
University of Pretoria etd – Kroeze, J H (2008)

Chapter 5
Conversion of the Genesis 1:1-2:3 linguistic data

between the XML database and the array in Visual Basic103

5.1 Introduction

In the electronic processing of language, one can concentrate either on the digital

simulation of human understanding and language production, or on the most

appropriate way to store and use existing knowledge. Both are valid and important.

This thesis falls in the second category, assuming that it is important to capture the

results of linguistic analyses in well-designed, exploitable, electronic databases.

XML, for example, can be used to mark up free text, to create a well-structured

textual database.104 Since the data is separated from the manipulation and display

thereof, the same data can be used for various purposes, and programs or queries

can be created to suit the researcher’s individual needs. This, however, necessitates

the conversion of the data stored in XML format into a data structure, such as a

threedimensional array105, which can then be processed efficiently by a computer

program106.

This chapter will focus on the conversion of linguistic data of Genesis 1:1-2:3

between an XML data cube and a threedimensional array structure in Visual Basic 6

in order to eventually facilitate data access and manipulation. After a short

reconsideration of the structures of the VB6 and XML databanks, conversion

between the two will be discussed ("round-tripping"), as well as essential database

functions (create, read, update and delete) that may be performed on the clause

cube.

103 This chapter is a revised and extended version of a short paper, "Round-tripping Biblical Hebrew

linguistic data", read at the IRMA 2007 conference, Vancouver, British Columbia, Canada, May

19-23, 2007 (see Kroeze, 2007b).
104 See Chapter 4.
105 See Chapter 2.
106 See Chapters 3, 6 and 7.

 123

University of Pretoria etd – Kroeze, J H (2008)

The XML document containing the text and mark-up of Genesis 1:1-2:3 may be

regarded as a "native XML database" (i.e. "a database designed especially for

storing XML"), while the VB6 program may be regarded as a "content management

system" (i.e. "an application designed to manage documents and built on top of a

native XML database") (Bourret, 2003). The native XML database stores the XML

content, which consists of the original text (a phonetic version of the Hebrew text of

Gen. 1:1-2:3) with all the added XML tags and mark-up (syntactic and semantic

functions, etc.). The content management system is a database management system

that operates on the data to allow editing and various views according to possible

user needs. Although it is a very basic system, it does fulfil the basic requirements to

qualify as a native XML database (cf. Vakali et al., 2005: 65, 67): the hierarchically-

structured XML document serves "as the fundamental unit of logical storage", the

schema serves as the "logical model for the XML document itself", and the XML file

saved on the permanent storage device uses a sequential, text-oriented file structure

as "underlying physical storage model".107 A complete discussion on the XML clause

cube may be found in Chapter 4 (cf. Kroeze 2006).

The hierarchical structure of the XML database is demonstrated by the extract shown

in Figure 5.1, which partially repeats the contents of Figure 4.4 for the purpose of

easy reference.

107 According to Smiljanić et al. (2002: 17), however, a native XML database is not required to have

the third property: it can be built on various types of databases or proprietary storage formats.

 124

University of Pretoria etd – Kroeze, J H (2008)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Genesis1v1-2v3>

 <clause>

 <clauseno>Gen01v01a</clauseno>

 <headers>

 <header>Level</header>

 <header>Phrase1</header>

 <header>Phrase2</header>

 <header>Phrase3</header>

 <header>Phrase4</header>

 <header>Phrase5</header>

 </headers>

 <level1>

 <leveldesc>Phon:</leveldesc>

 <phrase1>bre$it</phrase1>

 <phrase2>bara</phrase2>

 <phrase3>elohim</phrase3>

 <phrase4>et ha$amayim ve'et ha'arets</phrase4>

 <phrase5>-</phrase5>

 </level1>

 <level2>

 <leveldesc>Translation:</leveldesc>

 <phrase1>in the beginning</phrase1>

 <phrase2>he created</phrase2>

 <phrase3>God</phrase3>

 <phrase4>the heaven and the earth</phrase4>

 <phrase5>-</phrase5>

 </level2>

 <level3>

 <leveldesc>Phrase type:</leveldesc>

 <phrase1>PP</phrase1>

 <phrase2>VP</phrase2>

 <phrase3>NP</phrase3>

 <phrase4>NP</phrase4>

 <phrase5>-</phrase5>

 </level3>

 <level4>

 <leveldesc>SynF:</leveldesc>

 <phrase1>Adjunct</phrase1>

 <phrase2>Main verb</phrase2>

 <phrase3>Subject</phrase3>

 <phrase4>Object</phrase4>

 <phrase5>-</phrase5>

 </level4>

 125

University of Pretoria etd – Kroeze, J H (2008)

 <level5>

 <leveldesc>SemF:</leveldesc>

 <phrase1>Time</phrase1>

 <phrase2>Action</phrase2>

 <phrase3>Agent</phrase3>

 <phrase4>Product</phrase4>

 <phrase5>-</phrase5>

 </level5>

 </clause> ...

</Genesis1v1-2v3>

Figure 5.1. An extract of the Genesis 1:1-2:3 XML clause cube, which is

representative of the hierarchy and structure of the file.

The platform independence of XML documents allows the marked-up text to be

transported to other programs "capable of making sense of the tags embedded within

it" (cf. Burnard, 2004). For this project, Visual Basic 6 (VB6) was chosen for this role

because XML is essentially a hierarchical system that fits the threedimensional array

data structure facilitated by VB6 perfectly. VB6 was chosen above Visual Basic.Net

because it is easier to make an executable file for dissemination in the older version.

It would, however, be relatively easy to transform the program(s) into a Visual Basic

2005 format since Visual Studio 2005 provides migration facilities. This would enable

the use of pre-programmed classes, for example to extend, delete or edit the data in

it. In this chapter, however, these CRUD (create, read, update and delete) functions

had to be coded manually, since the size of arrays are static and do not allow

automatic insertion and deletion of records (Crawford, 1999: 219).

When converted into VB6 the databank module consists of a threedimensional data

structure. A multidimensional array is very suitable for a limited data set, such as the

data in this project, due to its built-in indexing. Multidimensional online analytical

products (MOLAP) "typically run faster than other approaches, primarily because it’s

possible to index directly into the data cube’s structure to collect subsets of data"

(Kay, 2004). The VB6 program discussed in this chapter and the following chapter

may be regarded as a simple MOLAP tool.

 126

University of Pretoria etd – Kroeze, J H (2008)

The threedimensional array in VB6 contains the records of the 108 clauses found in

Genesis 1:1-2:3. Each clause has five or less phrases. Each phrase has five levels of

analysis. One level of analysis is added to record the verse number as primary key

for reference and searching purposes (this will leave five unused data fields per

clause, which may later be used for additional data). An array of 200 x 5 x 6 is used

to implement this data structure. Although a size of 108 in the first dimension would

be sufficient to hold all 108 clauses in the clause cube (cf. Figure 2.8), it was

enlarged to 200 to allow room for appending more clauses' analyses, as discussed in

section 5.3 of this chapter. If the array were populated manually with data (as was

done in Chapter 2), the first clause could be coded as shown in Figure 5.2. The

essential contents of Figure 2.8 is repeated in Figure 5.2 to enable readers to easily

compare the two versions of the data that will be outcomes of the conversion

processes discussed below.

Option Explicit

Public Clause(1 To 200, 1 To 5, 1 To 6) As String

Sub Main()

Clause(1, 1, 1) = "Gen01v01a"

Clause(1, 1, 2) = "bre$it"

Clause(1, 1, 3) = "in the beginning"

Clause(1, 1, 4) = "PP"

Clause(1, 1, 5) = "Adjunct"

Clause(1, 1, 6) = "Time"

Clause(1, 2, 1) = "-"

Clause(1, 2, 2) = "bara"

Clause(1, 2, 3) = "he created"

Clause(1, 2, 4) = "VP"

Clause(1, 2, 5) = "Main verb"

Clause(1, 2, 6) = "Action"

Clause(1, 3, 1) = "-"

Clause(1, 3, 2) = "elohim"

Clause(1, 3, 3) = "God"

Clause(1, 3, 4) = "NP"

Clause(1, 3, 5) = "Subject"

Clause(1, 3, 6) = "Agent"

Clause(1, 4, 1) = "-"

Clause(1, 4, 2) = "et ha$amayim ve'et ha'arets"

Clause(1, 4, 3) = "the heaven and the earth"

 127

University of Pretoria etd – Kroeze, J H (2008)

Clause(1, 4, 4) = "NP"

Clause(1, 4, 5) = "Object"

Clause(1, 4, 6) = "Product"

…

 End Sub

Figure 5.2. VB6 code that could be used to create a threedimensional array and

populate one clause element with several layers of linguistic data.

A complete discussion of this structure may be found in Chapter 2 (cf. Kroeze,

2004a). The same underlying structure is used in this chapter to convert the data

captured in the XML document into the VB6 array.

5.2 Conversion between VB6 and XML (round-tripping)

One of the advantages of an XML database is the separation of the data and the

manipulation thereof. The same data can thus be used for various purposes, and

programs or queries can be created to suit the researcher’s individual needs. An

XML document in itself is not very accessible for direct human inspection. Although it

may be read in a simple word processor such as Notepad, the abundant use of tags

poses an obstacle for human conception. One needs other software to process the

data in such a repository efficiently, a tool to "bridge the gap between having a

collection of structured documents and having a functional digital library" (Kumar et

al., 2005: 118).108 The VB6 program discussed in this chapter may be regarded as

such a bridging tool. Another example is Petersen’s (2004b) MQL query language

that enables complex searches for patterns in annotated linguistic corpora such as

the database of the Hebrew Bible developed by the Werkgroep Informatica (WI) at

the Free University of Amsterdam.109 However, according to Bourret (2003) "most

native XML databases can only return the data as XML".

108 <teiPublisher> is an open-source tool that aims to provide a customisable repository facilitating the

dissemination of XML marked-up texts (see Kumar et al., 2005).
109 Also, compare the description of XML-QL as a relational complete query language in Deutsch et

al. (1999).

 128

University of Pretoria etd – Kroeze, J H (2008)

Another benefit of XML is that it provides an independent public standard and cross-

platform compatibility (T. Sasaki, 2004: 19). Since XML provides a platform-

independent organisation of data, conversion is often necessary to make the data

accessible for algorithms that implement efficient retrieval and human-friendly

interfaces (cf. Ramsay, s.a.). The conversion of data encoded in XML is often

necessary to satisfy very specific needs identified by researchers. For example, if

different linguistic layers are annotated in separate, but related, XML databanks, it is

necessary to programmatically merge these data sets into Prolog facts in order to

associate them in a single database (Witt, 2005: 68, 71). Conversion into a

standardised format enables researchers to compare various annotated layers in

order to discover relations that exist between them (cf. Bayerl et al., 2003: 165, 169).

This type of data exploration activities will be discussed in Chapter 6.

If the XML data should be represented in a different, more human-readable, format, it

should first be parsed by an application. In this experiment the data should be

represented in an interlinear format which is more human-friendly to read. This

necessitates the VB6 program to read the data into an array in order to be printed as

a series of interlinear tables on the screen (cf. Chapter 3). By removing the XML tags

the primary textual data is restored and the layers of analysis become much more

comprehensible.

The next sections of this chapter describe the conversion of linguistic data of Genesis

1:1-2:3 between the XML data cube and a threedimensional array structure in Visual

Basic 6 in order to facilitate data access and manipulation. The conversion from and

to XML format is called round-tripping. Round-tripping is the circular process of

storing XML data in a database and recreating the document from the database, a

process which often results in a different document (Bourret, 2003). In this

experiment round-tripping refers to the process of converting the Genesis 1:1-2:3

XML document to the threedimensional array structure in VB6 and saving it again in

XML format. If no changes are done while the data reside in the array the second

XML document should be an exact copy of the first (ideal round tripping - Smiljanić et

al., 2002: 16). However, the array phase should facilitate updates to be made, which

should be reflected in the resulting target XML document after conversion. These

 129

University of Pretoria etd – Kroeze, J H (2008)

CRUD facilities will be discussed towards the end of this chapter. The complete code

and program may be viewed in Addendum L.

5.2.1 From XML to VB6

All data in an XML document is text (Bourret, 2003). The mark-up itself is also text

only: "... markup consists of character strings carrying information about other

character strings" (Huitfeldt, 2004). For a linguistic database this poses, of course, no

problem since it also contains text data only. Therefore, in VB6, all the variables of

the threedimensional array are also of type string only. The limitation of arrays that all

the elements should be of the same type (string, integer, boolean, etc.), therefore,

poses no problem. To strip the XML code from its tags a lot of string processing will

be done (cf. Petroustos, 1999: 784-795).

An efficient way to prepare the Genesis 1:1-2:3 data for ideal round-tripping would be

to ensure that empty elements (for example, where a clause has less than five noun

phrases) are represented by a dash (-). The loop that reads the clause cube

elements into the threedimensional array can then simply assume that the next line in

the XML document will be the next element in the data structure. Not all phrases

have syntactic or semantic functions and these missing elements may also be

rendered by a dash. This simple implementation will be used in this experiment

because this will also ensure that after ideal round-tripping the XML document is an

exact copy of the original document. However, it is possible, in order to reduce file

size and to save memory space, to represent null values by simply omitting these

elements in the document. The conversion program will then have to evaluate the

content of each line, using a selection structure (such as an if-statement) in order to

ensure the correct placement in the array. This procedure causes another form of,

and probably more, overhead.110 On the VB6 side, empty elements could also be

represented by zero-length string values in the array variables. To avoid problems

110 The XML schema, discussed in Chapter 4, can only check the validity of data recorded in the XML

file. Since absent elements are valid, another mechanism is needed to ensure correct conversion

of such elements from the XML file into the threedimensional array.

 130

University of Pretoria etd – Kroeze, J H (2008)

during advanced array processing due to the null values the whole array may first be

populated with dashes (as symbol of an empty element) which are then partly

overwritten when the data is read in from the XML document. This will ensure that all

empty elements (or yet unused spaces in the array reserved for new clauses to be

appended) contain dashes.

Before the data is converted an algorithm is used to count the number of clauses

appearing in the XML file, and the result is stored in variables called countclauses

and maxArray. The last-mentioned variable is used to limit processing in the rest of

the VB6 program to real data only (ignoring empty clause elements), and, therefore,

its value should be adjusted when clauses are added or deleted during the array

phase.

An extract of the code for this part of the program is shown in Figure 5.3. It is

assumed that all variables have been declared.

'Read XML file from disk into array

Public Sub Command1_Click()

'Initialise all array elements with empty element symbols

For iniArr1 = 1 To 200

 For iniArr2 = 1 To 5

 For iniArr3 = 1 To 6

 Clause(iniArr1, iniArr2, iniArr3) = "-"

 Next

 Next

Next

'Count number of clauses in the XML cube:

arrayMax = 0 'Reset total number of clauses in array

countclauses = 0 'Reset counter that counts number of clauses in XML file

filenum1 = FreeFile

Open "Gen1_InputV15_RT1.xml" For Input As #filenum1

Line Input #filenum1, tempLine

Line Input #filenum1, tempLine

Line Input #filenum1, tempLine

Line Input #filenum1, tempLine

 131

University of Pretoria etd – Kroeze, J H (2008)

While Not EOF(filenum1)

 Line Input #filenum1, tempLine

 countclauses = countclauses + 1

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 132

University of Pretoria etd – Kroeze, J H (2008)

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

Wend

MsgBox ("There are " & countclauses & " clauses in the XML cube")

arrayMax = countclauses

Close #filenum1

'Populate array with data from XML file:

Open "Gen1_InputV15_RT1.xml" For Input As #filenum1

Line Input #filenum1, tempLine

Line Input #filenum1, tempLine

Line Input #filenum1, tempLine

For count1 = 1 To arrayMax

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 1, 1) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 1, 2) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

 133

University of Pretoria etd – Kroeze, J H (2008)

tempLine)

 Clause(count1, 2, 2) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 3, 2) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 4, 2) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 5, 2) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 1, 3) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 2, 3) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 3, 3) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 4, 3) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 5, 3) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 134

University of Pretoria etd – Kroeze, J H (2008)

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 1, 4) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 2, 4) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 3, 4) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 4, 4) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 5, 4) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 1, 5) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 2, 5) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

 135

University of Pretoria etd – Kroeze, J H (2008)

tempLine)

 Clause(count1, 3, 5) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 4, 5) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 5, 5) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 1, 6) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 2, 6) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 3, 6) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 4, 6) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Call DecodeXML(XMLstringBeginPos, XMLstringEndPos, XMLstringLength,

tempLine)

 Clause(count1, 5, 6) = Mid(tempLine, XMLstringBeginPos, XMLstringLength)

 Line Input #filenum1, tempLine

 Line Input #filenum1, tempLine

Next

 136

University of Pretoria etd – Kroeze, J H (2008)

Close #filenum1

arrayflag = True

MsgBox ("XML cube Gen1_InputV15_RT1.xml converted to array in RAM")

count1 = 1

Call ShowArray

End Sub

' Function used to strip XML tags before inserting data into array

Public Sub DecodeXML(XMLstringBeginPos2 As Integer, XMLstringEndPos2 As

Integer, XMLstringLength2 As Integer, templine2 As String)

 XMLstringBeginPos2 = InStr(templine2, ">") + 1

 XMLstringEndPos2 = InStrRev(templine2, "<")

 XMLstringLength2 = XMLstringEndPos2 - XMLstringBeginPos2

End Sub

Figure 5.3. VB6 code used to convert linguistic data from XML format into a

threedimensional array.

Although validation of the XML file is usually done by means of a schema, it may

again be done during the array state. In a subroutine the tags could first be stripped

and selected data tested against a standardised list of valid entries (for example,

syntactic and semantic functions). If the data does not conform to these values, an

error message should be shown. The user should use this functionality to correct the

data before any further processing takes place. In this project the validation of

phrases, and syntactic and semantic functions has been done by means of a schema

(see Chapter 4), and syntactic and semantic functions will again be validated during

the advanced processing phase (see Chapter 6). Therefore, this procedure has been

omitted from the version of the program available in Addendum L, and only an

example of validation code for some syntactic functions is shown in Figure 5.4.

Private Sub cmdCleanData_Click() 'Clean data - syntactic functions

Dim count11, count12, count13 As Integer

Dim arrsyn1(108, 5, 6) As String

For count11 = 1 To 108 'Copy array for validation purposes

 For count12 = 1 To 5

 For count13 = 1 To 6

 arrsyn1(count11, count12, count13) = Clause(count11, count12, count13)

 Next

 137

University of Pretoria etd – Kroeze, J H (2008)

 Next

Next

For count11 = 1 To 108 'Check syntactic functions

 For count12 = 1 To 5

 For count13 = 5 To 5 'Check only syntactic function dimension

 'Extend this scheme to include all possible syntactic functions

 'Here limited to those functions occurring in Gen 1:1-2:3

 If arrsyn1(count11, count12, 5) <> "Main verb" And _

 arrsyn1(count11, count12, 5) <> "Copulative verb" And _

 arrsyn1(count11, count12, 5) <> "Subject" And _

 arrsyn1(count11, count12, 5) <> "Object" And _

 arrsyn1(count11, count12, 5) <> "Object clause" And _

 arrsyn1(count11, count12, 5) <> "Object cluster" And _

 arrsyn1(count11, count12, 5) <> "IndObj" And _

 arrsyn1(count11, count12, 5) <> "Complement" And _

 arrsyn1(count11, count12, 5) <> "Copula-predicate" And _

 arrsyn1(count11, count12, 5) <> "Adjunct" And _

 arrsyn1(count11, count12, 5) <> "Disjunct" And _

 arrsyn1(count11, count12, 5) <> "Attribute" And _

 arrsyn1(count11, count12, 5) <> "Conj" And _

 arrsyn1(count11, count12, 5) <> "-" Then

 'User must clean data if following message is shown:

 MsgBox ("Synf " & arrsyn1(count11, count12, 5) & " in vs " & _

 arrsyn1(count11, 1, 1) & " is invalid")

 End If

 Next

 Next

Next

End Sub

Figure 5.4. Example of VB6 code that could be used to validate syntactic function

elements during the array state.

To show the contents of the array, the elements of each clause are displayed in a

series of textboxes and labels, simulating an interlinear rendering. The code used is

shown in Figure 5.5.

Public Sub ShowArray() 'Procedure used to display current clause on

interface

txtFind.Text = count1 'count1 is the array index of each clause

 txtC111.Text = Clause(count1, 1, 1)

 138

University of Pretoria etd – Kroeze, J H (2008)

 txtC112.Text = Clause(count1, 1, 2)

 txtC122.Text = Clause(count1, 2, 2)

 txtC132.Text = Clause(count1, 3, 2)

 txtC142.Text = Clause(count1, 4, 2)

 txtC152.Text = Clause(count1, 5, 2)

 txtC113.Text = Clause(count1, 1, 3)

 txtC123.Text = Clause(count1, 2, 3)

 txtC133.Text = Clause(count1, 3, 3)

 txtC143.Text = Clause(count1, 4, 3)

 txtC153.Text = Clause(count1, 5, 3)

 txtC114.Text = Clause(count1, 1, 4)

 txtC124.Text = Clause(count1, 2, 4)

 txtC134.Text = Clause(count1, 3, 4)

 txtC144.Text = Clause(count1, 4, 4)

 txtC154.Text = Clause(count1, 5, 4)

 txtC115.Text = Clause(count1, 1, 5)

 txtC125.Text = Clause(count1, 2, 5)

 txtC135.Text = Clause(count1, 3, 5)

 txtC145.Text = Clause(count1, 4, 5)

 txtC155.Text = Clause(count1, 5, 5)

 txtC116.Text = Clause(count1, 1, 6)

 txtC126.Text = Clause(count1, 2, 6)

 txtC136.Text = Clause(count1, 3, 6)

 txtC146.Text = Clause(count1, 4, 6)

 txtC156.Text = Clause(count1, 5, 6)

End Sub

Figure 5.5. VB6 code used to display one clause's linguistic analysis in a series of

textboxes and labels on the interface.

When the user presses the "Read XML file from disk into array" button, the

conversion is done and the first clause's data is displayed on the interface (see

Figure 5.6). The array content is displayed, clause by clause, in a series of text boxes

and labels to simulate an interlinear rendering, similar to the versions presented in

Chapters 3 and 4.

 139

University of Pretoria etd – Kroeze, J H (2008)

Figure 5.6. The end-result after converting data from the XML clause cube into a

threedimensional array in VB6.

The code in Figure 5.7 is used to scroll through the data. The user may use the next

(>) and previous (<) buttons to view the data clause by clause, or they may go

directly to the first (<<) or last element (>>). The program also enables rolling over

from the last element to the first and vice versa.

Private Sub btnFirst_Click(Index As Integer) 'Move to the first element in

the array

count1 = 1

Call ShowArray

End Sub

Private Sub btnPrev_Click(Index As Integer) 'Move to the previous element

in the array

 140

University of Pretoria etd – Kroeze, J H (2008)

If count1 = 1 Then

 count1 = (arrayMax + 1)

End If

count1 = count1 - 1

Call ShowArray

End Sub

Private Sub btnNext_Click(Index As Integer) 'Move to the next element in

the array

If count1 = arrayMax Then

 count1 = 0

End If

count1 = count1 + 1

Call ShowArray

End Sub

Private Sub btnLast_Click(Index As Integer) 'Move to the last element in

the array

count1 = arrayMax

Call ShowArray

End Sub

Figure 5.7. VB6 code used to scroll through the clause cube data.

The code in Figure 5.8 is used to display a required clause, the array index of which

is shown in the clause number textbox.

Private Sub btnFind_Click() 'Show clause of clause index shown in textbox

"Find clause no"

count1 = txtFind.Text

 If count1 > arrayMax Or count1 < 1 Then

 MsgBox ("Invalid clause no")

 Exit Sub

 Else

 141

University of Pretoria etd – Kroeze, J H (2008)

 Call ShowArray

 End If

End Sub

Figure 5.8. VB6 code used to display a required clause using its array index.

The code in Figure 5.9 is used to facilitate exact searches; for example, the user may

enter "Gen01v07a" and click on the "Exact search" button to move directly to the

eighteenth clause. If a parameter is used that appears more than once all clauses

containing the parameter are shown one-by-one, paused by a message box. The

parameter must match the searched item exactly, but it is not case sensitive.

Private Sub btnSearch_Click() 'Exact search

count1 = 1

flagSrch = 0

If txtSearch.Text = "" Then

 Exit Sub

End If

For countSrch1 = 1 To arrayMax

 For countSrch2 = 1 To 5

 For countSrch3 = 1 To 6

 If StrComp(Clause(countSrch1, countSrch2, countSrch3), txtSearch.Text,

1) = 0 Then

 flagSrch = 1

 count1 = countSrch1

 Call ShowArray

 MsgBox ("Click OK to search next")

 End If

 Next

 Next

Next

If flagSrch = 0 Then

 MsgBox ("Not found")

 Else

 MsgBox ("End of data cube reached")

 142

University of Pretoria etd – Kroeze, J H (2008)

End If

End Sub

Figure 5.9. VB6 code used to perform exact searches.

Users who are not acquainted with the sets of phrase types, semantic and syntactic

functions used, may need a facility to do "fuzzy" searches. The "Search part of string"

button enables one to type any part of a string to be searched within the elements;

for example, one may enter "Ben" to find instances of the semantic function of

Beneficiary; however, in addition to the required clauses, other clauses containing

the Hebrew word ben in the phonological rendering will also be shown. The code in

Figure 5.10 is used to do searches on parts of strings in the clause cube.

Private Sub cmdSearchPart_Click() 'Fuzzy search

count1 = 1

flagSrch = 0

If txtSearchPart.Text = "" Then

 Exit Sub

End If

For countSrch4 = 1 To arrayMax

 For countSrch5 = 1 To 5

 For countSrch6 = 1 To 6

 pos = InStr(1, Clause(countSrch4, countSrch5, countSrch6),

txtSearchPart.Text, 1)

 If pos > 0 Then

 flagSrch = 1

 count1 = countSrch4

 Call ShowArray

 MsgBox ("Click OK to search next")

 End If

 Next

 Next

Next

If flagSrch = 0 Then

 MsgBox ("Not found")

 143

University of Pretoria etd – Kroeze, J H (2008)

Else

 MsgBox ("End of data cube reached")

End If

End Sub

Figure 5.10. VB6 code used to perform searches on parts of strings.

After discussing conversion from the array in VB6 back to an XML file in the following

paragraph, more CRUD functionalities will be discussed. These procedures should

also take place while the cube resides in the computer's RAM (random access

memory) during its array phase.

5.2.2 From VB6 to XML

The conversion of the content of the threedimensional array in VB6 into the XML

clause cube is more or less the reversal of the above process. Assuming that no

updates have been done, it is of course not necessary to do validation again, but

string processing will again be used to convert the variables to lines of text wrapped

in applicable XML tags. The structure of the XML schema must strictly be adhered to

in order to create a file that can again be read into VB6 using the same algorithm. In

order to keep the original data intact the current date and time may be added to the

name of the output file so that a different XML file is created each time when the

button "Write array to XML file on disk" is pressed. If one wants to accept and store

edited data permanently, the output file should have the same name as the input file.

In the empirical experiment of this chapter, a copy of the XML clause cube was used

for this purpose (see Gen1_InputV15_RT1.xml in Addendum L). Figure 5.11 shows

the code that is used to write the linguistic data from the array into the XML clause

cube on disk.

 144

University of Pretoria etd – Kroeze, J H (2008)

Public Sub Command3_Click() 'Write array to XML file on disk

If arrayflag = False Then

 MsgBox ("Array is empty - not saved")

 Exit Sub

End If

filenum2 = FreeFile

'Create unique output file name (optional):

'outputname = "Gen1V15_Output_" & Format(Now, "yyyymmddhhmmss") & ".xml"

outputname = "Gen1_InputV15_RT1.xml"

Open outputname For Output As #filenum2

Print #filenum2, "<?xml version='1.0' encoding='UTF-8' standalone='yes' ?>"

Print #filenum2, "<?xml-stylesheet type='text/css'

href='Gen1XMLdb03c.css'?>"

Print #filenum2, "<Genesis1v1-2v3>"

For count1 = 1 To arrayMax

 Print #filenum2, " <clause>"

 Print #filenum2, " <clauseno>" & Clause(count1, 1, 1) & "</clauseno>"

 Print #filenum2, " <headers>"

 Print #filenum2, " <header>Level</header>"

 Print #filenum2, " <header>Phrase1</header>"

 Print #filenum2, " <header>Phrase2</header>"

 Print #filenum2, " <header>Phrase3</header>"

 Print #filenum2, " <header>Phrase4</header>"

 Print #filenum2, " <header>Phrase5</header>"

 Print #filenum2, " </headers>"

 Print #filenum2, " <level1>"

 Print #filenum2, " <leveldesc>Phon:</leveldesc>"

 Print #filenum2, " <phrase1>" & Clause(count1, 1, 2) &

"</phrase1>"

 Print #filenum2, " <phrase2>" & Clause(count1, 2, 2) &

"</phrase2>"

 Print #filenum2, " <phrase3>" & Clause(count1, 3, 2) &

"</phrase3>"

 Print #filenum2, " <phrase4>" & Clause(count1, 4, 2) &

"</phrase4>"

 Print #filenum2, " <phrase5>" & Clause(count1, 5, 2) &

"</phrase5>"

 145

University of Pretoria etd – Kroeze, J H (2008)

 Print #filenum2, " </level1>"

 Print #filenum2, " <level2>"

 Print #filenum2, " <leveldesc>Translation:</leveldesc>"

 Print #filenum2, " <phrase1>" & Clause(count1, 1, 3) &

"</phrase1>"

 Print #filenum2, " <phrase2>" & Clause(count1, 2, 3) &

"</phrase2>"

 Print #filenum2, " <phrase3>" & Clause(count1, 3, 3) &

"</phrase3>"

 Print #filenum2, " <phrase4>" & Clause(count1, 4, 3) &

"</phrase4>"

 Print #filenum2, " <phrase5>" & Clause(count1, 5, 3) &

"</phrase5>"

 Print #filenum2, " </level2>"

 Print #filenum2, " <level3>"

 Print #filenum2, " <leveldesc>Phrase type:</leveldesc>"

 Print #filenum2, " <phrase1>" & Clause(count1, 1, 4) &

"</phrase1>"

 Print #filenum2, " <phrase2>" & Clause(count1, 2, 4) &

"</phrase2>"

 Print #filenum2, " <phrase3>" & Clause(count1, 3, 4) &

"</phrase3>"

 Print #filenum2, " <phrase4>" & Clause(count1, 4, 4) &

"</phrase4>"

 Print #filenum2, " <phrase5>" & Clause(count1, 5, 4) &

"</phrase5>"

 Print #filenum2, " </level3>"

 Print #filenum2, " <level4>"

 Print #filenum2, " <leveldesc>SynF:</leveldesc>"

 Print #filenum2, " <phrase1>" & Clause(count1, 1, 5) &

"</phrase1>"

 Print #filenum2, " <phrase2>" & Clause(count1, 2, 5) &

"</phrase2>"

 Print #filenum2, " <phrase3>" & Clause(count1, 3, 5) &

"</phrase3>"

 Print #filenum2, " <phrase4>" & Clause(count1, 4, 5) &

"</phrase4>"

 Print #filenum2, " <phrase5>" & Clause(count1, 5, 5) &

"</phrase5>"

 Print #filenum2, " </level4>"

 Print #filenum2, " <level5>"

 Print #filenum2, " <leveldesc>SemF:</leveldesc>"

 Print #filenum2, " <phrase1>" & Clause(count1, 1, 6) &

"</phrase1>"

 Print #filenum2, " <phrase2>" & Clause(count1, 2, 6) &

"</phrase2>"

 146

University of Pretoria etd – Kroeze, J H (2008)

 Print #filenum2, " <phrase3>" & Clause(count1, 3, 6) &

"</phrase3>"

 Print #filenum2, " <phrase4>" & Clause(count1, 4, 6) &

"</phrase4>"

 Print #filenum2, " <phrase5>" & Clause(count1, 5, 6) &

"</phrase5>"

 Print #filenum2, " </level5>"

 Print #filenum2, " </clause>"

Next

Print #filenum2, "</Genesis1v1-2v3>"

Close #filenum2

MsgBox ("Array converted to XML and saved as " & outputname)

End Sub

Figure 5.11. VB6 code used to save clause cube data from the threedimensional

array into permanent XML-formatted storage.

The first version of the XML file for this study was, actually, created in a similar way.

The original data was written as code in a module of a VB6 program that creates and

populates a threedimensional array with the clause cube data (see Chapter 2).

Empty elements were not marked by a dash or other symbol, implying that the array

contained null values in those variables. To fill up the array with symbols

representing empty values, a for-loop was used, first of all, to populate the whole

array with dashes, after which parts of the array were overwritten by those elements

that do exist. The array was then converted into an XML file using the same set of

code as the lines discussed above (the structure of the XML file is discussed in detail

in Chapter 4).

5.3 Editing the data in the clause cube

Reading the data requires a procedure that displays the clause cube data as a set of

twodimensional tables (see 5.2.1 above). For read-only purposes, this functionality,

combined with the search functions discussed above, should be sufficient. However,

it is very likely that some users would need the opportunity to add more clauses to

 147

University of Pretoria etd – Kroeze, J H (2008)

the clause cube, to edit existing data, or even to delete records. Array-like

functionalities make these types of operations relatively easy, especially if predefined

functions exist which may be called, such as those available in collections or

arraylists. However, in this experiment, basic original code was written to facilitate full

CRUD since arrays' sizes in VB6 are static and cannot grow or shrink

automatically.111 This approach may be regarded as an example of "creative

programming techniques" that may be used to overcome the limitations of simple

arrays (cf. Crawford, 1999: 219).112

In order to add clauses to the database, the size of the primary dimension of the

cube had to be enlarged to make room for the required number of extra clauses. This

was done by changing the declaration of the threedimensional array. In this program,

the size was changed from 108 to 200, thus making space for 92 more clauses.

New records may be inserted either before or after the current clause. When the user

identifies the location after which another clause should be inserted (see the "Insert

new clause after this one" button on Figure 5.6), all the clause elements following this

location in the computer's memory should be moved one place down to free the

current set of variables for a new clause's data to be recorded. If the new clause

must be inserted before the current one (see the "Insert new clause before this one"

button on Figure 5.6), the current clause must also be moved one position down the

array.

The code used to create space for a new clause record preceding the one currently

displayed on the interface is shown in Figure 5.12.

111 "In most programming languages, conventional arrays have a fixed size–they cannot grow or

shrink dynamically to conform to an application's execution-time memory requirements" (Deitel &

Deitel, 2006: 1321). Dynamic arrays in VB6 is not an option since only the last dimension may be

changed without losing existing data. Even if the Preserve keyword is used to maintain a

multidimensional array's contents when it is resized (using the ReDim statement), only the last

dimension may be changed (Petroustos, 1999: 769).
112 Grow and shrink functionalities are facilitated by means of array lists in Visual Basic 2005, a fully

object-oriented language (Deitel & Deitel, 2006: 1321; MacDonald, 2006: 207; Foxall, 2006: 77).

Visual Basic 6 offers the use of collections instead (Crawford, 1999: 219-224).

 148

University of Pretoria etd – Kroeze, J H (2008)

Private Sub Command4_Click() 'Insert new clause before current one into

array

arrayMax = arrayMax + 1

For countAddRec = (arrayMax - 1) To count1 Step -1

 countAddRec2 = countAddRec + 1

 For count4 = 1 To 5

 For count5 = 1 To 6

 Clause(countAddRec2, count4, count5) = Clause(countAddRec, count4,

count5)

 Next

 Next

Next

For count4 = 1 To 5 'Clear new element in array

 For count5 = 1 To 6

 Clause(count1, count4, count5) = "-"

 Next

Next

Call ShowArray

End Sub

Figure 5.12. The VB6 code used to make space for a new clause record to precede

the current one.

Figure 5.13 shows the code used to insert a new, empty clause record set following

the current one.

Private Sub Command7_Click() 'Insert new clause after current one in array

arrayMax = arrayMax + 1

count1 = count1 + 1

For countAddRec = (arrayMax - 1) To (count1) Step -1

 countAddRec2 = countAddRec + 1

 149

University of Pretoria etd – Kroeze, J H (2008)

 For count4 = 1 To 5

 For count5 = 1 To 6

 Clause(countAddRec2, count4, count5) = Clause(countAddRec, count4,

count5)

 Next

 Next

Next

For count4 = 1 To 5 'Clear new element in array

 For count5 = 1 To 6

 Clause(count1, count4, count5) = "-"

 Next

Next

Call ShowArray

End Sub

Figure 5.13. The VB6 code used to make space for a new clause record to follow the

current one.

After the existing records have been moved down the array, old, redundant data in

the freed space is overwritten with dashes and the new, empty record is shown on

the screen. The user may now enter the new clause data here. After the user has

typed the new information on the usual interface, he/she may press a button ("Accept

changes in this clause (RAM)") to save the new data into the array in the RAM. If

he/she is satisfied that all the information is correct, he/she should press another

button ("Write array to XML file on disk") to save the information to the target XML-file

(see Figure 5.6 above).

Tagging mistakes may be corrected by directly changing the information shown on

the display and by saving the updates both to the RAM for immediate use and to the

XML file for permanent storage. The same code is used to save new or updated data

to the RAM (see Figure 5.14).

 150

University of Pretoria etd – Kroeze, J H (2008)

Private Sub Command2_Click() 'Accept changes in this clause (RAM)

 Clause(count1, 1, 1) = txtC111.Text

 Clause(count1, 1, 2) = txtC112.Text

 Clause(count1, 2, 2) = txtC122.Text

 Clause(count1, 3, 2) = txtC132.Text

 Clause(count1, 4, 2) = txtC142.Text

 Clause(count1, 5, 2) = txtC152.Text

 Clause(count1, 1, 3) = txtC113.Text

 Clause(count1, 2, 3) = txtC123.Text

 Clause(count1, 3, 3) = txtC133.Text

 Clause(count1, 4, 3) = txtC143.Text

 Clause(count1, 5, 3) = txtC153.Text

 Clause(count1, 1, 4) = txtC114.Text

 Clause(count1, 2, 4) = txtC124.Text

 Clause(count1, 3, 4) = txtC134.Text

 Clause(count1, 4, 4) = txtC144.Text

 Clause(count1, 5, 4) = txtC154.Text

 Clause(count1, 1, 5) = txtC115.Text

 Clause(count1, 2, 5) = txtC125.Text

 Clause(count1, 3, 5) = txtC135.Text

 Clause(count1, 4, 5) = txtC145.Text

 Clause(count1, 5, 5) = txtC155.Text

 Clause(count1, 1, 6) = txtC116.Text

 Clause(count1, 2, 6) = txtC126.Text

 Clause(count1, 3, 6) = txtC136.Text

 Clause(count1, 4, 6) = txtC146.Text

 Clause(count1, 5, 6) = txtC156.Text

End Sub

Figure 5.14 The VB6 code used to save new or edited clause data to the RAM.

If the user wants to delete a whole clause's data, he/she should be able to press a

button to activate a procedure that removes the data of the clause currently shown

on the display (see the "Delete this clause" button on Figure 5.6 above). The related

set of clause variables is removed by moving all the following clauses' data one

position up in the primary dimension, and by clearing the last element's data that is

now duplicated in the second-last position (see Figure 5.15). These changes should

also be saved to the RAM and the target XML file.

 151

University of Pretoria etd – Kroeze, J H (2008)

Private Sub Command5_Click() 'Delete this clause

For countDelRec = count1 To (arrayMax - 1)

 countDelRec2 = countDelRec + 1

 For count2 = 1 To 5

 For count3 = 1 To 6

 Clause(countDelRec, count2, count3) = Clause(countDelRec2, count2,

count3)

 Next

 Next

Next

For count2 = 1 To 5 'Clear last element in array

 For count3 = 1 To 6

 Clause(arrayMax, count2, count3) = "-"

 Next

Next

If count1 = arrayMax Then

 count1 = count1 - 1

End If

arrayMax = arrayMax - 1

Call ShowArray

End Sub

Figure 5.15. The VB6 code used to delete a clause record.

The procedure used to save all current data in the array from the RAM to the target

XML file for permanent storage and recovery has already been discussed in 5.2.2

(see Figure 5.11).

Adding these CRUD functions to the program significantly enhances its functionalities

by facilitating basic database procedures to create, delete and maintain data. Even

though it could not be called "ideal round-tripping" anymore (since the contents of the

source and target XML files differ), in practice, this scenario is preferable for an

 152

University of Pretoria etd – Kroeze, J H (2008)

environment where the database is populated, corrected and expanded. In a

situation where end-users should not be able to change the data, these

functionalities should, of course, not be offered. The CRUD functionality currently is

the only way to extend the database, manually and clause-by-clause, to larger parts

of the Hebrew Bible. A more elegant solution would be to import existing data, but

this need creates new challenges that fall outside the scope of this thesis.

5.4 Conclusion

In this chapter, a synthesis was found between two separate concepts discussed in

earlier chapters of the thesis. After a review of the essential concepts of building a

clause cube, either by using a threedimensional array in VB6, or a hierarchically

structured XML file, a method was proposed to convert the linguistic data between

these two formats. "Ideal" round-tripping was implemented by means of string

processing to either strip or wrap the primary data in XML tags. This enabled the

transformation of the data from permanent storage into a temporary threedimensional

array in the computer's RAM, and vice versa. Round-tripping enables one to

overcome the limitations of both the array and XML phases. Using only an array does

not allow permanent storage, while viewing the data simply by using an XML style

sheet does not allow advanced processing. By using both phases the data is stored

elegantly and permanently as an XML file, while some of the functionalities of array

processing, like searching and scrolling through the multidimensional clause

representations, discussed in Chapters 2 and 3, were re-introduced into the

consolidated system. Slicing and dicing will also be integrated into the text-mining

functions discussed in Chapter 6.

Various viewing and searching functions have been discussed. In addition, create,

update and delete functionalities were added to enable users to populate and edit the

clause cube while it is in the array state and to save these updates both to the RAM

and on permanent storage in XML format. One may conclude that these technologies

are suitable for the efficient storage, transfer and processing of linguistic data. Since

all essential database functionalities are now possible, the created software may be

 153

University of Pretoria etd – Kroeze, J H (2008)

regarded as a humanities-oriented information system. In the following chapters,

advanced processing and visualisation of this data will be discussed.

 154

	Front
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	CHAPTER 5
	5.1 Introduction
	5.2 Conversion between VB6 and XML (round-tripping)
	5.3 Editing the data in the clause cube
	5.4 Conclusion

	Chapter 6
	Chapter 7
	Chapter 8
	Boibliography
	Addenda

