
University of Pretoria etd – Kroeze, J H (2008)

Chapter 4
Building and displaying the clause cube using XML59

4.1 Introduction

The text of the Hebrew Bible is analysed from different linguistic disciplines, such as

phonology, morphology, morpho-syntax, syntax, semantics, etc. It is even possible,

and very helpful, to integrate these contributions using an interlinear format or table

structure. A whole Bible book can, for example, be analysed clause by clause,

indicating the various analyses in a collection of interlinear tables. Although this

makes perfect sense for someone who studies the work in a linear fashion, it does

not facilitate advanced research into linguistic structures and other phenomena. If the

data could be transferred into a proper electronic database, one could create a

database management system to view and manipulate the data according to the

needs of linguists and exegetes.

Although the interlinear tables already resemble the tables in a relational database

very closely, there is one important difference: each record or clause is represented

by a unique table while records in a relational database table are similar rows in one

table, all with the same structure. A typical relational database table for capturing

linguistic analyses could use syntactic functions as the names of attributes or fields.

Each clause could then be a row and its elements rearranged and categorised

accordingly. However, one will need a large number of columns to capture all

possible syntactic functions, many of which will contain null values because the

structures of sentences vary significantly. Furthermore, for every language module

that is added to the data store one will have to add another set of columns,

aggravating the sparsity problem even further. Alternatively, one could use a parallel

table linked by unique keys or references. To extract the related data one would have

to use joins to collect the data from the various tables. This implementation will also

59 This chapter is a revised version of a paper read at the Israeli Seminar on Computational

Linguistics (ISCOL), Haifa, Israel, 29 June 2006 ("Building and displaying a Biblical Hebrew

linguistics data cube using XML" (see Kroeze, 2006).

 85

University of Pretoria etd – Kroeze, J H (2008)

lead to much redundancy, since the words or phrases will have to be repeated in

each table.

If one takes the word groups of the clauses as a starting point to structure the

database and store data such as NP, subject, agent, etc. as attribute values, the

structure problem is solved to a large extent, since each clause contains only a

limited number of phrases (a maximum of five per clause in Genesis 1:1-2:3). The

problem of redundancy and sparsity is minimised by using a threedimensional data

cube instead of a simple twodimensional table. All the records or clauses and their

linguistic analyses can then be combined into this single data structure containing

more than two dimensions or a "data cube".

Such a language-oriented, multidimensional database of the linguistic characteristics

of the Hebrew text of the Old Testament can enable researchers to do ad hoc

queries. For example, a researcher may want to do a specific search in order to find

good examples of a certain syntactic structure, or to explore the mapping of semantic

functions onto syntactic functions. Once the data is stored in a properly structured

database, this type of query becomes executable.

XML, a subset of SGML, is a suitable technology for transforming free text into a

database. "There is a growing need to annotate a text or a whole corpus according to

multiple information levels, especially in the field of linguistics. Language data are

provided with SGML-based markup encoding phonological, morphological, syntactic,

semantic, and pragmatic structure analyses" (Witt et al., 2005: 103). In such an XML

implementation a clause's word order can be kept intact, while other features such as

syntactic and semantic functions can be marked as elements or attributes. The

elements or attributes from the XML "database" can be accessed and processed by a

third generation programming language, such as Visual Basic 6 (VB6). A

threedimensional array is probably the most effective programming tool for

processing the data (see Chapters 2, 3 and 6). An alternative option could be the use

of an XML query language (cf. Bourret, 2003; Deutsch et al., 1999).

 86

University of Pretoria etd – Kroeze, J H (2008)

This chapter will focus on the following aspects:

• Why should XML be explored as an option to build an exploitable database of

linguistic data? (See Section 4.5.)

• How can XML be used to build an exploitable linguistic data cube? (See

Section 4.6.)

• How can XML represent the syntactic and semantic analyses of free text?

(See Section 4.7.)

• How can XML represent inherently multidimensional data? (See Section 4.8.)

However, before these questions can be answered, it is necessary to provide some

background on linguistic databases and computational linguistics in general, as well

as on the various linguistic layers that could be analysed and the basic building

blocks that form the backbone of such a database (see sections 4.2-4.4).

4.2 Linguistic databases and computational linguistics

Researchers who study natural language processing (NLP) may wonder if a project

that studies the use of XML to develop a databank of linguistic data should be

regarded as proper computational linguistics since it cannot understand, create or

translate human language. However, it should be remembered that, according to

Wintner (2004: 113), computational linguistics do not only include "the application of

various techniques and results from linguistics to computer science" (NLP), but also

"the application of various techniques and results from computer science to

linguistics, in order to investigate such fundamental problems as what people know

when they know a natural language, what they do when they use this knowledge,

and how they acquire this knowledge in the first place". A linguistic database60

60 The adjective linguistic in the term linguistic database here refers to the linguistic content of the

database. Jeong & Yoon (2001) use the same term, but apparently refer to the textual design of the

database itself, regardless of the content. However, they do not supply a clear definition for the

term. It could also refer to their proposed manipulation language. Other authors, such as Buneman

et al. (2002: 480), use the term to refer to the content of the database as it is done in this thesis.

Petersen (1999: 10) uses the term "text databases" for databases that store texts together with

 87

University of Pretoria etd – Kroeze, J H (2008)

captures and manipulates human knowledge of language, thus focusing on the first

one of these basic issues in the second category (what people know about a

language). This part of computational linguistics could perhaps be called natural

language information systems (NLIS) because it is similar to the application of

information technology to business data, studied in Information Systems discipline, of

which databases form an integral part. NLIS can improve the storage, extraction,

manipulation and exploration of linguistic data. It is, however, not only an end in itself,

since tagged corpora are also needed as tools to train natural language processing

systems (Wintner, 2004: 131).

Knowledge representation of human language, of which the tagging of documents is

a part, is an interdisciplinary methodology that combines the logic and ontology of

linguistics with computation (Unsworth, 2001).61 Like databases, mark-up is a

substitute or surrogate of something else (in this case the covertly structured text)62,

which enables the researcher to make his/her assumptions explicit, to test these

hypotheses and to derive conclusions from it (cf. ibid.). The names of the tags,

attributes and elements used for the mark-up reflect the researcher's "set of

ontological commitments" (cf. ibid.). Since any knowledge representation is a

fragmentary theory of intelligent reasoning, it should be accepted that no knowledge

representation system can capture all the forms of "intelligent reasoning about a

literary text" (cf. ibid.).

This study is limited to the study of word groups, syntactic and semantic functions,

excluding other perspectives such as morphology and pragmatics. A simplified

version of the semantic functions, according to the functional grammar theory of SC

Dik (1997a, 1997b) was used for the semantic analysis. Equally simple systems,

compiled by the author, were used for the word-group and syntactic analyses. The

reader’s own views may differ from the analyses given here, but it should be kept in

linguistic analyses of it (that is, expounded text vs. text-dominated databases that are composed

mainly by means of characters).
61 Compare Huitfeldt's (2004) opinion that the semantic web lies "at the intersection of markup

technology and knowledge representation".
62 "Semiotic and linguistic forms are incoherent because they have to be marked in order to be

perceived at all" (McGann, 2003: 5).

 88

University of Pretoria etd – Kroeze, J H (2008)

mind that the main focus of this project is not defining a linguistic theory, but rather

illustrating the digital storage and processing of text analyses. Any other linguistic

system may be used as the theory underlying the analysis and tagging.

4.3 Linguistic layers

Witt (2002) suggests that various levels of linguistic data could be annotated in

separate document grammars, which can be integrated via computer programs. He

proposes i.a. morphology, syntax and semantics as levels to be annotated: "For the

annotation of linguistic data this [i.e. a single level of annotation - JHK] could be e.g.

the level of morphology, the level of syllable structures, a level of syntactic categories

(e.g. noun, verb), a level of syntactic functions (e.g. subject, object), or a level of

semantic roles (e.g. agent, instrument)."

In a later article, Witt (2005: 57) differentiates between linguistic levels and layers.

Levels refer to divergent logical units such as text layout versus linguistic analyses,

and layers or tiers refer to the various possibilities on one level (for example,

syntactic and semantic functions, which are structures that order the text

hierarchically). In this study the terms layers or modules are also used to refer to the

various perspectives of syntax, semantics, etc. (cf. Chapters 2 and 3). However, the

distinction between level and layer is not strictly maintained in references to other

authors' work, where the terms are used as synonyms. T. Sasaki (2004: 22), for

example, uses the term level to refer to various linguistic annotations of text, i.e.

syntactic, morpho-syntactic, lexical and morphological annotation. It should, however,

not cause much misunderstanding, since this study focuses only on one "logical unit",

the linguistic analyses, while the verse numbers are only used for primary keys and

referencing.

Furthermore, the reader should note that linguists do not necessarily use the names

of language modules in exactly the same way. For example, Witt's syntactic

categories are the same as Sasaki's morpho-syntactic categories (part-of-speech

tagging), while morpho-syntax is used in the current study to refer to word groups.

 89

University of Pretoria etd – Kroeze, J H (2008)

The use of these terms is theory-bound and the user of a linguistic database should

make sure that he/she knows the specific definitions used in a particular

implementation. (See Addenda C – F for an overview of the phonetic transcription

system, and taxonomies of phrase types, syntactic functions and semantic functions

used in this study.)

4.4 The phrase as basic building block of the database structure

The problems of redundancy and sparsity were discussed above and it was indicated

that using the phrase as the basic building block of structure for a clause cube may

minimise these problems. This solution is discussed in more detail in this section.

Witt (2002) proposes that linguistic database creators use the basic written text as a

link, which he calls the primary data, between the layers: "… when designing the

document grammar it is necessary to consider that the primary data is the link

between all layers of annotation". The simplest way to deal with such an

implementation is to mark up the various layers of linguistic analysis in separate

documents, using the primary data to interrelate the information contained in these

documents. Even if the information of all analysed layers are merged into one data

structure, such as a data cube, it is still logical to use the basic text (divided into

words or phrases), as the basic elements to which all other layers are related.

Depending on the characteristics of the layers to be annotated one should decide

whether to use letters, words, phrases, etc., as the reference units. Compare Witt

(2005: 65, 70, 72): "… in larger text single words could serve as the reference units"

(as opposed to single letters in smaller text). For example, in a project that aims to

study morphological analysis it would be necessary to use characters as the smallest

units (Bayerl et al., 2003: 165). In this project phrases or word groups are used as

the unit of reference.63 It is, however, important to note that annotations that use

63 See the parallel discussion in Chapter 2 (2.3, 2.6) where the same concepts are discussed in terms

of array technology. In this chapter the focus is on the implementation in an annotated, XML

databank.

 90

University of Pretoria etd – Kroeze, J H (2008)

different units of reference cannot easily be integrated if the text is used as the

primary data (the "implicit link" between the layers). This could be solved by

numbering the smallest units to be analysed and by referring to the various

combinations of these numbers for the divergent layers of analysis (compare

Petersen, 1999: 13-14).64 Although different solutions were researched for the

representation of divergent linguistic analyses, "[t]he annotation of multiple

hierarchies with SGML-based markup systems is still one of the fundamental

problems of text-technological research" (Witt et al., 2005:103). Although this is not a

problem in the experiment of this project, it should be researched if one would have

to integrate a word group-based analysis with other studies based on letters,

morphemes, words or other different units of structure. Compare, for example,

Petersen (2004b) who uses words in their original order as the basic units of

reference in his textual database. He does, however, add a numbering system to

facilitate the mapping of non-congruent linguistic layers.

4.5 Why should XML be explored as an option to build an
exploitable database of linguistic data?

The sections above have clearly indicated why it is desirable to build a linguistic

database for capturing data regarding the various linguistic layers of text using the

phrase as a basic unit of structure. The ideal solution is to keep the database

separate and independent from the program(s) that operate on it in order to avoid

structural dependence and data dependence. Structural dependence refers to the

situation where changing the structure of the databank necessitates all access

programs to be adapted, while data dependence refers to a "condition in which data

representation and manipulation are dependent on the physical data storage

characteristics" (Rob & Coronel, 2007: 15, 640, 652). Therefore, it is not ideal to

implement the databank as a module within the VB6b program (as it was done in

Chapters 2 and 3).

64 The basic elements (for example, letters or words) are numbered in order of appearance using

integers called monads (Petersen, 1999: 13).

 91

University of Pretoria etd – Kroeze, J H (2008)

This section focuses on the choice of XML to implement a structure-independent and

data-indepedent solution. Storing the clause-cube data in a separate, platform-

independent, XML file, will make the data available to be used and reused by various

access programs. If the structure or content of either the progam or database

changes, only the interface between the two needs to be adapted to read the data to

and from the threedimensional array, a procedure which will be discussed in the next

chapter.

The research question in the heading of this section ("Why should XML be explored

as an option to build an exploitable database of linguistic data?") can be broken down

into four sub-questions, which will be discussed below:

• Why is XML suitable for implementing a database?

• Why is XML suitable for linguistic data?

• Why is XML suitable for data exploration?

• What are the disadvantages of XML?

4.5.1 Why is XML suitable for implementing a database?

The idea for this study originated while working on an earlier project about the use of

HTML to represent linguistic data in a table format (Kroeze, 2002). The tables used in

HTML prompted the idea to capture the data in a database, but also showed the

limitations of HTML because the tags are only used for formatting and do not contain

any semantic information which can be used for structuring purposes.65 XML, on the

other hand, allows the designer of the software to define his/her own tags which may

be organised in a hierarchical manner to structure the data.66 This built-in structure

can be used, not only to visualise the data in a way similar to the HTML tables

referred to above, but also to process the data for more advanced functionality.

65 As is the case with unstructured web data, the lack of structure facilitated by HTML causes serious

limitations on information access (Xyleme, 2001: 1).
66 Relational databases use tables or flat structures while XML uses a hierarchical structure that is

"arbitrarily deep and almost unrestrictedly interrelated" (Smiljanić et al., 2002: 9).

 92

University of Pretoria etd – Kroeze, J H (2008)

The hierarchical nature of XML is a major benefit in comparison to simple relational

database management systems that make use of collections of flat, twodimensional

tables. Use of this technology would lead to sparsity and redundancy problems (see

above).67 Although more complex types of relational database technology exist that

do facilitate multidimensional tables, which could provide alternative solutions for

multidimensional linguistic data, this study is limited to the investigation of the use of

XML as a solution.

The database facilities of XML can be ascribed to its features of allowing the design

of unique tag sets and the separation of formatting and structure. A unique set of

tags (schema), which fits the relevant data set in a natural way (Flynn, 2002: 56), can

be compiled to be the equivalent of a database structure. The structuring is built into

a well-designed mark-up schema, but the formatting is covered by separated style

sheets. While the schema of a relational database management system exists

separately from the data, in XML it coexists with the data as element names or "tags"

(Deutsch et al., 1999: 1156). One of the benefits of "the deferral of formatting

choices" includes the facilitation of consistent formatting and avoidance of many

opportunities for data corruption (DeRose et al., 1990: 15, 17).

Although XML is very suitable for storing data, it should, however, be remembered

that the CRUD functions (create, retrieve, update, delete) are actually not done by

the XML document itself but by another program that operates on the data in the

XML file. Maybe one should even consider the possibility of rather using the term

XML databank rather than database: "An XML document is a database only in the

strictest sense of the term" because it is essentially only a simple file containing data,

organised in a linear fashion (Bourret, 2003). Combined with its surrounding

technologies XML may be regarded as a database system, albeit in the "looser sense

of the term" because it does provide some of the typical functionalities of "real

databases" but also lacks others (ibid.). However, in conventional database

terminology, database refers to the collection of tables containing related data,68

database management system refers to the program that enables creation, reading,

67 Storing XML data in conventional databases is not ideal since it "artificially creates lots of

tuples/objects for even medium-sized documents" (Xyleme, 2001: 3).
68 Or static database – a database without CRUD facilities (cf. Petersen, 1999: 11).

 93

University of Pretoria etd – Kroeze, J H (2008)

updating and deletion of data in the database, and database system is the

combination of a database and the software used to manage it (Smiljanić et al., 2002:

8). In a database approach one may "consider an XML document to be a database

and a DTD to be a database schema" (Deutsch et al., 1999: 1155). Therefore, in this

experiment the XML document refers to the database, the VB6 program may be

regarded as a (simple) database management system, and the combination as a

database system.

Although it is not implemented in this experiment, using XML to structure the data in

the clause cube could facilitate the request and delivery of information through the

world wide web in a similar way as is the case with business data. Huang & Su

(2002), for example, combine XML technology and push and pull strategies to

provide users via the Internet only with information relevant to them. Because an

XML document is text-based it is ideal for storage and delivery of business data via

the web, which requires a onedimensional stream of characters for efficient transfer.

This text-based property of XML also renders it quite suitable for the storage and

transfer of linguistic data over the Internet.

4.5.2 Why is XML suitable for linguistic data?

Since XML itself is text based, it follows that it should provide a suitable way to

capture textual data. The source text can be kept intact while additional information is

added by means of semantic mark-up. Since humanities scholars do not only use

texts to transmit information about other phenomena, but also study the texts

themselves, it is important to preserve these texts in a form that will facilitate future

research. XML provides a way to store both the original text and the results of

research on it for future reuse (Huitfeld, 2004). Due to its widespread use and

adaptability to other software packages, Flynn (2002: 59) regards XML as the future

"lingua franca for structured text in the humanities and elsewhere". XML was also

recommended by the E-MELD project as a mark-up language in order to create a

common standard for and sharing of digital linguistic data (Bird et al., 2002: 432).

 94

University of Pretoria etd – Kroeze, J H (2008)

XML uses terms to describe texts that are not linked to a specific formatter, such as

those suggested by the OHCO model (ordered hierarchy of content objects), and

therefore makes documents transportable (platform-independent) (DeRose et al.,

1990: 15). "It is a non-propriety public standard independent of any commercial factor

and interest" (T. Sasaki, 2004: 19).

According to T. Sasaki (2004:18) researchers of Hebrew linguistics "can benefit

enormously" from the use of XML as a medium to store and interchange their

research data. An XML database that captures human linguistic analyses and

facilitates data warehousing and data mining procedures69 on this data, for example,

could be very helpful to fill the gaps that cannot yet be covered by algorithms that

simulate the complex processes of human language. Due to the ambiguity of human

language on various layers of phonology, morphology, syntax, semantics and

pragmatics, natural language processing systems are not satisfactorily successful,

especially on the higher layers of language understanding (Wintner, 2004: 114-

118).70 In fact, such a database can also provide more basic data that can be used to

improve NLP systems.

XML is a very scalable medium for storing linguistic data. It is very easy to embed

another layer into the hierarchical structure to capture additional information. Besides

capturing data that pertains to the text itself, information about parallel texts can be

represented in the same manner, thus enabling textual criticism (the process of

comparing various editions of a text in order to reconstruct the original text).71 In this

regard, Aarseth (s.a.) is very positive about the prospects of hypertext technology:

"Not only does hypertext promise a tool for critical annotation and the representation

of intertextuality, as well as a useful method for representing complex editions of

69 "Data Warehousing and Knowledge Discovery technologies are emerging as key technologies to

improve data analysis ... and automatic extraction of knowledge from data" (Wang & Dong, 2001:

48).
70 Even using semantic information in a dictionary does not guarantee the correct interpretation

because a machine's interpretation "does not [always] fit conditions in the real world" (Ornan, 2004).
71 Due to the stability of the text of the Hebrew Bible it is not necessary to consider the use of change-

centric management of the XML clause cube, which only contains analyses of a single version of

the text. However, in text-critical projects of the text such an approach could be useful for users to

obtain snapshots of the text's history (cf. Marian et al., 2001).

 95

University of Pretoria etd – Kroeze, J H (2008)

variorum texts, it also has become, for many, an incarnation of the post-structural

concept of text."

Word order is an important and often essential characteristic of language. In a

database that captures linguistic analyses according to logically organised attributes

(for example, subject, object, indirect object), the word order is lost and another field

is needed for every word to register its word order position. However, XML's simple

linear file characteristic makes it very suitable for textual databases since text is also

ordered in a linear fashion. It allows the designer to keep the word order intact and to

capture the analytical data by means of mark-up. Not only does this eliminate the

need for a word-order field, but it also reduces processing to rebuild the original text

for output purposes.

Like SGML,72 XML can be used to annotate either more text-oriented documents or

more data-oriented documents.73 It is therefore very suitable for a linguistic data

cube, which is something in between. On the one hand, the text and word order is

preserved,74 and on the other hand, the database is structured to such an extent that

it can be represented by a threedimensional array in VB6. This could, therefore,

serve as an example where the boundaries between document-centric and data-

centric XML documents are blurred (cf. T. Sasaki, 2004: 19).75

The characteristics of XML discussed above make it very suitable to record linguistic

data, for example in a data cube. In combination with a suitable program this data

can be read, updated and deleted in various combinations. A data mart could be built

72 Cf. DeRose et al. (1990: 12): "It [SGML – JHK] does not prejudice whether a document is to be

treated as a database, a word-processing file, or something completely different".
73 A dictionary is a typical example of a data-oriented linguistic document (cf. Bird et al., 2002).
74 This statement has to be qualified somewhat. Embedded phrases and clauses challenged the ideal

to exactly reproduce the original word order. A compromise was to refer to these embedded

elements by using square brackets where they do occur and to analyse them separately afterwards

as individual phrases or clauses.
75 Document-centric documents are also called narrative-centric or text-centric documents. They "are

not so well structured and are meant more for human consumption, while data-centric documents ...

are more rigidly structured and meant mainly for machine consumption" (T. Sasaki, 2004: 19).

 96

University of Pretoria etd – Kroeze, J H (2008)

to summarise subsets of the data, thus enabling advanced processing and retrieval.

The following section will discuss the data exploration facilities in more detail.

4.5.3 Why is XML suitable for data exploration?

An XML database facilitates complex searches, for example where two or more

conditions are to be true (DeRose et al., 1990: 17). Without a proper database these

are done partly manually: the researcher finds all texts that satisfy one condition and

then searches within that data for the other conditions. A good program or query

language could automate the process of searching for data on more than one

parameter within an XML document. It could also facilitate text comparison and the

display and correlation of various translations of a text, provided that this data are

captured in the XML database (DeRose et al., 1990: 18). This will make the task of a

translator or exegete a lot easier by integrating the data from various texts and

translations into a single tool.

Data integration from various sources is a typical data warehousing activity. Data

marts and data warehouses are often used to integrate and aggregate business data.

XML schemas can also be used to interoperate legacy databases when migrating

and integrating them into newer databases (Thuraisingham, 2002: 190). XML and its

surrounding technology can provide similar benefits for humanistic studies since the

OHCO model, for example, facilitates the integration of "a wide variety of different

types of data or media into a 'compound document'" (DeRose et al., 1990: 17). The

suitability of XML to integrate data from various sources has been demonstrated over

and over again. Mangisengi et al. (2001: 337) go one step further in their project to

virtually co-locate data warehouse islands using XML as a basis to realise the

interoperability of these sources.76 By not having to physically replicate data into a

new enormous data warehouse they ensure an efficient load balance. This

demonstrates the scalability of projects built on XML technology. (Compare Chapter

76 According to Wang & Dong (2001: 51) a data warehouse is "a finite set of documents (or data

cubes) conforming to one of the XML schema definitions in meta data." A data warehouse is

actually a collection of data marts that contain aggregated data.

 97

University of Pretoria etd – Kroeze, J H (2008)

3 for a more detailed discussion of typical data warehousing procedures facilitated by

a clause cube.)

Having a data warehouse is an important step towards efficient data exploration or

data mining. Data mining is the process of discovering hidden patterns within large

datasets. "The OHCO model treats documents and related files as a database of text

elements that can be systematically manipulated …. full-text searches in textbases

can specify structural conditions on patterns searched for and text to be retrieved"

(DeRose et al., 1990: 17). The location of patterns is the essence of humanistic

inquiry which presumes an openness on the side of the researcher, and "databases

are perhaps the most well suited to facilitating and exploiting" this enterprise

(Ramsay, s.a.). It should be noted that data mining is not a coincidental process of

discovery, but rather a deliberate process of knowledge invention and construction

(cf. Du Plooy, 1998: 54, 59).

4.5.4 What are the disadvantages of XML?

In comparison to all these benefits of XML there are only a few disadvantages (cf. T.

Sasaki, 2004: 19). The XML documents can become rather large since the tags are

repeated over and over again for each element. In the clause cube experiment of this

project, not only the tags but also the character data is used repetitively because the

word groups, syntactic functions and semantic functions are encoded as text

elements. This design is, however, very suitable for the eventual conversion to an

array structure in VB6. According to Buneman et al. (2002: 475) an XML document

may be regarded as a hierarchical structure of elements, attributes and text nodes, of

which only "[t]ext and element children are held in what is essentially an array".

In a later version of this project the size of the XML document(s) may be reduced

dramatically by defining the names of syntactic and semantic functions as entities (for

example, <!ENTITY Ben "Beneficiary">) and using repetitive entity references in the

database (for example, &Ben;) instead (cf. Burnard, 2004). This provides a viable

alternative to compressing techniques to reduce the size of an XML document since

 98

University of Pretoria etd – Kroeze, J H (2008)

"lossy" compression techniques are more suitable for database-like documents, and

"lossless" compression techniques are not nearly as efficient as "lossy" techniques

(Cannataro et al., 2001: 3).77

Besides the verbosity and repetitiveness, "access to the data is slow due to parsing

and text conversion" (Bourret, 2003). On the other hand, in the case of text

databases, an XML implementation can actually be quite fast since whole documents

are stored together and logical joins are not needed (ibid.).

If the XML code is typed using a basic text editor such as Notepad, it can be

annoying and error-prone to type repetitive tags and elements, but if the file is

created by electronic means, or by using special XML editors, this problem can be

avoided.

The separation of data and formatting provides certain benefits as discussed above,

but necessitates the creation of a separate style sheet to inform a web browser, such

as Opera or Firefox,78 how to display the text in the XML document (Flynn, 2002: 57).

This is, however, a small price to pay for the database-like benefits provided by the

same characteristic and the option to design different formats to suit unique

requirements.

In addition, Huitfeld (2004) mentions the following weaknesses of XML: poor support

for documents enriched by multimedia, absence of well-defined semantics, and the

inherent inadequacy to express overlapping hierarchies which have to be bypassed

by artificial means. Since XML itself does not contain semantics, it is important to add

semantic content to mark-up in order to enable the study of the ontology it reflects

(cf. F. Sasaki, 2004: 3).79

77 During "lossy" compression the document structure is changed and the original document cannot

be reproduced by reversing the process. If the compression is lossless the compressed data can be

decoded to provide a document that is identical to the original (Cannataro et al., 2001: 2).
78 Internet explorer does not render the tables, defined in this project's XML style sheet, correctly.
79 Mark-up semantics studies "the formal description of the meaning of document grammars and

instance documents", while semantic markup "is the addition of semantic information to markup" (F.

Sasaki, 2004: 3).

 99

University of Pretoria etd – Kroeze, J H (2008)

In comparison to the advantages, the disadvantages of XML are rather restricted.

Thus, one may conclude that it provides suitable technology to build a linguistic

database which can be explored to construct new knowledge.

4.6 How can XML be used to build an exploitable linguistic data
cube?

XML is not restricted to a predefined set of static mark-up formulas. The user may

define his/her own tags to mark up the relevant text in a suitable way. Therefore,

tags, elements and attributes can be designed according to the linguistic paradigm

within which the researcher works. XML is also very flexible: it is possible and

acceptable to map all properties to elements and child elements (Bourret, 2003), and

in this experiment it was actually better to code all the linguistic information as

primary data (most basic textual elements) to properly implement the

threedimensional data cube concept.80 Primary data is "simple element types"

(Bourret, 2003), which is usually used exclusively for the basic text itself,81 but XML

allows the user to creatively design the structure of the database using the various

building blocks available. This is called a tag-based approach versus an attribution-

based one. While the attribution-based approach is more readable, the tag-based

approach is more expandable and suitable for the representation of multidimensional

and hierarchical data (Jeong & Yoon, 2001: 834). Using a tag-based approach to

build a linguistic data cube in combination with a VB6 access program will provide a

custom-made, but flexible and expandable database management system that is

both efficient and user-friendly. It is, of course, very important to use these constructs

in a consistent manner. The need to reuse data intelligently (for example, for text

mining) depends on a "well-planned tagging scheme" (DeRose et al., 1990: 18). To

80 Compare T. Sasaki's (2004: 42) example of an entry in a data-centric lexical database of Modern

Hebrew where all the mark-up is also done as elements and child elements, without using attribute

values. According to Deutsch et al. (1999: 1156) "[s]tructured values are called elements".
81 Compare, for example, T. Sasaki (2004: 29-30). See Huitfeldt (2004): "An SGML document

therefore has a natural representation as a tree whose nodes represent elements and whose

leaves represent the characters of the document."

 100

University of Pretoria etd – Kroeze, J H (2008)

facilitate this process, schema languages are available to define the structure of the

database and to test the contents of the database to ensure that all entries satisfy the

schema rules (cf. T. Sasaki, 2004: 18).

4.7 How can XML represent the syntactic and semantic analyses of
free text?

The designer has to think about the data structure as a threedimensional object

having one row for each clause; five (in the case of Genesis 1:1-2:3) columns per

clause, one for each phrase; and various layers of analysis, i.a. one to capture

syntactic information and another to record semantic functions. If a phrase does not

have a semantic function, for example in the case of conjunctions, an empty value (-)

is inserted into the relevant field. Null values would also indicate the absence of a

function, but could cause problems during sorting and importing and exporting the

XML file to and from a program (round-tripping82). In XML the data cube is

represented by a hierarchical structure (see below). It is important to validate the

recorded data to ensure the consistent use of terminology. A proper XML schema

enforces consistency and the proper organization of stored text which is necessary

because "[n]o hardware improvements or programming ingenuity can completely

overcome a flawed representation" (DeRose et al., 1990: 4). The creation and use of

an XML schema will be discussed in more detail below (4.11). In addition, validation

of syntactic and semantic functions will also be done by the VB6 program to ensure

clean data before advanced processing will be done (see Chapter 6).

A schema is actually a knowledge representation or an ontology83 that is formulated,

consciously or unconsciously, based on a specific theory of language.84 "If you want

82 Round-tripping will be discussed in detail in Chapter 5.
83 "An ontology is a formal conceptualization of a domain that is usable by a computer. Ontologies ...

allow applications to agree on the terms that they use when communicating" (Euzenat, 2001: 21).
84 The XML schema may be regarded as the blueprint for a linguistic ontology since it provides the

framework for "a catalog of the types of things that are assumed to exist in a domain of interest"

(Sowa, 2003). Because the types are defined only in human language, it should be regarded as an

"informal ontology".

 101

University of Pretoria etd – Kroeze, J H (2008)

a computer to be able to process the materials you work on, whether for search and

retrieval, analysis, or transformation—then those materials have to be constructed

according to some explicit rules, and with an explicit model of their ontology in view"

(Unsworth, 2001). Various ontologies in linguistic projects reflect the various

underlying theoretical paradigms, and one can only hope that these will converge to

more standardised systems in future. Divergent ontologies are not optimised to play

the role of a "key factor for enabling interoperability in the semantic web" (ibid.)

However, one will have to accept that linguistic ontologies are phenomena that

evolve in parallel to the underlying philosophies that they reflect; since it is a

humanistic field of study, it will never be as rigorous as the natural sciences. XML

could at least help the comparison of the various approaches. With reference to

literary analysis, McGann (2003: 5) says: "Textuality is, like light, fundamentally

incoherent. To bring coherence to either text or to light requires great effort and

ingenuity, and in neither case can the goal of perfect coherence be attained."

Although "any philosophy is destined to be incomplete", ontologies are important

because "[w]ithout it, there is no hope of merging and integrating the ever expanding

and multiplying databases and knowledge bases around the world" (Sowa, 2003).

4.8 How can XML represent inherently multidimensional data?

According to Witt (2002) using separate annotated document grammars for the

various linguistic layers allows "an unlimited number of concurrent annotations". It

would indeed be easier to annotate each layer in a separate XML document, but the

use would be very limited. In order to study the mappings of the linguistic layers, for

example, one needs an integrated structure because "separate annotations do not

allow for establishing relations between the annotation tiers" (Witt, 2002).85 Even Witt

et al. (2005: 105) acknowledge the need to integrate multiple notations into a single

XML representation. One could, of course, use a system of primary and foreign keys

to join the various annotation tiers of separate documents, but it will cause a lot of

overhead. Using a threedimensional data structure instead can eliminate a lot of

conversion and programming to merge various XML databases into one. There is a

85 Also see Witt et al. (2005: 112).

 102

University of Pretoria etd – Kroeze, J H (2008)

natural similarity between data cubes and XML databases since both are

multidimensional and hierarchical in character (Wang & Dong, 2001: 50).

A data cube merges all data in one structure, eliminating a lot of overhead in terms of

programming needed for the comparison of separate files and the inference of

relations between their elements (cf. Witt, 2005: 56), because the various layers are

already interrelated by the threedimensional data structure. It is also unlimited since

more layers can be added on the depth axis to capture additional layers of analysis.

In this experiment one annotation level (the third dimension) serves several linguistic

modules (cf. Bayerl et al., 2003: 164): phonology, translation, word groups, syntax

and semantics.

An XML database is of course a text-based document which is essentially

onedimensional because text represents a stream of language utterances. Therefore,

one should "collapse" the (conceptual) threedimensional data cube into a

onedimensional stream of tags and primary data. The tagging structure should

represent a consistent hierarchy which can be interpreted by a program to convert

the stream of text into a data cube. The structure used in this experiment will be

discussed in the next section.

4.9 The structure of the Genesis 1:1-2:3 database in XML

As discussed above, it is very important to design a proper structure for an XML

database. "Like relational databases, there is nothing in native XML databases that

forces you to normalize your data. That is, you can design bad data storage with a

native XML database just as easily as you can with a relational database. Thus, it is

important to consider the structure of your documents before you store them in a

native XML database" (Bourret, 2003). The hierarchy of the Genesis 1:1-2:3 clause

cube is shown in Figure 4.1.

Hebrew Bible - not used in this study

 Bible Book - not used in this study

 103

University of Pretoria etd – Kroeze, J H (2008)

 Pericope86 - root element in this study: <Genesis1v1-2v3>

 Clause - each clause represented by one table: <clause>

 Clause Number - each clause's ID: <clauseno>

 Table Headers - headings for each column: <headers><header>

 Language Levels 1-5 - the various modules of analysis: <level1> ...

 Level Description - description of module per row: <leveldesc>

 Phrases 1-5 - the word groups in a clause: <phrase1> ...

Figure 4.1. The hierarchy of the Genesis 1:1-2:3 clause cube as reflected by its XML

implementation.

This hierarchy actually represents various levels and layers. Although other

documents could be used to mark up other versions of analyses and the various

documents connected by means of the identical textual content, these analyses may

also often be combined in a single document - compare Witt et al. (2005: 104, 105):

"Sometimes, the single hierarchy restriction is not perceived as a drawback because

annotations with concepts from different information levels can often be integrated in

a single hierarchy." In the Genesis 1:1-2:3 clause cube the structure of the text (book,

pericope, clause, phrase) is mixed in a single hierarchy with the concepts of the

linguistic modules (phonology, morpho-syntax, syntax, semantics) since the VB6

management program will use the tag structure to convert the rather flat XML file to

build the threedimensional clause cube as a threedimensional array.

The XML schema which describes the structure of the XML database is based on the

logical hierarchical structure. An example of an XML schema to annotate text,

focusing only on the structure of the text, can be found in Witt et al. (2005: 105). It

contains the hierarchy shown in Figure 4.2.87

86 In this experiment Genesis 1:1-2:3, the first pericope of the Hebrew Bible, is used as the basic text

and root element. Although it could be argued that Genesis 2:4a also belongs to this pericope, it

was decided not to include this clause, following the masoretic division. If a longer text were used

as corpus, one would have to decide whether the segmentations on this level should be done by

chapter or pericope.
87 Compare T. Sasaki (2004: 23) for a similar, but different schema of mark-up for a Modern Hebrew

corpus. See also Petersen (2004b) and Buneman et al. (2002: 481).

 104

University of Pretoria etd – Kroeze, J H (2008)

<article>

 <section>

 <title> ... </title>

 <paragraph> ... </paragraph>

 <itemizedlist>

 <listitem> ... </listitem>

 </itemizedlist>

 </section>

</article>

Figure 4.2. An example of an XML schema used to annotate text (Witt et al., 2005:

105).

This concept can be expanded to cover more than one level of analysis by using the

hierarchy of structural and analytical elements above in the design of the structure of

the XML database of Genesis 1:1-2:3, as shown in Figure 4.3 below. The five

phrases per clause that have been used as the structuring backbone are sufficient for

Genesis 1:1-2:3, but may have to be extended for other texts (see 4.4 above). The

five linguistic layers that have been chosen here, are sufficient to illustrate the

multidimensionality of the data structure and may be extended to cover other needs.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

 <Genesis1v1-2v3>

 <clause>

 <clauseno></clauseno>

 <headers>88

 <header>Level</header>

 <header>Phrase1</header>

 <header>Phrase2</header>

 <header>Phrase3</header>

 <header>Phrase4</header>

 <header>Phrase5</header>

 </headers>

 <level1>

 <leveldesc>Phon:</leveldesc>

88 One could argue that the repetitive tagging of structural information, such as "Level", "Phrase1",

"Phon:", etc., is superfluous. However, it does help to keep the XML file human-readable.

 105

University of Pretoria etd – Kroeze, J H (2008)

 <phrase1></phrase1>

 <phrase2></phrase2>

 <phrase3></phrase3>

 <phrase4></phrase4>

 <phrase5></phrase5>

 </level1>

 <level2>

 <leveldesc>Translation:</leveldesc>

 <phrase1></phrase1>

 <phrase2></phrase2>

 <phrase3></phrase3>

 <phrase4></phrase4>

 <phrase5></phrase5>

 </level2>

 <level3>

 <leveldesc>Phrase type:</leveldesc>

 <phrase1></phrase1>

 <phrase2></phrase2>

 <phrase3></phrase3>

 <phrase4></phrase4>

 <phrase5></phrase5>

 </level3>

 <level4>

 <leveldesc>SynF:</leveldesc>

 <phrase1></phrase1>

 <phrase2></phrase2>

 <phrase3></phrase3>

 <phrase4></phrase4>

 <phrase5></phrase5>

 </level4>

 <level5>

 <leveldesc>SemF:</leveldesc>

 <phrase1></phrase1>

 <phrase2></phrase2>

 <phrase3></phrase3>

 <phrase4></phrase4>

 <phrase5></phrase5>

 </level5>

 </clause>

 <clause> ... </clause>

 <clause> ... </clause>

 <clause> ... </clause> etc.

</Genesis1v1-2v3>

Figure 4.3. The basic structure of the XML database of Genesis 1:1-2:3.

 106

University of Pretoria etd – Kroeze, J H (2008)

When this scheme is populated with linguistic data from Genesis 1:1-2:3, it looks as

shown in Figure 4.4 (only the first two clauses are shown below as an example).

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Genesis1v1-2v3>

 <clause>

 <clauseno>Gen01v01a</clauseno>

 <headers>

 <header>Level</header>

 <header>Phrase1</header>

 <header>Phrase2</header>

 <header>Phrase3</header>

 <header>Phrase4</header>

 <header>Phrase5</header>

 </headers>

 <level1>

 <leveldesc>Phon:</leveldesc>

 <phrase1>bre$it</phrase1>

 <phrase2>bara</phrase2>

 <phrase3>elohim</phrase3>

 <phrase4>et ha$amayim ve'et ha'arets</phrase4>

 <phrase5>-</phrase5>

 </level1>

 <level2>

 <leveldesc>Translation:</leveldesc>

 <phrase1>in the beginning</phrase1>

 <phrase2>he created</phrase2>

 <phrase3>God</phrase3>

 <phrase4>the heaven and the earth</phrase4>

 <phrase5>-</phrase5>

 </level2>

 <level3>

 <leveldesc>Phrase type:</leveldesc>

 <phrase1>PP</phrase1>

 <phrase2>VP</phrase2>

 <phrase3>NP</phrase3>

 <phrase4>NP</phrase4>

 <phrase5>-</phrase5>

 </level3>

 <level4>

 <leveldesc>SynF:</leveldesc>

 <phrase1>Adjunct</phrase1>

 107

University of Pretoria etd – Kroeze, J H (2008)

 <phrase2>Main verb</phrase2>

 <phrase3>Subject</phrase3>

 <phrase4>Object</phrase4>

 <phrase5>-</phrase5>

 </level4>

 <level5>

 <leveldesc>SemF:</leveldesc>

 <phrase1>Time</phrase1>

 <phrase2>Action</phrase2>

 <phrase3>Agent</phrase3>

 <phrase4>Product</phrase4>

 <phrase5>-</phrase5>

 </level5>

 </clause>

 <clause>

 <clauseno>Gen01v02a</clauseno>

 <headers>

 <header>Level</header>

 <header>Phrase1</header>

 <header>Phrase2</header>

 <header>Phrase3</header>

 <header>Phrase4</header>

 <header>Phrase5</header>

 </headers>

 <level1>

 <leveldesc>Phon:</leveldesc>

 <phrase1>veha'arets</phrase1>

 <phrase2>hayta</phrase2>

 <phrase3>tohu vavohu</phrase3>

 <phrase4>-</phrase4>

 <phrase5>-</phrase5>

 </level1>

 <level2>

 <leveldesc>Translation:</leveldesc>

 <phrase1>and the earth</phrase1>

 <phrase2>was</phrase2>

 <phrase3>an emptiness and void</phrase3>

 <phrase4>-</phrase4>

 <phrase5>-</phrase5>

 </level2>

 <level3>

 <leveldesc>Phrase type:</leveldesc>

 <phrase1>NP</phrase1>

 <phrase2>VP</phrase2>

 <phrase3>NP</phrase3>

 <phrase4>-</phrase4>

 108

University of Pretoria etd – Kroeze, J H (2008)

 <phrase5>-</phrase5>

 </level3>

 <level4>

 <leveldesc>SynF:</leveldesc>

 <phrase1>Subject</phrase1>

 <phrase2>Copulative verb</phrase2>

 <phrase3>Copula-predicate</phrase3>

 <phrase4>-</phrase4>

 <phrase5>-</phrase5>

 </level4>

 <level5>

 <leveldesc>SemF:</leveldesc>

 <phrase1>Zero</phrase1>

 <phrase2>State</phrase2>

 <phrase3>Classification</phrase3>

 <phrase4>-</phrase4>

 <phrase5>-</phrase5>

 </level5>

 </clause> etc.

</Genesis1v1-2v3>

Figure 4.4. Two populated clause elements in the XML database.

4.10 Critical discussion of the XML clause cube implementation

The threedimensional cube structure implemented in XML above provides an easy

way to resolve identity conflicts, i.e. where elements on the various layers span the

same range of words of the basic text (Witt et al., 2005: 107),89 for example the exact

same phrase et ha$amayim ve'et ha'arec in Genesis 1:1, which is analysed on the

various levels as NP, object and product. The Genesis 1:1-2:3 experiment has many

identity conflicts since the basic unit of reference is the phrase (word group). Actually,

the whole clause cube structure is built on identity conflicts – in each clause exactly

the same phrases are analysed on the various levels. By ignoring conjunctions which

are parts of other words (a commonly found phenomenon in Hebrew) it was possible

to use exactly the same demarcations for the linguistic modules that were annotated.

89 "An identity conflict exists when two element instances from the two annotation layers span an

identical portion of the text" (Witt et al., 2005: 112).

 109

University of Pretoria etd – Kroeze, J H (2008)

This structure facilitates the study of mapping between the chosen linguistic modules.

The implication of this implementation is that more detailed information, such as

morphological analyses (for example, bre$it = preposition be- + noun re$it) cannot be

stored by only adding another level on the depth dimension. In order to facilitate

functions like these the structure of the clause cube will have to be changed into a

more complex structure where words and/or morphemes are numbered, using

ranges of the numbers to demarcate phrases on the higher levels of analysis. (Cf.

Witt, 2005: 70, for an example of a textual stream where each character has its own,

unique identification.) This, however, falls outside the scope of this study.

In a twodimensional representation identity conflicts have to be resolved either by

marking up the same texts in various XML files, or by nesting one layer's elements in

another layer's elements (cf. Witt et al., 2005: 107).90 In this project's

threedimensional structure, however, the layers are described in parallel structures.

In XML these parallel structures are implemented using various collections of

elements which are hierarchically on the same layer but separated by descriptive

tags. The various collections of sibling and child elements are grouped into units and

subunits by wrapper tags.91 This is a direct representation of the inherently

threedimensional data underlying the implementation and avoids the necessity to

define some layers as attributes of elements on another layer.

Although one may argue that this is a counter-intuitive implementation of inherently

hierarchical linguistic data, it is typical of data-oriented XML files (cf. T. Sasaki, 2004:

31-42).92 If one implemented the linguistic modules as attributes of the phrases, it

90 Compare Witt et al. (2005: 109-114) for a discussion of other types of relations (mappings) between

various annotated layers, such as inclusion and overlap conflicts (that is, where the parts of the text

that are analysed are not exactly the same). Since these types do not occur in this case study they

are not discussed further.
91 Compare T. Sasaki (2004: 32) who also uses a wrapper tag <entry> to organise the various child

elements of each lexeme into a unit of a data-centric XML lexical database. A wrapper element is a

higher level element used to store multiple "entities" in one XML "table" or various "tables" in one

XML database (cf. Bourret, 2003).
92 Compare T. Sasaki's (2004) example of a data-oriented lexicographical implementation with his

example of a document-centric annotation in which the syntactic role is defined as an attribute of a

phrase.

 110

University of Pretoria etd – Kroeze, J H (2008)

would become much more difficult (or even impossible) to build a threedimensional

XML cube, since attributes cannot be used for document-structuring purposes, while

elements can (Holzner, 2004: 67-68).93 Lack of structure will have detrimental effects

on the advanced processing of the linguistic data (for example studying the mapping

of linguistic modules). According to Witt (2005: 55-56), the layers of phonology,

morphology, syntax and semantics "are (relatively) independent of each other" – this

supports the idea to treat them as separate elements and not as attributes of other

elements, a concept which is also mirrored by the threedimensional cube consisting

of an array of cells of variables organised according to rows, cell and levels (depth

dimensions). In the XML schema the legitimate possibilities of the linguistic levels of

morpho-syntax, syntax and semantics are defined as enumerations94 of element

values (see the section on validation below).

One may conclude that the hierarchy of an XML document structure does not, and

does not have to, reflect the inherent clause structure. Although the phrases do have

syntactic and semantic characteristics or attributes, speaking from a linguistic

perspective, these may be implemented in XML as elements for the sake of

threedimensional structuring and processing. To define these linguistic attributes as

XML elements is, therefore, a pragmatic decision, facilitating the database

functionalities needed. This "data-centric application of XML" may be quite different

from the more conventional "document-centric" applications – data-centric files,

which are usually processed by machines, are much more structured (cf. T. Sasaki,

2004: 19).

The original Hebrew text is not marked up using the Hebrew alphabet. Instead a

simple phonological rendering is used (see Addendum C). Therefore, one would

need another mechanism to link this product to, for example, the Biblia Hebraica

Stuttgartensia (BHS), should the need arise. One solution could be to use standoff

93 Since both attributes and elements hold data, one could use Holzner's (2004: 67) guideline (i.e.

using elements to structure the file, and attributes for additional information) to choose which one

should be used. Another reason for using elements rather than attributes is that "using too many

attributes can make a document hard to read" (Holzner, 2004: 68).
94 "An enumeration is a set of labels with values", for example the enumeration syntactic function

which has the labels of subject, direct object, indirect object, etc. (cf. Petersen, 2004b).

 111

University of Pretoria etd – Kroeze, J H (2008)

mark-up,95 a way of separating mark-up from the original text to be annotated. This

would require the original text (BHS) to contain basic mark-up identifying each word

with a unique primary key, which could be referenced in the standoff annotation (cf.

Thompson & McKelvie, 1997). For example the phrases in Genesis 1:1 could be

numbered in the BHS as follows: Gen1v1a1: bre$it, Gen1v1a2: bara, Gen1v1a3:

elohim, Gen1v1a4: et-ha$amayim ve'et ha'arets. These identifiers may then be used

to link the original Hebrew text (in the Hebrew alphabet) with the phonological

representation used in the clause cube, in this way making explicit the inherent links

between the two texts.

Similar to the procedure in T. Sasaki (2004: 24), only the verbal core is marked as

VP.96 Petersen (2004b) follows a similar approach: in the clause "The door was blue"

only the copulative verb is marked as VP.97 Including other phrases such as

complements, direct objects and adverbials in the verb phrase would necessitate

another layer of analysis and the distinction of inclusive relationships, which fall

outside the scope of this study. However, in this study, preposition phrases are

regarded as the combination of the preposition and its complement – this is different

from T. Sasaki who regards the preposition phrase as a linking unit between the verb

and its satellite (which actually is more consistent and in line with the VP scenario).

In this experiment the names of word groups, syntactic functions and semantic

functions could be regarded as foreign keys – these could be used as primary keys in

other "tables" or documents where definitions are supplied. This is, however, not

implemented in this study. If these documents were created, one would have to

ensure referential integrity between the foreign keys and primary keys. Textual child

elements referring to word groups, syntactic functions and semantic functions are

primary data that must be regarded as external pointers (or foreign keys) which point

95 Standoff annotation is necessary when the original text is read-only, copyright protected or prompts

overlapping hierarchies (Thompson & McKelvie, 1997).
96 In Functional Grammar a clause (or "predication") is regarded as a combination of a verb with its

arguments and satellites (see Dik, 1997a: 77). This is similar to T. Sasaki's principle: "This scheme

proposes to annotate syntactic argument structure with verbs as the core and other phrases as their

satellites".
97 Also cf. Ornan (2004).

 112

University of Pretoria etd – Kroeze, J H (2008)

to valid document fragments in the related documents (cf. Bourret, 2003). One

should therefore ensure that the names of these features are used absolutely

consistently: it would, for example, be unacceptable to use both subj and Subject to

tag the subject of a clause. Although these foreign key elements will be used over

and over again, redundancy is acceptable in the case of foreign keys.

The verse number elements in XML (e.g., <clauseno>Gen01v01a</clauseno>) may

be regarded as primary (or candidate) keys that uniquely identify every clause. These

keys facilitate searches and references to specific clauses. "If XML documents are to

do double duty as databases, then we shall need keys for them" (Buneman et al.,

2002: 473). When the clause number is used as a reference to an embedded clause,

it functions as a foreign key. It may be coded as part of another phrase and one

should be able to find it using a "fuzzy" search (where a query searches for a part of

a string appearing within a bigger attribute value). In this case, the verse numbers

are considered as internal pointers since they refer to another section of the same

document. Relative clauses, for example, are regarded as embedded clauses (EC).

The whole clause is referred to in the main clause, and the relative clause is then

analysed separately. Other ECs and embedded clause clusters (ECC), such as direct

speech, are treated in the same way. The ECs and ECCs are similar to the "gaps"

used by Petersen (2004b) in his Emdros project. It may therefore be concluded that

the clause cube would have been normalised.98

4.11 Validating the XML document

A schema99 was created using the built-in functionality of Visual Studio.Net 2003

(VS.Net 2003).100 Although the basic schema was automatically created, three

98 Normalisation is the process of minimising redundant data in a database (Connolly & Begg, 2005:

390).
99 The structure of an XML document is represented by its schema. An "XML schema with a lower

case 's' refers to any XML schema – such as a DTD, an XML Schema document, or a RELAX NG

schema" (Bourret, 2003).
100 VS2003.Net was used because the XML functionality is not available in VB6. VS2005.Net allows

one to automatically create an XML Schema, but not to use it directly to validate XML databases.

 113

University of Pretoria etd – Kroeze, J H (2008)

simple types and enumerations of phrases tags, as well as syntactic and semantic

function tags, were coded manually and added to the schema. A simple type is a

user-defined type, which enables the programmer to create custom-made types that

reflect his/her exact requirements (Deitel & Deitel, 2006: 919-921); for example, one

may create types to define lists (enumerations) of possible values of phrases (word

groups) and syntactic and semantic functions. An enumeration is "a set of values that

a data item can select from" (Holzner, 2004: 213). The schema

(Gen1_InputV15.xsd101) is shown in Figure 4.5 below (see also Addendum G on the

included CD). The XML database itself (Gen1_InputV15.xml) was created by

converting a databank module in VB6 (see Chapter 2 and 3) programmatically into a

text file, a procedure to be discussed in the following chapter (see also Addendum H

on the included CD). The schema was then used to test the XML database of

Genesis 1:1-2:3, and this procedure revealed some inconsistencies in the tagging,

for example with regard to the use of square brackets to indicate embedded clauses.

After correcting these tagging errors (see Addendum I for the corrected file,

Gen1_InputV15b.xml) the validation was successful.

<?xml version="1.0"?>

<xs:schema id="Genesis1v1-2v3"

targetNamespace="http://tempuri.org102/Gen1_InputV15.xsd"

xmlns:mstns="http://tempuri.org/Gen1_InputV15.xsd"

xmlns="http://tempuri.org/Gen1_InputV15.xsd"

xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:msdata="urn:schemas-

microsoft-com:xml-msdata" attributeFormDefault="qualified"

elementFormDefault="qualified">

 <xs:simpleType name="WGenum">

 <xs:restriction base="xs:string">

 <xs:enumeration value="AdvP"/>

 <xs:enumeration value="AP"/>

 <xs:enumeration value="ConjP"/>

 <xs:enumeration value="EC"/>

 <xs:enumeration value="ECC"/>

 <xs:enumeration value="NP"/>

Enumeration of phrase types as possible
elements of a simple type ("WGenum")

VS2003.Net, however, facilitates both automatic creation and direct validation (using an option on

the XML menu).
101 The XSD and XML files can be opened and viewed with Notepad.

 114

University of Pretoria etd – Kroeze, J H (2008)

 <xs:enumeration value="ParticleP"/>

 <xs:enumeration value="PP"/>

 <xs:enumeration value="RP"/>

 <xs:enumeration value="VP"/>

 <xs:enumeration value="-"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="synfenum">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Subject"/>

 <xs:enumeration value="Predicate"/>

 <xs:enumeration value="Main verb"/>

 <xs:enumeration value="Transitive verb"/>

 <xs:enumeration value="Intransitive verb"/>

 <xs:enumeration value="Preposition verb"/>

 <xs:enumeration value="Copulative verb"/>

 <xs:enumeration value="Copula"/>

 <xs:enumeration value="Copula-predicate"/>

 <xs:enumeration value="Complement"/>

 <xs:enumeration value="Object"/>

 <xs:enumeration value="Object clause"/>

 <xs:enumeration value="Object cluster"/>

 <xs:enumeration value="IndObj"/>

 <xs:enumeration value="Copula-predicate"/>

 <xs:enumeration value="Adjunct"/>

 <xs:enumeration value="Attribute"/>

 <xs:enumeration value="Disjunct"/>

 <xs:enumeration value="Interjection"/>

 <xs:enumeration value="Modal word"/>

 <xs:enumeration value="Discourse marker"/>

 <xs:enumeration value="Dislocative"/>

 <xs:enumeration value="Addressee"/>

 <xs:enumeration value="Conj"/>

 <xs:enumeration value="Co-ordinate conjunction"/>

 <xs:enumeration value="Subordinate conjuction"/>

 <xs:enumeration value="Relative particle"/>

 <xs:enumeration value="-"/>

 </xs:restriction>

Enumeration of syntactic functions as
possible elements of a simple type
("synfenum")

102 "tempuri.org is the default namespace URI used by Microsoft development products, like Visual

Studio. 'tempuri' is short for Temporary Uniform Resource Identifier"

(http://en.wikipedia.org/wiki/Tempuri). Namespaces are essential to avoid conflicting sets of tags

(Holzner, 2004: 92).

 115

University of Pretoria etd – Kroeze, J H (2008)

 </xs:simpleType>

 <xs:simpleType name="semfenum">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Action"/>

 <xs:enumeration value="Position"/>

 <xs:enumeration value="Process"/>

 <xs:enumeration value="State"/>

 <xs:enumeration value="Agent"/>

 <xs:enumeration value="Positioner"/>

 <xs:enumeration value="Force"/>

 <xs:enumeration value="Processed"/>

 <xs:enumeration value="Zero"/>

 <xs:enumeration value="Patient"/>

 <xs:enumeration value="Product"/>

 <xs:enumeration value="Receiver"/>

 <xs:enumeration value="Location"/>

 <xs:enumeration value="Direction"/>

 <xs:enumeration value="Source"/>

 <xs:enumeration value="Reference"/>

 <xs:enumeration value="Beneficiary"/>

 <xs:enumeration value="Company"/>

 <xs:enumeration value="Instrument"/>

 <xs:enumeration value="Manner"/>

 <xs:enumeration value="Speed"/>

 <xs:enumeration value="Role"/>

 <xs:enumeration value="Path"/>

 <xs:enumeration value="Time"/>

 <xs:enumeration value="Circumstance"/>

 <xs:enumeration value="Result"/>

 <xs:enumeration value="Purpose"/>

 <xs:enumeration value="Reason"/>

 <xs:enumeration value="Cause"/>

 <xs:enumeration value="Existence"/>

 <xs:enumeration value="Identification"/>

 <xs:enumeration value="Classification"/>

 <xs:enumeration value="Quality"/>

 <xs:enumeration value="Posessor"/>

 <xs:enumeration value="-"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="Genesis1v1-2v3" msdata:IsDataSet="true"

msdata:Locale="en-ZA" msdata:EnforceConstraints="False">

 <xs:complexType>

 <xs:choice maxOccurs="unbounded">

Enumeration of semantic functions as possible
elements of a simple type ("semfenum")

 116

University of Pretoria etd – Kroeze, J H (2008)

 <xs:element name="clause">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="clauseno" type="xs:string" minOccurs="0" />

 <xs:element name="headers" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="header" nillable="true" minOccurs="0"

maxOccurs="unbounded">

 <xs:complexType>

 <xs:simpleContent msdata:ColumnName="header_Text" msdata:Ordinal="0">

 <xs:extension base="xs:string">

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="level1" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="leveldesc" type="xs:string" minOccurs="0" />

 <xs:element name="phrase1" type="xs:string" minOccurs="0" />

 <xs:element name="phrase2" type="xs:string" minOccurs="0" />

 <xs:element name="phrase3" type="xs:string" minOccurs="0" />

 <xs:element name="phrase4" type="xs:string" minOccurs="0" />

 <xs:element name="phrase5" type="xs:string" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="level2" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="leveldesc" type="xs:string" minOccurs="0" />

 <xs:element name="phrase1" type="xs:string" minOccurs="0" />

 <xs:element name="phrase2" type="xs:string" minOccurs="0" />

 <xs:element name="phrase3" type="xs:string" minOccurs="0" />

 <xs:element name="phrase4" type="xs:string" minOccurs="0" />

 <xs:element name="phrase5" type="xs:string" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 117

University of Pretoria etd – Kroeze, J H (2008)

<xs:element name="level3" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="leveldesc" type="xs:string" minOccurs="0" />

 <xs:element name="phrase1" type="mstns:WGenum" minOccurs="0" />

 <xs:element name="phrase2" type="mstns:WGenum" minOccurs="0" />

 <xs:element name="phrase3" type="mstns:WGenum" minOccurs="0" />

 <xs:element name="phrase4" type="mstns:WGenum" minOccurs="0" />

 <xs:element name="phrase5" type="mstns:WGenum" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="level4" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="leveldesc" type="xs:string" minOccurs="0" />

 <xs:element name="phrase1" type="mstns:synfenum" minOccurs="0" />

 <xs:element name="phrase2" type="mstns:synfenum" minOccurs="0" />

 <xs:element name="phrase3" type="mstns:synfenum" minOccurs="0" />

 <xs:element name="phrase4" type="mstns:synfenum" minOccurs="0" />

 <xs:element name="phrase5" type="mstns:synfenum" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="level5" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="leveldesc" type="xs:string" minOccurs="0" />

 <xs:element name="phrase1" type="mstns:semfenum" minOccurs="0" />

 <xs:element name="phrase2" type="mstns:semfenum" minOccurs="0" />

 <xs:element name="phrase3" type="mstns:semfenum" minOccurs="0" />

 <xs:element name="phrase4" type="mstns:semfenum" minOccurs="0" />

 <xs:element name="phrase5" type="mstns:semfenum" minOccurs="0" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:complexType>

 </xs:element>

Using simple type semfenum to validate semantic function elements

Using simple type synfenum to validate syntactic function elements

Using simple type Genum to validate phrase elements

 118

University of Pretoria etd – Kroeze, J H (2008)

</xs:schema>

Figure 4.5. The XML Schema used to validate the XML database of Genesis 1:1-2:3.

4.12 Viewing the XML file in a web browser

The data in the XML data cube can be visualised in a web browser as a series of

twodimensional tables using the style sheet shown in Figure 4.6 (see Addendum J:

Gen1XMLdb03c.css).

clause {display:table; border-style:solid; margin-top:20; margin-left:20;

padding:10px}

clauseno {display:table-caption; font-size: 20pt}

headers {display:table-header-group}

header {display:table-cell; padding:6px;

 background-color:lightblue; border-style:solid}

level1 {display:table-row}

level2 {display:table-row}

level3 {display:table-row}

level4 {display:table-row}

level5 {display:table-row}

leveldesc{display:table-cell; background-color:lightblue; border-

style:solid; border-top-width:medium; border-bottom-width:medium;

border-left-width:medium; border-right-width:medium; padding:6px;}

phrase1 {display:table-cell; border-style:solid; border-top-width:thin;

border-bottom-width:thin; border-left-width:thin; border-right-

width:thin; padding:6px;}

 119

University of Pretoria etd – Kroeze, J H (2008)

phrase2 {display:table-cell; border-style:solid; border-top-width:thin;

border-bottom-width:thin; border-left-width:thin; border-right-

width:thin; padding:6px;}

phrase3 {display:table-cell; border-style:solid; border-top-width:thin;

border-bottom-width:thin; border-left-width:thin; border-right-

width:thin; padding:6px;}

phrase4 {display:table-cell; border-style:solid; border-top-width:thin;

border-bottom-width:thin; border-left-width:thin; border-right-

width:thin; padding:6px;}

phrase5 {display:table-cell; border-style:solid; border-top-width:thin;

border-bottom-width:thin; border-left-width:thin; border-right-

width:thin; padding:6px;}

Figure 4.6. The XML style sheet used to display the XML clause cube as a series of

twodimensional tables in the Firefox or Opera web browser.

When the XML database of Genesis 1:1-2:3 is displayed in the Firefox web browser

using the style sheet above, the results look as shown in Figure 4.7 (only the first two

clauses are shown; see Addendum K for the whole file).

 120

University of Pretoria etd – Kroeze, J H (2008)

Figure 4.7. The first two clauses of the XML clause cube as displayed in the Firefox

web browser as two twodimensional tables.

This presentation of the threedimensional XML clause cube as a series of

twodimensional tables, viewed in an internet browser, may be regarded as a simple

visualisation of the data. The format and appearance of the file could be changed

relatively easy by changing the style sheet.

Although this representation at first sight looks very similar to the representation in

Figure 3.17, it is actually very limited. It does allow simple searches using the

 121

University of Pretoria etd – Kroeze, J H (2008)

browser's built-in functionalities, but does not present the required data clause by

clause because the formatted data is presented as one long web page. This

limitation could become quite problematic in huge data sets. Furthermore, users

cannot search the data specifically on clause numbers or verse numbers; neither can

they slice off required linguistic modules or expect any new requirements to be

fulfilled. The browser interface is, therefore, only suitable for simple uses and cannot

facilitate advanced processing of the data. Later chapters (Chapters 5-6) will,

therefore, use third generation programming languages to overcome these

limitations. Some of the functionalities discussed in Chapter 3, such as slicing and

dicing, will be integrated with more advanced procedures. Create, read and update

functionalities will be added. Data mining and visualising the XML data in custom-

made ways will be utilised to look for interesting patterns in and across the various

linguistic modules.

4.13 Conclusion

The empirical exercise in this chapter proved to be quite successful. It showed that

XML can be used to build a multidimensional database of linguistic data, which can

be visualised as a series of twodimensional tables by using a style sheet and web

browser. It showed that a database approach to capture and manipulate linguistic

data is a viable venture in computational linguistics and an example of natural

language information systems. Various layers of linguistic data were captured in an

XML document using the phrase as the basic building block of the data cube. The

data may also be imported by a VB6 program for user-friendly viewing or editing

purposes and rewritten to XML for storage. This process of round-tripping will be

discussed in the next chapter. The integration of data in the data cube also facilitates

data exploration (see Chapter 6). More complex visualisations of subsets of the data

will be discussed in Chapter 7.

 122

	Front
	Chapter 1
	Chapter 2
	Chapter 3
	CHAPTER 4
	4.1 Introduction
	4.2 Linguistic databases and computational linguistics
	4.3 Linguistic layers
	4.4 The phrase as basic building block of the database structure
	4.5 Why should XML be explored as an option to build anexploitable database of linguistic data?
	4.6 How can XML be used to build an exploitable linguistic datacube?
	4.7 How can XML represent the syntactic and semantic analyses offree text?
	4.8 How can XML represent inherently multidimensional data?
	4.9 The structure of the Genesis 1:1-2:3 database in XML
	4.10 Critical discussion of the XML clause cube implementation
	4.11 Validating the XML document
	4.12 Viewing the XML file in a web browser
	4.13 Conclusion

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Bibliography
	Addenda

