
University of Pretoria etd – Kroeze, J H (2008)

Chapter 8
Conclusion

8.1 Introduction

The main research question of the thesis, How can XML be used to build an

exploitable linguistic database of the text of the Hebrew Bible?, directly reflects the

title of the thesis. This question was answered by dividing it up into various sub-

questions that correspond to the six content chapters (Chapters 2-7). Each chapter

contains a theoretical part in which related literature is discussed, as well as one or

more empirical experiments applying the theory in a practical case study. To

conclude this research a short summary141 of the salient points will be provided, after

which the secondary research questions will be revisited to determine if and to what

extent these issues have been addressed and answered.

The scope of the empirical study is limited to the Hebrew text of Genesis 1:1-2:3. The

issue of scalability is not addressed in the thesis's experiments. Although small texts

could easily be plugged in and analysed, assuming that the correct XML structure

and codes are used for tagging, larger texts such as the whole Hebrew Bible could

create memory and other implementation problems, issues which should be

addressed in follow-up work. The focus of this thesis is, however, on the contribution

that the use of these technologies may make for linguistic researchers, and not

primarily on the implementation problems. Therefore, issues of scalability and large

file structures are excluded.

141 This summary of the thesis is an abridged and revised version of a paper accepted by the 2008

International Conference on Information Resources Management (Conf-IRM), Niagara, Ontario,

Canada, May 2008 ("From Tags to Topic Maps: Using Marked-up Hebrew Text to Discover

Linguistic Patterns"), submitted under the names of the candidate and his supervisors (Kroeze,

Bothma and Matthee).

 271

University of Pretoria etd – Kroeze, J H (2008)

8.2 Summary of thesis contents

In order to create new knowledge a researcher always needs raw data. If no data is

available, a data set should first be set up, which often implies the explication of tacit

knowledge. In the case of languages, for example, the linguistic categories that are

implicit in the text, should be spelled out in a consistent format to enable the

researchers, or their computer programs, to ferret out hidden nuggets of knowledge

embedded within the networks of functions on a specific level or even between

various language modules. XML is a mark-up language that allows the researcher to

create a unique tag set to serve his/her design purpose. XML tags contain

meaningful information and therefore differ from HTML tags that are mainly used to

tell an internet browser how to format and display data. To display an XML file one

needs a style sheet to fulfil the same purpose. The XML tags may contain semantic

information or may be used to structure the data in the file. This latter function, which

may be used to simulate a database's columns and rows, is used in this project to

store each clause's verse number as a primary key, the phrases in the clause, their

translations, word group identifiers, syntactic and semantic functions. The XML file is

a flat representation of a threedimensional data structure or data cube, in which one

dimension represents the clauses, another the phrases and the third the linguistic

modules.

Although the XML data set contains all the information needed for exploration, the

verbosity caused by the mark-up makes it very difficult for a human researcher to

spot any interesting patterns. In fact, the visibility of the structuring tags actually hides

more than it reveals. Therefore, a computer program is needed to manipulate the

data set to make the discovery process more human-friendly. Various software

packages exist that are XML-enabled and some of these could certainly have been

used for this purpose. However, in order to better understand and explain the various

phases in the process, it was decided to write new code to represent and manipulate

the data set in an efficient data structure in temporary computer memory (RAM).

Visual Basic 6 (VB6) was used for this experiment because it allows the use of

threedimensional arrays and the creation of an executable file that can easily be

 272

University of Pretoria etd – Kroeze, J H (2008)

disseminated. The array uses indexes to number and structure the various data

elements stored in it, thus eliminating the need to use variables to keep track of word

and clause order.

The array data structure also facilitates procedures to represent various meaningful

representations of subsets of the data. To view the data in a human-friendly way

relevant subsets should be extracted from the data cube in the computer's memory.

The concepts of slicing and dicing have been borrowed from data warehousing

theory and practice. Although a typical data warehouse contains aggregated data,

while the suggested linguistic data cube contains detailed data, the data structure is

also threedimensional. Slicing off one layer from the Gen. 1:1-2:3 data cube reveals

a twodimensional subset that can easily be represented on paper or a computer

screen. The most obvious slices of a linguistic data cube are those where each slice

shows one clause's multidimensional analysis. Stacking all of these slices onto each

other will rebuild the cube. Again, array processing is used to slice each clause's

integrated analyses as a twodimensional table. Dicing refers to the unveiling of a

specific piece of data within the data set. It is used in this project for search functions.

The program can search the array to find a required clause number, a whole phrase

or a part of a string; when found, all the information related to the relevant clause is

displayed.

Although it logically makes more sense to start with a databank in XML format and

then move on to the representation of the data in the computer's temporary memory,

the order of these research sections has, actually, been reversed in this study. Due

to the verbosity of XML it was easier to first hardcode the clause cube in an array

structure and to create the first version of the XML file programmatically.

Once XML has been identified as a suitable medium for permanent storage of the

data, and a threedimensional array for temporary, in-memory storage, one has to find

a way to convert the data between the two mediums (round-tripping). Using the string

processing facilities of VB6 the text-based XML file is opened within the program.

Each line is read from the file using a loop with the same number of iterations than

the number of clauses in the file. Line by line the XML tags are stripped away and the

remaining linguistic data is stored into the array's variables. It is essential that the
 273

University of Pretoria etd – Kroeze, J H (2008)

program code should reflect the structure of the XML file exactly to ensure that the

linguistic data is inserted into the correct places within the array. If the data is only

used for viewing purposes or as a data source for more complex manipulation, the

contents of the array remain unchanged and do not have to be re-saved on

permanent storage. The XML databank may simply be opened and reused again at a

later stage. When the program does save the data and the resulting version is an

exact copy of the source file, the process is called ideal round-tripping.

From a practical point of view, however, it does not make sense to replace existing

data with an exact copy. But users will often feel the need to change or update the

data itself. Having the data in an array in memory makes it quite easy to add other

typical database functionalities (create, update and delete), which could typically be

used by end-users to refine or expand the data set.

After editing, the data should be stored on the hard disk again for retrieval at a later

stage. This process is a reversal of the method discussed above. The text file is

opened and the old data overwritten. The algorithm adds the relevant XML tags to

the linguistic elements before they are appended to the new file. One could also give

the resulting file a different name to ensure the retention of the original data that may

be used as a backup when necessary. Even if the data is changed by the user, the

basic structure of the XML file should remain exactly the same. Adding or removing

clauses, will, however, change the number of loop iterations needed when reading or

writing the data from and to the XML file. Currently, a new XML version of all the data

is created when data is edited by end-users, and a more elegant solution should be

researched in order to allow incremental updates.

The slicing and dicing features referred to above, however useful, could easily have

been simulated by a simple HTML or word processing implementation as well. The

real power of the data cube is only demonstrated when one realises that the same

data set may now be used to perform other and more advanced processing

functions. Finding new patterns in the linguistic data may be regarded as an example

of text data mining.

 274

University of Pretoria etd – Kroeze, J H (2008)

Another meaningful slice is one that isolates the semantic layer. This allows the

researcher to study the various combinations of semantic functions or semantic role

frameworks. In this experiment a procedure is used to identify unique frameworks

and to count their frequencies. It first slices off the semantic layer and sorts the

elements in each row; after concatenating each row to a string, the rows are ordered

and the unique frames counted. The researcher then uses this information to

compare existing definitions of semantic functions. Even though the experimental

data set is very small, a number of interesting combinations indicates that the

definitions of some of the semantic functions should be revised, at least for Biblical

Hebrew. For example, one instance was found of the semantic function of purpose

which is embedded in a state predication. According to the current definition of

purpose this should not have been possible since purpose may only occur in

controlled predications (actions and positions). Another interesting result prompts the

grammarian to reconsider the possibility of manner occurring in states. Another

experiment looks at the mapping of semantic functions onto syntactic functions and

also prompts interesting hypotheses.

These procedures illustrate how the process of text mining may catch up on gaps in

existing linguistic knowledge, for example when a general linguistic theory is applied

to and tested on a specific language. The results of these experiments represent new

information that may be used to create knowledge, but they are rather static. The

user is presented with one set of semantic frameworks in a text-based format and

(s)he should work through the document in a linear way.

An interactive visualising tool enables the researcher to look at a data set from

various perspectives. An example of such a tool is a graphical topic map that shows

all the relationships between phrases, semantic roles and syntactic functions in the

data set. A new program, using the same XML data set, was created to facilitate link

analysis between these nodes.142 By adding or deleting filters the user may focus on

subsets within the numerous relations. A filter may be selected, for example, to

142 This graphical topic map tool was created by Jan C.W. Kroeze, a student at the University of

Pretoria.

 275

University of Pretoria etd – Kroeze, J H (2008)

isolate all phrases with the semantic function of product. The graph that is produced

shows that, in Gen. 1:1-2:3, the semantic function of product is realised by the

syntactic functions of object and complement. When the user hovers with the mouse

over one of the phrases, more clause detail is shown in a tool-tip.

The experiments conducted in this thesis demonstrate the process of creating

knowledge by means of the interpretation of information extracted by digital tools

from raw linguistic data. It proves that XML is a suitable mark-up language to build a

threedimensional data structure that captures information of various language

modules. It shows that array technology provides an efficient way, not only to round-

trip this data to and from computer memory, but also to view and manipulate it in

order to reveal linguistic relations embedded in the marked-up data. It explores

graphical visualisation as a powerful, experimental way to search for patterns in the

data set.

8.3 Revisiting the research questions

Taking into account the overview of the thesis given above, the secondary research

questions that have been mapped to Chapters 2-7 will now be revisited.

Chapter 2 addressed the following research question: How can multidimensional

Biblical Hebrew linguistic data be captured and stored in the computer's temporary

memory using a programming language such as Visual Basic?

This chapter experimented with a threedimensional data structure, using Visual Basic

6, and found that a threedimensional array could be used to represent inherently

multidimensional linguistic data regarding Biblical Hebrew clauses. Various layers of

linguistic knowledge can be integrated by stacking various modules of analysis onto

each other. On a linguistic level the corresponding elements are linked by means of

the phrases constituting the clauses. On a programmatic level they are linked by

means of the indexes which are inherent and essential to the array structure. An

 276

University of Pretoria etd – Kroeze, J H (2008)

array, as such, cannot be stored permanently on a hard disk. Therefore, a VB6

program module was used in the initial phases of this project to declare and

hardcode the contents of the array.

Chapter 3 addressed the following research question: How can multidimensional

Biblical Hebrew linguistic data be processed with a programming language such as

Visual Basic?

This chapter explored data warehousing and online analytical concepts to find ways

to render meaningful subsets of linguistic data stored in a threedimensional array.

Concepts like slicing and dicing were adjusted to make them useful for the

processing of linguistic data. The captured data can be viewed and manipulated in

various ways, for example to create stacks of twodimensional interlinear tables

showing required aspects of clauses' data.

Chapter 4 addressed the following research question: How can multidimensional

Biblical Hebrew linguistic data be stored permanently to allow a stable environment

for editing and processing?

This section tried to find a more elegant solution for the permanent storage of the

databank. Due to its flexibility XML technology was chosen to build a text-based

databank. The experiment indicated that XML is indeed a very suitable mark-up

technology that can be used to permanently store the linguistic data in a separate

databank because it allows users to create their own tag sets which may simulate a

multidimensional database structure. Due to XML's platform-independency it also

enables the re-use of the data on other platforms. Various layers of linguistic data

were captured in an XML document using the phrase as the basic building block of

the data cube. XML's inherent hierarchical nature was used to add parallel levels of

linguistic modules that are linked to the primary building blocks. This implies that

more layers may be added when needed. Currently, the following modules are

tagged: a phonological representation and phrasal translation, as well as the morpho-

syntactic, syntactic and semantic analyses of the various phrases.
 277

University of Pretoria etd – Kroeze, J H (2008)

Chapter 5 addressed the following research question: How can linguistic data be

recovered from and saved to a permanent storage device (such as an XML

database)?

In order to satisfy the requirement of finding a stable platform for the data, while also

allowing editing and advanced processing, round-tripping was investigated, i.e. the

procedures needed to import the data into the VB6 program and to export it again to

an external storage medium (XML file). The procedures made extensive use of string

processing. Various viewing and searching functions were discussed. In addition,

create, update and delete functionalities were added to enable users to populate and

edit the clause cube while it is in the array state and to save these updates both to

the RAM and on permanent storage in XML format. These processes proved to be

suitable for the efficient storage, transfer and processing of linguistic data.

Chapter 6 addressed the following research question: How can linguistic data be

explored to unveil hidden patterns in and between the various language modules?

This chapter focused on the benefits of text data mining facilitated by the preceding

technologies. Some data mining concepts were applied in two experiments by

aggregating aspects of the semantic and syntactic modules tagged in Genesis 1:1-

2:3. A computer-assisted exploration of the semantic data captured in the XML

database of Genesis 1:1-2:3 illustrated the rigour enforced by such a text-mining

venture. It also prompted a few hypotheses regarding the definition of semantic

functions. The second experiment investigated the mapping of semantic and

syntactic functions that were revealed. This endeavour reinforced the finding of a

rigorous research method referred to above. Not only did it point out more tagging

errors, but it also challenged existing assumptions about the syntactic and semantic

theories that have been applied to the Hebrew text.

 278

University of Pretoria etd – Kroeze, J H (2008)

Chapter 7 addressed the following research question: How can visualisation be used

to enhance text-mining of multidimensional linguistic data?

In this chapter, projects have been suggested (one of which was implemented) that

could use the XML-based data cube of Genesis 1:1-2:3 in visualisation ventures to

clearly show linguistic patterns uncovered by means of a computer program. The

experiment to use an interactive graphical topic map to explore the mapping of

syntactic and semantic functions showed that visualisation may be used to create

user-friendly interfaces that may facilitate easier and more intuitive mining of linguistic

data.

Since all secondary research questions have been answered satisfactorily, one may

also conclude that the main purpose of the thesis has been attained. Although the

candidate believes that all knowledge is provisional, there are exciting indications

that XML may be used as a permanent and independent platform for the permanent

storage and integration of linguistic data. Such a databank may again be used by

various algorithms, programming languages and visualisation techniques for in-depth

processing.

8.4 Future research

Regrettably, however, not all issues can be covered in one research project. In fact,

each piece of research creates new problems and raises more questions that need to

be addressed. Therefore, there are various serious issues that need to be

investigated in follow-up work. Some of these problems are:

• Embedded phrases and clauses create challenges for the preservation of the

original word order. More elegant possibilities could be researched to replace

the current solution to put embedded clauses in brackets and then analyse

them separately.

• Scalability issues needs to be investigated to facilitate the processing and

visualisation of aggregate data of larger sections.

 279

University of Pretoria etd – Kroeze, J H (2008)

• The results of other existing Biblical information systems should be re-used

and integrated rather than creating and tagging a whole new dataset.

Transformation of the data into these systems will probably give rise to

compatibility problems.

• The storage of aggregated linguistic data in the data cube should be

researched. Linguistic data, for example, can be drilled up or down along the

lines of a syntactic tree structure, and this issue should be explored in further

research. A separate dimension could, for example, be declared for each

module. Each dimension could contain various levels to capture the

hierarchical data of a specific module. (Currently, all language modules

contain detailed data only and form part of the cube as layers of one

dimension.)

• More advanced search facilities could be implemented. It should, for example,

also be possible to do ad hoc searches on two (or more) parameters through

the clause cube in order to find unusual combinations such as the use of the

object marker 'et to express adjuncts,143 or for strange syntactic-semantic

mappings such as a (prepositional) complement expressing a patient.

• A typical clause cube will contain much repetition because the same syntactic

and semantic functions and structures are used over and over again.

Depending on the number of dimensions a lot of empty cells can also be

present (sparse data). With reference to numeric and other rigidly structured

data '[t]he ability of a multidimensional DBMS to omit empty or repetitive cells

can greatly reduce the size of the cube and the amount of processing'

(Connolly and Begg, 2005). The applicability of this feature to linguistic data

should be explored. The denser the data can be organized the more efficient

the storage and processing will be.

• Since the use of multidimensional database management systems and XML

query languages may supply exciting, alternative storage and processing

possibilities, these should also be experimented with. Software is currently

being developed to transform 'XML documents to and from databases'

143 Cf. Gesenius, Kautzsch & Cowley (1976: 372-376).

 280

University of Pretoria etd – Kroeze, J H (2008)

(Kroenke, 2005). The use of XML technology will also facilitate the

transmission of clause cube data over the internet (ibid).144

Despite these and other areas that still need to be researched, the candidate trusts

that this thesis makes a contribution to the field of computational linguistics by

illustrating how Linguistic Information Systems, as a humanistic endeavour, may be

implemented to further enhance the impressive body of work that has already been

done during the past forty years in Biblical Hebrew computing. Although these

findings may only be valid with reference to the small experiments of this study, one

may conclude by expressing one's trust and hope that there are promising indications

that the use of linguistic information systems in larger texts could lead to a variety of

knowledge-creation ventures.

144 The internet was the stimulus for the confluence of document processing and database

technology, facilitated to a great extent by XML (Kroenke, 2004).

 281

	Front
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	CHAPTER 8
	8.1 Introduction
	8.2 Summary of thesis contents
	8.3 Revisiting the research questions
	8.4 Future research

	Bibliography
	Addenda

