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Chapter 7.0 

Roof support design methodology  

7.1 Introduction 
 

In order to develop an engineering design, it is essential to understand the roof and support 

behaviour and the interaction between them. A detailed analysis of the data given in the 

previous Chapters was therefore conducted and the results are presented in this Chapter.  

 

As demonstrated in the previous Chapters that in an underground environment rock and 

support properties and performances can vary significantly within a short distance. The roof 

stability is strongly dependent on these varying properties of roof-support system. These 

properties can be described using deterministic and/or probabilistic models. Deterministic 

models typically use a single discrete descriptor for the parameter of interest. Probabilistic 

models however describe parameters by using discrete statistical descriptors or probability 

distribution (density) functions. Therefore, a roof support design methodology based on 

probabilistic approach has been developed and presented in this Chapter. It is considered that 

for real world roof support problems, the values of input parameters are not constant and a 

single safety factor cannot be used.  

 

It is however not intended to present a complete and rigorous treatment of the fundamentals of 

probabilistic design approach, therefore the formal theory of probability is summarised and a 

functional description is presented. 

 

7.2 Support design based on a probabilistic approach 
 

In traditional deterministic (calculation of a single safety factor) roof bolt design methodologies, 

the input parameters are represented using single values. These certain values are described 

typically either as “best guess” or “worse case” values. However, investigations into the roof and 

roof bolt behaviour presented throughout this thesis suggest that the input parameters, including 

the mining geometries, rock and support properties can vary significantly within a few meters in 

a panel and also from one support product to another. This is the fundamental principal of 

probabilistic design approach, which is the recognition of that these factors which govern the 

roof stability and support performance exhibit some degree of natural uncertainty. Ideally, this 

uncertainty should be accounted for in the design method. While deterministic approaches 

provide some insight into the underlying mechanisms, they are not well-suited to making 
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predictions to roof support decision-making, as they cannot quantitatively address the risks and 

uncertainties that are inherently present. In a probabilistic design method however, the 

stochastic nature of the input parameters are included and therefore, it is possible to 

quantitatively represent uncertainties thus the resulting probability of failures. Dealing with 

probabilities of failure rather than safety factors means that it is acknowledged that realistically 

there is always a finite chance of failure, although it can be very small.  

 

7.2.1 Rules of probability 

 

The first rule of probabilistic approach is that, by convention, all probabilities are numbers 

between 0 and 1. A probability of 0 indicates an impossible event, and a probability of 1 

indicates an event certain to happen. Most events of interest have probabilities that fall between 

these extremes.  

 

The second rule states that, if two events are dependent (i.e., knowing the outcome of one 

provides information concerning that the other will occur), then the probability that both events 

will occur is given by the product of their combined probabilities. Assume, E1 and E2 are two 

events and the event that both E1 and E2 occur is described as P[E1E2] and is calculated: 

[ ] [ ] [ ]12121 / EExPEPEEP = [7-1]

where P[E2/E1] is the probability of E2 occurring given that E1 has taken place. If E1 and E2 are 

independent, that is the occurrence of one does not affect the probability of occurrence of the 

other, indicating that the probability of two independent events occurring is the product of their 

individual probabilities: 

[ ] [ ]212 / EPEEP = [7-2]

[ ] [ ] [ ]2121 ExPEPEEP = [7-3]

Probabilistic methods have long been used mainly in civil and other engineering disciplines. 

Examples of this can be found where probabilistic design methods are used almost routinely to 

assess the failure probability of building structures and rock slopes.  

 

7.2.2 Methodology of probabilistic approach 

 

The general methodology of probabilistic approach assumes that the load (L) and the strength 

(S) of a structure can be described by two probability density functions, respectively, as shown 

in Figure 7-1. The respective mean and standard deviations of each distribution is denoted mS 

and ss for the strength, and mL and sL for the load. From Figure 7-1 it can be seen that the two 

curves overlap meaning that there exist values of strength which are lower than the load, thus 
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implying that failure is possible in this overlap area. In a purely deterministic approach using 

only the mean strength and load, the resulting factor of safety would have been significantly 

larger than unity which implies stable conditions.  

 

To be able to calculate the probability that the load exceeds the strength of a construction 

element, it is common in Civil Engineering to define a safety margin, SM, as 

= −SM S L [7-4]

The safety margin is one type of performance function which is used to determine the probability 

of failure. The performance function is often denoted G(X), hence: 

( ) ( ) ( )G X S X L X= − [7-5]

where X is the collection of random input parameters which make up the strength and the load 

distribution, respectively. An alternative formulation of the performance function which is often 

used in geomechanics involves the factor of safety, FS. Failure occurs when FS is less than unity, 

hence the performance function is defined as: 

1)( −= SFXG [7-6]
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Figure 7-1 Hypothetical distribution of the strength and the load 

 

The probability density function (PDF) for the safety margin is illustrated in Figure 7-2. This 

Figure indicates that failure occurs when the safety margin is less than zero. The probability of 

failure (PoF) is the area under the density function curve for values less than zero, as shown in 
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Figure 7-2. The reliability of a structure, on the other hand, is defined as the probability that the 

construction will not fail. The same concept applies to any performance function. 

 

Assuming that the performance function can be expressed according to either Equation [7-5] or 

[7-6] and that the strength and load distributions can be defined, using a 3-level analysis (Level 

1, Level 2 and Level 3), probability of failure can be calculated. A Level 1 analysis is basically a 

deterministic analysis, i.e. only one parameter value is used for every variable. In a Level 2 

analysis, each stochastic variable is characterized by two parameters, the mean and the 

standard deviation, as described above. A Level 3 analysis is the most complete and 

sophisticated method of assessing the probability since the exact statistical characteristics of all 

variables are taken into account and the joint probability density functions are calculated. Level 

3 analysis is fairly uncommon since it often is very difficult to describe and quantify the “joint 

probability density functions” (Mostyn and Li, 1993).  
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Figure 7-2 Hypothetical distribution of the safety margin, SM. 

 

In practical Civil Engineering design, Level 2 analysis is most commonly used and found 

acceptable (Sjoberg, 1996). Level 2 analysis is also adopted in this thesis. In this approach, the 

probability of failure is evaluated using a reliability index, β , defined in terms of the mean and 

the standard deviation of the trial factor of safety: 

G
s

mG 1−
=β [7-7]
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where mG and sG are the mean and standard deviation of the performance function, respectively. 

The reliability index (RI) is thus a measure of the number of standard deviations separating the 

mean factor of safety from its defined failure value of 1.0, Figure 7-2. It can also be considered 

as a way of normalising the factor of safety with respect to its uncertainty. When the shape of 

the probability distribution is known, the reliability index can be related directly to the probability 

of failure. In Civil Engineering, especially in building construction design, the reliability index has 

been linked to safety classes for buildings. This will be discussed in detail further in this 

Chapter.  

 

Exact solutions for calculating the failure probability is only possible for simple cases. The 

performance function contains several variables describing the load and strength and is 

therefore often non-linear, which prohibits exact analytical solutions. A commonly used 

approximate method is the first-order-second-moment method (FOSM) in which the 

performance function is approximated by a polynomial expansion into a linear expression. Using 

a linear expression, the mean and standard deviation of the performance function and also the 

reliability index can be calculated using standard statistical formulae (Mostyn and Li, 1993). The 

resulting distribution of the performance function can be assumed to be a normal distribution, 

according to the central limit theorem (Kreyszig, 1988). Consequently, the resulting failure 

probability can be calculated as ( )β−Φ  where Φ is the standardised normal distribution which 

can be found tabulated (Kreyszig, 1988). The FOSM provides no information about the shape of 

the probability density function. To estimate any probability, the shape of the probability 

distribution of the output has to be assumed. This assumption of, typically, a normal or a 

lognormal distribution introduces a source of inaccuracy. 

 

An alternative technique is the point estimate method (PEM), which is based on the precept that 

a probability distribution can be represented by point estimates. In this method the performance 

function is evaluated 2N times (N being the number of input variables) to obtain the mean and 

standard deviation of the performance function (Rosenblueth, 1975). This method is very simple 

for two-three variables and does not require extensive mathematical derivations, however, 

become impractical for large numbers of input parameters. 

 

Another slightly different definition of the reliability index is that given by Hasofer and Lind 

(1974), in which the reliability index is defined as the shortest distance from the origin and to the 

boundary of the limit state. The function is the limit state is determined from the performance 

function by transforming to statistically uncorrelated variables. The reliability index β can then be 

determined iteratively. Hasofer-Lind’s (1974) method is common in building construction design 

but has limitations regarding how complex the performance function can be to do the 

transformation to uncorrelated parameter space.  
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All of the above methods are analytical means of determining the reliability index from a number 

of stochastic variables which make up the performance function. In cases where the 

performance function is complex and contains a large number of variables, a simulation 

technique can instead be used. The most common simulation technique is the Monte Carlo 

method. In this method, the distribution functions of each stochastic variable must be known. 

From each distribution, a parameter value is sampled randomly and the value of the 

performance function calculated for each set of random samples. If this is repeated a large 

number of times, a distribution of the performance function is obtained. The probability of failure 

can be calculated as the ratio between the number of cases which failed and the total number of 

simulations. Alternatively, the mean and standard deviation of the performance function 

distribution (factor of safety) can be calculated to yield the reliability index from which the failure 

probability can be determined using tabulated values for the standardised normal distribution 

(Kim et al. (1978); Mostyn and Li (1993)).  

 

Monte Carlo simulation is thus a procedure in which a deterministic problem is solved a large 

number of times to build a statistical distribution. It is simple and can be applied to almost any 

problem and there is practically no restriction to the type of distribution for the input variables. 

The drawback is that it can require substantial computer time. This becomes especially 

important when relatively small probabilities are expected and hence many iterations are 

required to obtain a reliable measure of the tails of the distribution. To overcome this, more 

efficient Latin Hypercube sampling technique has been developed. In this method, stratified 

sampling is used to ensure that samples are obtained from the entire distribution of each input 

variable. This results in much fewer samples to produce the distribution of the performance 

function, in particular for the tails of the distribution (Nathanail and Rosenbaum, 1991; Pine, 

1992). With today’s powerful computers and widely available softwares, such as RiskAMP 

(utilised in this thesis) and @RISK, computational time has become less of a problem and 

Monte Carlo methods prevail as the most common simulation techniques.  

 

In general, the implementation of Monte Carlo method involves: 

 

• Selection of a model that will produce a deterministic solution to a problem of interest. 

• Decisions regarding which input parameters are to be modelled probabilistically and the 

representation of their variabilities in terms of probability distributions. 

• Repeated estimation of input parameters that fit the appropriate probability distributions 

and are consistent with the known or estimated correlation between input parameters. 

• Repeated determination of output using the deterministic model. 

• Determination of the probability density function of the computed output. 

 
 
 



 

294 

 

As mentioned above, the fundamental to the Monte Carlo method is the process of explicitly 

representing the uncertainties by specifying inputs as probability distributions. By describing the 

process as a probability distribution, which has its origins in experimental/measurement 

continuous data, an outcome can be sampled from the probability distributions, simulating the 

actual physical process/measurement.  

 

This process requires a collection of actual measurements and determining the best fits to the 

data using the goodness of fit tests (GOF). GOF tests measure the compatibility of a random 

sample with a theoretical probability distribution function. Three most common GOF tests are: 

 

• Kolmogorov-Smirnov  

• Anderson-Darling  

• Chi-Squared 

 

The details of the probability distributions, GOF tests and random selection of design 

parameters are given in Section 7.6.  

 

7.2.3 Required number of runs in Monte Carlo simulation 

 

Probabilistic analysis using the Monte Carlo simulation involves many trial runs. The more trial 

runs used in an analysis, the more accurate the statistics will be. The number of required Monte 

Carlo trials is dependent on the desired level of confidence in the solution as well as the number 

of variables being considered (Harr, 1987), and can be estimated from: 

( )

m

mc
dN 









−
= 2

2

14 ε
[7-8]

where Nmc = number of Monte Carlo trials, d = the standard normal deviate corresponding to the 

level of confidence, ε = the desired level of confidence (0 to 100%) expressed in decimal form; 

and m = number of variables.  

 

The number of Monte Carlo trials increases geometrically with the level of confidence and the 

number of variables. For example, if the desired level of confidence is 90%, the normal standard 

deviate will be 2.71, the number of Monte Carlo trials will be 68 for one variable, 4,575 for two 

variables, and 309,445 for three variables. Theoretically, for a 100% level of confidence, an 

infinite number of trials would be required. 

 

 
 
 



 

295 

For practical purposes, the number of Monte Carlo trials is usually in the order of thousands. 

This may not correspond to a high level of confidence when multiple variables are being 

considered; however, the statistics computed from the Monte Carlo simulations are typically not 

very sensitive to the number of trials after a few thousands trials (Allen et al., 2002). 

 

7.2.4 Acceptable probability of stability 

 

Another important consideration in using the probabilistic approach is to use an acceptable PoF 

in the design.  

 

Vrijling and van Gelder (1998) defined the following three kinds of limit states to construct a 

breakwater and recommended probability of failures depending on the failure characteristics: 

 

i) Ultimate Limit States (ULS), describing immediate collapse of the structure. 

ii) Serviceability Limit States (SLS), describing loss of function of the structure without 

collapse 

iii) Accidental Limit States (ALS), describing failure under accident conditions (collision, 

explosions). 

 

Vrijling and van Gelder (1998) stated that usually low PoF required for ULS compared to SLS 

and ALS in which the effects of failure are easily reversed. 

 

Vrijling and van Gelder (1998) developed the following classification and Table 7-1 to be used in 

the design of vertical breakwaters considering the probability of loss of life due to failure of the 

structure: 

 

• Very low safety class, where failures implies no risk to human injury and very small 

environmental and economic consequences. 

• Low safety class, where failures implies no risk to human injury and some environmental 

and economic consequences. 

• Normal safety class, where failures implies risk to human injury and significant 

environmental pollution and high economic or political consequences. 

• High safety class, where failures implies risk to human injury and extensive 

environmental pollution and high economic or political consequences. 
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Table 7-1 Acceptance probability of failures for different safety class (after Vrijling 

and van Gelder, 1998)  

Design Probability of Failure Limit State Type Very Low Low Normal High 
SLS / ALS 40% 20% 10% 5% 
ULS 20% 10% 5% 1% 

 

Form the above Table it is evident that even in ultimate limit state 10 to 5 per cent probability is 

acceptable for low to normal safety classes. 

 

The probabilities used in the design of open cast slopes are discussed with Priest and Brown 

(1983) and Pine (1992), who defined acceptance criteria according to Table 7-2. 

 

This Table indicates that for benches, probability of failure of around 10 per cent is accepted, 

whereas for an overall slope, a failure probability of less than 1 per cent would be more suitable.  

 

Table 7-2 Acceptance criteria for rock slopes (after Priest and Brown, 1983; Pine, 

1992)  

Category and 
Consequences of failure 

Example 
Reliability Index 

(β) 
Probability of 

Failure  

1. Not serious Non-critical benches 1.4 10% 

2. Moderately serious 
Semi-permanent 

slopes 
2.3 1 – 2 % 

3. Very Serious 
High/permanent 

slopes 
3.2 0.3% 

 

A design criteria based on probability of failure is also recommended for Western Australian 

open cast mines, Table 7-3. These design criteria have been developed from a combination of 

DME assessment of open cast mines in Western Australia and a selection of published 

literature.  

 

Similarly, this Table suggests a probability of failure of 1 per cent as acceptable in serious 

slopes. This decreases to 0.3 per cent in populated areas where the slopes are near public 

infrastructures.  

 

Based on these previous experiences, the probabilistic design criteria presented in Table 7-4 is 

tentatively suggested for roof bolting system design. It is however recommended that this 

design criteria should be evaluated before fully implemented in underground coal operations. 
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Table 7-3 Examples of design criteria for open pit walls (after DME, 1999) 

Wall 
class 

Consequence 
of Failure 

Design Probability 
of Failure 

Pit wall examples 

1 Not Serious Not applicable 

Walls (not carrying major infrastructure) where 

all potential failures can be contained within 

containment structures. 

2 
Moderately 

Serious 
10% Walls not carrying major infrastructure. 

3 Serious 1% 
Walls carrying major mine infrastructure (e.g. 

treatment plant, ROM pad, tailings structures). 

4 
Very 

Serious++ 
0.30% 

Permanent pit walls near public infrastructure 

and adjoining leases. 

+ Potential failures have been defined as those modes of pit wall failure that have a POF of greater than 10%. 
++ Where a mutually acceptable agreement to allow mining cannot be made between the mining company and the 
 "owner" of the adjoining structure or plot of land. Note that a higher standard of geotechnical data is required for the 
 design of category 3 and 4 slopes compared to category 1 and 2 slopes. 

 

Table 7-4 Suggested design criteria for the roof bolting systems 

Roof 
class 

Risk Category  
Reliability 

index (β) 

Design 
Probability of 

Failure 
Example 

1 
Moderately 

Serious 
1.4 5% 

Short term requirement (< 1 year), 

personnel access partially restricted

2 Serious 2.3 1% 

Medium term requirement (1 - 5 

years) personnel access partially 

restricted 

3 Very Serious 3.2 0.3% 
Long term requirement (> 5 years) 

no personnel access restrictions 

 

In Civil Engineering, probabilistic design has advanced to the stage that virtually all building 

regulations are based on a probabilistic approach. The development has not yet reached this 

point in the field of geomechanics. One of the reasons for this is the difficulty associated with 

describing a rock mass quantitatively and defining a model which describes both the strength 

and the load acting on rock. This requires knowledge of roof failure mechanisms and a model 

which describes how failure occurs. The following sections of this Chapter aim at developing a 

deterministic model of failure mechanisms and a load/strength relationship to be used to 

develop a probabilistic design methodology for coal mine roof support design. 
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7.3 Roof behaviour and failure mechanism 
 

In order to develop a realistic roof behaviour model, data presented in Chapters 3 and 4 was 

analysed in detail. A total of 55 intersection and roadway measurements from depths of 32 m to 

170 m situated in significantly different geotechnical environments were analysed in terms of 

height and magnitude of instabilities in the roof. The aim of this analysis was to: 

 

1. establish at what heights the instabilities took place, 

2. how these instabilities can be supported, and 

3. establish a roof behaviour based on the magnitudes of deformations. 

 

The results obtained from the height of instabilities are presented in Figure 7-3. This figure 

shows that the maximum measured height of instabilities in South African collieries is limited to 

2.5 m into the roof, and there is no evidence of a substantial increase in the height of 

instabilities, as is the case in some overseas coal mines, Figure 7-4.  
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Figure 7-3 Measured height of roof-softening in intersections and roadways in South 

African collieries 
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Figure 7-4 An example of roof-softening in a coal mine in the USA (courtesy of Dr. C. 

Mark) 

 

The height of instability measurements are also compared against the investigations conducted 

on falls of ground fatalities for the period 1970 to 2003 by Vervoort (1990) and as part of this 

thesis.  

 

Vervoort (1990) investigated the falls of ground fatalities in South African collieries for the period 

1970-1988. A similar study has also been conducted as part of this thesis covering the period 

1989 to 2003. Figure 7-5 compares the two data sets with respect to thickness of fall. This 

Figure indicates that, for 33 year period, a large proportion of fall of ground accidents was due 

to relatively small falls of ground. However, the proportion of larger falls of ground has increased 

slightly in the recent data.  

 

The cumulative distribution of thicknesses which caused FOG fatalities during the period 1989 

to 2003 and the roof-fracturing heights measured underground are shown in Figure 7-6.  
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Figure 7-5 The vertical dimension (thickness) of FOG causing fatalities for the period 

1970 – 1995  
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Figure 7-6 Cumulative distribution of FOG thicknesses and the height of roof 

softening measured underground  
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Using the underground measurement data, a comparison was also made between the 

magnitude of deformations in intersections and roadways. The results indicated that, for a 41 

per cent increase in the span (taken across the diagonal of an intersection) relative to the 

roadway span, the magnitude of the displacement in the roof increased by a factor of about four 

on average, Figure 7-7.  
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Figure 7-7 Measured deformations in intersections and roadways 

 

The magnitude of measured deformations is also evaluated against the maximum theoretical 

deflection in a built-in beam using the following formula: 

2

4

max 32Et
gLρη = [7-9]

where L  = roof span (width of roadway) 

  t  = thickness of roof layer (m) 

  ρ = density of suspended strata (kg/m3) 

  g  = gravitational acceleration (m/sec2) 

E = Elastic modulus (Pa) 

 

If the roof span (L) in the above formula increases by 41 per cent due to the diagonal width of 

the intersections, the deformation increases by a factor of 4.0. This is in accord with the findings 

in Figure 7-7. 
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The results obtained from the magnitudes of deformations in intersections and roadways reveal 

that there is a significant correlation between the underground measurements and the beam 

theory. Also, in the light of the similar correlations found in other Chapters, it is therefore 

concluded that the roof behaviour in South African collieries can be classified as similar to that 

of a clamped beam.  

 

The results also suggest that based on the height of softening measurements and the fall of 

ground fatality data collected over for 33 years, the suspension and beam building mechanisms 

(with improvements as discussed further in this Chapter) that have been used in South African 

collieries for many years are, in general, applicable where the appropriate conditions exist. It is 

however essential to determine the correct support mechanism to ensure the stability of roof.  

 

From the results presented above, the roof behaviour model presented in Figure 7-8 is 

suggested. 

 

This model suggests that when an underground opening is made, the portion of the strata 

directly above the opening loses its original support and the stress equilibrium is disturbed. The 

roof starts to sag under the gravitational and/or horizontal forces (irrespectively) up to a height 

where there is a competent layer and a new equilibrium is reached. In the case of absence of 

competent layers, as the lower layers start losing their integrity, the height of instabilities 

increase further into the roof. To maintain the stability, it is essential to keep the immediate, 

softened zone stable (Figure 7-8) using either suspension or the beam building mechanism. In 

beam building mechanism, roof bolts in this zone force all the bolted layers to sag with the same 

magnitude; the layers within the bolting range thus act like a solid beam supporting the bolted 

horizon as well as the surcharge load due to softened layers higher into the roof.  
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Figure 7-8 Zone of roof softening 
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7.3.1 Failure and support mechanisms 

 

As indicated in the above model, before a roof bolt system is designed for a certain support 

mechanism, it is important to establish the geology for at least 2.5 m into the roof (based on 

measurements), which will assist in identifying the expected roof behaviour and in determining 

the support mechanism to be used.  

 

If the immediate roof is very weak, but a competent layer exits higher in the roof, the suspension 

support mechanism is indicated. However, when the entire roof consists of a succession of thin 

beams, none of which are self-supporting, the suspension principle cannot be applied in this 

case beam building mechanism is suggested. 

 

It is suggested that before any decision has been made regarding the support system, a 

detailed geotechnical investigation should be conducted (especially in greenfield studies) to 

determine the heights of roof softening, which can be assumed to be extended up to the “poor” 

quality layers. This investigation can be carried out using the standard laboratory tests, impact 

splitting tests, RQD or Rock Mass Rating.  

 

In the suspension mechanism, the lower (loose) layer is suspended from the upper (competent) 

layer using roof bolts (van der Merwe and Madden, 2002), Figure 2-12. This creates a 

surcharge load and increases the maximum tensile stress in the upper layer, above the 

abutments. This surcharged tensile stress ( (max)xxσ  in Pa) can be calculated using the following 

formula; 

2

2

(max) 2
)(

com

lamcom
xx t

Lttg +
=

ρ
σ [7-10]

where,  ρ = density of suspended strata (kg/m3) 

  g = gravitational acceleration (m/s2) 

  L = span (bord width or intersectional diagonal width) (m) 

  tcom = competent layer thickness (m) 

  tlam = laminated lower strata thickness (m) 

 

For stability to take place, the tensile strength of the competent layer should be greater than the 

tensile stress generated in this layer due to surcharge load.  

 

It should be noted that as mentioned above, the thickness of competent layer, the position of 

competent layer, the bord widths, the thickness of suspended strata and the strength of 

competent layer will vary in nature. It is therefore suggested in determination of the applicability 
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of the suspension mechanism using Equation [7-10] that a minimum of probability of stability of 

(PoS) 99 per cent should be attained.  

 

Regarding the tensile strength of rock mentioned above, it should be noted that the tensile 

strength of rock is determined by the resistance of rock to tension. The failure of rock under 

tension is invariably abrupt with total loss of cohesion and load carrying ability. Direct 

determination of tensile strength for rock, i.e. “pull tests”, is difficult, mainly because of involved 

specimen preparation. Indirect methods are most commonly used for determining the tensile 

strength. 

 

The Brazilian (disc) method has proven to be a useful technique for a wide range of rock 

materials. It has, however, been found that the tensile strength determined by Brazilian tests is 

usually higher than the direct pull test value.  

 

In general, while a rock material may have a tensile strength, a rock mass is often assumed to 

have very low tensile strength. This assumption is considered appropriate given the existence of 

joints and other defects in the rock mass. It is suggested that a detailed analysis should be 

conducted in determining the tensile strength of coal measure rock. 

 

7.4 Roof bolting mechanisms 

7.4.1 Suspension mechanism 

 

As mentioned in Chapter 2.0, suspension mechanism (Figure 2-12) is the most easily 

understood roof bolting mechanism. While the majority of roof bolts used are resin point 

anchors, mechanical anchors are also uncommonly used (2 per cent only, Henson, 2005). 

 

The design of roof bolt systems based on the suspension principle has to satisfy the following 

requirements: 

 

• The strength of the roof bolts has to be greater than the relative weight of the loose roof 

layer that has to be carried. 

• The anchorage forces of the roof bolts have to be greater than the weight of the loose 

roof layer. 

 

The safety factor (SFsus) of a bolting system in suspension mechanism is given by: 
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lam

f
sus gt

nP
SF

ρ
= [7-11]

where,  ρ = density of suspended strata (kg/m3) 

  g = gravitational acceleration (m/sn2) 

  Pf = resistance of bolting system calculated from SEPT (kN) 

  tlam = thickness of loose layer or layers (m) 

  n = number of bolts/m2 

 

n can be calculated as follows: 

Ld
kn = [7-12]

where  d = distance between the rows of roof bolts (m) 

  L = span (bord width) (m) 

  k = number of bolts in a row 

 

7.4.2 Beam building mechanism 

 

Classical beam theory was first used by Obert and Duvall (1967) in the design of roof bolt 

patterns. However, the derivations in this chapter are taken directly from a standard reference 

(Popov, 1978) to establish an improved design methodology for the beam building mechanism, 

which takes into account, where appropriate, the surcharge load (assumed to be parabolic) 

generated by the softened section above the bolted horizon. This phenomenon has been 

ignored in the design of roof support systems since 1970s by the introduction of beam building 

mechanism in South Africa. 

 

The first consideration in the design of beam building mechanism is to determine the minimum 

required thickness of the beam which will be stable from the tensile failure point of view.  

 

The maximum tensile stress must be smaller than the tensile strength of upper layer of built 

beam with an appropriate PoS (99 per cent). The maximum tensile stress in a built-beam with a 

parabolic surcharge load can be calculated as: 

( )12

2

5
2

2
hh

h
gLL

xx +=





±

ρσ [7-13]

The tensile stress in the lower surface at mid-span of built-beam is: 

( ) ( )12

2

40
90 hh

h
gL

xx +=
ρσ [7-14]
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Beams are subjected to transverse loads which generate both bending moments M(x) and 

shear forces V(x) along the beam. The bending moments cause horizontal stresses, xxσ , to 

arise through the depth of the beam, and the shear forces cause transverse shear-stress 

distributions yxxy ττ =  through the beam cross section as shown in Figure 7-9. 

 

An important consideration in beam theory is that the top and bottom surfaces of the beam are 

free of shear stress, and the shear stress distribution across the beam is parabolic. As a 

consequence of this, the maximum shear stress (at the neutral axis of the beam) is given by: 

A
V(x)xτ
2

3)(max = [7-15]
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Figure 7-9 Beam with transverse shear force showing the transverse shear stress 

developed by it 

 

The shear force distribution V(x) is zero at the centre of a symmetrically loaded beam, and rises 

to a maximum at the end where it equals ½ of the total load. If the composite beam thickness is 

taken to be equal to the bolt length h, and the surcharge is parabolically distributed with a 

maximum height h + h1 (Figure 7-8 and Figure 7-10), then  

 

( )LhhgV 1max 3
1

+= ρ [7-16]

And from Equation [7-15]: 

( )Lhh
h
g

1max 2
1

+=
ρ

τ [7-17]

Where  h  = built beam thickness (m) 

  h1 = additional surcharge thickness (m) 

  L = span (m) 

  ρ  = density of strata (kg/m3) 
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  g  = gravitational acceleration (m/s2) 

 

For the built composite beam to act as a single entity, the shear stress given by Equation [7-17] 

has to be overcome by the action of the bolts. Two types of resistance are provided: frictional 

due to bolt pre-tensioning, and intrinsic shear strength of the bolts. 

 

Neglecting the inter-layer cohesion and layer deadweight, the frictional shear resistance of 

tensioned roof bolts can be calculated using the following well-known formula (Wagner, 1985): 

µpR nFT = [7-18]

where n is number of bolts per square meter, Fp is the pre-tension of bolt (usually 50 kN), and µ 

is the coefficient of friction between the layers. 
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Figure 7-10 Computation and distribution of shear stress in a beam  

 

In order to determine the coefficient of friction between the layers, a number of borehole 

samples from 5 collieries were obtained. All samples (61 mm in diameter and approximately 

300 mm in length) were collected from the expoloration drilling and wraped in plastic bags to 

avoid weathering. To ensure for the failure to take place at the contacts between the different 

rock types, the top and bottom parts of the samples were cut and placed in a shear box. As 

shown in Table 7-5, the rock types and the contact conditions varied widely. 

 

Despite the variation in rock and contact types, the standard deviation of the friction angle is 

relatively low: 9.2 per cent of the average. Note that the samples as tested may have been 

influenced by the drilling process. The influence of this has not been determined. 

 

The shear strength of bolts also generates shear resistance, which must be considered in the 

design. This can be calculated using the following formula: 

RB nST = [7-19]

where SR is shear strength of a bolt (in kN).  
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Table 7-5 Results of shear box tests on various contacts typically found in coal 

mines 

Number Contact details Friction 
angle (deg.) 

Coefficient 
of friction 

1 coal/sandstone 23.6 0.44 
2 shale/sandstone 24.3 0.45 
3 coal/shale 24.8 0.46 
4 shale/sandstone 21.7 0.40 
5 shale/sandstone 24.7 0.46 
6 shale/sandstone 29.8 0.57 
7 coal/sandstone 25.8 0.48 
8 coal/sandstone 25.8 0.48 
9 sandstone/carbonaceous sandstone 24.3 0.45 
10 coal/shale 22.9 0.42 
11 sandstone/carbonaceous shale 25.1 0.47 
12 coal/carbonaceous shale 23 0.42 
13 sandstone/carbonaceous shale 20.2 0.37 
14 coal/coal 27.8 0.53 
15 coal/calcite 26.8 0.51 
16 sandstone/carbonaceous shale 22.7 0.42 
17 coal/sandstone 27.7 0.53 
18 coal/sandstone 25.1 0.47 
19 coal/laminated sandstone 25.2 0.47 

Average 24.8 0.46 
Standard deviation 2.3 0.05 
Standard deviation as a percentage of average 9.2 10.4 

 

There have been extensive studies in the past to determine the shear strength of a bolt. In 

South Africa, it has previously been accepted that 50 per cent of the ultimate tensile strength 

(UTS) of a bolt is approximately equal to the shear strength of a bolt (Wagner, 1985). However, 

Azuar (1977) concluded, from tests of resin-grouted bolts embedded in concrete, that the shear 

resistance of a joint when the bolt is installed perpendicular to the joint, is about of 90 per cent 

of the UTS. Roberts (1995) reported shear test results for smooth bars, rebars and cone bolts. 

He compared results of shearing at two interfaces (double shear) to a single interface shear and 

found that the former was not simply double the latter, as true symmetry did not exist in the case 

of double shear. Shear failure would occur at one interface first and subsequently resulted in 

failure of the other interface. From tests, he noted that a 16 mm diameter rebar had a static 

shear strength of approximately 90 per cent of the UTS. Canbulat et al. (2006), based on 

laboratory shear tests, also concluded that the shear strength of full-column roof bolts that are 

currently being used in South Africa is approximately 87 per cent of the ultimate tensile strength 

with very consistent results. Since this simple assumption will determine the required bolt length 

and density, it is suggested that the shear strength of a full column bolt is taken to be equal to 
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90 per cent of the UTS of a bolt (based on 600 MPa for standard roof bolts in South African 

collieries e.g. 190 kN for 20 mm bolts).  

 

Equation [7-19] then becomes: 

BB nST 9.0= [7-20]

where SB is the ultimate tensile strength of a bolt (in kN).  

 

The shear resistance of a bolting system can therefore be determined as follows: 

)8.0( BpTOTAL SFnT += µ [7-21]

And for stability this has to exceed the value given by Equation [7-17]. 

maxτ
TOTALTSF = [7-22]

Another important consideration in beam building mechanism occurs when the roof softening 

height is within the bolted horizon (Figure 7-11). This usually occurs when the bolts are installed 

late and the separation has already taken place and destroyed the cohesion between the layers 

or under excessive stress conditions.  

 

Pillar PillarPillar Pillar
 

Figure 7-11 Bed separation within the bolted horizon 

 

In this case, safety factor (SFslide) of resistance to sliding of the bolting system should be 

calculated using the bond strength (Bs) between the resin, rock and the bolt using the following 

formula: 

 

gdLt
lkB

SF
loose

capS
slide ρ

= [7-23]

Where  BS = Bond strength or grip factor (kN/mm) 

  d = distance between the rows of roof bolts (m) 

  L = span (bord width) (m) 

  tloose = thickness of separated layer (m) 

  k = number of bolts in a row 

  lcap = capsulation length (bolt length – tloose) (m) 

  ρ  = density of strata (kg/m3) 
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  g  = gravitational acceleration (m/s2) 

 

Bond strength is measured through short encapsulation pull tests (SEPT). In order to measure 

the bond strength, it is necessary to shear the bond on the bolt-resin or resin-rock interface. 

With the modern high-strength, high-stiffness, polyester resins, it has been found that a bond 

length of 250 mm is appropriate for determining the bond strength. 

 

Bond strength (BS) is defined as: 

)(
)(

mmLengthionEncapsulat
kNAchievedLoadMaximumBS = [7-24]

 

Similar to suspension mechanism, to avoid the failure of roof bolts in tension, the safety factor 

(SFbolt) of roof bolts should also be determined. The following formula can be used to calculate 

the safety factor of roof bolts: 

gdLt
kPSF
loose

bolt
slide ρ

= [7-25]

Where  Pbolt = bolt yield strength (kN) 

  d = distance between the rows of roof bolts (m) 

  L = span (bord width) (m) 

  tloose = thickness of separated layer (m) 

  k = number of bolts in a row 

  ρ  = density of strata (kg/m3) 

  g  = gravitational acceleration (m/s2) 

 

7.5 Determination of stability of the immediate layer between the roof bolts 
 

In the case of thin roof beds the spacing between bolts is critical. Wagner (1985) suggested that 

the distance between the bolts should not exceed a value of 10 times the thickness of the layer. 

However, to prevent the failure of the immediate roof between the bolts, the tensile stress 

between the bolts for the immediate layer may be calculated by assuming that the bolts create a 

fixed beam between them. If the tensile stress between the bolts exceeds the tensile strength of 

the material then the distance between the bolts should be reduced or an areal coverage 

system should be used. The safety factor of roof between the bolts may be calculated again 

from the clamped beam equation (van der Merwe and Madden, 2002): 

2

22

bimm

x

Lgt
t

SF imm

ρ

σ
= [7-26]

where,  σx = tensile strength of immediate roof (MPa) 
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  ρ = density of immediate layer (kg/m3) 

  g = gravitational acceleration (m/s2) 

  Lb = distance between the bolts (m) 

  timm = thickness of immediate layer (m) 

 

Note that in the case of low modulus layers overlaying the immediate layer, surcharge loading 

should be taken into account by suitably increasing t in the numerator of Equation [7-26].  

 

In the case of failure of very thin layers (<100 mm) between the roof bolts, it is certainly 

impossible to prevent the failure using only roof bolts, in this case, if the layer cannot be mined 

out due to contamination concerns, areal coverage in the form of wire-mesh, W-straps and/or 

shotcrete is recommended.  

 

7.6 Probability density functions of design parameters and random selection 
 

As indicated in Section 7.2 that the fundamental to Monte Carlo method is the process of 

explicitly representing the uncertainties by specifying inputs as probability distributions. 

Probability density functions are the tools used to estimate the likelihood that random variable 

values will occur within certain ranges. There are two types of random variables, namely 

discrete and continuous. A discrete (finite) random variable can take only a countable number of 

distinct values. A continuous (infinite) random variable can however takes an unknown number 

of possible samples and the samples are not countable, but are taken from a continuous 

interval. Because few, if any, geotechnical properties will behave as a discrete probability 

space, discrete distributions are not presented herein. 

 

The probability density function is a function that assigns a probability to every interval of the 

outcome set for continuous random variables. The probability density function is denoted fx(x), 

where x is the random variable itself and x is the value that the continuous random variable can 

take on. Probability functions have the following properties (Jones et al., 2002): 

 

1. The function is always nonnegative, 0)( ≥xfx  

2. The area under the function is equal to one, ∫
∞

∞−

=1)( dxxf x  
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3. The probability that a random value, X, from the distribution is between a and b is 

∫=≤≤
b

a
x dxxfbxaP )(][  

Cumulative probability distribution (CDF) functions have the value at x0 corresponding to the 

probability that a random value, X, from the distribution will be less than or equal to x0. 

For a continuous distribution, this can be expressed mathematically as ∫
∞−

=≤
0

)((Pr 0

x

dxxfxX  

Over 25 special continuous probability density distributions exist. The following 10 most 

commonly used distributions are however utilised in this thesis: 

 

1. Beta 

2. Erlang 

3. Exponential 

4. Gamma 

5. Logistic 

6. Lognormal 

7. Normal 

8. Pert 

9. Weibull 

 

Rather than focus on the derivations, useful properties of these distributions are presented in 

Table 7-6.  

 

In order to determine the best fit probability density distributions for each of the input 

parameters used in the design, the underground measurement data collected throughout this 

study has been analysed using the Anderson-Darling goodness of fit test.  
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Table 7-6 Summary of probability distributions (after EasyFit user manual, 2006) 

Distribution Parameters Density distribution function Cumulative distribution function Definitions 
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Distribution Parameters Density distribution function Cumulative distribution function Definitions 
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7.6.1 Goodness of fit tests  

 

There are several goodness of fit tests available, among them Kolmogorov-Smirnov (KS-test), 

Chi-square (CS-test) and Anderson-Darling (AD-test) goodness of fit tests.  

 

Kolmogorov-Smirnov (Chakravart et al., 1967) test determines if two datasets differ significantly. 

An advantage of KS-test is that the distribution of the KS-test statistic itself does not depend on 

the underlying cumulative distribution function being tested. Another advantage is that unlike 

chi-square test, it is an exact test and does not require binned data an adequate sample size for 

the approximations to be valid. Despite these advantages, the KS-test has several important 

limitations: 

 

1. It tends to be more sensitive near the centre of the distribution than at the tails.  

2. The distribution must be fully specified. That is, if location, scale, and shape parameters 

are estimated from the data, the critical region of the KS-test is no longer valid. It 

typically must be determined by simulation. 

 

The chi-square goodness of fit test (Snedecor and Cochran, 1989) is used to test if a sample of 

data came from a population with a specific distribution.  

 

An important feature of the CS-test is that it can be applied to any distribution for which the CDF 

can be calculated. The chi-square goodness-of-fit test can only be applied to binned data (i.e., 

data put into classes) and the value of the chi-square test statistic is dependent on how the data 

is binned. Another disadvantage of the chi-square test is that it requires a sufficient sample size 

in order for the chi-square approximation to be valid. The test requires that the data first be 

grouped. The actual number of observations in each group is compared to the expected number 

of observations and the test statistic is calculated as a function of this difference.  

 

Anderson-Darling test is a general test to compare the fit of an observed cumulative distribution 

function to an expected cumulative distribution function and can be applied to binned and 

unbinned data. AD-test is a modification of the KS-test and gives more sensitive to deviations in 

the tails of the distribution. The AD-test makes use of the specific distribution in calculating 

critical values. This has the advantage of allowing a more sensitive test and the disadvantage of 

that critical values must be calculated for each distribution.  
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Since the the Anderson-Darling test implemented in EasyFit© (a computer program which 

determines the best fits based on goodness of fit tests) uses the same critical values for all the 

distributions and these values are calculated using the approximation formula, depending on the 

sample size, Anderson-Darling goodness of fit test and EasyFit© are utilised in this thesis to 

determine the best probability distributions representing the input parameters 

 

The Anderson-Darling statistic (A2) is defined as: (EasyFit© user manual, 2006) 
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XFXFi
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nA +−
=

−+−−−= ∑ [7-27]

 

The hypothesis regarding the distributional form is rejected at the chosen significance level (α) if 

the test statistic, A2, is greater than the critical value.  

 

7.6.2 Probability distributions of design parameters 

 

Based on the load/strength models presented in Section 7.3 and 7.4, the following parameters’ 

probability distributions will be determined to use in the probabilistic design of roof bolting 

systems: 

 

• Bord width 

• Distance between the bolts (in determining the roof bolt density) 

• Pre-tension of roof bolts 

• Height of roof softening 

• Unit weight 

• Bond strength 

• Coefficient friction 

• Bolt strength 

• Tensile strength of rock  

• Thickness of competent layer 

• Thickness of suspended layer 

 

Note that the distribution of roof bolt strength is calculated from the variation in the diameter of 

18 mm roof bolts using a constant ultimate steel strength of 600 MPa. 

 

A summary of the goodness of fit test results using the AD-test is summarised in Table 7-7. 
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Table 7-7 Summary results of Anderson-Darling goodness of fit tests  

Parameter 
Number 
of data 
points 

Best fit 
probability 
distribution

Scale 
Parameter 

Shape 
Parameter 

Location 
parameter 

Bord width (m) 258 Logistic 0.32 N/A 6.23 

Distance between the bolts (m) 835 Pert 1.90 (mode) 0.58 (min) 3.31 (max) 

Pre-tension of roof bolts (kN) 122 Pert 29.80 (mode) 18.92 (min) 82.50 (max) 

Height of roof softening (m) 93 Logistic 0.17 N/A 0.65 

Unit weight (MN/m3) 168 Erlang 16.24 148.00 N/A 

Bond strength (kN/mm) 46 Lognormal 0.29 N/A -0.87 

Coefficient friction (o) 19 Lognormal 0.10 N/A -0.78 

Bolt strength (kN) 192 Logistic 0.36 N/A 120.40 

Tensile strength of sandstone (MPa) 30 Pert 3.15 (mode) 0.46 (min) 5.19 (max) 

Tensile strength of weak rock (MPa) 66 Pert 0.79 (mode) 0.32(min) 3.44 (max) 

Thickness of competent layer (m) 43 Weibull 2.60 2.84 N/A 

Thickness of suspended layer (m) 43 Normal 0.20 N/A 0.89 

 

Note that as can be seen, the results presented in Table 7-7 are based on a limited number of 

data points. Therefore, certain best fit probability distributions obtained from Anderson-Darling 

goodness of fit tests are only marginally better than the others, such as Weibull distribution is 

only slightly better than the normal distribution for the thickness of the competent layer. This 

indicates that a more comprehensive database is required to establish the conclusive 

distributions.  

 

7.7 Support design methodology 
 

Using all above and the information presented in other Chapters of this thesis, the following 

step-by-step process is suggested in the design of roof support system:  

 

1. Conduct a detailed geotechnical analysis to determine the height of roof softening. This 

can be achieved for existing operations from underground measurements and/or height 

of FOG, and for greenfield studies from the geotechnical rating systems (such as IST, 

CMRR and RQD). The details of these investigations can be found in Chapters 3, 4, 5, 6 

and 7. 

 

2. Determine the applicability of the suspension mechanism using Equation [7-10]. Note 

that a minimum PoS of 99 per cent is recommended to use the suspension mechanism 

with confidence. 
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3. Further detailed geotechnical analyses are required to determine the distributions of 

suspension and beam building mechanisms’ input parameters. These input parameters 

and their probability distributions are summarised in Chapter 7. 

 

4. Conduct short encapsulated pull tests to calculate the support resistance. Use the 

standard ISRM SEPT methodology. 

 

5. For the appropriate support mechanism calculate the probability of stabilities of different 

length of roof bolts. Note that if required a sensitivity analysis into the distance between 

the rows of support elements, bord width, bond strength and pre-tension on roof bolts 

can be conducted at this stage. The details of this analysis can be found in Chapter 7. 

 

6. Check the probability of stabilities achieved against the design criteria given in Table 

7-4. If the design criteria is not achieved go back to Step 4. 

 

7. If the design criteria is achieved in Step 7, check the stability between the roof bolts 

using Equation [7-26]. 

 

8. Determine the financial viability of the system. If the system is financially viable, 

implement it; otherwise conduct a detailed analysis into different bolting systems in Step 

5.  

 

9. Once the bolting system is implemented (i) monitor the support system and (ii) 

implement the appropriate quality control procedures using the methodology presented 

in Chapter 6.0. 

 

10. As an on going procedure, use appropriate (developed for the specific conditions) 

section performance and risk rating system and continue monitoring the support system 

and the roof behaviour. 

 

A design flow-chart summarising the above methodology is presented in Figure 7-12.  
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Support Design Methodology

Determine the height of roof softening (for existing operations from 
underground measurements and/or height of FOG, for greenfield 

studies from the geotechnical investigations) [Chapters 3, 4, 5, 6 & 7]

Determine the support mechanism based on strength and 
surcharge of competent layer with a minimum PoS of 99%

[Chapter 7]

Suspension mechanism
[Chapter 7]

Beam building mechanism
[Chapter 7]

Conduct detailed investigation into 
the variation of competent and loose 

layers [Chapter 7]

Conduct SEPT on different bolts 
to calculate the support resistance 

[Chapter 7]

Calculate the PoS of different 
bolting system to achieve the 
recommended design criteria 

[Chapter 7]

Determine financial viability

Viable Not viable

Implement the 
support system

Monitor the system
[Chapter 6]

Not adequate 
Adequate

END
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Figure 7-12 Recommended support design methodology 
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7.8 Application of the probabilistic design approach to a case study 
 

In the previous sections of this Chapter, a probabilistic design methodology is presented. In this 

section a verification of this design methodology will be demonstrated by applying it to a well-

defined study with the aim of establishing the best support systems for a colliery in the Witbank 

Coalfield.  

 

A detailed monitoring program was conducted in a bord and pillar section of Colliery ‘A’. Using 

three sonic probe monitoring sites (two in roadways and one in an intersection) the roof 

behaviour was monitored and the height of roof softening data was obtained. Additional data 

was also obtained using a feeler-gauge (a telescopic pipe which contains a washer at the end 

and is inserted into a bolt hole to feel the bed separations). The mine experienced numerous 

roof falls for a period of time and an investigation into the thickness of roof falls was therefore 

conducted. This data was also combined with the sonic probe and fleer-gauge data to extend 

the height of roof softening database. Figure 7-13 summarises the data obtained from these 

three different techniques. It is evident from this Figure that the height of softening varies from 

0.15 m to 1.65 m with an average of 0.65 m.  

 

A detailed bord width measurement programme was also conducted and bord width offsets 

were measured in two different production sections. A frequency versus bord width graph is 

given in Figure 7-14. In these two sections, the bord widths were designed to be 6.5 m, but, in 

reality varied from 5.4 m to 7.6 m. 

 

The immediate roof strata consisted of 0.1 to 1.0 m of coal, followed by a shale band 

approximately 0.3 m thick above which there is a further 3.0 m of coal. This data was obtained 

from 43 borehole logs that were available in the vicinity of the area where the bord width 

measurements and the height of roof softening data were collected. Figure 7-15 illustrates the 

distributions of thicknesses of the immediate and the upper roof coal layers. In this Figure, the 

immediate roof thicknesses included the skin coal and the shale band whilst the upper roof 

included the coal thickness overlain the immediate roof.  
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Figure 7-13 Colliery “A” height of softening data obtained from the sonic probe 

extensometer results, feeler-gauge results and FOG data 
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Figure 7-14 Bord width distributions in the experiment site 
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Figure 7-15 Thickness of immediate and upper roof obtained from borehole logs 

 

A series of underground short encapsulation pull tests were carried out in near identical 

conditions in those two sections. Tests were performed using the 30 second spin and hold resin 

and 1.2 m long, 16 mm roof bolts, as currently being used by the mine. Note that due to the time 

laps between the tests and the need for the roofbolter in production schedule, tests were 

conducted in different areas of the sections. 
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Figure 7-16 Bond strength results obtained from SEPT in the experiment site 

 

In order to determine the tension on the roof bolts, over 145 roof bolts were tested using a 

torque-wrench. Figure 7-17 shows the distribution obtained from these measurements. As can 

be seen the tension on the roof bolts varied from 0 to 32.5 kN.  

 

The distances between the rows of roof bolts were also measured in the monitoring site, Figure 

7-18. Similar to bord widths, although the planned distance was 2.0 m, in reality it varied from 

1.4 m to 3.2 m.  

 

In order to determine the strength of roof bolts based on a constant 600 MPa ultimate steel 

strength, bolt diameter measurements were also taken over 80 bolts at the mine and the 

ultimate strength of roof bolts were determined, Figure 7-19.  
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Figure 7-17 Distribution of roof bolting tensioning results  
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Figure 7-18 Distance between the roof bolts measured in the experiment site 
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Figure 7-19 Roof bolt ultimate strength  

 

An extensive laboratory testing programme was also initiated to determine the tensile strength 

of the immediate and upper coal layers with the aim of determining the applicability of 

suspension and beam building mechanisms as well as the stability of the immediate roof 

between the roof bolts. Additional information such as the unit weights of coal and shale were 

also determined from these laboratory tests. The distribution of tensile strength of coal as 

obtained from the Brazilian Tensile Strength tests is shown in Figure 7-20. Figure 7-21 shows 

the distribution of unit weights of the immediate and the upper coal layers determined from 

these laboratory tests. 

 

Due to the lack of information at the mine regarding the coefficient of friction between the layers 

in the roof, the data presented in Table 7-5 was used in this study. Figure 7-22 illustrates the 

distribution of the data given in Table 7-5. 

 

A summary of the information presented above is given in Table 7-8 together with the additional 

information obtained from the mine.  
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Figure 7-20 Distribution of tensile strength of coal used in the analysis 
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Figure 7-21 Unit weights of the immediate and upper coal layers 
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Figure 7-22 Distribution of coefficient of friction between the layers 

 

Table 7-8 Summary of information used in the analysis 

  
Number of 
samples Minimum Maximum Average Mode 

Height of roof softening (m) 93 0.2 1.6 0.7 0.6 
Bord widths (m) 129 5.3 7.5 6.5 6.5 
Thickness of immediate layer (m) 43 0.1 1.6 0.8 1 
Thickness of upper coal layer (m) 43 1.5 3.3 2.5 2.1 
Bond strength (kN/mm) 46 0.2 0.6 0.4 0.4 
Bolt tensioning (kN) 145 0 32 16.4 20 
Distance between the rows of roof bolts (m) 217 1.3 3 2 2 
Roof bolt ultimate strength (m) 209 119.3 137.8 129.3 126 
Unit weight of immediate layer (MN/m3) 99 1382.8 2214.4 1835.3 1900 
Unit weight of upper coal layer (MN/m3) 154 1380.9 1669.7 1530.1 1531.2 
Coal tensile strength (MPa) 40 0.4 1.8 1 1.2 
Coefficient of friction between the layers 19 0.4 0.6 0.5 0.4 
Coalfield  Witbank 
Seam  No 2 
Mining height  3.0 m 
Mining method  Continuous miner bord and pillar, 9 road section 
Depth  47 m 
Pillar widths  9.0 m 
Number of bolts in a row  3 
Cut out distance  8.0 m 
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Regarding the input parameters presented above the following comments can be made: 

 

• The input parameters can be divided into two distinct groups, namely uncontrollable 

parameters (representing the ground conditions, i.e. height of roof softening, thicknesses 

of the immediate and the upper roof layers, unit weight of rock, rock tensile strength and 

coefficient of friction between the layers) and controllable parameters (representing the 

mining practice, i.e. bord width, the distance between the roof bolts, bolt tensioning, 

strength of roof bolts). 

• Uncontrollable parameters are the true reflection of ground conditions present and 

cannot be changed. 

• Controllable parameters are however the true reflection of the responses to those 

conditions and can be changed/improved to increase the probability of stability of the 

roof bolting systems. 

 

7.8.1.1 Results 

 

In order to determine the support mechanism using the above input parameters, the applicability 

of the suspension mechanism, as applied by the mine, was investigated using the input 

parameters presented above. A total of 20,000 Monte Carlo simulations were run using 

Equation [7-10] and the results showed that although the average safety factor of upper coal 

layer is 1.79, the PoS of suspension mechanism is only 92.6 per cent with a Reliability Index of 

0.53, which is not acceptable according to criteria set in Section 7.3.1 (i.e., the minimum 

required PoS should be 99 per cent to use the suspension mechanism with confidence). Figure 

7-23 presents the distribution of safety factors for the stability of the upper coal layer using the 

probability distributions presented in Table 7-7. 

 

Nevertheless, in order to demonstrate the probability of failure using the suspension mechanism 

with the input parameters presented above, a further study into the applicability of the 

suspension mechanism is conducted. 

 

As expected, the results showed that the overall PoS of suspension mechanism (PoS of upper 

component layer x PoS of bolts x PoS of sliding of roof bolts) is only 52 per cent (see Figure 

7-24 for the distribution of safety factors in suspension mechanism). In other words, 48 per cent 

of the roof supported using the suspension mechanism with 1.2 m roof bolts will result in failure.  
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Figure 7-23 Distribution of safety factors of upper coal layer in suspension mechanism 
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Figure 7-24 Distribution of safety factors in suspension mechanism using 1.2 m long 

roof bolts  
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Figure 7-25 shows the probability of stabilities and the reliability indexes for different lengths of 

roof bolts in suspension mechanism. As can be seen from this Figure that the maximum PoS 

that can be achieved is 92 per cent using 2.0 m long roof bolts, which does not meet the design 

criteria given in Table 7-4. Note that since the PoS of the suspension mechanism is dependent 

on the PoS of the upper coal layer, the maximum PoS that can be achieved for suspension 

mechanism is limited to 92.6 per cent. 

 

From these analyses it is evident that the suspension mechanism, as it is currently used by the 

mine, is not the correct support mechanism for the roof conditions present at the mine. 

Therefore, beam building mechanism is recommended and a further study into the design of 

roof bolting system using the beam building mechanism is conducted. 
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Figure 7-25 PoS and Reliability Index for suspension mechanisms for different roof bolt 

lengths 

 

As a preliminary study, the mine’s current support pattern, three bolts in a row with 2.0 m 

spacing was evaluated in beam building mechanism by assuming that the bolts are full-column. 

The probability of stabilities and the reliability indexes for different roof bolts lengths achieved 

from this study is presented in Figure 7-26. From this Figure it is evident that the current pattern 

used by the mine is not sufficient to achieve the required probability of stabilities even the bolts 

are full-column. Note that the overall probability of stabilities are presented in Figure 7-26 

include probability of stability of shear loading, probability of bolt sliding and probability of bolt 

tension failures.  
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Figure 7-26 Probability of stability and reliability index of different length roof bolts, 3 

roof bolts in a row 

 

Table 7-9 shows the probability of stabilities and the reliability indexes achieved for 16 mm 4 

and 5 roof bolt patterns using 2.0 m and 1.5 m row spacing. From this Table, the following 

minimum support patterns are recommended for different risk category areas: 

 

• In moderately risk category areas: 

o four 1.8 m long roof bolts, 2.0 m row spacing 

o five 1.5 m long roof bolts, 2.0 m row spacing 

 

• In serious risk category areas: 

o five 1.8 m long roof bolts, 2.0 m row spacing 

o four 1.5 m long roof bolts, 1.5 m row spacing 

 

• In very serious risk category areas: 

o five 1.5 m long roof bolts, 1.5 m row spacing 

 

 

 

 

 

 
 
 



 

332 

Table 7-9 Stability analyses of different support patterns 

  Bolt Length (m) 
Support pattern  0.9 m 1.2 m 1.5 m 1.8 m 2.0 m 

Probability of stability 0.113 0.642 0.907 0.981 0.994 4 bolts in a row 2.0 m 
spacing between the rows Reliability Index -0.834 0.461 1.238 1.756 2.015 

Probability of stability 0.348 0.895 0.989 0.999 1.000 5 bolts in a row 2.0 m 
spacing between the rows Reliability Index 0.203 1.233 1.852 2.264 2.470 

Probability of stability 0.435 0.959 0.999 1.000 1.000 4 bolts in a row 1.5 m 
spacing between the rows Reliability Index 0.498 1.784 2.556 3.070 3.328 

Probability of stability 0.644 0.990 1.000 1.000 1.000 5 bolts in a row 1.5 m 
spacing between the rows Reliability Index 1.549 2.594 3.222 3.640 3.849 

 

An important consideration at this stage is to conduct a simple cost analysis for different roof 

bolt systems to determine the financial viability of each system.  

 

Once the bolting system is chosen and implemented, it is suggested that the support system 

should continuously be monitored and appropriate quality control procedures should be 

implemented (see Chapter 6.0 for details of quality control procedures). 

 

As presented in Chapter 5, proactive rating systems (section performance and risk ratings) are 

effective in identifying support/roof performances. Therefore, detailed section performance and 

risk rating systems are also recommended in identifying the changing conditions, which may 

impact the support and the roof performances.  

 

7.9 Conclusions 
 

The ultimate aim of this Chapter was to develop a roof support design methodology that takes 

into account all natural variations exist within the rock mass and the mining process. This was 

achieved by adapting a probabilistic design approach using the well established stochastic 

modelling technique, which is widely used in civil and other engineering disciplines.  

 

In the literature, it has been highlighted that one of the disadvantage of the probabilistic 

approach is the assumptions regarding the distribution functions. Using the data obtained 

throughout this thesis, the probability distributions of various input parameters have been 

established using the Anderson-Darling goodness of fit tests.  

 

It is shown in this Chapter that the traditional deterministic roof bolt design methodologies 

provide some insight into the underlying mechanisms, but they are not well-suited to making 

predictions to roof support decision-making, as they cannot quantitatively address the risks and 

uncertainties that are inherently present. 
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An analysis of the data presented in Chapters 3 and 4 highlighted that for a 40 per cent 

increase in the span, taken across the diagonal of an intersection, relative to the roadway span, 

the magnitude of the displacement in the roof increased by a factor of four. The results also 

showed no evidence of a substantial increase in the height of the bed separated, potentially 

unstable roof strata, as is the case in the high horizontal stress driven beam buckling 

mechanism experienced in overseas coal mines. Analysis of the underground monitoring data 

also revealed that there is a good correlation between the underground measurements and 

simple beam theory, which has been used in the design of roof support systems for many years 

in South Africa. Therefore, in the development of the probabilistic approach, the deterministic 

approaches used in South Africa have been evaluated and improvements have been made, 

especially in the beam building mechanism. 

 

Underground measurement data also showed that the maximum height of roof-softening 

measured in 54 sites in South African collieries is 2.5 m, which correlates well with the fall of 

ground data collected over 30 years in South Africa. The average height of roof-softening 

measured in these sites was 1.07 m.  

 

The design approach established in this Chapter was applied to a well-defined case study in a 

colliery in the Witbank Coalfield, where the variations of all parameters that impact the roof and 

support behaviours were evident. Suspension mechanism has been used in this mine, which 

resulted in numerous roof falls. It has been shown using the input parameters collected from this 

mine that the suspension mechanism is not suitable for the conditions present. Therefore, the 

beam building mechanism was recommended for different risk category areas using four or five 

roof bolts with different lengths and row spacings. 
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