7 mm and s = 0.2 mm

(cf. Section 4.2.2). Subsequently, an isolated CPW-fed slot with a width W of 0.4 mm was designed

to operate at its second resonance at 10 GHz, resulting in a half-length L = Lres = 10.87 mm and a
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resonant self-impedance of about 14 Ω.

Mutual admittance Y12 against distance d with 0.9λCPW ≤ d ≤ 3λCPW was computed for

four pairs of identical broadside slots, i.e., twin slots, based on the above slot (λCPW is the CPW

wavelength at 10 GHz). While all four pairs had W1 = W2 = 0.4 mm, their half-lengths L1 = L2

were 0.85Lres, 0.95Lres, Lres, and 1.1Lres.21 In all cases, feed line lengths were lf = 0.5λCPW .

The real and imaginary parts of the mutual admittance Y12 against normalized broadside

distance d/λCPW for twin slots with L1 = L2 = 0.85Lres = 9.24 mm are shown in Fig. 5.24;

results from both the reciprocity-expression approach and IE3D are represented. Likewise,

Y12 for twin slots with L1 = L2 = 0.95Lres = 10.33 mm, L1 = L2 = Lres = 10.87 mm,

and L1 = L2 = 1.1Lres = 11.96 mm are shown in Figs. 5.25, 5.26, and 5.29 respectively. For

the case L1 = L2 = Lres, Figs. 5.27 and 5.28 show the magnitude and phase of Y12 against d/λCPW .

Figs. 5.24–5.29 reveal close agreement between Y12 computed using the reciprocity-expression

approach, and IE3D. Agreement is very good for twin slots with half-lengths L = 0.85Lres, and

somewhat less so for the cases L1 = L2 = 0.95Lres, 1.1Lres, and Lres in order of decreasing

goodness of agreement. Especially in the case L1 = L2 = Lres, IE3D curves seem visually

“irregular” in the sense that each appears like a version of the corresponding curve from the

reciprocity-expression approach with some oscillation superimposed (cf. Figs. 5.26 and 5.27)22 –

this is true to a lesser extent of the cases L = 1.1Lres and L = 0.95Lres.

In order to investigate the above differences further, two-port self-admittances Y11 = Y22

calculated by IE3D were considered in conjunction with the Y12 curves of Figs. 5.24–5.29.

Fig. 5.30 shows the real and imaginary parts of the two-port self-admittance Y11 against broadside

distance d/λCPW for the case L1 = L2 = Lres at 10 GHz. The (resonant) self-admittance of the

corresponding isolated slot, Yself = 72 mS computed using IE3D is also shown; it can be seen

that Y11 takes the form of a decaying oscillation about Yself . Fig. 5.31 displays the magnitude of

Y11 against d/λCPW , as well as |Yself |; Fig. 5.32 gives the corresponding phases. As d increases,

Y11 approaches Yself , as expected. Similarly, Fig. 5.33 shows |Y11| against d/λCPW for the case

L1 = L2 = 0.85Lres, and |Yself | for an isolated 0.85Lres slot, which has Yself = 29.2∠52◦ mS

(again computed using IE3D); corresponding phases are given in Fig. 5.34. Magnitude and phase

curves for the case L1 = L2 = 1.1Lres are presented in Figs. 5.35 and Fig. 5.36. For an isolated

1.1Lres slot, Yself = 50.5∠− 53.7◦ mS.

21 Only broadside slots were investigated as this is the configuration relevant to series-fed linear array designs [35, 36].
22 This was noted previously in Section 4.2.3.
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FIGURE 5.24: Mutual admittance Y12 against broadside distance d/λCPW at 10 GHz for CPW-fed
twin slots with L1 = L2 = 0.85Lres = 9.24 mm on Substrate I. W1 = W2 = 0.4 mm; h1 = 0.813 mm; h2

= 5 mm; εr1 = 3.38; εr2 = 1; lf = 0.5λCPW . (rec.: computed using reciprocity-expression approach.)
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FIGURE 5.25: Mutual admittance Y12 against broadside distance d/λCPW at 10 GHz for CPW-fed
twin slots with L1 = L2 = 0.95Lres = 10.33 mm on Substrate I. W1 = W2 = 0.4 mm; h1 = 0.813 mm;
h2 = 5 mm; εr1 = 3.38; εr2 = 1; lf = 0.5λCPW .

In accordance with Eq. (5.2), the reciprocity-expression approach utilizes magnetic currents
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FIGURE 5.26: Mutual admittance Y12 against broadside distance d/λCPW at 10 GHz for CPW-fed
twin slots with L1 = L2 = Lres = 10.87 mm on Substrate I. W1 = W2 = 0.4 mm; h1 = 0.813 mm; h2

= 5 mm; εr1 = 3.38; εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.27: Magnitude of mutual admittance Y12 against broadside distance d/λCPW at 10 GHz
for CPW-fed twin slots with L1 = L2 = Lres = 10.87 mm on Substrate I. W1 = W2 = 0.4 mm; h1 =
0.813 mm; h2 = 5 mm; εr1 = 3.38; εr2 = 1; lf = 0.5λCPW .

associated with slots radiating in isolation, i.e., impressed currents; the underlying assumption is

that slot self-admittances do not change with d. The two-port self-admittances computed by IE3D,
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FIGURE 5.28: Phase of mutual admittance Y12 against broadside distance d/λCPW at 10 GHz for
CPW-fed twin slots with L1 = L2 = Lres = 10.87 mm on Substrate I. W1 = W2 = 0.4 mm; h1 =
0.813 mm; h2 = 5 mm; εr1 = 3.38; εr2 = 1; lf = 0.5λCPW .

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−60

−50

−40

−30

−20

−10

0

10

20

30

40

 d/λ
CPW

M
ut

ua
l a

dm
itt

an
ce

  Y
12

 (
m

S
)

Re: IE3D
Im: IE3D
Re: rec.
Im: rec.

FIGURE 5.29: Mutual admittance Y12 against broadside distance d/λCPW at 10 GHz for CPW-fed
twin slots with L1 = L2 = 1.1Lres = 11.96 mm on Substrate I. W1 = W2 = 0.4 mm; h1 = 0.813 mm;
h2 = 5 mm; εr1 = 3.38; εr2 = 1; lf = 0.5λCPW .

however, appear to oscillate about the self-admittances of the isolated slots. This is most marked

for the case L1 = L2 = Lres as seen in the magnitude plot of Fig. 5.31, and (considerably) less so
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for the cases L1 = L2 = 0.85Lres and L1 = L2 = 1.1Lres in Figs. 5.33 and 5.35 respectively.

The extent of the oscillations are mirrored by the extent of the apparent “superimposed oscillations”

of the IE3D Y12 curves: it is the most marked for the case L1 = L2 = Lres, and least significant

for L1 = L2 = 0.85Lres; furthermore, |Y11| and |Y12| oscillations appear to be synchronized (e.g.,

Figs. 5.31 and 5.27). Hence discrepancies between IE3D and the reciprocity-expression approach for

Y12 can be related to different accounts for slot self-admittances in the two models.

In order to subject the reciprocity-expression approach to further verification, the mutual

admittance between two pairs of non-identical slots were computed. Fig. 5.37 shows the real and

imaginary parts of Y12 for the first pair, which had L1 = 0.85Lres, L2 = 1.1Lres, and W1 = W2

= 0.4 mm. The second pair had L1 = 0.85Lres, L2 = Lres, and W1 = W2 = 0.4 mm; these

results are displayed in Fig. 5.38. Good agreement is observed between results obtained using the

reciprocity-expression approach and IE3D.

The reciprocity-expression approach can be used to form an estimate of the relative contributions

of external and internal mutual admittances to the total mutual admittance; the external and internal

admittances can be expressed as Y ext
12 = Gext

12 + jBext
12 and Y int

12 = Gint
12 + jBint

12 . Fig. 5.39(a)–(d)

show Y ext
12 and Y int

12 for each of the cases L1 = L2 = 0.85Lres, 0.95Lres, Lres, and 1.1Lres. It is

clear that the internal mutual admittance predominates. Fig. 5.40 shows the magnitudes of Y ext
12 and

Y int
12 for the above cases on one graph. For each of the four half-lengths, the magnitude of the internal

mutual admittance starts out at about 2.6 times the magnitude of the external mutual admittance. At

the end of the range of d/λCPW , |Y int
12 | is about five times the value of |Y ext

12 |. This is not unexpected

since |Y int
12 | is determined by guided fields, unlike |Y ext

12 |.

5.4.2.2 Substrate II: h1 = 0.1λd, h2 = λ0/6, εr1 = 6.15, εr2 = 1

The top layer of Substrate II has the greatest electrical thickness of the three substrates, namely

0.1λd compared to 0.05λd of Substrate I and 0.013λd of Substrate II. It is included here for purposes

of verification of the reciprocity-expression approach, and would not be a substrate of choice for

antenna applications over Substrates I and III that have lower effective dielectric permittivities

and hence greater radiation efficiency (cf. Chapters 2 and 3). The procedure for presentation and

organization of results essentially follows that of the previous section. A 50 Ω CPW feed line was

designed on Substrate II with w = 0.68 mm and s = 0.15 mm. Next, an isolated CPW-fed radiating

slot with a width W of 0.7 mm was designed to operate at its second resonance at 10 GHz by

adjusting its half-length to L = Lres = 7.77 mm; its resonant self-impedance was about 10 Ω.

The real and imaginary parts of the mutual admittance Y12 against normalized broadside
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FIGURE 5.30: Two-port self-admittance Y11 against broadside distance d/λCPW for CPW-fed twin
slots with L1 = L2 = Lres = 10.87 mm on Substrate I, and resonant isolated self-admittance Yself

(both computed at 10 GHz with IE3D). W1 = W2 = 0.4 mm; h1 = 0.813 mm; h2 = 5 mm; εr1 = 3.38;
εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.31: Magnitude of two-port self-admittance Y11 against broadside distance d/λCPW for
CPW-fed twin slots with L1 = L2 = Lres = 10.87 mm on Substrate I, and magnitude of resonant
isolated self-admittance Yself (both computed at 10 GHz with IE3D). W1 = W2 = 0.4 mm; h1 = 0.813
mm; h2 = 5 mm; εr1 = 3.38; εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.32: Phase of two-port self-admittance Y11 against broadside distance d/λCPW for
CPW-fed twin slots with L1 = L2 = Lres = 10.87 mm on Substrate I, and phase of resonant isolated
self-admittance Yself (both computed at 10 GHz with IE3D). W1 = W2 = 0.4 mm; h1 = 0.813 mm;
h2 = 5 mm; εr1 = 3.38; εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.33: Magnitude of two-port self-admittance Y11 against broadside distance d/λCPW for
CPW-fed twin slots with L1 = L2 = 0.85Lres = 9.24 mm on Substrate I, and magnitude of resonant
isolated self-admittance Yself (both computed at 10 GHz with IE3D). W1 = W2 = 0.4 mm; h1 = 0.813
mm; h2 = 5 mm; εr1 = 3.38; εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.34: Phase of two-port self-admittance Y11 against broadside distance d/λCPW for
CPW-fed twin slots with L1 = L2 = 0.85Lres = 9.24 mm on Substrate I, and phase of resonant
isolated self-admittance Yself (both computed at 10 GHz with IE3D). W1 = W2 = 0.4 mm; h1 = 0.813
mm; h2 = 5 mm; εr1 = 3.38; εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.35: Magnitude of two-port self-admittance Y11 against broadside distance d/λCPW for
CPW-fed twin slots with L1 = L2 = 1.1Lres = 11.96 mm on Substrate I, and magnitude of resonant
isolated self-admittance Yself (both computed at 10 GHz with IE3D). W1 = W2 = 0.4 mm; h1 = 0.813
mm; h2 = 5 mm; εr1 = 3.38; εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.36: Phase of two-port self-admittance Y11 against broadside distance d/λCPW for
CPW-fed twin slots with L1 = L2 = 1.1Lres = 11.96 mm on Substrate I, and phase of resonant
isolated self-admittance Yself (both computed at 10 GHz with IE3D). W1 = W2 = 0.4 mm; h1 = 0.813
mm; h2 = 5 mm; εr1 = 3.38; εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.37: Mutual admittance Y12 against broadside distance d/λCPW at 10 GHz for
non-identical CPW-fed broadside slots with L1 = 0.85Lres = 9.24 mm and L2 = 1.1Lres = 11.96
mm on Substrate I. W1 = W2 = 0.4 mm; h1 = 0.813 mm; h2 = 5 mm; εr1 = 3.38; εr2 = 1;
lf = 0.5λCPW .
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FIGURE 5.38: Mutual admittance Y12 against broadside distance d/λCPW at 10 GHz for
non-identical CPW-fed broadside slots with L1 = 0.85Lres = 9.24 mm and L2 = Lres = 10.87 mm
on Substrate I. W1 = W2 = 0.4 mm; h1 = 0.813 mm; h2 = 5 mm; εr1 = 3.38; εr2 = 1; lf = 0.5λCPW .

distance d/λCPW for twin slots with L1 = L2 = 0.9Lres = 6.99 mm computed using the

reciprocity-expression approach and IE3D are shown in Fig. 5.41. Likewise, Y12 against d/λCPW

for twin slots with L1 = L2 = Lres = 7.77 mm, and L1 = L2 = 1.1Lres = 8.55 mm are shown in

Figs. 5.42 and 5.45 respectively. For the case L1 = L2 = Lres, Fig. 5.43 shows the magnitude of Y12

against d/λCPW , and Fig. 5.44 the phase. Feed line lengths were lf = 0.5λCPW throughout.

Figs. 5.41–5.45 shows a similar pattern of agreement between Y12 computed using the reciprocity

expression and IE3D as in the case of Substrate I: agreement is best for the shortest twin slots, while

for the Lres twin slots IE3D curves seem irregular when compared to the reciprocity-expression

curves in a manner similar to that observed for Lres twin slots on Substrate I. However, in the case

of Substrate II the irregularity seems more marked. In order to investigate this further, two-port

self-admittances Y11(= Y22) calculated using IE3D were considered in conjunction with the Y12

curves of Figs. 5.41–5.45. Fig. 5.46 shows the real and imaginary parts of the two-port self-admittance

Y11 against broadside distance d/λCPW for the case L1 = L2 = Lres at 10 GHz. Fig. 5.47 shows the

magnitude of Y11 against d/λCPW , as well as the magnitude of the resonant isolated self-admittance,

Yself = 100 mS, computed using IE3D as described earlier; Fig. 5.48 gives the corresponding

phases. Similarly, Fig. 5.49 shows |Y11| against d/λCPW for the case L1 = L2 = 0.9Lres, and

|Yself | for an isolated 0.9Lres slot, which has Yself = 45.4∠53◦ mS; corresponding phases are given

in Fig. 5.50. Magnitude and phase curves for the case L1 = L2 = 1.1Lres are presented in Figs. 5.51
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FIGURE 5.39: Y ext
12 and Y int

12 against d/λCPW computed using the reciprocity-expression approach
for slots on Substrate I with (a) L1 = L2 = 0.85Lres, (b) L1 = L2 = 0.95Lres, (c) L1 = L2 = Lres,
and (d) L1 = L2 = 1.1Lres. W1 = W2 = 0.4 mm; h1 = 0.813 mm; h2 = 5 mm; εr1 = 3.38; εr2 = 1;
lf = 0.5λCPW .

and Fig. 5.52. For an isolated 1.1Lres slot, Yself = 59.6∠− 60.9◦ mS.

As for slots on Substrate I, the two-port self-admittances computed by IE3D appear to

oscillate with a decaying envelope about the self-admittances of the isolated slots that are assumed

constant regardless of d in the reciprocity-expression approach. This is most apparent for the case
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FIGURE 5.40: |Y ext
12 | and |Y int

12 | against d/λCPW for twin slots on Substrate I with L1 = L2 =
0.85Lres, L1 = L2 = 0.95Lres, L1 = L2 = Lres, and L1 = L2 = 1.1Lres. W1 = W2 = 0.4 mm; h1

= 0.813 mm; h2 = 5 mm; εr1 = 3.38; εr2 = 1; lf = 0.5λCPW .

L1 = L2 = Lres as seen in Fig. 5.47, and less so for the cases L1 = L2 = 0.9Lres and 1.1Lres

(Figs. 5.49 and 5.51). The extent of these oscillations are reflected in the “irregularities” of the

IE3D curves for Y12 that are the most marked for the case L1 = L2 = Lres, and least significant

for L1 = L2 = 0.9Lres; also, |Y11| and |Y12| oscillations appear to be synchronized. As before,

discrepancies between IE3D and the reciprocity-expression approach for Y12 are consistent with

differing accounts for self-admittances in the two models.

As noted previously, the reciprocity-expression approach allows for an estimation of the relative

contributions of external and internal mutual admittances to the total mutual admittance,23 and

Fig. 5.53(a)–(c) show Y ext
12 and Y int

12 for each of the cases L1 = L2 = 0.9Lres, Lres, and 1.1Lres. It is

clear that the internal mutual admittance is the dominant contributor. Fig. 5.54 shows the magnitudes

of Y ext
12 and Y int

12 for the above cases on one plot. It is seen that for each of the three slot half-lengths,

the magnitude of the internal mutual admittance is about three times greater than that of the external

mutual admittance when d = 0.9λCPW , and between five and six times greater when d = 3λCPW .

Compared to the corresponding curves for Substrate I (i.e., Fig. 5.39 and Fig. 5.40), the electrically

thicker top layer of Substrate II appears to concentrate the fields more within it, resulting in greater

coupling within the substrate (cf. [12]).

23 The term “estimation” is particularly apt for the L1 = L2 = Lres case; here the biggest difference is observed
between the total mutual admittance obtained using IE3D and the reciprocity-expression approach.
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FIGURE 5.41: Mutual admittance Y12 against broadside distance d/λCPW at 10 GHz for CPW-fed
twin slots with L1 = L2 = 0.9Lres = 6.99 mm on Substrate II. W1 = W2 = 0.7 mm; h1 = 1.21 mm; h2

= 5 mm; εr1 = 6.15; εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.42: Mutual admittance Y12 against broadside distance d/λCPW at 10 GHz for CPW-fed
twin slots with L1 = L2 = Lres = 7.77 mm on Substrate II. W1 = W2 = 0.7 mm; h1 = 1.21 mm; h2 =
5 mm; εr1 = 6.15; εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.43: Magnitude of mutual admittance Y12 against broadside distance d/λCPW at 10 GHz
for CPW-fed twin slots with L1 = L2 = Lres = 7.77 mm on Substrate II. W1 = W2 = 0.7 mm; h1 =
1.21 mm; h2 = 5 mm; εr1 = 6.15; εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.44: Phase of mutual admittance Y12 against broadside distance d/λCPW at 10 GHz for
CPW-fed twin slots with L1 = L2 = Lres = 7.77 mm on Substrate II. W1 = W2 = 0.7 mm; h1 = 1.21
mm; h2 = 5 mm; εr1 = 6.15; εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.45: Mutual admittance Y12 against broadside distance d/λCPW at 10 GHz for CPW-fed
twin slots with L1 = L2 = 1.1Lres = 8.55 mm on Substrate II. W1 = W2 = 0.7 mm; h1 = 1.21 mm; h2

= 5 mm; εr1 = 6.15; εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.46: Two-port self-admittance Y11 against broadside distance d/λCPW for CPW-fed twin
slots with L1 = L2 = Lres = 7.77 mm on Substrate II, and resonant isolated self-admittance Yself

(both computed at 10 GHz with IE3D). W1 = W2 = 0.7 mm; h1 = 1.21 mm; h2 = 5 mm; εr1 = 6.15;
εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.47: Magnitude of two-port self-admittance Y11 against broadside distance d/λCPW for
CPW-fed twin slots with L1 = L2 = Lres = 7.77 mm on Substrate II, and magnitude of resonant
isolated self-admittance Yself (both computed at 10 GHz with IE3D). W1 = W2 = 0.7 mm; h1 = 1.21
mm; h2 = 5 mm; εr1 = 6.15; εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.48: Phase of two-port self-admittance Y11 against broadside distance d/λCPW for
CPW-fed twin slots with L1 = L2 = Lres = 7.77 mm on Substrate II, and phase of resonant isolated
self-admittance Yself (both computed at 10 GHz with IE3D). W1 = W2 = 0.7 mm; h1 = 1.21 mm; h2

= 5 mm; εr1 = 6.15; εr2 = 1; lf = 0.5λCPW .

UNIVERSITY OF PRETORIA – ELECTRICAL, ELECTRONIC & COMPUTER ENGINEERING 106

 
 
 



CHAPTER 5 RECIPROCITY-EXPRESSION APPROACH FOR MUTUAL ADMITTANCE

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

20

40

60

80

100

120

140

160

 d/λ
CPW

M
ag

ni
tu

de
 o

f s
el

f−
ad

m
itt

an
ce

 (
m

S
)

|Y
11

|
|Y

self
|

FIGURE 5.49: Magnitude of two-port self-admittance Y11 against broadside distance d/λCPW for
CPW-fed twin slots with L1 = L2 = 0.9Lres = 6.99 mm on Substrate II, and magnitude of resonant
isolated self-admittance Yself (both computed at 10 GHz with IE3D). W1 = W2 = 0.7 mm; h1 = 1.21
mm; h2 = 5 mm; εr1 = 6.15; εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.50: Phase of two-port self-admittance Y11 against broadside distance d/λCPW for
CPW-fed twin slots with L1 = L2 = 0.9Lres = 6.99 mm on Substrate II, and phase of resonant isolated
self-admittance Yself (both computed at 10 GHz with IE3D). W1 = W2 = 0.7 mm; h1 = 1.21 mm; h2

= 5 mm; εr1 = 6.15; εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.51: Magnitude of two-port self-admittance Y11 against broadside distance d/λCPW for
CPW-fed twin slots with L1 = L2 = 1.1Lres = 8.55 mm on Substrate II, and magnitude of resonant
isolated self-admittance Yself (both computed at 10 GHz with IE3D). W1 = W2 = 0.7 mm; h1 = 1.21
mm; h2 = 5 mm; εr1 = 6.15; εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.52: Phase of two-port self-admittance Y11 against broadside distance d/λCPW for
CPW-fed twin slots with L1 = L2 = 1.1Lres = 8.55 mm on Substrate II, and phase of resonant isolated
self-admittance Yself (both computed at 10 GHz with IE3D). W1 = W2 = 0.7 mm; h1 = 1.21 mm; h2

= 5 mm; εr1 = 6.15; εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.53: Y ext
12 and Y int

12 against d/λCPW computed using the reciprocity-expression approach
for slots on Substrate II with (a) L1 = L2 = 0.9Lres, (b) L1 = L2 = Lres, and (c) L1 = L2 =
1.1Lres. W1 = W2 = 0.7 mm; h1 = 1.21 mm; h2 = 5 mm; εr1 = 6.15; εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.54: |Y ext
12 | and |Y int

12 | against d/λCPW for twin slots on Substrate II with L1 = L2 =
0.9Lres, L1 = L2 = Lres, and L1 = L2 = 1.1Lres. W1 = W2 = 0.7 mm; h1 = 1.21 mm; h2 = 5 mm;
εr1 = 6.15; εr2 = 1; lf = 0.5λCPW .

5.4.2.3 Substrate III: h1 = 0.013λd, h2 = λ0/6, εr1 = 2.2, εr2 = 1

The top layer of Substrate III is substantially thinner electrically than that of Substrate I, i.e., 0.013λd

as opposed to 0.05λd. An 86 Ω CPW feed line was designed on this substrate in IE3D that had

w = 1.2 mm and s = 0.3 mm. Next, an isolated CPW-fed radiating slot with a width W of 0.18

mm was designed to operate at its second resonance at 10 GHz resulting in L = Lres = 12.75

mm and a resonant self-impedance of about 16 Ω. Mutual admittance Y12 against distance d with

0.9λCPW ≤ d ≤ 3λCPW was computed for three instances of twin slots with W1 = W2 = 0.18 mm

throughout, and slot half-lengths of L1 = L2 = 0.9Lres, Lres, and 1.1Lres.

The real and imaginary parts of the mutual admittance Y12 against normalized broadside

distance d/λCPW for twin slots with L1 = L2 = 0.9Lres = 11.48 mm computed using the

reciprocity-expression approach and IE3D are shown in Fig. 5.55. Y12 curves for twin slots with

half-lengths Lres = 12.75 mm and 1.1Lres = 14.03 mm are shown in Figs. 5.56 and 5.57

respectively; feed line lengths were lf = 0.5λCPW throughout. Figs. 5.55–5.57 confirm the main

trends exhibited by slots on Substrates I and II; given this similarity and the detailed investigations

already presented in Sections 5.4.2.1 and 5.4.2.2, the present substrate will not be treated further here.
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FIGURE 5.55: Mutual admittance Y12 against broadside distance d/λCPW at 10 GHz for CPW-fed
twin slots with L1 = L2 = 0.9Lres = 11.48 mm on Substrate III. W1 = W2 = 0.18 mm; h1 = 0.254
mm; h2 = 5 mm; εr1 = 2.2; εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.56: Mutual admittance Y12 against broadside distance d/λCPW at 10 GHz for CPW-fed
twin slots with L1 = L2 = Lres = 12.75 mm on Substrate III. W1 = W2 = 0.18 mm; h1 = 0.254 mm;
h2 = 5 mm; εr1 = 2.2; εr2 = 1; lf = 0.5λCPW .
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FIGURE 5.57: Mutual admittance Y12 against broadside distance d/λCPW at 10 GHz for CPW-fed
twin slots with L1 = L2 = 1.1Lres = 14.03 mm on Substrate III. W1 = W2 = 0.18 mm; h1 = 0.254
mm; h2 = 5 mm; εr1 = 2.2; εr2 = 1; lf = 0.5λCPW .

5.4.2.4 Effect of shift in two-port reference planes

Noting that a shift in reference planes has impedance transformation implications, Y12 against d was

computed for broadside twin slots on Substrate I with L1 = L2 = Lres, and CPW feed lines of length

lf = 0.4λCPW (instead of 0.5λCPW as before). Results obtained using the reciprocity-expression

approach and IE3D are shown in Fig. 5.58. The IE3D result is now free from the “irregular”

behaviour displayed in Fig. 5.26 for feed line lengths of 0.5λCPW , and the agreement between

the two methods is quite good. Fig. 5.59 shows the real and imaginary parts of the two-port

self-admittance Y11 against d/λCPW , as well as the isolated self-admittance Yself computed using

a 0.4λCPW feed line; the quantities are in close agreement. The moment-method (IE3D) Y11 is

essentially free from the oscillatory behaviour about the isolated slot self-admittance seen in the

lf = 0.5λCPW case (cf. Fig. 5.30). Hence, when reference planes are defined at the ends of

feed lines of length lf = 0.4λCPW , the assumption in the reciprocity-expression method of slot

self-admittances that do not change from the isolated slot self-admittance value as d varies, is borne

out by the IE3D two-port Y11. This explains the good agreement between the two methods in regard

to Y12 of Fig. 5.58.

In a further step, the IE3D Y parameters of Figs. 5.58 and 5.59 were transformed to the original

reference planes at the ends of lf = 0.5λCPW feed lines by converting them to S parameters using
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FIGURE 5.58: Mutual admittance Y12 against broadside distance d/λCPW at 10 GHz for CPW-fed
twin slots with L1 = L2 = Lres = 10.87 mm on Substrate I with lf = 0.4λCPW . W1 = W2 = 0.4 mm;
h1 = 0.813 mm; h2 = 5 mm; εr1 = 3.38; εr2 = 1.
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FIGURE 5.59: Two-port self-admittance Y11 against broadside distance d/λCPW for CPW-fed twin
slots with L1 = L2 = Lres = 10.87 mm on Substrate I with lf = 0.4λCPW , and isolated slot
self-admittance Yself (both computed with IE3D at 10 GHz). W1 = W2 = 0.4 mm; h1 = 0.813
mm; h2 = 5 mm; εr1 = 3.38; εr2 = 1.

standard formulas [90, Table 4.2], multiplying these S parameters by a phase factor corresponding

to an outward shift in reference planes of 0.1λCPW , and converting the transformed S parameters
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back to Y parameters. Results for Y11 and Y12 were very close to the original IE3D Y11 and Y12

of Figs. 5.30 and 5.26, suggesting that these 0.1λCPW sections of CPW for the original twin slot

configuration (lf = 0.5λCPW ) fulfill a largely impedance-transforming role in the manner of

sections of transmission line, with minimal coupling to other slots in the twin slot configuration.

Transforming the reciprocity-expression Y12 of Fig. 5.58 (lf = 0.4λCPW ) in conjunction with

Yself of Fig. 5.59 (lf = 0.4λCPW ) back to reference planes corresponding to lf = 0.5λCPW ,

yielded a Y12 in close agreement with the original IE3D-computed Y12 of Fig. 5.26, as shown in

Fig. 5.60 (in the 2 × 2 matrix of two-port Y parameters, the positions on the diagonal were filled

by Yself for all values of d). Notably, the reciprocity-expression Y12 curves now are “irregular”

in a manner similar to the IE3D curves obtained for lf = 0.5λCPW . This suggests that the

reciprocity-expression approach can be used as follows to obtain Y12 curves for Lres twin slots –

referred to the centres of radiating slots – that take on the “irregular” behaviour of the corresponding

IE3D curves. First, identify a set of reference planes (and the corresponding feed line lengths) for

which Y11 against d is relatively constant. Second, since the reciprocity-expression assumption of

unchanging self-admittances would apply, determine Y12 using the reciprocity-expression method;

this includes a once-off moment-method analysis of the corresponding isolated slot, which could

yield the isolated self-admittance Yself in addition to the required slot field and terminal voltage.

Finally, construct an approximate Y parameter matrix from Yself and Y12 for each value of d, and

transform it to lf = 0.5λCPW reference planes as described above.

In order to confirm the above observations, Y12 against d was computed for CPW-fed twin

slots with L1 = L2 = Lres and W1 = W2 = 0.7 mm on Substrate II with feed lines of length

lf = 0.4λCPW . Results obtained using the reciprocity-expression approach and IE3D are shown

in Fig. 5.61. The agreement between the two methods is very good. Fig. 5.62 shows the real

and imaginary parts of the two-port self-admittance Y11 against d/λCPW , as well as the isolated

self-admittance Yself computed using a 0.4λCPW feed line; the quantities are in very close

agreement. Hence the assumption in the reciprocity-expression method of slot self-admittances that

do not change with d is validated by the IE3D two-port Y11, explaining the good agreement between

the two methods with respect to Y12 in Fig. 5.61.

As before, the IE3D Y parameters of Figs. 5.61 and 5.62 were transformed back to reference

planes at the ends of the original lf = 0.5λCPW feed lines. Results for Y11 and Y12 were virtually

identical to the original IE3D Y11 and Y12 of Figs. 5.46 and 5.42, suggesting in regard to the original

twin slot configuration (lf = 0.5λCPW ) that there is negligible interaction between the outermost

0.1λCPW sections of CPW and the rest of the structure. Hence these 0.1λCPW sections of CPW
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FIGURE 5.60: Mutual admittance Y12 against broadside distance d/λCPW at 10 GHz for CPW-fed
twin slots with L1 = L2 = Lres = 10.87 mm on Substrate I. Reciprocity-expression results were
transformed from reference planes lf = 0.4λCPW to lf = 0.5λCPW (IE3D results are the same as in
Fig. 5.26). W1 = W2 = 0.4 mm; h1 = 0.813 mm; h2 = 5 mm; εr1 = 3.38; εr2 = 1.

appear to behave in a purely transmission-line-like manner.

Transforming the reciprocity-expression Y12 of Fig. 5.61 (lf = 0.4λCPW ) in conjunction with

Yself of Fig. 5.62 back to reference planes corresponding to lf = 0.5λCPW in the manner described

above, yielded a Y12 in close agreement with the original IE3D-computed Y12 of Fig. 5.42, as shown

in Fig. 5.63 (in the matrix of two-port Y parameters, the positions on the diagonal were filled by

Yself for all values of d). As in the Substrate I case, the reciprocity-expression Y12 curves were

now “irregular” in a manner similar to that of the IE3D curves obtained for lf = 0.5λCPW . This

confirms that accurate Y12 curves referred to the centres of radiating slots can be obtained from the

reciprocity-expression approach in the manner proposed above.

5.4.2.5 Experimental results

Y12 against frequency was computed using the reciprocity-expression approach and IE3D for a twin

slot configuration with a layout such as that of Fig. 5.1 on Substrate I (see Section 5.4.2.1) using

fixed radiating slot dimensions L1 = L2 = Lres, 10 GHz = 10.87 mm and W1 = W2 = 0.4 mm, and

a fixed inter-slot spacing d = λCPW, 10 GHz = 21.5 mm, where Lres, 10 GHz and λCPW, 10 GHz are

the slot second-resonant half-length and CPW wavelength respectively at 10 GHz (CPW dimensions

were those of Section 5.4.2.1).
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FIGURE 5.61: Mutual admittance Y12 against broadside distance d/λCPW at 10 GHz for CPW-fed
twin slots with L1 = L2 = Lres = 7.77 mm on Substrate II with lf = 0.4λCPW . W1 = W2 = 0.7 mm;
h1 = 1.21 mm; h2 = 5 mm; εr1 = 6.15; εr2 = 1.
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FIGURE 5.62: Two-port self-admittance Y11 against broadside distance d/λCPW at 10 GHz computed
with IE3D for CPW-fed twin slots with L1 = L2 = Lres = 7.77 mm on Substrate II with lf =
0.4λCPW . W1 = W2 = 0.7 mm; h1 = 1.21 mm; h2 = 5 mm; εr1 = 6.15; εr2 = 1.

The twin slot configuration was subsequently etched on RO4003C laminate that served as top
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FIGURE 5.63: Mutual admittance Y12 against broadside distance d/λCPW at 10 GHz for CPW-fed
twin slots with L1 = L2 = Lres = 7.77 mm on Substrate II. Reciprocity-expression results were
transformed from reference planes lf = 0.4λCPW to lf = 0.5λCPW (IE3D results are the same as in
Fig. 5.42). W1 = W2 = 0.7 mm; h1 = 1.21 mm; h2 = 5 mm; εr1 = 6.15; εr2 = 1.

dielectric layer (RO4003C has εr = 3.38 ± 0.05 and tan δ = 0.0027 at 10 GHz [91]); polystyrene

was used for the bottom (air) layer. The CPW feed lines were each extended for 9λCPW, 10 GHz

beyond the lf = 0.5λCPW, 10 GHz reference planes to allow for proper gating out in the time-domain

of transition phenomena associated with the coax-launcher-to-CPW transitions at the edges of the

substrate; measured S parameters were subsequently transformed back to the lf = 0.5λCPW, 10 GHz

reference planes taking into account dielectric and conductor losses on the CPW extensions that were

estimated via a reflection measurement involving a short-circuited section of CPW transmission line.

S parameters were converted to Y parameters using standard relations [90, Table 4.2]. Fig. 5.64 shows

good agreement between the computed and measured mutual admittance Y12 against frequency for

the above twin slots.

5.5 CONCLUSIONS

An approach based on a well-known reciprocity-based expression was developed for finding the

mutual admittance between two broadside CPW-fed slots on a conductor-backed two-layer substrate.

The approach is simpler than a full moment-method analysis, and hence more amenable to repeated

evaluation in an array design procedure. It entails a number of simplifying assumptions: these include

negligible interaction of radiating slots with CPW feed lines, and of feed lines with themselves; and
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FIGURE 5.64: Mutual admittance Y12 against frequency of CPW-fed twin slots on Substrate I. L1 =
L2 = Lres, 10 GHz = 10.87 mm; W1 = W2 = 0.4 mm; d = λCPW, 10 GHz = 21.5 mm; h1 = 0.813
mm; h2 = 5 mm; εr1 = 3.38; εr2 = 1.

a radiating slot aperture field that is directed across the width of the slot. In order to compute Y12

between two CPW-fed slots against inter-slot spacing d, the reciprocity-expression approach requires

the electric field and “terminal” voltage of each slot radiating in isolation (i.e., the voltage at the end

of the CPW feed line, which includes the effect of the CPW-to-radiating-slot transition). This implies

the necessity of a once-only moment-method analysis of each isolated slot.

The logistic implications for an array design procedure is not excessive, since in traditional

design algorithms [19, 35], isolated slot self-admittance data need to be generated anyway (typically

by means of the moment method). Afterwards, the reciprocity-expression approach allows for the

mutual admittance between slot pairs of arbitrary dimensions and inter-slot spacings to be evaluated

using isolated slot terminal voltages in conjunction with isolated slot electric field distributions.

Alternatively, only the complex amplitude of the slot field (as opposed to the complete field

distribution) can be extracted from the isolated slot analysis, and then used to scale generic functions

that approximate the slot field; for example, it is straightforward to relate piecewise sinusoidal

functions to slot field magnitudes.

The reciprocity-expression approach evaluates external and internal contributions to the total

mutual admittance separately. The internal mutual admittance formulation required derivation

of a spatial-domain Green’s function for finding the x̂-component of the magnetic field inside
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the two-layer parallel-plate substrate due to an x̂-directed equivalent surface magnetic current

density representing a radiating slot in the top conducting plate. From known spectral-domain

equivalent circuits for general layered media, equivalent circuits for the TM and TE contributions

to the x̂-component of the magnetic field of an appropriately-positioned x̂-directed HMD in

the conductor-backed two-layer substrate were obtained. Using these as a starting point, the

spatial-domain Green’s function was determined as a sum of singular Sommerfeld-type integrals (to

the knowledge of the author, this has not been published before); treatment of the singularities was

discussed.

Using the reciprocity-expression approach, mutual admittance Y12 against slot separation d was

computed for broadside CPW-fed twin slots and some non-identical slot pairs on three different

conductor-backed two-layer substrates. The substrates had the same air bottom layer, and top layers

of contrasting dielectric thickness. For each substrate, three or four broadside twin slot configurations

were considered that had radiating slot half-lengths in the vicinity of the second-resonant half-length

of an isolated slot on the substrate. Results from the reciprocity-expression method were compared

to results from moment-method-based simulations using IE3D.

Good agreement was observed between the above methods when Y parameter calculations were,

as is customary, referred to radiating slot centres by choosing CPW feed lines that were 0.5λCPW

long. The greatest discrepancy occurred for twin slots that had the same half-length as an isolated

second-resonant slot on the substrate. Here, IE3D curves appeared like “irregular” versions of the

reciprocity-expression curves, with the deviation the most marked for the substrate with the top layer

that had the greatest dielectric thickness. (The effect was considerably less marked for twin slots

with half-lengths away from the isolated second-resonant half-length, and virtually unobservable for

half-lengths that were 10-15% shorter than the resonant half-length.) Further investigation linked the

discrepancy for the resonant-length slots to the manner in which slot self-properties are accounted

for in the two models: the reciprocity-expression approach assumes unchanging slot self-admittance

values equal to the corresponding isolated slot self-admittances, while IE3D in fact predicted

two-port self-admittances that were not constant as a function of inter-slot distance, “oscillating”

about the isolated slot self-admittances.

By contrast, completely “regular” IE3D mutual admittance curves, as well as essentially constant

two-port self-admittance curves that equalled the isolated slot self-admittance values, were obtained

for resonant-length slots when a shift of reference planes was established by reducing feed line

lengths, i.e., to 0.4λCPW in this particular case. Reciprocity-expression Y12 calculations furthermore

matched the IE3D results very closely. Starting from this finding, it was established that more
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accurate (i.e., “irregular” in the above sense) Y12 curves for the resonant-length slots (referred to

the centres of radiating slots) can be obtained from the reciprocity-expression approach as follows.

First, identify a set of reference planes (and corresponding feed line lengths) for which Y11 against

d is essentially constant (e.g., 0.4λCPW in the above case). Second, since the reciprocity-expression

assumption of unchanging self-admittances would be valid, determine Y12 with respect to the

new reference planes using the reciprocity-expression method; this of course includes a once-off

moment-method analysis of the corresponding isolated slots, which for each slot could yield the

isolated self-admittance Yself in addition to the terminal voltage and electric field. Finally, construct

an approximate Y parameter matrix from Yself and Y12 for each value of d, and transform it to the

desired lf = 0.5λCPW reference planes.

Using the reciprocity-expression approach, it was possible to estimate external and internal

contributions to the mutual admittance. For the reference substrate, the internal contribution clearly

was predominant with a magnitude of more than double that of the external mutual admittance.

The relative size of the internal mutual admittance increased as the dielectric thickness of the top

layer was increased. The predominance of internal mutual admittance is contrary to the case of

longitudinal slots in the broad wall of rectangular waveguide, where in general the external coupling

is most pronounced [19, 20].

For the purposes of experimental verification, Y12 was computed against frequency for a fixed

twin slot configuration on one of the above conductor-backed two-layer substrates using both of the

above methods. The antenna was manufactured and its S parameters measured; when converted to

Y parameters, the measured Y12 agreed well with computations using the reciprocity-expression

approach and IE3D.

In conclusion, the present chapter reveals the reciprocity-based approach for mutual admittance

calculations between CPW-fed slots on a two-layer parallel-plate substrate to be a viable alternative

to a moment-method-based approach. The reciprocity-expression approach would however be

significantly simpler to implement in an array design procedure.
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