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Chapter 2: Diffraction synthesis and radiation pattern computation for reflector
antennas

2.2.1. Calculation of specular points

The UTD implementation on the subreflector consists of an evaluation of the reflected
field and the edge diffracted field . The reflected field is calculated by finding the
specular point on the subreflector using the known feed positicn and the known point
on the main reflector where the retlected field needs to be evaluated. In the
subreflector coordinate system as shown in Figure 2 let (x,, ., z) be the specular point
on the subreflector, (Xg, s, 24 ) the feed position and {xm, Y, Zim) the point on the main

eflector where the reflected field needs to be calculated. The direction cosines for the

incident and reflected rays are given by

(x,s - xr)

L =
o RO
A
M, = («‘1’_;__{_)_ , and (2.5-2.7)
A
{
where
[ 2 2 { 32
R, = e, = x) + b =) e -2 (28)
and
(xs - xln)
L, = =
1
' (ys - y{n) , (2.9-2.11)
M, = ——F——
R,
(3« - 31}
N, = % .
where
/ 2 2 2 :
Rl = “j(“xs - x!n) + (y: - yin) + {25 a Z!n} {2‘12}

- [ of af of . SR
n:\\” £, + fy‘ + o= {2.13)
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Chapter 2: Diffraction synthesis and radiation pattern computation for reflecto

-
i
antennas

The incident magnetic field is found by using GTD on the feed/subretlector

. - KR -7
4 = Jj. J :_,———jai
;o R =T
H =V x 4, and
— 1 —
E = —V x H
JOH

Substituting the far-field approximation |[R - 7|

the caicuiation of the required field quantities.

— it

o A (. A »
A= kg 08— 1,4), and
- — ki / . ~\
E = jkn AR \Y{,G + !’ﬂi)
where
T = [[ J@e as

o

scattered fields

(2.63)

(2.64)

(2.65)

. 7' into (2.63) allows

4

(2.66)

(2.68)

The integration in {2.14} 1s performed on the main reflector surface with the help of the

surface Jacobian transformation given by
| 2 2
PR A [ 5 .59
g -+ -+ .
: \j\&x") 5v)
so that (2.68) 15 given by
T Fro L JRF It
o= .ﬂ- J{?")e'] ' Jsdb (270)
s
Equation (2.70) can be simplified by introducing the following definitions
Ja, Yy = T (2.71)
and
FUPo= 2 cos 8 4+ wx' + (2.72)
where
u = sin & cos ¢ , and (2.73%
25
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Chapter 4: Mechanical design of the dual reflector antenna

é’a o 0
{a yNen}+— {agwnu LN, —=Ng taga, (=L +q,) =0, @2)

o& an ? Rﬂ
7 % N N
g{anQé,}+§;{a5Q”}—a§an{—é—§—+ Eg)+a5a?}q§:o ,  (4.3)
g Ay
{a Mg}Jr {ag §}+ on Mfﬂ_ Py M”—a(fa??(Qé—mg):O, (4.4)

o o
oMot o % tasM, }+——;M” E;‘f-Még—05505,7(42,?-m,:,):o (45)

where the o’s are defined as the scaling factor, M is defined as the stress couple, N is
the stress resultant, Q is the transverse shear stress resultant m is the moment load and
q is the surface load. For certain shell shapes and actuation strategies equations (19-
23) can be solved in closed form [20]. In this study, however, the solution was found
by employing finite element analysis on the curved structure. In order to accomplish
this task, 3600 (8 node) shell elements were used to discretize the reflector. The shell
elements were configured to form the subreflector shape needed for the initial required
geographical coverage area. Whenever a different shape is needed, high deflection
piezoelectric actuators are utilized to force a new shape. In this case twenty three high
deflection actuators were mounted at various points on the structure as shown in
Figure 20. Note that the black dots represent actuator attachment locations on the
internal surface. They were divided into 16 on the internal surface and 7 located at
discrete points along the perimeter. Each actuator is made up of a stack of high
deflection piezoelectric wafers called Rainbows as shown in Figure 21. A single wafer
is dome shaped and capable of a deflection of about 0.5 mm. The equations that were
utilized in modeling the deflection emanating from the Rainbows can be found in
Reference [21]. To increase the deflection of an actuator comprised of these wafers,
the wafers were placed in a clamshell configuration as shown in Figure 22. The
actuator that is utilized in this study consists of a stack of 40 Rainbow actuators with a
2 inch diameter. This means that a clamshell stack of 40 is capable of about 2.0 cm of

deflection.
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Chapter 4. Mechanical design of the dual reflector antenna

mm contour intervals. Figure 27 shows the mechanically achievable surface and the

calculated co-polarized radiation pattern.

For the mechanical design a stationary feed constriction was assumed but two further
diffraction syntheses were made adjusting the feed in the subreflector mother surface
symmetry axis direction (z,) and in the (x, -y;) plane. This reduced the required
maximum surface deviation from 22mm to 12mm. The ability to adjust the feed gives a
large degree of freedom in contour beam synthesis but may not be practical in many

cases due to the ngidity of the feed network elements.

The feasibility of a practical reconfigurable contour beam antenna using a dual offset
reflector configuration with an adjustable subreflector surface has been showed by a
practical design of an adjustable surface. The next and most important step is to
develop synthesis procedure incorporating a mechanical finite element (FEM) model

using shell elements. This will be shown in the next section.
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Chapter 5; Contour beam synthesis using the mechanical FEM surface description

A mechanical finite element Delphi unit was then developed by Yoon [30] using a shell
description of the surface. This unit was added and used in the synthesis software. The
surface description could now be made directly in terms of actuator amplitudes and
synthesis can thus also be performed directly in terms of the actuator amplitudes. This
unique tool for contour beam synthesis is the main contribution of this work and is
described in Chapter 5 where a case study to implement a rotating elliptical beam and

three shaped beams in reconfigured configuration are also described.

Future work will concentrate on optimizing actuator numbers and placement as well as
a method to use piezoelectric strips bonded to the back of the reflector surfaces. This

will work will likely be performed under sponsorship from a major aerospace company.
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Chapter 5: Contour beam synthesis using the mechanical FEM surface description
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