

Evaluation of roof bolting systems in South Africa

6.1 Introduction

One other important consideration in determining the performance of a support system as a whole is the bolting components that are used in the design. Therefore, an in-depth study into the bolting elements that are currently being used n South African collieries was conducted.

There are five important components of a bolting system, which determine the quality of an installed support. These are:

- Machinery; equipment;
- Bolt;
- Resin;
- Hole;
- Rock type

These five components are of equal importance, as failure of any of these will result in an inadequate support system. Therefore, as part of this task, all important parameters of these five components have been investigated. The important parameters of the five components are given below:

Machinery and equipment

- Torque;
- Thrust;
- Effect of different drill bits on the support performance; and
- Free rotation, spinning and drilling speeds.

Bolt and components (thread, nut and washer)

- Bolt profile;
- Effect of preload on bolt and components;
- Variation of diameter and rib heights; and
- Deformability.

Resin

- Set and spin times;
- Effect of roofbolter spinning speed;
- Resin type; and
- Effect of plastic encapsulation.

Bolt hole

- Effect of wet and dry drilling on system performance and hole profile;
- Hole profile as a function of the bit characteristics;
- Size of annulus between bolt and hole;
- Effect of drilling speed on hole profile.

Rock type

The geology is also a very important external component of the support system. An understanding of the interaction between the rock and the bolting system is crucial; therefore, to achieving the most appropriate support system for different geological environments.

6.2 Specifications for roofbolters

6.2.1 Introduction

The quality of installation of a support system is directly related to the performance of the equipment that is used to install the bolts. The performance of bolting equipment was therefore investigated as part of this study in order that the relative importance of the various machine parameters could be ascertained, as well as the range in values of these parameters as provided by the equipment used in South African collieries.

The following parameters were assessed in determining the performances of bolting equipment:

- Drilling speed: determines the hole profile;
- Spinning speed: determine the resin mixing characteristics and hole profile;
- Torque: determines the tension on the bolt and the capability of installing shear-pin bolts;
- Thrust: determines the hole profile and pushing the bolt through the resin; and

These parameters were then measured against roof bolt performance in various rock types. It should be noted that currently in South Africa, there are no standards for these parameters in

collieries, except the torque, which should be approximately 240 Nm (Torqueleader, 2005) in order to generate approximately 50 kN (5 tonnes) for tensioning by roofbolters.

A total of 143 roofbolters, which were operational during the evaluation, were tested from 27 different collieries, ranging from Tshikondeni in the north to Zululand Anthracite Colliery (ZAC) in the east. This provided a comprehensive database of roofbolter information. Tests were done on a variety of machines from different manufacturers, including Rham, Fletcher, Voest Alpine, License, Klockner, Biz Africa, along with custom-designed bolters manufactured by particular mines. Results from all of these machines varied widely, even to the extent of differing from boom to boom on twin boom machines.

6.2.2 Testing procedure

During this investigation, the testing procedure for each machine followed a set pattern, which was developed to be as quick and easy as possible, in this way minimizing any possible downtime to production machines. For each machine, the torque setting at which the machine spins the bolt was measured, to ensure that the machine was capable of breaking out either the crimp or shear pin of the bolt, if such a future was present.

Following this, a hole was drilled and the speed of drilling was measured in revolutions per minute using a laser digital tachometer. This device quickly and easily measures the speed by simply attaching a reflective strip to the drill chuck or drill steel, and shining the laser onto the strip while the drilling is in progress.

Once the hole was drilled, the depth was measured and a borehole micrometer was inserted to measure the hole diameter at intervals along the length of the hole. This gives an indication of the hole profile as drilled by the particular bit type at a specific rotation speed. Measurements were taken from two to three holes per roofbolter.

A bolt is then inserted into the chuck and a load cell fitted over the bolt. The bolt is pushed into the hole, without inserting resin, and pushed against the roof with the maximum force possible to establish the thrust that the roofbolter is capable of exerting against the bolt, which is important when full-column roof bolts are being installed and a bolt is being pushed through several resin capsules.

The bolt was then installed with resin and a speed measurement is taken while the bolt was being spun through the resin. This measurement shows the speed at which the resin is being mixed.

The form, presented in Figure 6-1 was used to record measurements during the testing. Other measurements taken were standard lengths and diameters, the bit type and diameter, drill steel length and diameter, type of bolt, bolt length and diameter. The type of support, be it mechanical point anchor, resin point anchor or full-column resin was noted and resin type, capsule length and diameter recorded.

Finally, drilling type (wet or dry) was noted, as this may have considerable impact on the hole profile in different rock types. Where possible, a borehole log of the area in which tests were conducted was collected in order to take into account the influence of the immediate roof in which installation is taking place.

Date	29/11	/2002	Hole Profile		
Mine	Goedehoop - Hope Shaft			2	3
Section	9/				
Mining Method	Bord and	Pillar - CM			
Production Rate	+/- 1000 to	onnes/shift			
Type of Roofbolter	Fletcher MDDR -				
Date of Purchase		6/2001			
Cycle Time (Bolts per hour/shift)	LHS - 60 seconds / 1.5m	RHS - 77 seconds / 1.5m	4	5	6
Bit Type	Spa	ade			
Bit Diameter (mm)		Bmm			
Drill Steel Diameter (mm)	22.3mm - Flat	24.1mm - Hex			
Drill Steel Length (m)	1.4	4m			
Type of Support	f/	/c			
Type of Resin	Fasloc 'A'	spin to stall			
Capsule Diameter (mm)	21.4	21.4mm		1. The first hole profile reading	
Capsule Length (mm)	495mm s		should be taken +/- 2 inches from		
Type of Bolt	Rebar, shear pin t		the back of the hole.		
Bolt Diameter (mm)	Core - 20.2mm Rib - 21.3mm Parallel - 20.4mm		2. Bolt should be pushed through		
Bolt Length (m)			the resin before measuring		
Bolt Consumption	+/- 80	/ shift	spinning speed.		
Washer Type		log Eared	Three speeds are to be		
Washer Dimensions (mm)		5 x 5.1mm	measured. Free rotation, drilling,		
Type of Pin/Nut	Shea	ar pin	and resin spinning speeds.		
Dry/Wet Drilling?		ry	4. Stop measuring the drilling		e drilling
	Left Boom	Right Boom			
Free Rotation Speed (rpm)	614	622	speed before the hole is finish		
Drill Speed (rpm)	605	572	5. Bolt diameter measured		
Resin Spinning Speed (rpm)	604 592		across core, across ribs and		
Torque (Nm)	180	260	across parallel rib.		
Thrust (kN)	780	500			
Hole Length (m)	1.44m	1.45m			
Borehole Log		/			

Figure 6-1 Form used for recording data from equipment tests

6.2.3 Results

6.2.3.1 Rotation speed during drilling

The results of rotation speed during drilling are presented in Figure 6-2, Figure 6-3, Figure 6-4, and Figure 6-5. These figures highlight that there is a significant variation in the drilling speeds of various bolters. As would be expected, the curve is shifted lower down the axis with the introduction of load to the system. The maximum rpm is 816, with a minimum of 148 rpm. Results for Bolter B are above the average, the largest proportion being in the 550 to 600 rpm range. Similarly, Bolter A and other bolters behave in the same way as the majority of the results falling within the 250 to 400 rpm range. The effect that rock type has on the drilling speed is discussed later in the report.

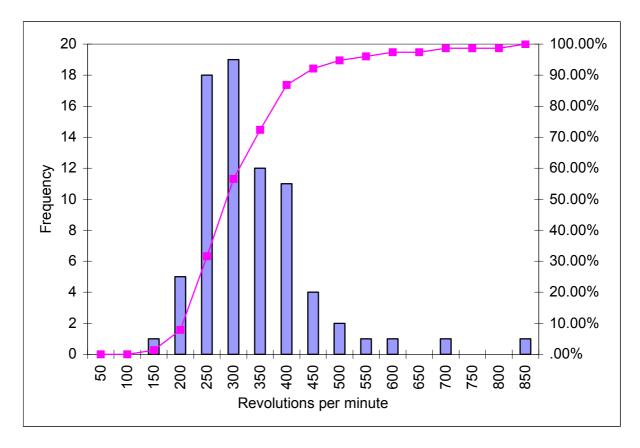
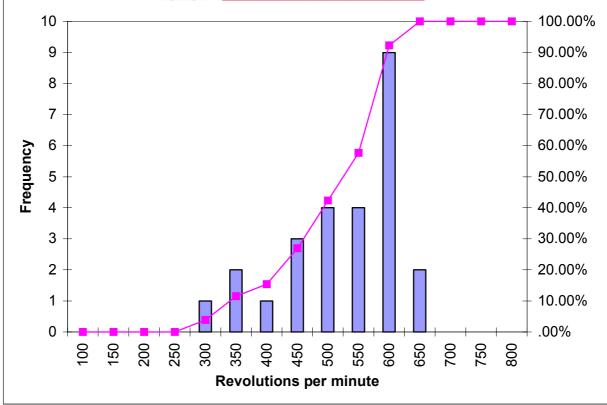



Figure 6-2 Drilling speed - bolter A

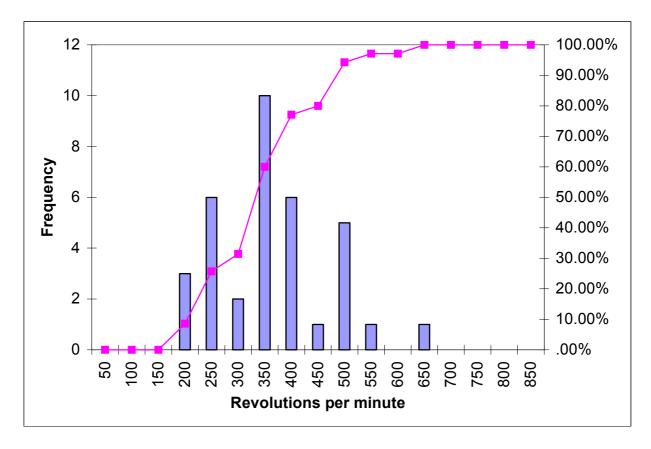


Figure 6-4 Drilling speed - other bolters

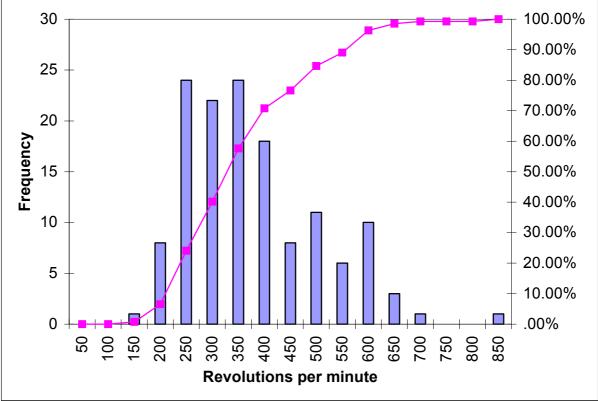


Figure 6-5 Drilling speed - all bolters

6.2.3.2 Resin spinning speed

The speeds measured while spinning resin for various types of bolters are shown in Figure 6-6, Figure 6-7, Figure 6-8, and data from all the bolters is plotted in Figure 6-9. Resin spinning speeds, generally, show much lower results than either of the other speed measurements. The resistance offered by the resin capsule in a confined space reduces the speed considerably. Resin spinning speed shows a maximum speed of 643 rpm and a minimum of 45 rpm. The distributions within the groups, however, tend to be similar to drilling speed, with the results of Bolter B being proportionately higher than those of the other two groups. Resin manufacturers recommend a spinning speed of between 400 and 500 rpm on "A" type spin-to-stall resin. Obviously, too low a spinning speed may not mix the resin correctly in the required spinning time, and result in a weak bond. It is also possible that too high a spinning speed may over-spin the resin, damaging the bond and reducing the strength. Figure 6-9 indicates that the resin spinning speeds of approximately 22 per cent of all bolters tested are within the resin manufacturers recommended range.

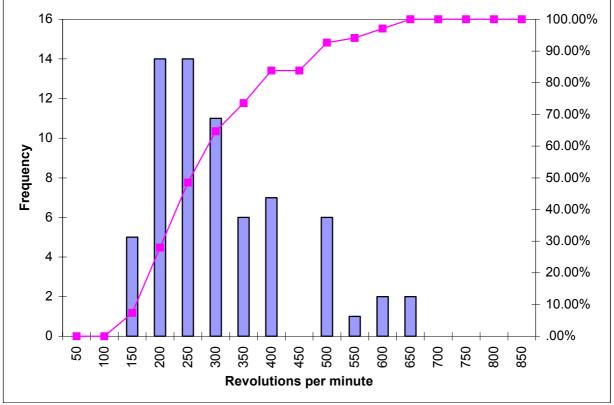


Figure 6-6 Resin spinning speed - bolter A

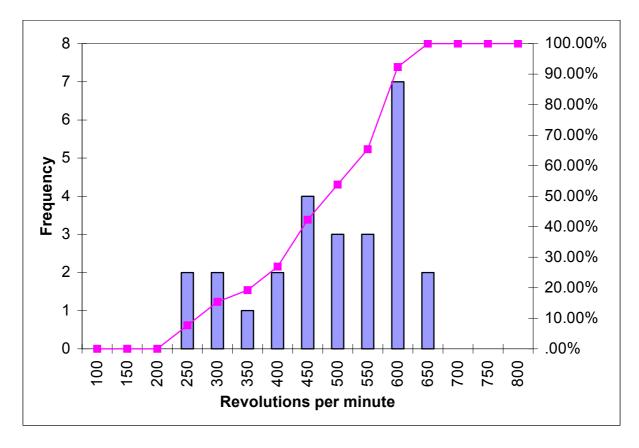
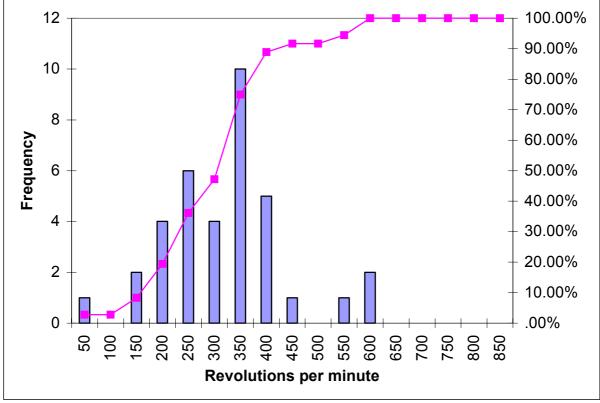
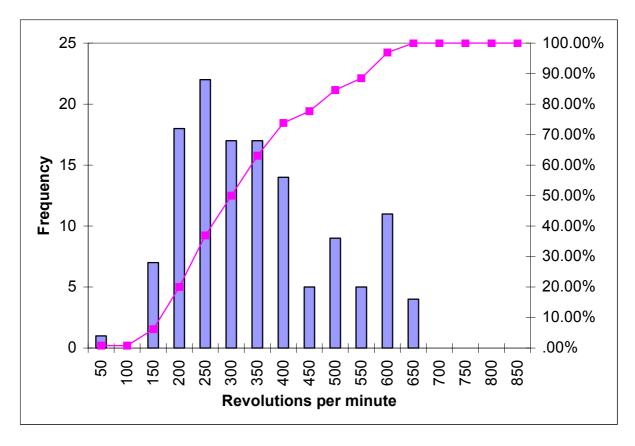




Figure 6-7 Resin spinning speed - bolter B

6.2.3.3 Torque

Currently in South Africa, a roofbolter is expected to produce 200 Nm to 250 Nm torque at all times in order to tension the bolt to approximately 50 kN (5 tonnes).

In the drilling phase, enough torque is required to allow the bit to penetrate whatever rock type may be present in the roof and pass through harder layers with the same efficiency as through soft. When the bolt is installed, enough torque is also required to ensure a sufficient mix of resin and catalyst and also to break out the crimp or shear pin on a bolt, should one be present.

The results from the torque measurements are shown in Figure 6-10, Figure 6-11, Figure 6-12, and Figure 6-13. These figures indicate that the torque on all machines ranges from a maximum of 560 Nm to a minimum of 50 Nm. The lower value is not sufficient to break the crimp or shear pin (120 kN torque is required to break the shear pin), and this was observed to be the case on one mine. The bolter in question was tested and found to provide torque of 80 Nm. Observation of the roof bolt crew trying to install bolts made it clear that the machine was unable to break out the shear pin. The spread of torque values for all bolters show a similar distribution and variability.

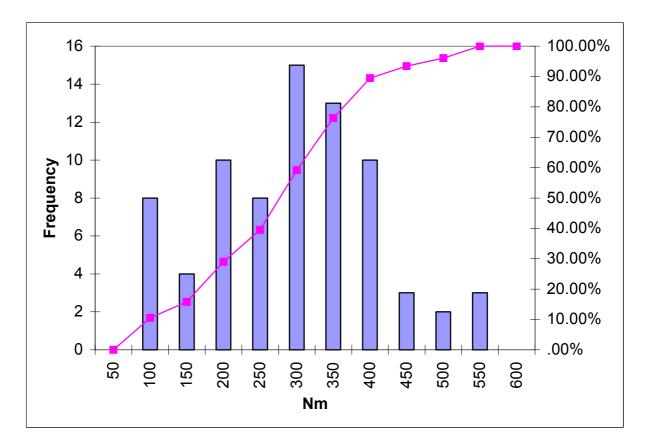


Figure 6-10 Torque - bolter A

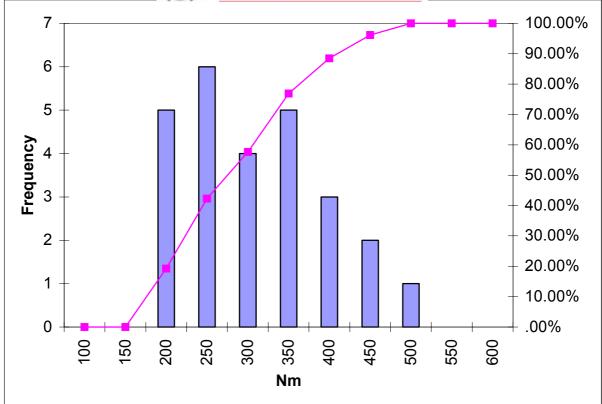


Figure 6-11 Torque - bolter B

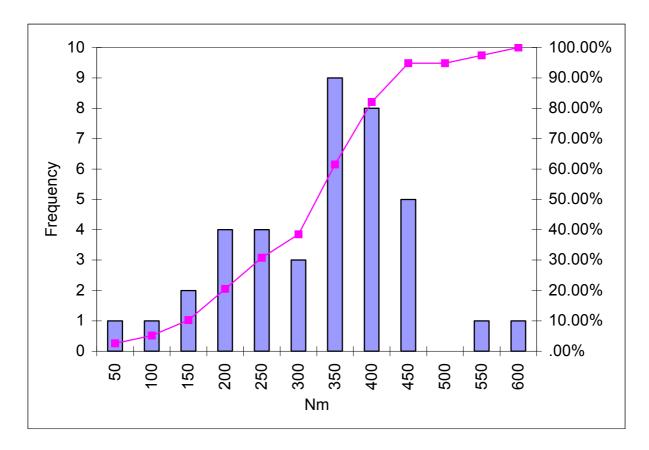


Figure 6-12 Torque - other bolters

Figure 6-13 indicates that only 20 per cent of all policers had torques within the 200 Nm to 250 Nm range.

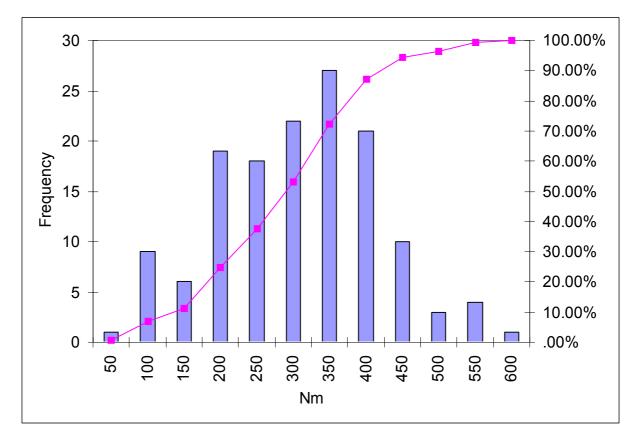


Figure 6-13 Torque - all bolters

6.2.3.4 Thrust

Thrust is the axial force exerted on the drill steel by the machine. Thrust applied while a hole is being drilled is difficult to measure. For this reason, the thrust given in this section is the maximum thrust capacity of the machine. Thrust is required in order to penetrate the roof, and also to force the bolt through a resin capsule to the back of the hole before spinning occurs. Thrusts of the roofbolters tested vary significantly, from as little as 10 kN to 32 kN, with an average of around 18 kN.

The results are presented in Figure 6-14, Figure 6-15, Figure 6-16, and Figure 6-17.

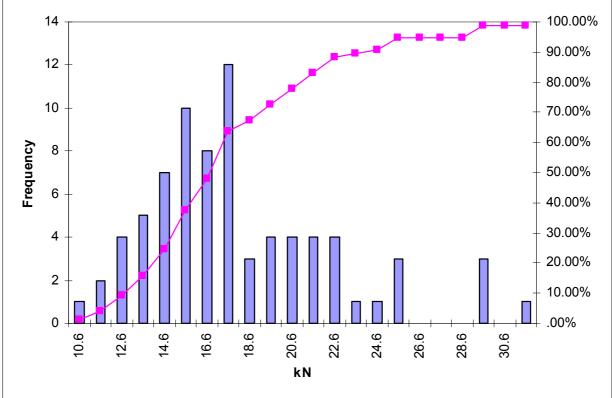


Figure 6-14 Thrust - bolter A

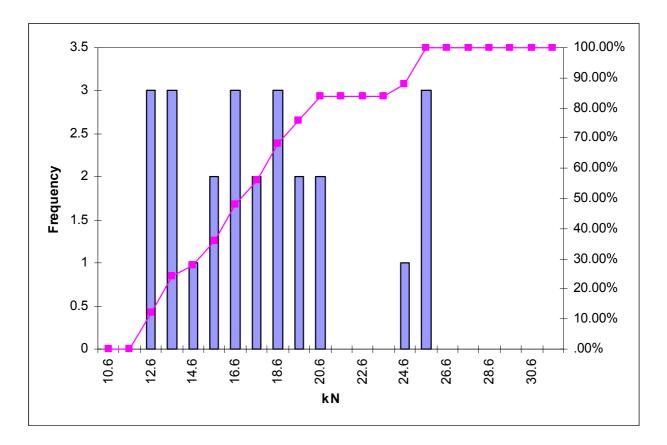


Figure 6-15 Thrust - bolter B

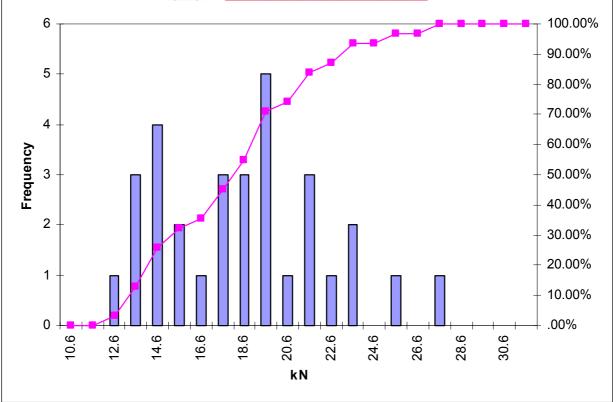


Figure 6-16 Thrust - other bolters

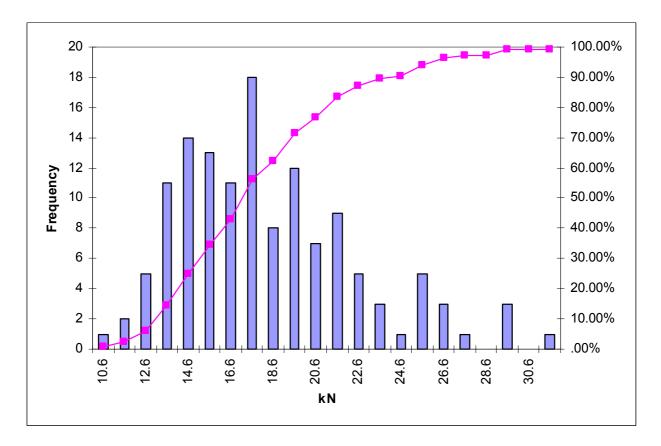


Figure 6-17 Thrust - all bolters

6.2.3.5 Hole profile

The hole profile is also a fundamentally important parameter, as it determines the bonding quality between the resin and rock. A smooth-walled hole would exhibit lower bond strength than a hole wall that is serrated or 'rifled'.

Currently, there is no suitable tool available to determine the hole profile, apart from overcoring. However, overcoring is very expensive and cannot practically be used for a large-scale experiment applied to all available bolters in South Africa.

Therefore, the hole profile is measured by taking a number of hole diameter measurements at regular intervals along the hole. This gives an indication of the quality of hole being drilled in each particular test. A mean is calculated for the five diameter measurements, and the standard deviation determined. The standard deviation gives a description of the quality of hole drilled; the smaller the deviation, the smoother the hole. With this in mind, comparisons were made between hole quality and other measurements in an attempt to try and find links between the controllable factors and the quality of hole. The most obvious factors influencing the hole quality should be the drilling speed, torque and thrust of the bolter in a particular rock type. As can be seen from the graphs below, no correlation was however found between any one of these factors. The hole profile was then compared for wet drilling and dry drilling machines, again results indicates no apparent correlation.

As shown in Figure 6-18, the largest percentage (approximately 80 per cent) of standard deviation on all holes, drilled by all machines, in all different roof types, is less than 1.0 mm diameter over the entire hole length. Although 1.0 mm may seem insignificant, the fact remains that most 25 mm drill bits are shown to be drilling 27 to 28 mm diameter holes. This indicates that most 20 mm bolts are being installed in a hole with an annulus of up to 10 mm, when the worst case example of almost 2 mm standard deviation is taken.

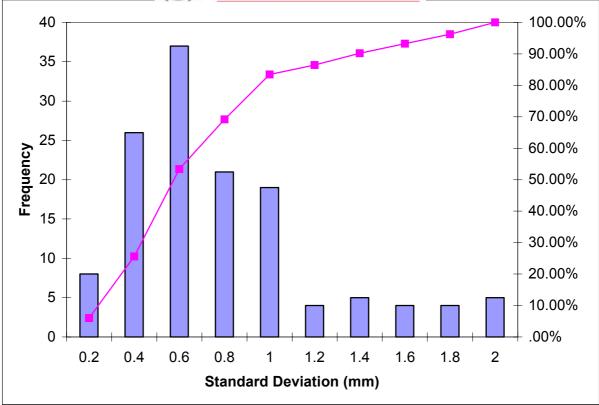


Figure 6-18 Hole profile standard deviation frequency

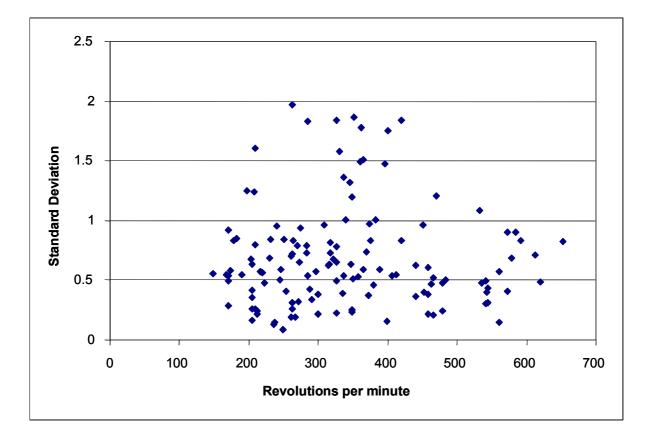


Figure 6-19 Drilling speed against hole profile standard deviation

One of the most obvious factors influencing the quality of the hole would be the speed at which the hole is drilled. A hole drilled at high speed would either have a very smooth profile as a result of the speed of drilling, or would produce a large diameter hole because of inadequate flushing, which is more likely at high speed. As can be seen from Figure 6-19, there is no correlation between drilling speed and hole diameter standard deviation.

Figure 6-20 shows that there is a very wide range of torque settings on roof bolting machines in South Africa, and that they do not correlate with the regularity of the hole profile.

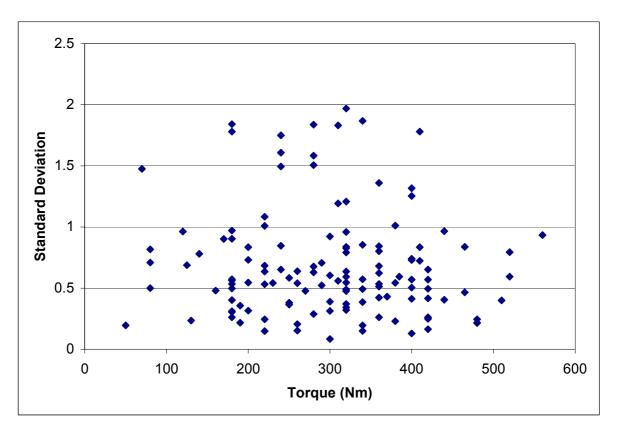


Figure 6-20 Torque against hole profile standard deviation

Similarly, Figure 6-21 shows no correlation between the standard deviation and thrust.

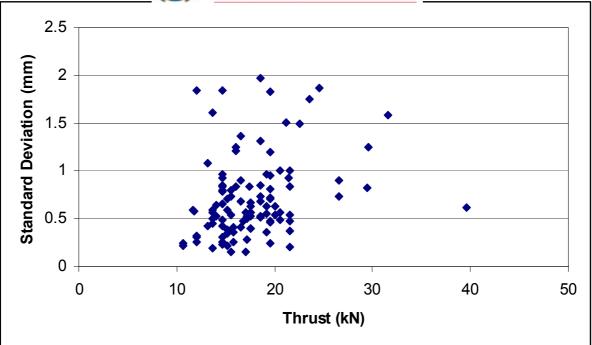


Figure 6-21 Thrust against hole profile standard deviation

Figure 6-22 shows the relationship between drilling speed and hole quality for wet flushing systems only. Again, no correlation is evident. A similar analysis is also conducted for dry drilling machines (Figure 6-23), again showing no obvious correlation.

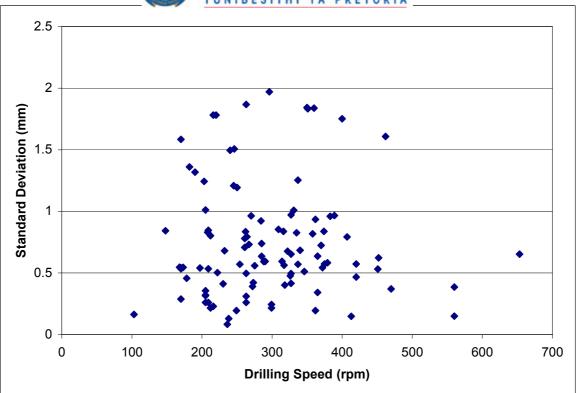


Figure 6-22 Drilling Speed against hole profile standard deviation in machines using wet flushing system

While the comparison between wet drilling machines and dry drilling machines must be made, Figure 6-22 and Figure 6-23 illustrate that dry drilling machines, on average, drill at higher speeds than their wet counterparts, rather than produce any discernable difference in hole quality.

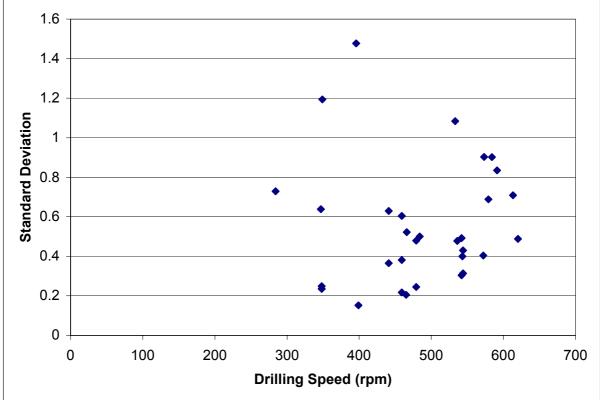


Figure 6-23 Drilling speed against hole profile standard deviation in machines using dry flushing system

The relationship between torque and hole quality for dry drilling machines is presented in Figure 6-24. Similarly, no correlation is evident.

The final parameter that was checked against hole profile was resin spinning speed Figure 6-25. It was also found that there is no correlation between the hole profile and resin spinning speed.

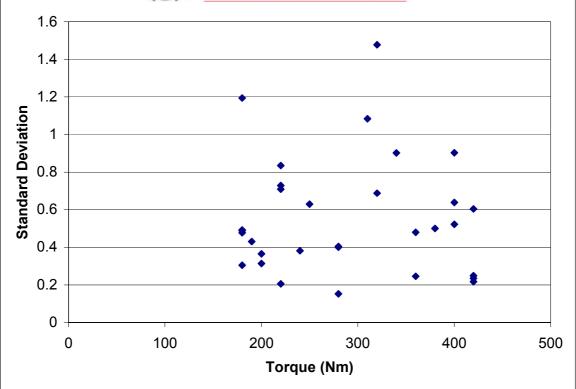


Figure 6-24 Torque against hole profile standard deviation in machines using dry flushing system

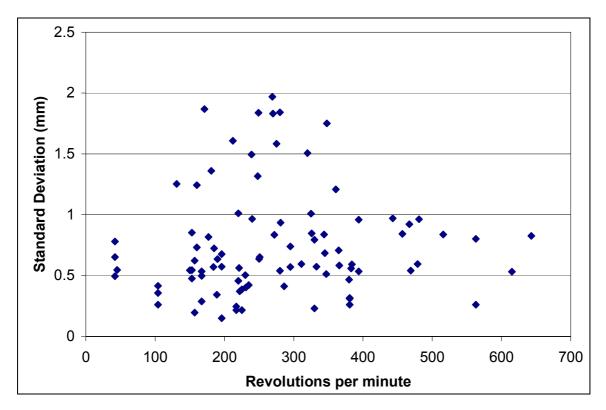


Figure 6-25 Resin spinning speed against hole profile standard deviation in machines using wet flushing system

of hole profiles in sandstone and in the softer materials such as siltstone, shale or coal. While there is more variation in the case of sandstone, in both cases the mean standard deviation is approximately 0.6 mm.

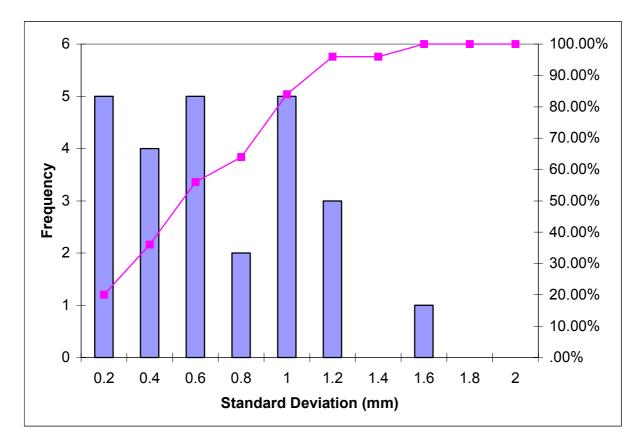
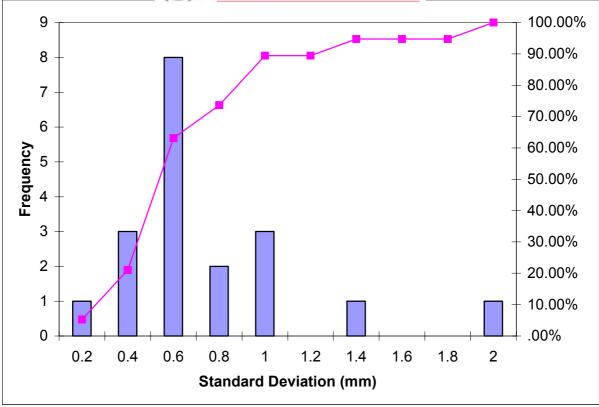



Figure 6-26 Hole profile standard deviation in sandstone

6.2.4 Effect of wet and dry drilling

The effect of wet and dry drilling is one of the most discussed topics of roof bolting. However, there are not many scientific investigations relating to this effect. Therefore, a total of 24 short encapsulated pull tests (SEPT) using the standard testing procedure of the ISRM (ISRM, 1985) were conducted to determine the effect of wet and dry drilling. These tests were conducted for three different resin types; namely, 15-second resin, 30-second resin and 5/10-minute resin using the same roofbolter, and the same resin from Manufacturer "B".

Figure 6-28 shows the bond strengths achieved for different resin types using wet and dry drilling. This figure indicates that bond strengths for wet drilling are between 4 to 28 per cent greater than with dry drilling probably due to the fine particles which may be left behind after dry drilling.

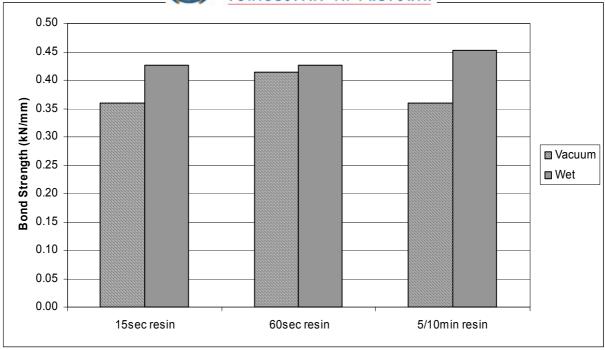


Figure 6-29 shows the overall stiffnesses achieved (maximum load achieved / displacement at maximum load) when wet and dry drilling is used for different resins. As can be seen from this figure, the overall stiffnesses are significantly greater for wet drilling than for dry drilling for the faster speed resin types.

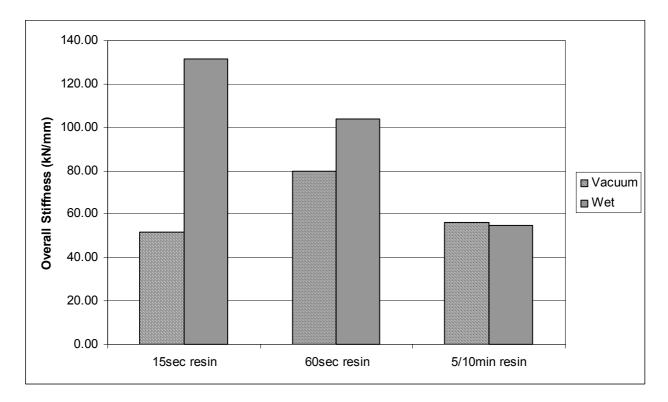


Figure 6-29 Effect of wet and dry drilling on overall support stiffness

The data shown in the above figures is presented in Table 6-1.

				Bond		Max Load	Overall
Rock			Annulus	Strength	Contact Shear	Achieved	Stiffness
Туре	Drill type	Resin Type	(mm)	(kN/mm)	Strength (kPa)	(kN)	(kN/mm)
Shale	Vacuum	15-second	4.22	0.36	4029.22	90.00	51.72
Shale	Wet	15-second	3.93	0.43	4908.03	106.67	131.71
Shale	Vacuum	60-second	4.30	0.41	4632.19	103.33	79.88
Shale	Wet	60-second	3.63	0.43	4974.21	106.67	103.77
Shale	Vacuum	5/10-minute	4.55	0.36	3964.22	90.00	56.08
Shale	Wet	5/10-minute	3.35	0.45	5404.71	113.33	55.04

Table 6-1Effect of wet and dry drilling (averages)

6.3 **Performance of roof bolts**

6.3.1 Performance of roof bolts manufactured in South Africa

A total of 61 short encapsulated pull tests using the standard ISRM testing procedure (ISRM, 1985) were conducted on 20 mm roof bolts to determine the performance of bolts obtained from four manufacturers.

The results from these tests are shown in Figure 6-30. As can be seen from this figure, bolts from all four manufacturers showed almost identical results in sandstone, while in shale the results were dissimilar. This figure also indicates that bolts from Manufacturer "A" performed relatively better in shale compare to Manufacturer "B".

As will be shown in the following chapters, the roof bolt profile plays a significant role in determining the pull-out resistance of roof bolts. However, Figure 6-30 indicates that the variation in the performance of roof bolts in sandstone is not significant. In shale, however, there appears to be a significant variation in pull-out strength. This variation can directly be attributed to the profiles of different roof bolts (see Section 6.3.3).

The data shown in the above figure is presented in Table 6-2.

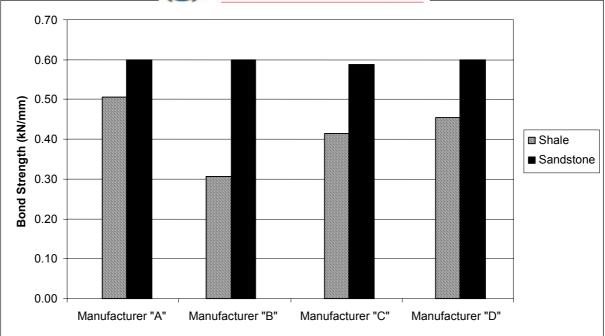


Figure 6-30 Performance of roof bolts determined from underground SEPTs

Table 6-2	Performance of roof bolts determined from underground SEPTs (averages)
-----------	--

			Bond			Overall
		Hole Annulus	Strength	Contact Shear	Max Load	Stiffness
Rock Type	Manufacturer	(mm)	(kN/mm)	Strength (kPa)	Achieved (kN)	(kN/mm)
Shale	A	3.30	0.51	6036.35	126.67	101.94
Shale	В	4.45	0.31	3406.12	76.67	81.23
Shale	С	3.35	0.41	4920.62	103.33	40.26
Shale	D	3.67	0.45	5318.22	113.33	23.82
Sandstone	А	2.96	0.60	7330.47	150.00	128.48
Sandstone	В	3.02	0.60	7281.30	150.00	208.77
Sandstone	С	3.49	0.59	6926.54	146.67	30.88
Sandstone	D	3.50	0.60	7045.31	150.00	69.56

6.3.2 Tensioned versus non-tensioned roof bolts

An additional 25 short encapsulated pull tests were conducted to determine the effect of tensioning on bond strength. These tests were conducted in sandstone and shale roofs.

Figure 6-31 shows the effect of tensioning on bond strength. Non-tensioned roof bolts achieved significantly greater bond strengths then the tensioned bolts. Figure 6-32 shows the effect of

tensioning on overall support sumess. Similarly, non-tensioned roof bolts achieved significantly stiffer systems than the tensioned roof bolts.

Although this finding may be significant from the spin-to-stall support system point of view, it is thought that with tensioned bolts, because the bond length is only 250 mm, the bonding could easily be damaged when the bolt is being tensioned. For this reason it is probable that the test results obtained do not give a fair reflection of the performance of tensioned bolts. It is therefore suggested that a new testing procedure be developed to test the performance of tensioned bolts.

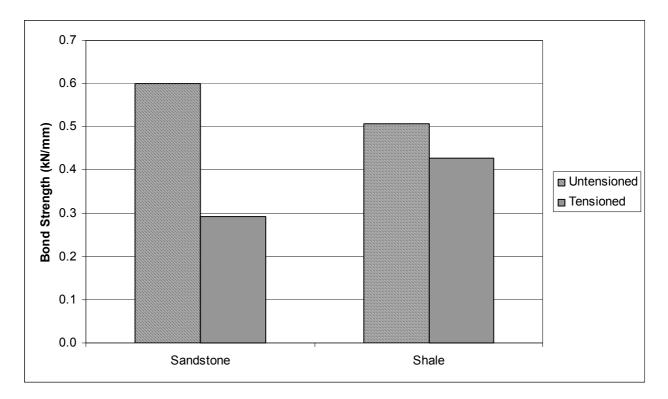


Figure 6-31 Effect of tensioning on bond strength

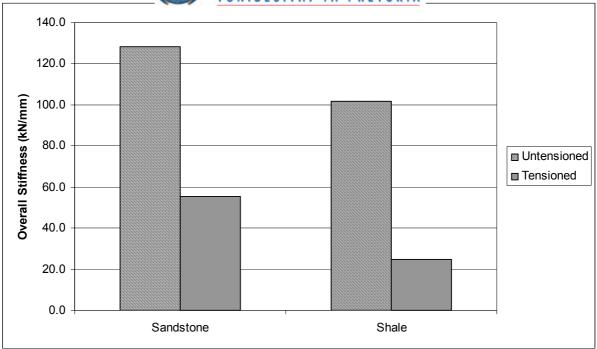


Figure 6-32 Effect of tensioning on overall stiffness

The data shown in the above figures is presented in Table 6-3.

Table 6-3	Effect of tensioning on support performance (averages)
-----------	--

			Bond		Max Load	Overall
		Annulus	Strength	Contact Shear	Achieved	Stiffness
Rock Type	Туре	(mm)	(kN/mm)	Strength (kPa)	(kN)	(kN/mm)
Sandstone	Non-tensioned	2.96	0.60	7330.47	150.00	128.48
Sandstone	Tensioned	3.87	0.29	3375.81	73.33	55.25
Shale	Non-tensioned	3.30	0.51	6036.35	126.67	101.94
Shale	Tensioned 5	3.35	0.43	5131.66	106.67	24.54

6.3.3 Variation in roof bolt parameters

In a support system, it may not be possible to control the hole diameter, because of many factors, such as the rock strength, bit type, drilling type, thrust of roofbolter etc. However, it is possible to control the bolt diameter and profile, which is a part of the engineering design. Therefore, an investigation into the variations in the roof bolts that are currently being used in South Africa was conducted by means of measuring the bolt core diameters and rib diameters from different bolt manufacturers in South Africa.

A total of 235 roof bolts from three dimerent manufacturers were evaluated (approximately 80 roof bolts from each manufacturer). The bolts were measured in three places - top, middle and above the thread - to give an average bolt diameter. Rib diameter was measured diagonally across both ribs and bolt core diameter was measured between the ridges, normal to the axis of the bolt.

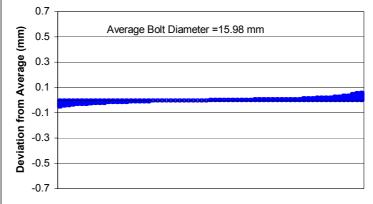
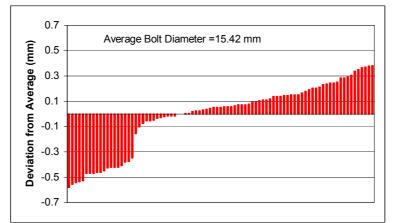

Bolts of 16 mm diameter were measured from Manufacturers "A" and "B", and 20 mm roof bolts were measured from Manufacturer "C". Manufacturer "D" did not supply roof bolts for testing as part of this task of the project. Therefore, they are excluded from this investigation.

Figure 6-33 shows the deviations of roof bolt diameters (from the average) and the average roof bolt diameters from these three manufacturers. This figure highlights that the deviations from the average diameters of roof bolts from Manufacturers "A" and "C" will be in a significantly narrower range than those from Manufacturer "B". As shown in Figure 6-30, the bolts from Manufacturer "A" performed relatively better than bolts from Manufacturer "B" in shale rock type.


The rib diameter measurements from these three manufacturers are presented in Figure 6-34. This Figure shows that there is a significant variation in the rib-heights of the roof bolts from Manufacturer "B" and that the average rib-height of roof bolts from this manufacturer is approximately 34 per cent less than those supplied by the other two manufacturers.

The effect of annulus size on support performance has been shown to be significant. Also, theoretically, a 0.6 mm reduction in bolt diameter can reduce the yield load of a 16 mm bolt by 7 per cent (assuming a tensile strength of 480 MPa). This highlights the need for quality control procedures to be in place at mines for checking the elements of a support system, which are themselves part of the engineering design (roof bolt, bits etc.).

Manufacturer "A"

Manufacturer "B" 0.7 Average Bolt Diameter =20.01 mm 0.3 0.3 0.1 0.3 0.1 0.1 0.3 0.1 0.4 0.1 0.5 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.3 0.1 0.4 0.1 0.5 0.1

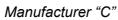
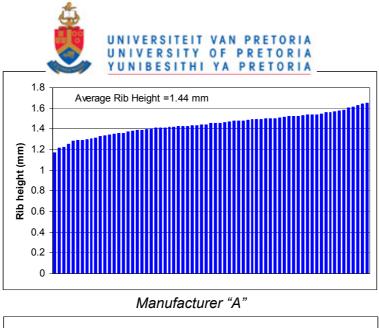
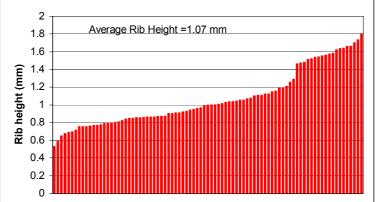




Figure 6-33 Roof bolt diameter deviations in bolts from three different manufacturers

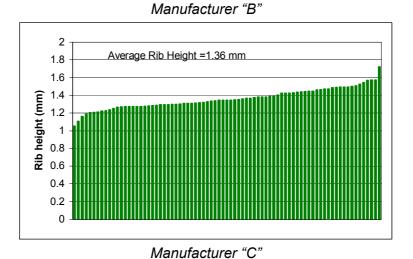


Figure 6-34 Roof bolt rib-height measurements in bolts from three different manufacturers

An attempt was also made to determine the rib thickness, the spacing between the ribs, and the angle of the ribs of currently used roof bolts in South Africa. Approximately 30 roof bolts from four different suppliers were obtained and three measurements were taken for each bolt. The average results obtained from each manufacturer are shown in Table 6-4.

Bolt	Rib thickness	Spacing between	Rib angle
Manufacturer	(mm)	the ribs (mm)	(degree)
"A"	3.88	8.70	64
"B"	3.02	7.33	70
"C"	3.47	10.79	63
"D"	3.04	9.40	60
Average	3.35	9.06	64.25

Table 6-4 Rib thickness, spacing and angle measured on South African roof bolts

As can be seen from this table, there are differences between the parameters that determine the bolt profile in South African roof bolts. Figure 6-35 shows the bolts from the four different manufacturers. However, the influence of these small differences on bolt performance is difficult to determine. It is therefore recommended that a laboratory testing programme be carried out to determine the effect of these parameters on the performance of roof bolts being used in South Africa and to optimise the design.

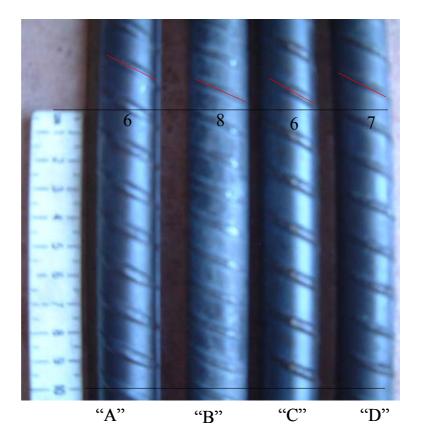
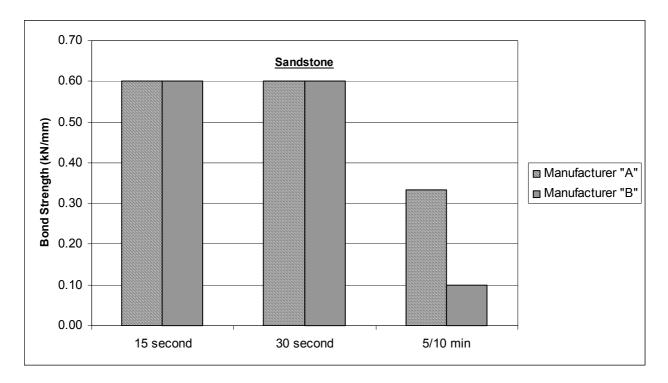


Figure 6-35 Visual illustration of four South African roof bolts

Although there are small differences between the South African roof bolts tested, there is a significant visual difference between the AT bolt from the UK and typical South African bolts (Figure 6-36). The angle of ribs between the two types of bolt is significantly different. A detailed

sensitivity analysis to the various parameters should be conducted on the resin that would be used and the rock types in which it would be installed in South African collieries.

Roof bolting should be considered as a system and the design of elements comprising the system should be such that the difference in strength between the weakest and strongest element is minimised.


Figure 6-36 Visual comparison of UK and South African bolts

6.4 Performance of resin

A total of 132 short encapsulated pull tests using the standard ISRM testing procedure (ISRM, 1985) were conducted to determine the performance of various resin types obtained from two manufacturers, namely Manufacturer "A" and Manufacturer "B".

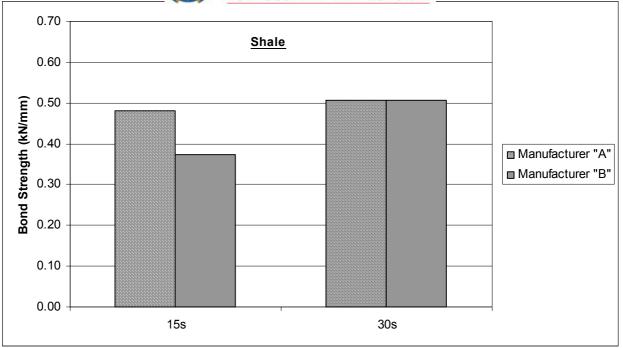

The results from these tests in three different rock types are shown in Figure 6-37, Figure 6-38 and Figure 6-39. These figures indicate that, in sandstone, 15 second and 30 second resin types from the two different manufacturers performed similarly. However, the performance of slow 5/10-minute resins from both manufacturers was much lower than that of the fast resins. In all short encapsulated pull tests, the bolts were pulled 24 hours after the installation. The large discrepancy between bond strengths for the 5/10-minute resins may be entirely due to not enough waiting time. This finding contradicts with findings of van der Merwe (1989) and therefore should be investigated in detail to determine the effect of slow setting resin on overall system performance by overcoring the full-column resin bolts underground.

Figure 6-37 Performance of 15-second and 30-second resin types in sandstone from both resin manufacturers

No trend could be observed in comparing the resin performance in coal and shale.

Figure 6-38 Performance of 15-second and 30-second resin types in shale from both resin manufacturers

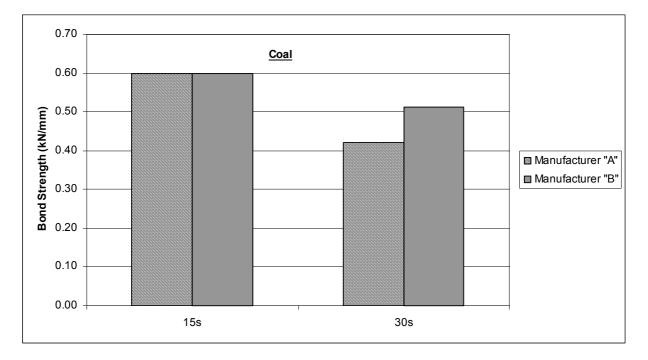


Figure 6-39 Performance of 15-second and 30-second resin types in coal from both resin manufacturers

An analysis of the system stiffness of both resin types from both manufacturers was also conducted. The results are shown in Figure 6-40.

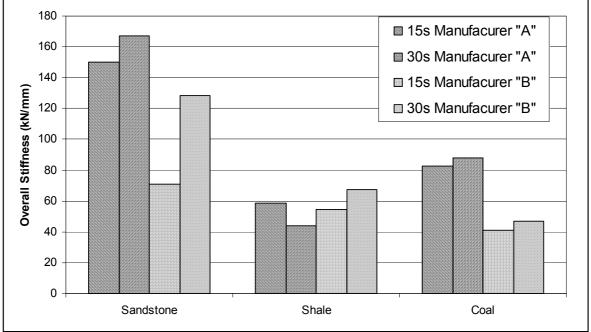


Figure 6-40 System stiffness of 15-second and 30-second resin types from both resin manufacturers

Figure 6.4 indicates that both 15-second and 30-second resins from Manufacturer "A" achieved higher stiffness than those from Manufacturer "B" in sandstone and coal. In shale, both resins from both manufacturers performed in a similar manner.

The data shown in above figures is presented in Table 6-5.

Table 6-5

				Bond		Max Load	Overall
			Annulus	Strength	Contact Shear	Achieved	Stiffness
Rock Type	Manufacturer	Resin Type	(mm)	(kN/mm)	Strength (kPa)	(kN)	(kN/mm)
Sandstone	A	15-second	3.37	0.60	7170.96	150.00	150.35
Sandstone	A	30-second	3.80	0.60	6980.67	150.00	167.35
Sandstone	A	5/10-minute	3.17	0.33	4013.31	83.33	65.56
Sandstone	В	15-second	3.01	0.60	7299.21	150.00	71.23
Sandstone	В	30-second	2.96	0.60	7330.47	150.00	128.48
Sandstone	В	5/10-minute	3.33	0.11	1184.60	25.00	22.03
Shale	А	15-second	3.45	0.48	5689.04	120.00	58.53
Shale	А	30-second	3.37	0.51	6034.17	126.67	43.88
Shale	В	120-second	3.65	0.39	4613.01	98.33	24.51
Shale	В	15-second	3.22	0.37	4497.89	93.33	54.33
Shale	В	30-second	3.30	0.51	6036.35	126.67	67.66
Shale	В	5/10-minute	3.27	0.49	5957.16	123.33	42.99
Coal	A	15-second	3.55	0.60	7056.66	150.00	82.46
Coal	А	30-second	3.43	0.42	4901.13	105.00	88.10
Coal	В	15-second	3.48	0.60	7100.73	150.00	40.86
Coal	В	30-second	3.50	0.51	5963.47	128.33	47.19

(averages)

6.5 Specifications for bolt and resin

The deform pattern of a bolt is an important factor in determining the support system performance. The bolt profile determines three important phases of support installation and performance. These are:

- Quality of resin mixing;
- Pushing the resin towards the end of the hole; and
- Load transfer capabilities of the bolting system.

However, the effect of bolt profile on support performance is poorly understood by the end user. The majority of information pertaining to the design and specification of fully encapsulated roof bolting systems is commercial intellectual property, and little information is available in the public domain. One of the causes of this lack of knowledge regarding the influence of bolt profile on support performance is the testing procedure adopted. When testing the effect of bolt profile, the important factor is the location of the failure mechanism, which should be on the resin-bolt

interface. Extensive laboratory snort encapsulated pur tests resulted in inconsistent results due to failure taking place on the rock- or pipe-resin interface. In this case, the maximum load in the test is probably independent of bolt profile, assuming that bolt profile did not affect the quality of resin mixing.

The important considerations in a roof bolt profile are depicted in Figure 6-41:

- The rib radius (*R*);
- Rib angle (α);
- Distance between the ribs (*p*); and
- Thickness of rib (*d*).

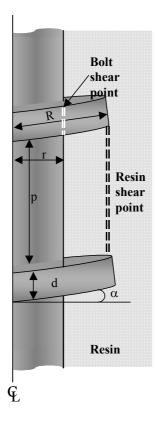


Figure 6-41 Simplified drawing of roof bolt profile components

Matching the bolt profile to resin strength is also an important consideration in support system design. In 1999, the South African coal mining industry imported Australian low-rib height roof bolts, which showed relatively poor performance (O'Connor, 2004).

O'Connor (2004) developed a mathematical model to determine the effectiveness of matching resin properties to the profile of the bolt. This model is based on the bolt shearing at the base of

the ribs, at the same load as the grout snears between the ribs. O'Connor stated that this happens when:

$$\frac{\text{Resin shear strength}}{\text{Steel shear strength}} = \frac{d r}{R p}$$
[6-1]

Where *R* is the rib radius, α is the rib angle, *p* is distance between the ribs, and *d* is the thickness of rib.

This equation indicates that to maintain a balanced performance between resin and roof bolt profile, lower resin strength requires either higher ribs, or longer spacing between ribs, or both of these. Note that this model ignores the effects of resin mixing, film shredding and rib angle.

This model also indicates that the maximum pull-out loads can be achieved between the resin and roof bolt when:

- The ribs are relatively high;
- The distance between the ribs is relatively low; and
- The ribs are relatively thick.

It should also be noted that the failure between the rock and the resin takes place in a similar manner in a short encapsulated pull test. Therefore, the pull-out loads (from SEPT) in stronger rock (such as sandstone) are greater than in softer rock, such as shale (Figure 6-42) due to the nature of greater shear strength of sandstone.

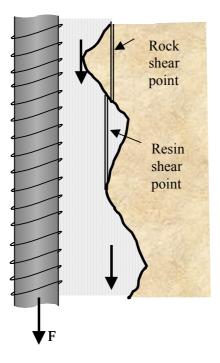


Figure 6-42 Simplified drawing of failure between the rock and the resin

As can be seen from Figure 6-42 and Equation [6-1], the pull-out load to failure will increase:

- When the rock shear strength is relatively high; and
- When the hole is rougher.

From all of the above it can be concluded that the failure characteristics of a roof bolting system will be determined by the shear strength of bolt / resin / rock interface:

- The failure will take place at the resin-rock interface when the shear strength of the rock is lower than the resin (rock will fail);
- The failure will take place at either the resin-rock or resin-bolt interface when the resin shear strength is the lowest in the system;
- When the resin shear strength is the lowest in the system, the failure will be determined by the roughness of the hole and the bolt profile.

The other important consideration in the performance of a roof bolt is the bolt geometry (Figure 6-43). The effect of rib angle on the pull-out resistance can be calculated with the use of the following formula:

$$F_R = F \cos \alpha$$
 [6-2]

Where F_R is reaction force, *F* is applied pull-out load and α is rib angle.

Equation [6-2] shows that as the rib angle increases the pull-out load of a bolt decreases. It is therefore suggested that in order for relatively high pull-out loads to be achieved, low rib angles are required. This requirement was confirmed by laboratory tests on different bolts with different rib angles in Australia (O'Brien, 2003). However, lowering the rib angle may result in poor resin mixing performance. It is therefore recommended that further work on the effect of bolt geometry on roof bolt performance be carried out. Such work will then allow the performance of roof bolts to be determined by engineering design that could differ for different rock types. Bolt design could be optimised with the aim of inducing failure on this interface. It is also recommended that the quality of resin mixing should be investigated with different rib angles for determining the most effective rib angles on the roof bolts. Unfortunately, the very similar rib combinations in South African bolt types and testing in an underground environment (uncontrolled conditions) meant that the effect of rib angle, rib height and thicknesses and spacing between the ribs could not be quantified. It is therefore suggested that these tests should be conducted in a controlled laboratory environment.

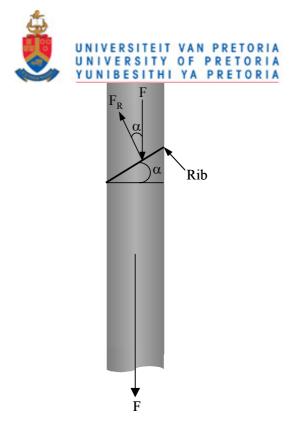


Figure 6-43 Effect of rib angle on pull-out loads (simplified)

6.6 Effect of bit, annulus and rock type

6.6.1 Performance of bits

Two types of drill bits are commonly used in South African collieries. These are the 2-prong bits and the spade bit. Both bits are shown in Figure 6-44.

Figure 6-44 Spade and 2-prong bits (25 mm)

A total of 40 short encapsulated pull tests were conducted in order that the performance of the two different bit types could be determined.

The results from these tests in sandstone and shale are summarised in Figure 6-45. As can be seen in the figure, the 2-prong bit outperformed the spade bit in both rock types. However, the annuli obtained from the 2-prong bit were always greater than those from the spade bit (Figure 6-46). This is probably because of rougher holes obtained with 2-prong bits.

The stiffnesses obtained from the 2-prong bits were also greater than those from the spade bit (Figure 6-47). These findings suggest that 2-prong bits are more effective in collieries than the spade bits.

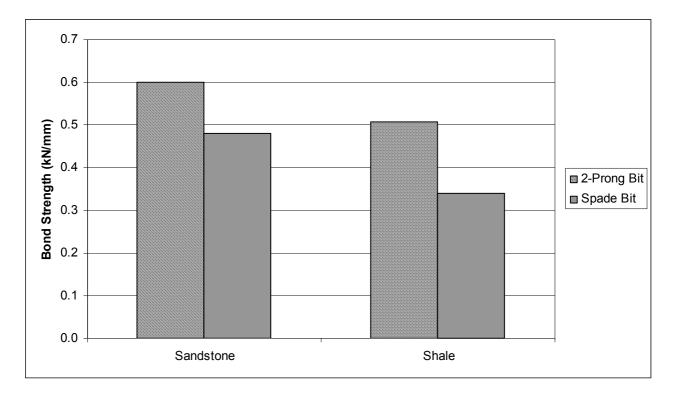


Figure 6-45 Performance of spade bit and 2-prong bit

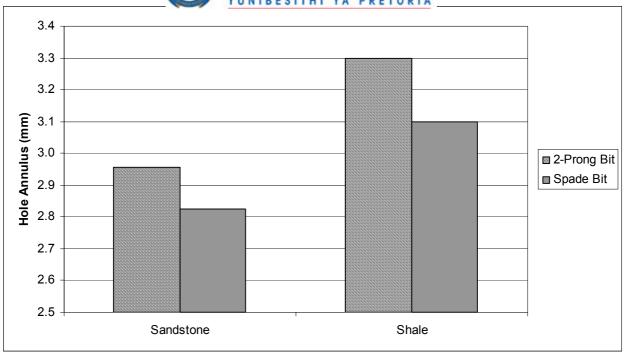


Figure 6-46 Hole annuli obtained from the 2-prong and spade bits

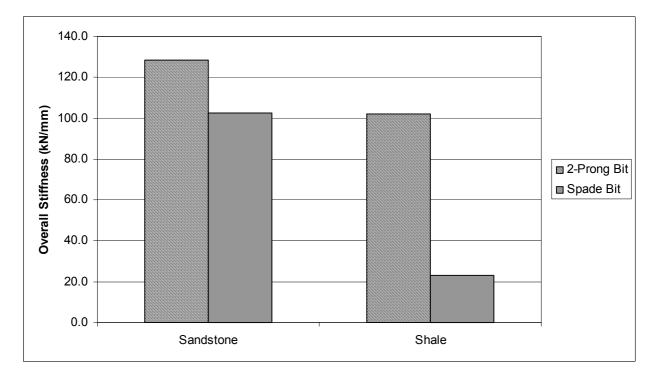


Figure 6-47 Overall stiffnesses obtained from the 2-prong and spade bits

The data shown in the above figures is presented in Table 6-5.

			Bond		Max Load	Overall
		Annulus	Strength	Contact Shear	Achieved	Stiffness
Rock Type	Bit Type	(mm)	(kN/mm)	Strength (KPa)	(kN)	(kN/mm)
Sandstone	2-Prong	2.96	0.60	7330.47	150.00	128.48
Sandstone	Spade	2.83	0.48	5842.97	120.00	102.35
Shale	2-Prong	3.30	0.51	6036.35	126.67	101.94
Shale	Spade	3.10	0.34	4110.14	85.00	23.20

6.6.2 Effect of hole annulus

Borehole annulus is defined as half of the difference between the bolt and hole diameters. As a continuation to the investigation to determine the effect of borehole annulus on support performance, an additional 68 short encapsulated pull tests were conducted under near identical conditions in sandstone and shale roofs. These tests were done using a variety of different sized drill bits in order to attain the necessary annuli. The results from these tests are shown in Figure 6-48.

As can be seen, the results from these tests show that an annulus between 2.5 mm 3.8 mm resulted in the highest bond strengths. Another interesting point is that as the annulus drops below 2 mm, it appears to have a negative effect on the bond strength. This confirms the findings of tests conducted by Hagan (2003) in Australia and the recommendations made by Wagner as far back as 1985.

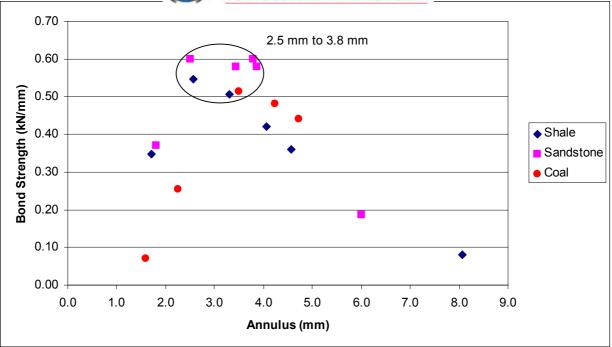
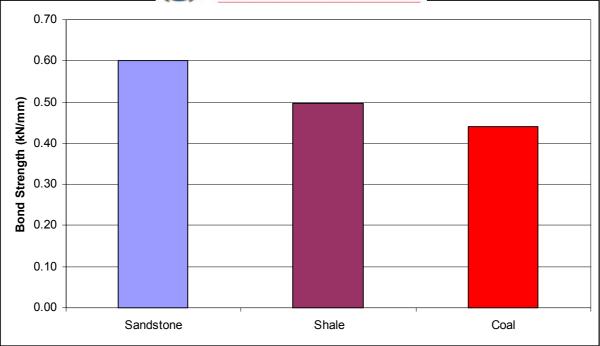


Figure 6-48 Effect of hole annulus on bond strength


Note that the annuli in Figure 6-48 are determined from the actual hole and bolt diameter measurements, and not from the bit size. Generally, 24 mm or 25 mm bits with 20 mm roof bolts give an annulus of 2.5 mm and 3.8 mm respectively. It is therefore suggested that these bit sizes should be used with 20 mm roof bolts.

6.6.3 Effect of rock types

As has been indicated previously by many researchers, rock type greatly affects support performance. To investigate this effect, a series of pull tests were conducted at different collieries near identical conditions.

Figure 6-49 highlights the very distinct differences between bolt system performances in different rock types. The results clearly show that sandstone produces significantly better results than shale and coal, as was explained in Section 6.5 of this report. From these results it can be concluded that rock type is one of the primary factors influencing support system performance.

Figure 6-49 Effect of rock type on support performance

6.7 Quality control procedures for support elements

It is estimated that approximately 6.5 million roof bolts are installed annually in South African collieries (Henson, 2005). Although there are systems available to test the integrity of installed bolts, it is important to ensure that the roof bolts are installed in the best way possible.

There are several factors contributing to the under-performance of roof bolts. These factors should be regularly controlled by systematic quality control procedures.

The factors that can affect the performance of a roof bolt support system can be classified as:

- Direct controllables; and
- Indirect controllables.

The indirect controls are related to suppliers' quality control procedures, such as metallurgical properties of roof bolts, deformation pattern of roof bolts, and chemicals used in the manufacturing process of resin capsules and the consistency of these properties. It is suggested that mining houses should request to examine their suppliers' quality control procedures. It is also suggested that these quality control procedures should comply with ISO standards and that an independent auditor should regularly check for compliance.

The direct controllables can also be divided into three distinct groups (Table 6-7):

- Support elements;
- Compliance with the design; and
- Quality of installation.

As part of this task of the study, currently available quality control procedures established by the mines in South Africa have been reviewed. These systems are the basis of the quality control procedures presented here.

Support elements	Installation	Compliance with the design
Roof bolts	Correct installation cycle	Spacing
Strength of roof bolts	Correct spinning-holding times	Using correct bolt
Correct length	Correct insertion of resin	Using correct resin
Correct diameter	Correct drilling	Correct hole size
Corrosion	Correct bit size	Correct drill bit
Straightness	Correct rod and hole length	Correct adjustment of roofbolters
Resin	Correct flushing	
Strength	Correct roof bolt pattern	
Storage	Correct time-to-installation	
Туре	Correct resin storage	
Borehole		
Diameter and annulus		
Straightness		
Location and inclination		
Length		
Roughness		
Roofbolters		
Torque		
Thrust		
Speed		
Accessories		
Washer strength		
Washer size		
Nut strength		
Threat type		

Table 6-7A list of direct controllables

From the above Table, the following quality control procedures have been recommended in this thesis.

6.7.1 Support elements

RO	OF BOLTS		
1	Length	General	Roof bolt assemblies are to be supplied in standard
			lengths (see table below) with the provision available for
			the supply of non-standard lengths at the request of the
			client. The tolerance on roof bolt length shall be -5 mm
			+15 mm.
2	Profile	Diameter tolerance	The maximum tolerance on roof bolt diameters should be
			within 0.235 mm.
		Rib height	Should meet the SEPT requirement.
		Rib thickness	Should meet the SEPT requirement.
		Rib distance	Should meet the SEPT requirement.
3	Straightness	General	Deviation form straight must be within 0.4% of the length
			of the supplied bolt.
4	Finish	General	The roof bolt must be free of any grease and defects such
			as burrs, sharp edged seams, laps or irregular surfaces
			that may affect its serviceability.
5	Colour coding	General	Colour coding; the base of the threaded portion or forged
			head (proximal end) of every roof bolt supplied must be
			colour coded according to the following table:
			Nominal roof bolt length (m) - Colour coding:
			0.6 - Orange
			0.9 - Yellow
			1.2 - Blue
			1.5 - White
			1.8 - Green
			2.1 - Pink
			2.4 – Red
6	End of bolt	General	The non-threaded end of the roof bolt must be free of
			burrs and edges that protrude beyond the roof bolt profile.
			Depending on the requirement of the mine: the non-
			threaded end of the roof bolt must be formed square by
			cropping; the threaded end of the roof bolt must be
			acceptably square to the longitudinal axis of the shank;
			and must be cropped at the distal end at 45°.

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA UNIBESITHI YA PRETORIA

7	Threaded section	General	I ne threads are to be roll-tormed for 120 mm on the bar
			and when gauged, must be parallel throughout its length.
			The basic profile of the thread shall conform to the
			relevant dimensions specified in DIN 405 Part 1: Knuckle
			Threads.
	Run-out	General	In the thread run-out bolt systems, the thread run-out must
			not exceed three pitches.
	Thread Eccentricity	General	Any thread eccentricity of the roof bolt over a thread
			length of one roof bolt diameter from the thread run-out of
			the roof bolt measured at any point on the unthreaded
			shank within a distance of 1.5 roof bolt diameters from the
			thread run-out must not exceed 0.70 for the 16 mm roof
			bolt and 0.84 for a 20 mm roof bolt.
	Nib bars	General	Any roof bolt with nibs on the threaded section shall, when
			tested for mechanical performance, not fracture at the
			cross-section where the nibs are located.
	Nut Break Out	General	Any roof bolt supplied with shear pins or other approved
			breakout facility will have a breakout force for nuts in the
			range of 90 Nm to 110 Nm for 16 mm and 140 Nm to 170
			Nm for 20 mm.
8	Mechanical	Ultimate tensile	The ultimate tensile strength of the roof bolt must be at
	Performance	strength	least 15% greater than the yield stress on each tensile
	(Resin tendons)		test.
		Yield stress	Minimum yield stress shall be 480 MPa.
		Nibs	Any cross-section nibs located on the threaded section of
			the roof bolt must not fracture before the specified
			requirements of the bolt when destructively tested.
		Mechanical	16mm resin tendons or equivalent
		properties	Maximum strain at 90 kN: 8 millistrain
		(Laboratory	Maximum strain at 100 kN: 12 millistrain
		testing)	Tendon diameter : 16 mm (<u>+</u> 0.235 mm)
			Minimum usable thread length: 100 mm
			18mm resin tendons or equivalent
			Maximum strain at 140 kN: 13 millistrain
			Maximum strain at 150 kN: 18 millistrain
			Tendon diameter 17.3 mm (<u>+</u> 0.235 mm) Minimum usable thread length: 100 mm

Γ

Maximum strain at Tendon diameter 2 Minimum usable th Mechanical properties (Underground SEP testing) 85 kN for 16 mm r	roof bolts roof bolts n stiffnesses must be: N/mm N/mm underground testing
Tendon diameter 2 Minimum usable thMechanical propertiesThe maximum load a 125 kN for 20 mm (Underground SEP testing)100 kN for 18 mm 85 kN for 16 mm r 20 mm bolt 60 kN 18 mm bolt 50 kN 16 mm bolt 40 kN9Mechanical Performance9Mechanical Performance10Underground testing9Mechanical Performance10Winimum pull-out loa	20 mm (<u>+</u> 0.235 mm) hread length: 100 mm achieved must not be less than: roof bolts roof bolts roof bolts n stiffnesses must be: N/mm N/mm N/mm underground testing ad
Minimum usable thMechanicalThe maximum load aproperties125 kN for 20 mm(Underground SEP100 kN for 18 mmtesting)85 kN for 16 mm mThe minimum system20 mm bolt 60 kN20 mm bolt 60 kN18 mm bolt 50 kN16 mm bolt 40 kN9MechanicalUndergroundPerformancetestingMinimum pull-out loa	hread length: 100 mm achieved must not be less than: roof bolts roof bolts n stiffnesses must be: N/mm N/mm N/mm underground testing ad
Mechanical The maximum load a properties 125 kN for 20 mm (Underground SEP 100 kN for 18 mm testing) 85 kN for 16 mm m The minimum system 20 mm bolt 60 kN 20 mm bolt 50 kN 16 mm bolt 40 kN 9 Mechanical Underground Performance testing Minimum pull-out loa	achieved must not be less than: roof bolts roof bolts roof bolts n stiffnesses must be: N/mm N/mm N/mm underground testing ad
properties125 kN for 20 mm(Underground SEP100 kN for 18 mmtesting)85 kN for 16 mm mThe minimum system20 mm bolt 60 kN20 mm bolt 50 kN16 mm bolt 50 kN16 mm bolt 40 kN16 mm bolt 40 kNPerformancetestingMinimum pull-out loa	roof bolts roof bolts roof bolts n stiffnesses must be: N/mm N/mm N/mm underground testing
(Underground SEP testing) 100 kN for 18 mm 85 kN for 16 mm 85 kN for 16 mm The minimum system 20 mm bolt 60 kN 20 mm bolt 50 kN 18 mm bolt 50 kN 16 mm bolt 40 kN 16 mm bolt 40 kN 9 Mechanical Underground Performance testing Minimum pull-out loa	roof bolts roof bolts n stiffnesses must be: N/mm N/mm underground testing
testing) 85 kN for 16 mm m The minimum system 20 mm bolt 60 kN 18 mm bolt 50 kN 16 mm bolt 40 kN 9 Mechanical Underground Performance during of Performance testing Minimum pull-out loa	roof bolts n stiffnesses must be: J/mm J/mm underground testing
9 Mechanical Underground Performance Performance 10 Minimum pull-out loa	n stiffnesses must be: N/mm N/mm N/mm underground testing
20 mm bolt 60 kN 18 mm bolt 50 kN 16 mm bolt 40 kN 9 Mechanical Underground Performance testing Minimum pull-out loa	N/mm N/mm N/mm underground testing
18 mm bolt 50 kN 16 mm bolt 40 kN 9 Mechanical Underground Performance testing Minimum pull-out load	N/mm N/mm underground testing
9 Mechanical Underground Performance during Performance testing Minimum pull-out loa	J/mm underground testing id
9 Mechanical Underground Performance during Performance testing Minimum pull-out loa	underground testing
Performance testing Minimum pull-out loa	id
(Mechanical bolts) Units must achieve 7	70 kN of pull out lood
	o kin ol pull-out load.
Maximum deformatic	on must not exceed 1.2 times the
average deformation	attained by the control installations.
Maximum Mechanically anchore	ed roof bolts should be provided by
deformation Rock Engineering in	control installations.
Control installation Roof bolts and studs	shall comply with the following
specifications:	
Specifications They must have Bail-	-type or Regular shells, and be
equipped with crimp	nuts failing at torque equivalent to a
pre-tension of 20 kN	to 40 kN or Bail-type shells with
forged head.	
Maximum strain at 70	0 kN: 4 millistrain
Maximum strain at 80	0 kN: 5 millistrain
Minimum tendon diar	meter: 14.5 mm
Minimum usable thre	ead length: 100 mm
10 Washers General Washers must be ma	anufactured from steel and must be a
minimum of 120 mm	x 120 mm square.
Surfaces All surfaces must be	free of burrs and sharp edges
Holes Holes in the dog-eare	ed portion of washers must not be
closer then 3 mm to t	the edge of the washer.
Shape Washer plates must	be square or round type (deformed or
ribbed and with or wi	ithout dog-ears).

			ERSITEIT VAN PRETORIA ERSITY OF PRETORIA BESITHI YA PRETORIA FOR USE WITH TO MMT TENDONS:
		Specifications	 Washers for use with 18mm tendons must meet the following specifications: Maximum displacement at 140 kN: 13 mm Maximum displacement at 150 kN: 18 mm For use with 20 mm tendons: Washers for use with 20 mm tendons must meet the following specifications: Maximum displacement at 140 kN: 10 mm Maximum displacement at 150 kN: 13 mm For use with all other tendons must meet the following specifications: Washers for use with all other tendons must meet the following specifications:
11	Nuts	General	Maximum displacement at 90 kN: 8 mm Maximum displacement at 100 kN: 12 mm Nuts must be of hexagon steel. The dimensions across
			the flats shall be 24 mm for a 16 mm roof bolt and 32 mm for a 20 mm roof bolt.
		Processing	All nuts are to be cold forged from steel and should be heat treated to provide the required mechanical properties.
		Compliance	Nuts must comply with the relevant requirements for eccentricity and tilt as in SABS 135.
		Compliance	The threads must conform to DIN 405: Part 1 as applicable to nut size.
		Manufacturing process	All nuts must be manufactured from a higher grade steel than the tendon and washer, the steel grade to be a minimum of grade 6. When tested, all nuts must achieve a surface hardness of Vickers 220 to 302HV.
		Performance	 When tested to destruction in the laboratory the nut must not fail in any way before the ultimate strength of the tendon is exceeded. The Rock Engineering Department may from time to time call for destructive testing as it sees fit. For routine quality control tests, nuts used with the following tendons must not fail at the following minimum loads: a) Smooth bar (mechanical anchors): 85 kN
			b) 16mm tendons 110 kN c) 18mm and 20 mm tendons 170 kN

		Load indicators	One in each ten poits shall be supplied with a device
			capable of visually indicating that an installation has been
			adequately pre-tensioned. During static laboratory testing
			(not spun or torqued) the indicators must fail at a load of
			between 45 kN and 55 kN (4.5 to 5.5 tonnes).
		Nut break out	The nut break out facility must operate at the torque range
			values detailed below:
			• Bolt Length 0. 9m, 1.2 m - 70 Nm to 90 Nm
			• Bolt Length 1.5 m, 1.8 m, 2.1 m - 110 Nm to
			140 Nm
12	Drill bits	General	Only the following (nominal) size drill bits should be
			supplied to mine for the purpose of drilling holes to install
			ground support material:
			For resin tendon applications:
			• For 16 mm and 18 mm roof bolts: 22 mm
			For 20 mm roof bolts: 23.5 mm
			For cable anchor applications: 36mm
			• For mechanically anchored roof bolts: 36 or 38mm
			All drill bits (borers) must be manufactured with a
			tolerance of -0/+0.25 mm.

RO	OFBOLTERS		
1	General		Roofbolters should be regularly maintained, and have the
			following specifications (note that these specifications are
			to achieve rough hole profiles, and if necessary, they can
			adjusted to requirements):
2	Specifications		The torque on the roofbolter must be between 220 kN to
		Torque	250 kN.
			The thrust on the roofbolter must be between 12 kN to 18
		Thrust	kN.
		Speed	The speed of the roofbolter must be 350 rpm to 550 rpm.

RESIN					
1	General	Capsule	All resin must be supplied in capsule form.		
		Compliance	All resin capsules used must conform to SABS		
			1534:2002.		

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

		Intormation	The rollowing information must be shown clearly on each
		required	box of resin:
			a) Capsule dimensions
			b) Expiry date
			c) Batch number
			d) Spin and hold times
2	Capsule Size	Tolerance	Capsules must be 19 mm ± 0.5 mm in diameter for use
			with 16 mm bolts and 23 mm \pm 0.5 mm in diameter for use
			with 20 mm bolts. The tolerance on supplied length must
			be nominal ordered length +10 /-5 mm when measured
			between the crimped ends.
3	Colour Coding	Colour coding	Resin types must be identified by a self-colour coding as
			given below:
			Fast Set – Red
			Slow Set – Yellow
4	Shelf Life	General	All resins must retain their ability to conform to the
			performance requirements of this specification and retain
			sufficient rigidity for insertion with a capsule-loading tube
			for a minimum period of six months when they are stored
			in accordance with the manufacturer's instructions.
5	Packaging	General	All packing must be capable of withstanding
			transportation, handling and storage, and general
			handling associated with the mining environment.
		Information	Each package must be identified with the manufacturer's
		required	name, type of resin, size of capsule, and quantity of
			capsules, and be of a colour consistent with the resin-type
			colour code specified above.

			RSITEIT VAN PRETORIA ERSITY OF PRETORIA ESITHI YA PRETORIA
		Intormation display	The following additional information must be displayed on
			all packages in a position that is visible when the
			packages are stacked:
			a. Capsule dimensions
			b. Expiry date
			c. Batch number
			d. Nominal mixing and holding time
			e. Shelf life and storage instructions
			f. Date of manufacture
			g. Batch and time reference
			h. Manufacturer's identification
			i. The symbols, risk and safety phrases as required
			under the Safety Regulations
			j. Remedial measures in the event misuse/accident
			k. Installation procedure taking into account applicable
			regulations.
6	Gel and Setting	General	Gel setting times for different spinning speeds and
	Time		temperatures should be clearly indicated on the box.
7	Bond Strength and	Performance	When tested in SEPT, the minimum bond strength
	System Stiffness		between roof bolt and resin must be 95 kN for 16 mm bar,
	-,		120 kN for 18 mm bar and 140 kN for 20 mm bar. The
			minimum system stiffness must be 60 kN/mm measured
			between loads of 40 kN and 80 kN, based on
			underground pull tests.
8	Uniaxial	Performance	The UCS of the resin must be greater than 60Mpa when it
Ŭ	Compressive	renormanoe	is measured at least 24 hours after preparation of the test
	Strength (UCS)		specimens. The number of tests should be determined
			from the methodology described in this report.
9	Elastic Modulus	Performance	The elastic modulus of the resin must not be less than
9		Periormance	
			10GPa when it is measured 24 hours after preparation of
			the test specimens. The required number of tests should
			be determined from the methodology described in this
			report.
10	Creep	Performance	The creep of the resin must be no more than 0.12% when
			it is measured 24 hours after preparation of the test
			specimens.
11	Shear strength	Performance	Must meet the SEPT requirements.
			The maximum load achieved must not be less than:
			125 kN for 20 mm roof bolts
			100 kN for 18 mm roof bolts
			85 kN for 16 mm roof bolts

	The minimum system stiffnesses must be:
	20 mm for bolt 60 kN/mm
	18 mm for bolt 50 kN/mm
	16 mm for bolt 40 kN/mm

r

ROUTINE TESTS			
1	Roof bolts	Mechanical	At least 5 bolts from each batch supplied to the mine
		properties	should be tested in the laboratory.
		Length	As a routine test, one roof bolt in every 200 produced
			must be checked for length using a measuring tape.
		Diameter	As a routine test, one roof bolt in every 200 produced
			must be checked for diameter using a Vernier.
		Straightness	As a routine test, one roof bolt in every 200 produced
			must be checked for straightness using an appropriate
			gauge.
		Rib height	As a routine test, one roof bolt in every 200 produced
			must be checked for rib height using a Vernier.
		Washer	At least 5 from each batch should be tested in the
			laboratory.
		Thread	As a routine test, one roof bolt in every 200 produced
			must be checked for thread.
		Nuts	At least 5 from each batch should be tested in the
			laboratory.
2	Resin	Length	As a routine test, one resin in every 10 boxes produced
			must be checked for length using a Vernier.
		Diameter	As a routine test, one resin in every 10 boxes produced
			must be checked for diameter using a measuring tape.
		Mechanical	At least 5 from each batch should be tested underground
		properties	using short encapsulated pull tests.
4	Roofbolters	Torque, thrust and	As a routine test, roofbolter's torque, thrust and speed
		speed	must be checked once every month.
s			

6.7.2 Compliance with the design

Compliance with the design should be checked underground at least once every fourth week. The following parameters should be measured and recorded:

- Spacing of roof bolts using a simple measuring tape;
- The use of correct bolt type;
- The use of correct resin type;
- Correct hole size using a borehole micrometer;
- The use of the correct drill bit; and
- Correct adjustment of torque, thrust and speed of roofbolters using a torque wrench, load cell and tachometer, respectively.

6.7.3 Installation

Underground support installation is one of the most important aspects of support performance. The following parameters should be measured and recorded every fourth week using the appropriate instruments, where necessary:

- Correct installation cycle;
- Correct spinning-holding times;
- Correct insertion of resin;
- Correct drilling;
- Correct bit size;
- Correct hole size;
- Correct rod length and hole length;
- Correct flushing;
- Correct roof bolt pattern;
- Correct time-to-installation; and
- Correct resin storage.

6.8 Conclusions

Although a considerable amount of time was spent on the effect of the roofbolters on the performance of support systems, few trends could be observed in the parameters influencing the support performance. The study showed that there are no standards in South Africa for the parameters investigated (speeds, torque, and thrust). Underground testing showed that the variations in the parameters are greater than was previously believed. No correlation between the hole profiles and the parameters investigated could be discerned.

Nevertheless, this indicates that in South Africa, the installation quality of bolts varies significantly. Irrespective of design, the bolts are installed in completely different manners. Unfortunately, there is no data available on the relationship between roof collapses and the quality of bolt installation. It is therefore impossible to determine empirically which support installation performs the best. This highlights a need for the best equipment performance for the best support installation to be investigated in detail. Such a study would assist in reducing the falls of ground and, therefore, the rock-related casualties in South African collieries. However, experience gained during the underground experiments showed that such work can only be done in a more controlled environment, such as with the laboratory.

Five important elements of a bolting system have been identified. The impacts of those elements were qualified through short encapsulated pull tests.

The performance of roof bolts that are currently supplied to South African mines was also investigated by a series of short encapsulated pull tests. The results indicated that bolts from all four manufacturers showed almost identical results in sandstone, while in shale the results were dissimilar.

To determine whether variations in the profile of bolts supplied by the different manufacturers could account for the differences in performance, the bolt-core diameters and rib diameters from different bolt manufacturers in South Africa were measured.

The parameters that determine the contact strength between bolt and resin are rib-height, spacing between the ribs, and the rib angle. An investigation was conducted into the dimensions of roof bolts that are used currently. The results showed insignificant differences between the parameters that determine the bolt profile of South African roof bolts. Owing to the physical similarity between the bolts studied, it was not possible to determine the influence of these parameters.

The effect of rib angle was invesugated and the results of a merature search showed that, as the rib angle increases away from normal to the bolt axis, so the pull-out load of the bolt decreases. It is therefore suggested that, in order to achieve relatively high pull-out loads, low rib angles on the bolts are required. This was confirmed by laboratory tests on different bolts with different rib angles in Australia (O'Brien, 2003). However, it is noted that lowering the rib angle may result in poor resin mixing performances.

Using a conceptual model to determine the effect of bolt profiles, it is shown that maximum pullout loads can be achieved between the resin and roof bolt when:

- The ribs are relatively high;
- The distance between the ribs is relatively low; and
- The ribs are relatively thick.

The performance of resins that are currently being used in South African collieries was also investigated by means of short encapsulated pull tests. The results indicated that in sandstone the resin types from the two different manufacturers performed similarly. However, the strength of slow (5/10-minute) resins from both manufacturers was much lower than that of fast resins. It is concluded that in the majority of pull tests, failure took place at the rock-resin interface, indicating that the rock failed before the resin shear strength had been reached. It is therefore suggested that the strength of resin currently being used in South Africa is adequate. However, the stiffness of the system of which resin is a part should be determined by short encapsulated pull tests.

Again, the conceptual model developed to determine the effect of resin in the support system concluded that the failure characteristics of a roof bolting system will be determined by the shear strength of bolt, resin, and rock.

- The failure will take place at the resin-rock interface when the shear strength of the rock is lower than the resin (rock will fail).
- The failure will take place at either the resin-rock or resin-bolt interface when the resin shear strength is the lowest in the system.
- When the resin shear strength is the lowest in the system, the failure will be determined by the roughness of the hole and the bolt profile.

The test results showed that the reinforcing system using bolts from all four manufacturers performed almost identically in sandstone, but performed in different ways in the other rock

types. The bolts from Manufacturer A performed signify better in coal and shale rock types than the bolts from other manufacturers.

In order to investigate the effect of bit types, a series of short encapsulated pull tests were conducted. The results showed that the 2-prong bit outperformed the spade bit in sandstone and shale rock types. However, the average hole annuli obtained from the 2-prong bit were always greater than the spade bit. It is thought that this is because 2-prong bits drilled a rougher hole profile. Both the stiffness and the maximum load obtained from the 2-prong bits were greater than for the spade bits. These findings suggest that 2-prong bits are more effective in collieries than spade bits are.

The effect of hole annulus was also investigated. The results show that an annulus between 2.5 mm 3.8 mm resulted in the most effective bond strengths. Another interesting point is that as the annulus drops below 2 mm, it appears to have a negative effect on the bond strengths.

The effect of wet and dry drilling was also investigated by means of short encapsulated pull tests. The results showed that bond strengths and overall support stiffnesses are greater with the use of the wet drilling in all three resin types. The reason for this was not determined but is probably related to the surface condition of the holes and its influence on the adherence of the resin to the rock.

Tensioned versus non-tensioned bolts is one of the most discussed topics in roof bolting. A number of papers have been published on this topic in Australia and the US. An additional 25 short encapsulated pull tests were conducted to determine the effect of tensioning on bond strength. The results showed that non-tensioned roof bolts achieved significantly higher bond strengths than the tensioned bolts in sandstone and shale roofs. Similarly, the overall support stiffness of non-tensioned roof bolts was significantly greater than that of the tensioned roof bolts. This finding may be significant and therefore the effect of tensioning and non-tensioning on overall support system performance should be investigated in a control environment.

The effect of rock type on support performance was also investigated by means of a series of short encapsulated pull tests. The results from these tests highlight the very distinct differences between bolt system performances in different rock types. Sandstone was shown in the tests to produce significantly better results than shale and coal. From these results it can be concluded that rock type is one of the primary factors influencing the support system performance.

An investigation into the quality control procedures of support systems was also conducted. Quality control procedures for compliance with the design, support elements and quality of

measures and for developing testing procedures for bolt system components, installation quality and resin performance are provided.

Most importantly, similar to stress regime, geology and roof characteristics presented in the previous Chapters, there is a significant variation in the performance of support systems using different support components in different geotechnical environments. Therefore, it is concluded that a deterministic approach is not adequate for a roof bolting system design in such a complex system. A probabilistic approach is required in order to take all these variations into account.