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Abstract 
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The modern gas turbine engine industry needs a simpler and faster method to facilitate 

the design of gas turbine combustors due to the enormous costs of experimental test 

rigging and detailed computational fluid dynamics (CFD) simulations. Therefore, in 

the initial design phase, a couple of preliminary designs are conducted to establish 

initial values for combustor performance and geometric characteristics. In these 

preliminary designs, various one-dimensional models using analytical and empirical 

formulations may be used. One of the disadvantages of existing models is that they 

are typically geometric dependant, i.e. they apply only to the geometry they are 

derived for. Therefore the need for a more versatile design tool exists. 

 

In this work, which constitutes the first step in the development of such a versatile 

design tool, a single equation-set network simulation model to describe both steady 

state compressible and incompressible isothermal flow is developed. The continuity 

and momentum equations are solved through a hybrid type network model analogy 

which makes use of the SIMPLE pressure correction methodology. The code has the 

capability to efficiently compute flow through elements where the loss factor K is 

highly flow dependant and accurately describes variable area duct flow in the case of 

incompressible flow. The latter includes ducts with discontinuously varying flow 
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cross-sectional areas. Proper treatment of flow related non-linearities, such as flow 

friction, is facilitated in a natural manner in the proposed methodology. 

  

The proposed network method is implemented into a Windows based simulation 

package with a user interface. The ability of the proposed method to accurately model 

both compressible and incompressible flow is demonstrated through the analyses of a 

number of benchmark problems. It will be shown that the proposed methodology 

yields similar or improved results as compared to other’s work. 

 

The proposed method is applied to a research combustor to solve for isothermal flows 

and flow splits. The predicted flows were in relatively close agreement with measured 

data as well as detailed CFD analysis.  
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Uittreksel 
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Die moderne gas turbien industrie benodig vinniger en eenvoudiger metodes om die 

ontwerp van gas turbien verbrandingsruime te fasiliteer as gevolg van die enorme 

koste verbonde aan experimentele toets opstellings en gedetaileerde berekenings vloei 

dinamika (BVD) simulasies. Gevolglik word daar in die aanvangsontwerp fase ‘n paar 

konsep ontwerpe gegenereer om sodoende die aanvangswaardes vir verbrander 

prestasie en geometriese karakteristieke te bepaal. In hierdie konsep ontwerp fase 

word verskeie een-dimensionele modelle gebruik wat uit analitiese en empiriese 

formuleerings bestaan. Een nadeel van huidige modelle is dat hulle oor die algemeen 

geometries beperk is en dus slegs gebruik kan word vir die geometrie waarvoor hulle 

afgelei is. Gevolglik bestaan daar ‘n behoefte aan ‘n meer algemene 

ontwerpshulpmiddel. 

 

In hierdie werkstuk, wat beskou kan word as die eerste stap in die ontwikkeling van 

so ‘n ontwerpshulpmiddel, word ‘n enkel-vergelyking-stel netwerk-simulasie-model 

wat gestadigde isotermiese samedrukbare en onsamedrukbare vloeie kan beskryf, 

ontwikkel. Die kontinuteits- en momentum vergelykings word deur ‘n gemengde tipe 

netwerk model analogie opgelos deur gebruik te maak van die SIMPLE druk-

korreksie metode. Die kode het die vermoeë om vloei deur elemente waar die verlies-
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faktor hoogs afhanklik is van die vloei effektief op te los as ook die simulasie van 

onsamedrukbare vloeie waar die area van die kanaal verander. Laasgenoemde sluit 

kanale met varieerbare diskontinuele deursnit areas in. Die handtering van vloei 

verwante nie-lineariteite soos vloei wrywing word op ‘n natuurlike wyse deur die 

voorgestelde metodiek gehandteer. 

 

Die voorgestelde metode is geimplementeer in ‘n Windows gebaseerde simulasie 

pakket met ‘n gebruikersintervlak. Die vermoeë van die voorgestelde metode om 

beide samedrukbare en onsamedrukbare vloeie akkuraat te modeleer word 

gedemonstreer deur die oplos van ‘n aantal verwysingsprobleme. Dit sal ook uitgewys 

word dat die voorgestelde metode eenderse en selfs beter resultate lewer as in 

vergelyking met die van ander navorsers.  

 

Die voorgestelde metode word toegepas op ‘n navorsingsverbrander om isotermiese 

vloeie en vloei verdelings te simuleer. Die voorspelde vloeie is in relatiewe goeie 

vergelyking met gemete data asook die resultate van gedetaileerde BVD analises.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Sleutelterme: 

Pyp netwerk analise     Gas dinamika 

Gas turbiene verbranding    Vloei verdelings   

Berekenings vloei dinamika    SIMPLE metode 

Samedrukbare- en onsamedrukbare vloei  Varieerbare area kanale 
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CHAPTER 1 

Introduction 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 1 serves as an Introduction to the simulation of physical problems using a 

flow network methodology. The method is to be capable of dealing with both 

compressible and incompressible flow. The work objectives are stated, and some 

background on certain components found in gas turbine propulsion given. The need 

and objectives for this study is explained, and an outline of the study is provided. 
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1.1  The problem under consideration  
 

he main development goal in the modern gas turbine industry is the 

enhancement of the efficiency of these engines. Therefore, one will find that 

modern gas turbine engines operate progressively at higher compression ratios, lower 

specific fuel consumptions, higher turbine inlet temperatures and lower carbon oxide 

emission. These gas turbine engines are more compact in layout and also features 

higher thrust to weight ratios, while being considerably less noisy than their older 

counter parts. The design-process related costs to furnish improved engines are 

becoming more costly as technological boundaries are pushed further, and therefore 

more effective design methods are required [1].   

T 

 

One of the critical components in obtaining a highly efficient engine is the combustor. 

When designing a gas turbine combustor, important overall performance requirements 

such as combustion efficiency, lean lightoff and blowoff limits, exit temperature 

traverse and CO and NOx emissions, among others, have to be taken into 

consideration. In the past, empirical and semi-empirical models combined with full-

scale experimental investigations were used to design gas turbine combustors. With 

the recent improvement of computational fluid dynamic (CFD) models, CFD analysis 

added a new dimension to combustor design. The use of CFD analysis is usually 

undertaken after completing the initial design and before starting with the 

experimental phase.  CFD has the advantage that detailed design information can be 

obtained at a fraction of the costs of experiments. Design changes may follow this 

more complicated combustor analysis, in which case, the analysis process has to be 

repeated. Although advanced CFD analyses are more cost effective than experimental 

tests, it is still expensive [2]. The designer therefore requires accurate simplified 

empirical and semi-empirical models for the preliminary design phase prior to the 

initiation of such advanced analysis.  Such methods provide first order information 

regarding quantities like pressure loss, heat transfer and mass-flow splits.  
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The preliminary design of a gas turbine is a tedious task and may normally require the 

use of cumbersome and in some cases, geometrically restrictive, semi-empirical 

models [2]. Over the years successful evolutionary combustor improvements have 

been established with such empirically based procedures [2]. When different 

configurations and new technological designs are required that differs significantly 

from proven concepts, these empirical procedures can prove extremely limited.  

 

Most of the empirical models provide details about the overall sizing of the combustor 

and the design of the individual combustor zones as separate units.  The problem 

facing the modern design engineer is that these zones do not operate in isolation and 

affects one another in practice.  The requirement therefore, exists for an improved 

empirical model that can be used for the initial overall geometrical design of gas 

turbine combustors by accounting for the effect that the different zone layouts will 

have on each another. 

 

1.2  Review of related literature 
 

1.2.1 Empirical and Analytical models 
 

The goal in gas turbine combustor design and development is to obtain an acceptable 

trade-off between the conflicting design objectives such as combustion efficiency, 

gaseous emissions, smoke, ignition, restart, lean blowout, burner exit temperature 

quality, structural durability and life cycle costs [1]. For many years component 

testing and benchmark tests were conducted to effect a balanced design. The tests 

were backed by empirically and experience based correlations. The ultimate goal has 

been to develop a reliable combustor design model that can provide quantitatively 

accurate predictions of the complex combustion flow field so that an optimum 

combustion system can be designed within reasonable cost and time constraints [1].    

Over the years numerous empirical based procedures and models have been 

developed to design combustors, which led to successful evolutionary combustor 

improvements [1]. A typical empirical gas turbine combustor design approach is built 
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on experience and empirical correlations obtained from extensive component and 

subcomponent testing [2].  However, when combustor design requirements are 

significantly different from those in current technology engines, these empirical 

methods become unsuitable. Some critical areas in which empirical methods exhibit 

limitations are [2]: 

 

− Empirical based design methods have shown severe limitations in scaling 

combustors. 

− Combustion engineers are hesitant to use existing empirical correlations when 

significant advances in technology levels are required. 

− The applicability of experience-based correlations (for a particular concept) is 

limited in their use for new or revolutionary combustion design concepts. 

− With the ever improving design requirements of advanced technology 

combustors, better design tools are needed to achieve an optimum solution to 

satisfy conflicting combustor design requirements. 

 

Analytical combustor modeling methods have been developed to reduce the amount 

of empirical development work required as well as to predict the air pollutant 

emissions [3]. Existing analytical models may be subdivided into three groups. The 

first of these is the turbulent flame speed model, where the calculation of the turbulent 

flame speed is based on turbulence parameters of the flow and the chemical reaction 

rate is obtained by using the laminar flame speed. Second is the microvolume burning 

model, where each zone is assumed to contain a homogenous reacting mixture 

whereas the mixing and chemical reaction processes are accounted for in a series of 

turbulent eddies within small cubes in the first model. Third is the stirred reactor 

model, where turbulence is so high that mixing is instantaneous. A brief discussion of 

each group follows. 

 

Turbulent flame speed combustor theories have one general point in common: the 

calculation of the turbulent flame speed is assumed analog to the laminar flame speed, 

which accounts for the turbulence in the combustion process. Flame propagation from 
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various sources is then calculated via the turbulent flame speed in order to determine 

the required combustor dimensions and performance. In the highly turbulent 

combustor situation, burning is postulated to occur in a discrete zone. The thickness of 

the zone, i.e. between the flame front and the end of the burning zone, is determined 

by the chemical reaction rate, which implies that the gas moves through the zone in a 

streamline like flow fashion (Figure 1.1). The size of the burning zone and its position 

relative to the flame holder determines the combustion efficiency. The determination 

of latter is important in the design of a combustor.   

 

Combustor wall 
 
    Flame front 
 
 
                                                 ST

              θ  

  y U0

 
  x     end of burning zone 

 
Figure 1.1 Turbulent flame speed combustor model [3] 

 

Several problems arise when attempting to apply the burning velocity analysis to gas 

turbine combustors. Irregular combustion flames deviates substantially from the 

reasonably smooth flame concept. All burning is considered to be the result of the 

primary flame propagation out of the flameholder and the effect of secondary air 

penetration jets are omitted due to the fact that these analyses focused primarily on 

ramjet combustors. The latter effect will most certainly influence downstream burning 

and results in a considerably more complex flame propagation pattern.  Since the 

entire analysis is based on the turbulent flame speed, several methods to determine the 

turbulent flame speed ST have been proposed, although great controversy still exists in 

the determination thereof. 
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The microvolume burning model, describes the simultaneous phenomenon of mixing 

and chemical reaction quite successfully [3]. Here it is being postulated that the 

formation and dissipation of turbulent eddies characterizes mixing, and that these 

eddies move as particles relative to each other. Turbulent fluctuations in the 

combustor zone carries these eddies, which contain burned or partially burned gases, 

out of the combustor zone where it mixes with eddies of fresh gas. This mixing 

behavior is modeled by means of a grid of microvolume cubes (Figure 1.2).  

 

       2l 

         2l 

 

 

 

 

 

 

Figure 1.2 Microvolume burning model [3] 

 

The lifetime of an eddy is defined as 

 

'U
lt f =  

 

 where l is the mixing length and U’ the turbulence intensity. The available time for 

combustion is 

 

ignmixfc tttt −−=  

 

where tmix is a measure of mixing rate within the eddy and tign the ignition delay time. 

The diffusion processes within the eddy smooth out the composition and the 
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temperature, although surface and volume burning do not ensure homogeneity. 

Chemical reaction rate considerations therefore become important within an eddy and 

a compromise has to be reached. This type of analysis approximates the physical 

process of eddy formation and decay in a certain mixing length. However, the 

treatment of eddy sizes as homogeneous rather than a statistical size-distribution is a 

rather severe approximation. No consensus regarding a preferred formulation for 

mixing lengths and turbulent fluctuations has been reached [3]. The evaluation of tmix 

and tign also remains a serious problem [3] because of the different conditions present 

in each eddy. 

 

A stirred reactor is a zone containing a homogeneous reacting mixture [3].  The 

temperature, pressure and chemical composition taken at any point within the zone 

would consequently be identical to each other.  Flow entering the volume is mixed 

instantaneously and exhaust products leaves the zone with the same composition as 

the reactor. Continuity is assured through the equality of mass flow into and out of the 

reactor. 

  

outlet flow G 

     recirculation flow GxR 

  ε1 

 

 

                           V1              V2

 

  ε0 inlet flow G(1+R)   ε2

 

 

fresh fuel-air mixture G 

 

Figure 1.3 Recirculatory stirred reactor model [3].  
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A dimensionless parameter, the completeness of reaction parameter ε, is defined to 

describe the completeness of the chemical reaction in the stirred zone because this 

reaction will not progress to completion in general. For an unreacted mixture ε = 0 

and for a completely reacted mixture ε = 1. Many stirred reactor models have been 

developed to date and references to other models may be found in reference [3]. 

Figure 1.3 shows one of these models. 

 

Here V1 and V2 are stirred reactor volumes. Reactor V1 represents the combustion in 

the main flow and reactor V2 the combustion in the recirculatory flow. G is the fuel 

feed rate into the system and R an indication of the ratio of flow to G going through 

V2. The phenomenon of blow out and a residual flame are predicted quantitatively [3]. 

However, the quantitative accuracy of the model has not been evaluated and burning 

in the secondary combustion zones must be accounted for by some other means if this 

model is to be applied in the analysis of gas turbine combustors. The use of a series of 

plugged flow reactors proved to be a possible method [3]. 

 

1.2.2 Detailed multi-dimensional CFD analysis 
 

Gas turbine combustor flows have been simulated with reasonable success with 

computational fluid dynamics (CFD) due to advances in CFD modeling. This 

provides an additional tool in the design process, which may have a powerful 

influence on future designs. In these codes, combustion system subcomponents such 

as diffusers, fuel injectors and combustor liners need to be modeled accurately. 

Therefore physical sub-models and accurate numerical schemes must describe the 

various aerothermochemical processes (e.g. turbulence and combustion) occurring 

within the combustion chamber. Some of these sub-models have already been 

developed although a need for newer and more accurate sub-models exists. The 

accuracy of CFD simulations remains limited by the submodels they utilize [1,2]. In 

the following paragraphs some CFD aerothermal models used in combustor 

aerothermal modeling are discussed briefly [2].  

 

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  PPrreettoorriiuuss,,  JJ  JJ    (2005)    



Introduction
 

 

9 

A model suitable for calculating recirculating flows is the k-ε turbulence model. This 

model attains closure through a gradient transport model for Reynolds stresses with an 

isotropic eddy viscosity. Corrections to this model for low Reynolds numbers, 

additional strain due to streamline curvature and swirl (Richardson number 

correction), and other ad hoc assumptions for changing empirical constants have been 

made [2]. Conclusions regarding the general capabilities of the k-ε turbulence model 

are [2]: 

− Gives good correlations for simple flows. 

− Requires low Reynolds number correction for predicting wall shear flow. 

− Model modifications are required to predict curved boundary layers 

accurately. 

− Gives reasonable correlations for most of the flow region created by a 

confined swirler. 

− Predicts the trends for an unconfined swirler. 

− Gives good correlations for non-recirculating swirling flows and 

reasonable results for recirculating nonswirling flows. 

 

The mean flow predictions of the Algebraic Stress Model (ASM) correlate well with 

those of the k-ε turbulence model. Comments regarding the previous paragraph apply 

where the mean flow field is concerned. In addition, the ASM gives quantitatively 

satisfactory predictions for the Reynolds stress components, consistent with the 

strengths and limitations of the k-ε turbulence model. In several continuing studies the 

accuracy of the standard k-ε turbulence model and the algebraic and differential 

Reynolds stress models for use in combustor CFD simulation are being investigated 

by workers around the world [2]. 

 

The k-ε turbulence model with specific Prandtl numbers predicts scalar fluxes 

reasonably well for flows where the gradient diffusion approximation is valid. 

Indications are that the algebraic Scalar Transport Model (STM) has the capability to 

give more accurate predictions as compared to the k-ε model, but its validity for 

swirling flows is yet to be determined [2].  
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Another important deficiency that has been identified in the assessment of gas turbine 

combustor CFD simulation was the accuracy of numerical discretization [2]. The 

accuracy of the calculation is limited by the numerical approximation wherein the 

false diffusion is of the same magnitude as the turbulent diffusion. This masked the 

differences between the various models in such a way that very different turbulence 

models essentially gave the same result, sometimes resulting in unmerited good 

agreement between the predictions and the data [2].  In general, if false diffusion is 

present, the numerical solution will be dependent on the grid density and distribution.  

 

1.2.3 One-dimensional CFD techniques 
 

Even though there are some deficiencies in CFD analyses as mentioned above, a 

reasonable solution can still be achieved. In some cases, CFD is however just too 

computational expensive if used in isolation as a design tool and simpler solutions are 

needed in addition. Empirically based procedures and CFD methodologies have 

shown great promise when used in combination [1]. Examples of successful 

application of such methodologies on specific combustors have been published [2]. 

Historical trend lines and one-dimensional procedures were used to develop a 

preliminary combustor design. This preliminary design was augmented by a three-

dimensional empirical/analytical procedure that resulted in a good qualitative analysis 

using available sub-models of turbulent reactive flow. Satisfactory preliminary results 

for different combustors under different operating conditions were obtained. 

 

Another method that proved to be a useful tool in the preliminary analysis of a gas 

turbine combustor is the characteristic time model [4]. Goals such as combustion 

efficiency, exit temperature traverse and emission requirements were, among others, 

were calculated successfully. The model provided details of the preliminary and 

secondary air requirements and comparisons to test rig data proved reasonably 

accurate. This form of analysis, which provides predictions for the mass flow splits, 

pressure loss and heat transfer modes, offers a sound basis for more detailed 
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computations. The initial design process efficiency may therefore be improved by 

using such results. 

 

Burrus et al. [5] described one-dimensional models that proved to be successful in the 

preliminary design and sizing of a combustor. For a given airflow distribution target, 

the required flow areas could be calculated. Or for given flow areas, the required flow 

splits and pressure drops could be computed. These one-dimensional models 

incorporate numerous experimental data and empirically derived correlations to 

support the simplified governing equations [6]. 

   

Due to the success of the above one-dimensional approaches, it is evident that a one-

dimensional model has the potential of providing information required for combustor 

design in less time than a more comprehensive three- dimensional approach such as 

CFD. Amongst one-dimensional approaches, network models allow for the simple 

modeling of complex geometries and remove many of the restrictions placed upon 

conventional one-dimensional methods. The sub models within these procedures such 

as radiation models, film-cooling models etc. can be combined with relative ease. 

Therefore the network approach offers a simple procedure of incorporating the latest 

sub-models in an algorithm, while enabling the complete modeling of a combustor. 

Network analysis schemes such as the algorithms proposed by Osiadacz [7], 

Greyvenstein and Laurie [8], and Greyvenstein [20] have to be investigated to find a 

suitable algorithm for combustion simulation. 

 

1.2.4 Gas network approaches 

 
In the last three decades, there have been numerous attempts to generate numerical 

solvers to simulate the flow of gas through a pipe network. Most of the solvers were 

used to simulate the transport of natural gas and fluids in distribution networks. The 

earliest methods proposed for the simulation of distribution networks dates back to the 

1930s when Hardy Cross had published his well-known pipe network methods [33]. 

Two methods were proposed. One method utilizes a node-based equation to ensure 
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continuity. The other method utilizes the loop equations to satisfy the pressure balance 

around closed loops.  

 

Other factors that affect the analysis of pipeline networks are the inclusion of non-

pipe elements into the network. The initial fluid stream loses its energy because of 

frictional losses and heat extraction, while compressors installed in compressor 

stations compensate for the resultant loss in pressure. In the field of gas turbine 

combustor analysis, losses through combustor components such as liner holes, 

swirlers and cooling slots are analogous to these non-pipe elements in gas network 

analysis. 

 
The simulation of networks is divided into two types; steady state simulation and 

unsteady state simulation. A network is in the steady state when the values 

characterizing the flow of gas in the system are not dependant on time. Values of 

nodal pressures and of flow in the branch elements are computed for known sources, 

exit pressures and gas mass flow in and out of the system. A common feature of 

steady state simulation algorithms is that they all solve a set of non-linear algebraic 

equations by means of the multidimensional Newton Method [10-13], and with good 

results compared to the well-known Hardy-Cross method. It has also been shown by 

many authors that the one-dimensional assumption on the gas flow model yielded 

accurate results for steady and slow varying pipe network flows [13, 14]. The types of 

methods exploited today to simulate the flow of fluids in networks include the nodal 

methods, loop methods, element methods and hybrid methods. These are discussed 

next  

 

The nodal method is shown in Figure 1.4. It utilizes the continuity equation to 

establish a mass balance at each node of the network. The pressure at each node is 

provided via a pressure drop-flow relationship across pipe elements, which is 

established through the momentum equations. 
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Figure 1.4 Graphical representation of the nodal method [15] 

 

The advantage of the nodal methods lies in the fact that it is straightforward to 

implement and requires less storage space than the element based methods [8]. There 

is also no need to specify loops or initial flows that do not violate the continuity 

equation as with the loop based method, and the method can also deal with mixed 

boundary conditions that are in the form of either pressure or flow. The other 

advantage of the nodal method is the high degree of sparsity of the solution matrix 

[7]. However, the main disadvantage of the traditional nodal method is the poor 

convergence characteristic that it poses. The method is extremely sensitive to initial 

pressure values, and the solution diverges when these initial values are far removed 

from the solution. This makes the traditional method unattractive for combustor 

simulation. 

 

The loop method is shown in Figure 1.5. This method uses the same basic set of 

equations as the nodal method but with different boundary conditions [11]. 
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Figure 1.5 Graphical representation of the loop method [15] 

  

This method involves constructing a number of loops representing the flow through a 

network. Kirchoff’s second law, from which it follows that the sum of the pressure-

drops around any loop equals zero, is applied. These so-called loop flows represent 

the flow correction to be added to the branch flows to give the true flow values. By 

employing a pressure drop-flow relationship, the corrected flows are calculated. The 

advantage of this method is that the storage requirement is less than that of the other 

methods. The method also poses very good convergence characteristics. However, the 

most prevalent disadvantage of this method comes from having to define loops. 

Because of the many different combinations in which the loops may be generated, it is 

very difficult to obtain the optimal combination numerically. The manner in which 

loops are defined effect the sparsity as well as the conditioning of the solution matrix. 

In other words, the solution matrix is well posed or ill conditioned, depending on 

whether or not an appropriate loop generating method was used. Oziadac and 

Pienkosz proposed some loop-generating methods [16]. Another disadvantage is that 

the initial “guessed” flows have to satisfy continuity (as stated above), which may not 

be as straightforward as initially envisaged. 
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In the element-based method employed to simulate pipe networks, nodes are still used 

in a similar manner to the previous two methods, but the pipes themselves are 

regarded as elements [17]. A pipe element has a downstream and an upstream node, 

which supply the nodal fluid head (or potential). Firstly, a potential function is 

selected for the chosen pipe segment. A gradient/potential and a velocity/gradient 

relationship are then defined. This relationship is similar to the pressure drop-flow 

relationship that will be defined in Chapter 4. A stiffness matrix K, (also the 

permeability coefficient in the case of fluids) is subsequently derived for the pipe 

element, and the element equations are assembled to obtain the global matrix. The 

boundary conditions are applied, and the global nodal potentials or pressures are 

solved [17]. The advantages of this method are its rapid convergence and the fact that 

it is not necessary to specify initial flows that satisfy continuity. A disadvantage is that 

the method uses more storage space than the previous methods [8]. 

 

The last method to be discussed is a hybrid method, which combines the node and 

loop-based methods. Osiadacz [7] describes this method where each loop flow is 

made identical to a particular branch flow, and hence to a particular chord flow. 

Although the loop equations will subsequently solve the chord flows, the loop 

equations are not solved but transformed into a set of nodal equations. The nodal 

equations are solved to yield the nodal pressures. From the nodal pressures, one will 

then be able to calculate the chord flows, from which the branch flows can be 

established. The nodal formulation makes the network definition much easier and 

yields a sparser matrix, while the good convergence characteristics of loop 

formulation are preserved. 

 

Another hybrid method quite analogous to Osiadacz’s hybrid method is a technique 

pioneered by Greyvenstein and Laurie [8]. This technique was actually a spin-off 

result from pressure-based nodal methods utilized in CFD to solve the Navier-Stokes 

equations [18]. This hybrid method is analogous to the work of Patankar [18] insofar 

as the pressure equations are solved at the nodes from which the branch flows are 

calculated using the updated pressures. Greyvenstein and Laurie [8] adapted 
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Patankar’s original SIMPLE method for incompressible flows to handle compressible 

flows as well. In their paper, they define compressible flow as a subsonic flow with 

varying density, but Greyvenstein and Meyer [19] adapted the method to handle 

supersonic flows with shocks. It has also been shown that for incompressible flows, 

the method [8] is almost identical to the Newton-Nodal [7] method. Due to the 

relative straightforward formulation and good convergence characteristics of this type 

of hybrid method, it is viewed as the most suitable gas network method to simulate 

flows and flow spits in a combustor chamber.    

 

1.3  The need for this study 
 

From the literature study, it is evident that the preliminary design of gas turbine 

combustors is an important step during the development of a new combustor chamber. 

Important performance requirements such as combustion efficiency, total pressure 

loss requirements, combustion exit temperature pattern factor requirements, emission 

requirements etc. can be determined with reasonable accuracy during this preliminary 

design phase [4]. 

 

Empirically and analytical based procedures have led to successful evolutionary 

combustion improvements, however, when significantly different technological 

designs are required, these procedures shows evidence of under performance. 

However, the successful simulation of gas turbine flows is possible due to advances in 

CFD modeling. The downside to comprehensive CFD simulations are that of time 

consuming grid generation procedures, complexity of boundary condition 

specification and time intensive solution calculations, which is undesirable in the 

preliminary combustor design phase. 

 

A flexible geometrically independent one-dimensional model, while lacking the 

resolution of the three-dimensional models, offers reasonable accuracy. The flexibility 

of the network analysis allows the modeling of complex geometries and removes 

many of the limitations placed on conventional one-dimensional models. The sub-
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models within these solution procedures such as equilibrium models, film-cooling 

models, linerhole flow models etc. further continue to be improved upon. The network 

approach offers a simple procedure of incorporating the latest sub-models in an 

algorithm enabling the complete modeling of a combustor. Rapid execution times, in 

the order of a few seconds, while offering a good first order solution, are the main 

advantage of these one-dimensional network models. This is an advantage for the 

design engineer as it allows optimization of the combustor with relatively little 

computational cost. The more accurate the preliminary design process the more rapid 

the phases to follow will be. In the final analysis, an effective network approach will 

contribute to less initial development costs. 

 

1.4 Objectives 
 

From the literature survey, the development of a network based gas turbine combustor 

simulation tool is both justified and promising. As previously mentioned the network 

method compromises a number of sub-flows that are linked together to simulate the 

physical process, which naturally facilitates modeling multi-dimensional flows. Every 

sub-flow can further be defined by semi-empirical pressure drop-flow rate 

relationships making the modeling of combustor flow components such as liner-holes, 

possible and sudden expansion type elements possible. In the case of gas turbine 

combustors the latter is subject to essentially incompressible flow.  

 

Although impressive network-flow capabilities based on hybrid methods 

exists [8, 20, 21], further work is required to furnish a suitable network simulation 

methodology for application to gas-turbines. Not all of the aforementioned solves a 

single set of equations, which models both compressible and incompressible flows 

with significant dynamic pressure fluctuations across the elements. Note that the set of 

governing equations should in addition be applicable to pipe elements with large area 

changes in the case of incompressible flow, i.e. to model essentially incompressible 

flow through duct elements with discontinuities such as sudden expansion type 

elements. The formulation should further be such that combustor type components 
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e.g. linerholes may be modeled as an element in the network. To effect this all flow 

related non-linearities such as frictional loss as a function of the flow need to be 

properly taken into consideration. This is not done in a natural and straight forward 

manner in existing simulation methodologies [8, 20]. Note that as this work 

constitutes the first step in the development in 1-D combustor technology, the 

development of the network model is limited to isothermal flow.   

 

In the light of the above, the objectives for this study are as follows: 

• Development of a single equation network simulation model to describe both 

steady incompressible and compressible flow where the dynamic pressure 

component is fully taken in consideration. 

• Capability to compute flows through sudden expansions and liner holes in the 

case of incompressible flow. 

• Capability to efficiently compute elements where the loss factor K is highly 

flow dependant. This implies the proper treatment of flow related non-

linearities such as flow friction in the formulation and solution of the pressure 

correction equation.  

 

1.5  An outline of this study  

 

Chapter 2: Chapter 2 gives a theoretical background on the theory of combustor 

modeling. A number of aspects in combustor design which are applicable to this study 

are described and the relevant illustrations are provided.   

 

Chapter 3: Chapter 3 describes the derivation of the strong form of 1-D general 

governing equations as well as the discretization strategy for a pipe network. 

 

Chapter 4: Chapter 4 discusses the numerical implementation of the theoretical 

network model derived in Chapter 3. Different applicable numerical schemes are 

reviewed, and a proposed numerical scheme is explained in detail and compared to 

the other numerical methods in terms of complexity and applicability. 
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Chapter 5: Chapter 5 considers the simulation package and the validation thereof. A 

brief description of the package is given as well as the simulations of published 

networks to validate the accuracy of the proposed method. 

 

Chapter 6: Chapter 6 describes the application of the network model to a gas turbine 

combustor and discusses the results that were obtained. 

 

Chapter 7:  The conclusion summarises the achievements and limitations of the 

proposed pipe network methodology. Recommendations are made for further work.. 

The References and the Appendices follow Chapter 7. 
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CHAPTER 2 

Combustor Design Principles 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 2 gives a theoretical background on the theory of combustor modelling. A 

number of aspects in combustor design which are applicable to this study are 

described and the relevant illustrations are provided.   
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2.1 Preamble 

 

The previous chapter provided an overview of research that has been undertaken in 

the field of combustor analysis and in the field of pipe network analysis. Difficulties 

and limitations that have been encountered in these were also illustrated. The 

requirements for a network-based simulation methodology for combustor design were 

defined. 

 

This chapter provides a short overview of some of the aerodynamic processes found 

in gas turbine combustors. Attention is given to the aerodynamic features and the 

associated nonlinearities which will be modelled via the propose network 

methodology. More detailed information on gas turbine combustor flows may be 

found in well-known texts authored by Harman [22] and Levebre [23] respectively. 

Note that these texts were extensively consulted throughout this study.  
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2.2 Gas turbine combustor theory 

 
 

Figure 2.1 shows a schematic representation of the evolution of gas turbine 

combustors. In the early stages of combustor design, fuel was added to a free air 

stream within a straight duct (schematic (a)). The excessive pressure loss induced in 

this arrangement rendered it unfeasible, to say the least, and a diffuser was introduced 

to reduce the pressure drop (schematic (b)). Although the diffuser reduced the 

pressure drop satisfactorily (by a factor of approximately 5), the flame could not be 

sustained, and a baffle was placed into the combustor to shield the flame from the 

oncoming airflow while simultaneously sustaining the flame by means of a low 

velocity region provided as a result of flow reversal (schematic (c)). Establishing the 

desired combustor temperature rise, the air-fuel ratio should be approximately 50, 

which is well outside the flammability limits of air-hydrocarbon mixtures. Therefore, 

to overcome this problem, a perforated liner has replaced the baffle and provides a 

region of low velocity so that combustion is sustained through recirculatory flow of 

burned products that provide an uninterrupted source of ignition for the incoming 

combustible mixture (schematic (d)). Exhaust gases are cooled by air not used during 

the combustion process, and pressure losses resulting from chemical dissociation are 

thereby recovered. 

 

The requirements driving combustor design these days include, amongst others, the 

following: 

• High combustion efficiency 

• Reliability and durability 

• Wide stability limits 

• Low pressure loss and smoke emissions 

• Excellent maintenance characteristics 

• Multifuel capability (industrial engines) 
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Figure 2.1 The development stages of the modern gas turbine combustor [23] 
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Today, there are three main types of combustors in use, namely, tubular-, annular- and 

tubo-annular or can-annular combustors. These names refer to the shape of the 

combustor chamber.  

 

The tubular chamber comprises a cylindrical liner mounted concentrically inside a 

cylindrical casing.  In annular chambers, however, an annular liner is mounted 

concentrically in an annular casing. In the case of tubo-annular or can-annular 

chambers, a group of cylindrical liners is placed in the desired arrangement in an 

annular casing. Table 2.1 sums up some of the advantages and disadvantages of the 

different chamber types. 

 

Table 2.1   Some advantages and disadvantages of different combustor  

chamber types [23] 

Chamber type Advantages Disadvantages 

Tubular 

• Very robust 

• Fuel and airflow patterns 

are easily matched 

• High pressure losses 

• Weight: too heavy 

• Geometry: too long 

• Interconnectors required 

Annular 

• Weight: small 

• Geometry: short 

• Minimum frontal area 

• Buckling problems 

• Unstable outlet temperature 

traverse 

• Fuel and airflow patterns not 

easily matched 

Tubo-annular 

• Very robust 

• Low pressure loss 

• Fuel and airflow patterns 

easily matched 

• Geometric and weight 

characteristics better than 

tubular chambers 

• Geometric and weight 

characteristics poorer than 

with annular chambers 

• Connectors required 
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The combustion chamber is also divided into three separate regions, namely, the 

primary zone, intermediate or secondary zone, and the dilution zone, as shown in 

Figure 2.2.  The purposes of the primary zone are to provide adequate time 

temperature and turbulence and to secure the flame to attain essentially complete 

combustion of the fuel. By the use of a small number of large jets, large-scale 

recirculation is obtained. The maximum volumetric heat-release rate tends to be low 

due to the relatively slow mixing of fresh mixture and combustion products. However, 

burning can be maintained over a wide range of fuel flows and at low pressures.  

Small-scale recirculation is obtained by the use of a large number of small jets [23].  

The aggressive mixing results in high volumetric heat-release rates for stoichiometric 

mixtures. The difficulty with this system is that the burning range is narrow and the 

performance at low-pressures is poor, although the potential for low emissions is high 

in combination with changeable geometry. 

 

 

 
 

Figure 2.2 Different regions and components of a can-annular gas turbine 

combustor [22]  

 

After the primary zone comes the intermediate or secondary zone. The function of the 

intermediate zone is twofold. During low altitude operation it serves as a region in 
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which the losses due to dissociation in the gas flow can be recovered while 

imperfectly mixed mixture pockets are burned completely. During high altitude 

operation, i.e., low pressure, the reaction rate in the primary zone is slower and 

combustion is far from complete as the entrance of the intermediate zone is reached. 

The intermediate zone can therefore be viewed as an extension of the primary zone in 

these circumstances, providing more time for combustion at high temperatures. The 

length of the intermediate zone is thus a trade-off between chamber length and 

combustor efficiency, the values of which range from 0.5 to 0.7 of the liner 

diameter [23].  

 

The dilution zone comes prior to the turbine inlet. The objective of the dilution zone is 

to admit the remaining air not used in the combustion and wall-cooling processes 

through a set of holes in the liner walls and thereby create an outlet stream with a 

mean temperature and a temperature distribution which is suitable for the turbine. The 

size and shape of these dilution holes are selected to optimise the penetration of these 

jets, i.e. the air streams through the liner holes, and the subsequent mixing with the 

main stream. The maximum possible penetration with the available liner pressure 

drop is approximately five jet diameters. Because the jets penetrate across the liner, 

the minimum jet diameter is related to the width of the liner. The air available for 

dilution amounts to between 20 and 40 percent of the total combustor airflow [23]. 

 

The performance of a gas turbine combustor is greatly affected by its aerodynamic 

properties. In order to ensure complete combustion, minimum soot deposits and a 

satisfactory temperature distribution in the exhaust gases, proper mixing is of 

paramount importance. Unfortunately, thorough mixing can be achieved only at the 

expense of combustor length and pressure loss. Therefore, one of the main objectives 

in combustor design is to minimize the length and the pressure drop while achieving 

adequate mixing within the liner and a stable flow pattern with no parasitic losses. 

Because of the complex nature of aerodynamic design, only three aspects of 

combustor aerodynamics are presented briefly. Other aspects may be found in texts 

with more extensive discussions [22-24]. The three aspects of importance to this study 
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include the flow in the annulus, the flow through the liner and the flow within the 

liner. 

 

Before discussing these three aspects, it would be appropriate to review some 

important parameters in combustor design. In order to facilitate combustor design, a 

reference velocity Uref has been defined as the mean velocity across a plane of 

maximum cross-section in the absence of a liner. Subsequent relations for reference 

dynamic pressure pd
ref and Mach number Mref follow from the velocity, as follows 
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Two important dimensionless pressure-loss parameters in combustor design are the 

overall pressure loss and the pressure loss factor. The two equations are related, and 

the relation can be found in advanced texts [23, 24]. The overall pressure loss is the 

ratio of the total pressure drop across the combustor to the total inlet pressure 
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3

43

P
P , with values between 4 and 10 percent, excluding the hot loss, i.e., the 

fundamental loss in pressure due to combustion. The overall pressure loss is 

furthermore dependant on the operating conditions of the combustor.  

 

The pressure loss factor is the ratio of the total pressure drop across the combustor to 

the reference dynamic pressure ratio 
⎟
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⎛
−

d
ref

p
P 43∆  and is a fixed property of the combustor 

chamber. It is of importance because it denotes the flow resistance between the 

compressor outlet (i.e., subscript 3 or combustor inlet) and the turbine inlet (i.e., 

subscript 4 or combustor outlet). Aerodynamically, it may be regarded as equivalent 

to a ‘drag coefficient’ [23]. The pressure loss factor represents the sum of the diffuser 
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pressure loss factor 
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 and the liner pressure loss factor 
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are to be kept at a minimum. In practice, there is little that can be done to minimize 

diffuser losses [23]. The liner pressure loss factor is essentially determined by the 

total effective hole area in the liner. All these losses account for the cold loss. The hot 

loss is determined through  
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where K1 and K2 are determined experimentally and lies between 0.5 and 1.0 percent 

of P3.  

 

The airflow pattern within the liner and the distribution of liner wall temperatures are 

strongly influences by the flow conditions in the annulus. The reference velocity of 

the combustor and the liner-to-casing cross-sectional area ratio largely govern the 

mean velocity in the annulus. Even though convective cooling on the liner walls is 

augmented by high annulus velocities, low velocities are preferred due to lower skin-

friction losses, lower expansion losses, steeper jet penetration angles, higher hole 

discharge coefficients and minimum variations in annulus velocity and static pressure. 

Critical areas are found in the vicinity of the dilution holes where the use of static 

pressure-fed cooling slots is prohibited because of the formation of a thick boundary 

layer. Measurements should then be taken to control the flow in the dilution-hole 

region to ensure a proper air feed through the dilution holes [23].  

 

Flow through the liner holes depends strongly on the geometry and the flow 

conditions in the vicinity of the hole, which influence its effective flow area as well as 

the size of the hole and the pressure drop across it.  
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Figure 2.3  Flow representation through a liner wall [23] 
 

The basic equation for liner hole mass flow may be expressed as 

 

( )[ ] 5.0
032 jihDh ppACm −= ρ&  

 

where  p0i = stagnation pressure before the hole 

 pj  = static pressure after the hole 

 CD  = discharge coefficient 

 Ah = geometric hole area  

  

By rewriting and rearranging the basic equation [23], an equation for the discharge 

coefficient may be obtained as  
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 K  = jet-to-annulus dynamic pressure = 
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The liner hole discharge coefficients are strongly influenced by hole-shape, hole-type, 

hole-spacing to annulus height, liner pressure drop, static pressure distribution around 

the hole, swirl and local annulus air velocity. The jet angle, θ, will reduce the 

effective hole diameter when reduced. Correlations from experimental data for CD and 

θ have been established and published [23-25]. The cooling slots are treated in the 

same manner as the liner holes [41] or may be treated as a sudden expansion element. 

Note that only incompressible flow is generally prevalent here. 

 

It is evident from the equation describing the mass flow through the liner holes that 

the effective flow resistance is a non-linear function of pressure drop. This non-

linearity is to be properly accounted for in the numerical scheme which was stipulated 

in the study objectives (Chapter 1). Further, flow Mach numbers downstream of the 

opening can reach up to Mach 0.7 [23] while flow in the annulus is often at Mach 

numbers below 0.3. The pipe network flow methodology should therefore be capable 

of simulating both fully compressible as well as incompressible flow. This was also 

pointed out in the study objectives (Chapter 1).     

 

The airflow pattern within the liner is an important aspect because it must guarantee 

efficient and stable combustion, easy light-up, sufficient wall cooling, and must 

deliver a suitable gas temperature profile to the turbine. The number, size, shape and 

nature of the liner holes determine this airflow pattern. For the sake of completeness, 

the airflow pattern will be discussed as it passes through the primary, intermediate and 

dilution zones of the combustor.  

  

As mentioned earlier, the airflow pattern in the primary zone must provide the 

conditions for achieving high heat-release rates, as well as good stability. However, 

the actual quantity of air supplied is also very important. Although the fuel flow rate 

is determined by the combustor fuel-air ratio, the nature of the combustion process is 

primarily dependent on the primary zone fuel-air ratio. For a lean primary zone (i.e., a 

fuel-weak primary zone), the heat release is low and the liner wall temperature is 

therefore cooler, no exhaust smoke and carbon deposits are present, and an 

intermediate zone is unnecessary. However, a high recirculation velocity hampers 
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ignition performance. For a stoichiometric primary zone the maximum heat release is 

obtained and the primary zone can be made small, while little or no smoke and carbon 

deposits are present. Unfortunately the liner walls receive a lot of heat. Lastly, for a 

fuel-rich primary zone, the ignition performance is good, and good combustion 

efficiency is achieved at low power conditions. However, the drawbacks to this type 

of operation include the presence of copious exhaust smoke, a low volumetric heat-

release rate and the need for a longer intermediate zone [23].  

 

The intermediate zone does not receive high precedence when the airflows through 

the combustor are estimated.  Usually, the remaining available airflow (after the needs 

of the primary and dilution zone have been calculated) is used for the intermediate 

zone. The length of the intermediate zone usually depends on the application of the 

gas turbine engine (i.e., for cruising at high altitudes for long time periods high 

combustor efficiency is of paramount importance). Thus, the intermediate zone 

enhances the efficiency of the combustion process and is a remarkable benefit during 

start-up, acceleration and low-power conditions while lowering the temperature of 

predilution gasses and preventing hot regions from reaching the nozzle guide vanes. 

 

Estimating and placing the flow patterns in the dilution zone to provide a satisfactory 

temperature profile is where the so-called ‘black art’ comes in. It is very difficult to 

achieve a consistent and satisfactory temperature profile, and trial-and-error methods 

have primarily been used. Today, it is accepted that a satisfactory temperature profile 

depends on both adequate jet penetration and the use of the correct number of dilution 

jets to form enough localized mixing regions, but establishment thereof remains 

largely a matter of experience. Further design considerations are quite extensive and 

can be obtained in advance texts [23, 24].  
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2.3 Closure 

 

This chapter provided a basic overview of the operation of gas turbine combustion 

chambers in the vast topic of combustion. Elements that are relevant to the 

understanding of this study were discussed. The reader is also introduced to the 

complexity of flows and flow splits within the combustor as well as the pressure drop 

flow equation that governs the flow through a liner hole. The main features of the 

combustor, which will be modelled in this work, were discussed.  
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CHAPTER 3 

Governing Equations and Pipe 

Network Discretization Strategies 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 3describes the derivation of the strong form of 1-D general governing 

equations as well as the discretization strategy for a pipe network.  
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3.1 Preamble 

 

In this chapter, a theoretical investigation takes place to derive a model suitable to 

handling passage flows in general. The difficulty in modelling these passages is that 

they have an influence upon one another due to their interconnectivity. Due to this 

characteristic of these passages, a flow network may be created and needs to be solved 

subsequently in a simultaneous manner.  

 

An understanding how the governing fluid flow equations represent the physical flow 

phenomenon are necessary to be able to derive such a model effectively. The three-

dimensional equations governing fluid flow are therefore presented. Because an 

efficient solution is of interest and the equations are subsequently reduced to one-

dimensional form.  
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3.2 The governing equations 

 

The analysis of fluid flow is based on determining the relationships between the 

physical laws for a particular situation at hand (Table 3.1). 

 

Table 3.1 The physical laws governing general fluid flow  

Physical Law Description 

THE CONTINUITY EQUATION The law of the conservation of mass 

THE MOMENTUM EQUATION Newton’s second law of motion 

THE ENERGY EQUATION 

The fist law of thermodynamics, which 

is the principle of the conservation of 

energy 

THE ENTROPY EQUATION The second law of thermodynamics  

THE EQUATION OF STATE 

The thermodynamic properties of the 

fluid in question from either the 

equation of state for a perfect gas, 

empirical equations or an idealized 

model 

 

The mathematical expressions corresponding to these principles are combined to 

obtain the equations describing the fluid flow problem at hand [26]. 

 

3.2.1 General compressible flow equations 

 

The derivations of the governing equations, both in integral form or in differential 

form, can be found in several texts [9, 26-31] and will be presented briefly in the 

following paragraphs.  A full derivation can be found in Appendix A.   
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The continuity equation 

 

In the absence of nuclear and relativity effects, the mass of a system is a constant 

according to the law of the conservation of mass. 

 

(Mass)System = const              (3.1) 

 

Applied to a control volume, the integral form for the continuity equation becomes,  

 

( ) 0=⋅+
∂
∂

∫∫ dAd
t A

Vρυρ
υ

            (3.2) 

 

which states that the rate at which mass accumulates within the control volume υ is 

equal to the rate at which mass leaves the control volume through a control surface. 

The first term is omitted when working with steady flows. The differential form for 

the continuity equation, valid for control volumes, is more useful in describing 

multidimensional flows. The derivation of the continuity equation into its differential 

form may be conducted through two approaches. The first approach uses the 

divergence theorem while the second applies the integral equation on a control 

volume of differential size. The result of both approaches yield the differential 

equation for continuity as  

 

( ) 0=⋅∇+
∂
∂ Vρρ

t
              (3.3) 

 

 

The momentum equations 

 

The momentum equations are the equations obtained when Newton’s second law of 

motion is applied to fluid flow through a control volume as 
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( )AVVVF dd
t Aexternal ⋅+

∂
∂

= ∫∫ ρυρ
υ

            (3.4) 

 

and can be expressed as 

 

shearFABF +−= ∫∫ dpd
Aexternal υρ

υ
            (3.5) 

 

The external force Fexternal is due to the sum of a body force and a surface force. The 

body force B, is a force that acts upon the entire mass of the fluid (e.g., gravity, 

electrical and magnetic forces on a charged fluid). The surface force is a force that 

acts on the boundaries of the system through their contact with the surroundings. It 

consists of a normal component and a tangential component where the latter is 

referred to as the shear force which equals zero when working with an inviscid fluid. 

The normal force is caused by pressure for an inviscid fluid but also contains the 

effects of shear when working with a viscous fluid.  

 

Therefore, by equating the Equations (3.4) and (3.5) and retaining the surface forces 

in the form of Fsurface, one arrives at the integral form of the momentum equations 

 

( )AVVVFB surface dd
t

d
A

⋅+
∂

∂
=+ ∫∫∫ ρυρυρ

υυ
           (3.6) 

 

In its differential form, the momentum equations are also known as the Navier-Stokes 

equations. By yet again employing either one of the two transformation approaches 

mentioned, the differential form of the momentum equations results in 

 

0=−−∇+ shearFB dp
Dt
D ρρ V             (3.7) 

 

for a viscous fluid in a state of uniform motion. In general, the substantial derivative is 

( )
Dt

D and may be expressed in vector notation as 
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( ) ( ) ( )( )∇⋅+
∂
∂

= V
tDt

D              (3.8) 

 

However, it would be appropriate to note that arriving at Equation (3.7) is not as 

straightforward as it seems to be and may also be simplified for flows with a constant 

average viscosity and/or for incompressible flows.   

 

The energy equation 

 

The energy equation is derived from the first law of thermodynamics, which is also 

referred to as the law of energy conservation. In essence, it is the change in the stored 

energy in a system that is equal to the amount of heat energy transferred into the 

system less the amount of work energy done by the system.  

 

WQdE δδ −=              (3.9) 

 

Employing the substantial derivative for the stored energy, the rate of change in stored 

energy for a control volume may be expressed as [26] 

 

( )AV dgzVudgzVu
tDt

DE
A

⋅⎥
⎦

⎤
⎢
⎣

⎡
+++⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

∂
∂

= ∫∫ ρυρ
υ 22

22

       (3.10) 

 

The heat transported to the control volume occurs by means of the three main heat 

transport modes (conduction, convection and radiation) and is regarded as positive. 

Usually, the application determines the transport mode or modes. Furthermore, the 

work done by the control volume consists of shaft work Wshaft (work done by a rotary 

shaft crossing the system boundary, e.g., compressors) and flow work Wshear (work 

done by shear stress within the fluid) and pressure work given by  

 

( )∫ ⋅=
An dpvW AVρ&             (3.11) 
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where p is the pressure and v the specific volume. Combining Equations (3.10) and 

(3.11) establishes the integral form of the energy equation for a control volume 

 

( ) 0
22

22

=⋅⎥
⎦

⎤
⎢
⎣

⎡
+++⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

∂
∂

+−+ ∫∫ AV dgzVhdgzVu
t

QWW
Ashearshaft ρυρ

υ
&&&      (3.12) 

 

This integral form may be converted to the differential form by the use of the two 

approaches mentioned, which results in  

 

0
2

2

=
∂
∂

−⎥
⎦

⎤
⎢
⎣

⎡
+++−+

t
pgzVh

Dt
DQWW shearshaft ρδδδ &&&          (3.13) 

 

The derivation of the energy equation concludes an overview of the derivation of the 

governing equations for compressible fluid flow needed in this research. The 

derivation of the remaining equations may be found in the texts mentioned in the 

beginning of this section. The governing equations of compressible fluid flow are 

highly non-linear, and general analytical solutions thereof are, for all practical 

purposes, non-existent.  

 

3.3 The one dimensional general compressible flow equations 

 
In this section the general compressible flow equations are reduced to their repective 

one-dimensional form. Assumptions made regarding the reduction of these equations 

in the light of this work will be stated. Refer to Figure 3.1 for the appropriate flow 

directions.  

 

Continuity equation 

Equation (3.3) can be expanded as follows: 

 

( ) ( ) ( ) ( ) 0=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂ w

z
v

y
u

xt
ρρρρ             (3.14) 
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where x,y,z is the Cartesian directions and u,v,w denotes the flow velocity in each of 

the directions. 

      dx 

 

 

       i                                     u                                      o  

 

     y 

      x 

 

Figure 3.1  Flow element for one-dimensional flow 

 

For a one-dimensional analysis, the flow in only one direction is important, in the x-

direction for this case. Therefore v=w=0 and Equation (3.14) reduces to 

 

         ( ) ( ) 0=
∂
∂

+
∂
∂ u

xt
ρρ                      (3.15) 

 

where u denotes the average velocity at a point in the direction of the pipe1. 

Throughout the course of this study, steady one-dimensional flow was considered. 

Therefore ∂/∂t=0 and the continuity equation concequently becomes 

 

( ) 0=
∂
∂ u
x
ρ             (3.16) 

Momentum equation 

Equation (3.7) is the basic differetial form of the momentum equation for an 

infinitesimal element. Through reordering and rewriting some symbols, the common 

three-dimensional form of the equation becomes:  

 

ijp
Dt
D τρρ ⋅∇+∇= -gV            (3.17) 

                                                 
1 Matters pertaining to the validity of the governing equations, kindly refer to the Appendix F:  
“Validity of the Governing Equations”. 
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where τij is the stress tensor which is rewritten to a single deformation law for a 

newtonian viscous fluid as [29] 

 

Vdiv,, λδµδτ ji
i

j

j

i
jiij x

u
x
u

p +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂
∂

+−=             

 

Note that tensor notation is used here where i and j denote Cartesian coordinate 

directions. As previously, Equation (3.17) can now be reduced to the following 

equation for one-dimensional steady state flow in the x-direction. 

 

      ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+
∂
∂

=
∂
∂

y
u

yx
pgu

x x µρρ -)( 2           (3.18) 

 

 
3.4 The one dimensional network model 

 

This work focuses on the modelling of flow through pipe networks. From the 

literature study in Chapter 1, it is evident that the method with the best convergence 

characteristics would be a loop-nodal method. Using this method, the loop pressures 

are calculated prior to the branch flows. The problem with this type of method is that 

defining “loops” in complex networks are quite difficult because of the different 

combinations that are possible. This is of significance, as the loop definition will most 

definitely have a huge influence on the convergence characteristics of the scheme [7]. 

Certain loop definitions will result in a sparse solution matrix with a broad bandwidth, 

which will slow down convergence considerably especially when working with large 

matrices, while other definitions would not, especially when the solution matrix is 

well posed.  

 

With the nodal method, large networks may be simulated with relative ease. No loop 

definitions are necessary, and each and every node ‘knows’ to how many elements it 

is connected to and who its neighbours are. The problem, however, is that the 

convergence characteristic of this method is poor. This poor characteristic result from 
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an inappropriate choice of the convergence criteria formulation as well as from 

solving the branch flows prior to the nodal pressures according to Greyvenstein and 

Laurie [8]. 

 

In the following paragraphs, a method is described that uses the nodal formulation but 

solves the nodal pressures instead of the branch flows as proposed by Greyvenstein 

and Laurie [8]. After the nodal pressures are solved, the branch flows are calculated. 

Since the nodal pressures are solved initially, the good convergence characteristics of 

the loop methods are inherited.  

 

Flow network 

 Figure 3.2 shows an arbitrary node and the branches connecting to the node. By 

employing Kirchoff’s first law and the continuity equation on the node, the mass flow 

into the node must equal the mass flow out of the node. The sign convention for the 

node will be that the mass flow into the node will be regarded as positive, while the 

mass flow leaving the node will be regarded as negative.  

 

                  A 

   

Branch element 

       3 

                   An arbitrary node  

 

              

  1     2 

 

      Connection           C 

         B 

 

Figure 3.2  An arbitrary node with connecting branches 
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Therefore, the sum of the mass flows equals zero in the absence of an external mass 

addition or extraction to the node. In the case of an external mass flow to or from the 

node, the sum of the mass flows will equal the external mass flow.  This is 

mathematically described as follows:  

 

∑
=

−=
J

j
ijiji dQ

1
,,ρ            (3.19) 

 

where Qi,j is the element flow, ρi,j the element density and di the external mass flow 

into the node.  

 

We consider the momentum equations next. Noting that the equation is only valid for 

a point in the flow field and omitting the gravity term in the x-direction, 

Equation (3.18) becomes 

 

( ) ( ) Frp
x

u
x

+
∂
∂

−=
∂
∂ 2ρ            (3.20) 

 

where Fr=u2cf denotes a product between the average pipe velocity u and the 

coefficient cf, which describes the effect of flow frictional losses. Equation (3.20) can 

be used to calculate the pressure drop flow relation for any given variable area duct. 

However, in a duct or pipe network simulation, Equation (3.20) cannot be used in the 

current form because the static pressure across a branch connection with minimal 

frictional losses (assumed in this work) is not constant. Different static pressures for 

each element connecting to a particular node will consequently be calculated. The 

number of different static pressures calculated at a node will depend on the number of 

elements connected to that particular node. This problem can be corrected by using 

the total pressure in the simulation instead of the static pressure, as this is constant 

across a branch connection by virtue of Bernoulli’s equation. The total pressure is the 

sum of the dynamic pressure and the static pressure and is given in the following 

equation 
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sdyn ppp +=0             (3.21) 

 

where the dynamic pressure is 2

2
1 updyn ρ= . Rearranging Equation (3.21) and 

substituting the dynamic pressure terms into Equation (3.21), an expression for the 

static pressure in terms of the total and the dynamic pressure can be found. This 

expression for static pressure is subsequently substituted into Equation (3.20) giving 

 

( ) Frup
x

u
x

=⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂

+
∂
∂ 2

0
2

2
1 ρρ           (3.22) 

 

Rearranging Equation (3.22) we obtain the strong form of the momentum equation 

(describing 1-D pipe flow at a point along the pipe) for both steady compressible and 

incompressible flow. 

 

( ) Fr
x

p
u

x
=

∂
∂

+
∂
∂ 02

2
1 ρ                   (3.23) 

 

The density of a compressible fluid in an element may be calculated using an equation 

of state for the fluid. In the case of a perfect gas, 

 

TR
p
⋅

=ρ             (3.24) 

 

where p is the static pressure, R the ideal gas constant and T the temperature. The 

element temperatures may be obtained by employing the energy equation in the case 

of non-isothermal flow.  
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i 

ni,1 

ni,j 

ni,J 

bi,1 
bi,j 

bi,J 

3.5 Computational representation and storage of a duct network 

 

The storage scheme to be employed originates from the work of George and Liu [33]. 

Although there are better storage schemes in terms of space and memory usage, this 

scheme is the simplest to implement. Figure 3.3 depicts the computational stencil, or 

mesh, for a certain node and shows the branches/elements, connecting to the node. 

The global indices are i and ni,j while bi,j , and j is a local index with respect to node i. 

The adjacent nodes to node i are the upstream or downstream nodes j, depending on 

the flow direction of the branches/elements connected to this node. Therefore, node i 

is connected to adjacent nodes ni,j via branches bi,j where j=1,2,…,J. The number J 

then represents a number of branches/elements connected to node i.  

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 3.3 Computational stencil for a node in the network 

 

For a network, two connectivity matrices are defined, namely, the element 

connectivity matrix and the nodal connectivity matrix. The element connectivity 

matrix represents the branches connected to a node, while the nodal connectivity 

matrix represents the neighbouring nodes to the node in question. Figure 3.4 shows a 

schematic representation of an actual network.   
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Elements 

 Nodes 

 Guessed flow direction 

 

 

 

 

 

 

 

 

Figure 3.4 Schematic representation of an example pipe network 

 

Mathematically, the structure of the network is described uniquely as follows using 

connectivity matrices B and N. For the network example under consideration, B is as 

follows:  

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−−
−

−

==

007
765
643
542
321
001

, jibB  

where the rows depict the global node number and the columns depicts the local 

branch/element number. The matrix N is calculated as: 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

004
432
653
542
531
002

, jinN  

where the rows depict the global node number and the columns depict the adjacent 

node number. 

1 2 

3

4 

5

6 
1 

2 

3 

4

5

6

7
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3.6 Heat transfer network 

 

Isothermal flow is considered throughout this thesis as this work represents the first 

step in the development of gas turbine combustor modelling. The following 

paragraphs describes the heat transfer network, which was implemented in the 

simulation package, however, no tests were conducted to verify the results.  The heat 

transfer network represents, in essence, the energy equation that has to be solved for a 

given duct network. Hence, the energy equation is an energy balance that has to be 

satisfied at each and every node within the duct network. When working with 

incompressible flows, the link between the flow and the energy equations is weak and 

it is therefore sufficient to solve the energy equation only once after the flow 

equations have been solved to obtain the temperature field in the network [8]. 

However, when working with compressible flows, this link is very strong, and the 

energy equation needs to be solved during every iteration of the solution process. 

Pending the application, this energy equation may be formulated in such a manner 

that it would satisfy the particular needs of the application. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 The energy balance for a control volume within a duct segment 
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Figure 3.5 represents the control volume for a duct segment which includes heat 

transfer and is used to derive expressions for the heat transfer in a single duct 

segment, which will then be applied to the whole network and for the average gas 

temperature within the duct segment. 

 

Using the steady flow energy equation [32], the heat transfer across the duct wall must 

equal the gas flow rate times its enthalpy increase as follows 

 

xxx
QQQ && −=

∆+
                   (3.25) 

 

Assuming that the gas specific heat (cp) remains constant over the length of the duct, 

Equation (3.25) can be rewritten as 

 

( )
xxxp TTcmQ −=

∆+
&                    (3.26) 

 

Therefore the exit temperature 
xx

T
∆+

of the segment duct can be calculated by 

rearranging Equation (3.26) as 

 

x
p

r
xx

T
cm

xqPT +
∆

=
∆+ &

                   (3.27) 

 

where  q = heat flux into the duct segment 

 Pr  = perimeter of the duct segment 

 ∆x = length of the duct segment 

 m&  = the mass flow through the duct segment 

 

Equation (3.27) may now be expanded to obtain the nodal temperatures in the gas 

network by applying the energy balance once again at a node. Utilizing Kirchoff’s 

law, only the heat coming into the node, because of inflows from the adjacent duct 

segment with heat transfer, are regarded as significant, and all the duct segments with 

flows leaving the node are disregarded. Therefore, heat flows into the node must equal 
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the heat added to the connecting branches. Assuming that there is no heat generation 

within the node, 

 

∑ ∑∑ =− externaloutflowsinflows QQQ &&           (3.28) 

 

By substituting the equations for heat flux, (i.e., Equation 3.26) and rearranging, the 

temperature at a node in the network is given by 

 

( )
( )

inflows

inflowsodesadjacent_nexternal

∑
∑∑ +

=
p

p
node cm

TcmQ
T

&

&
          (3.29) 

 

This equation can now be used readily to calculate the nodal temperatures.  

 

3.7 Closure 

 

In this chapter, the general governing equations of fluid flow were presented, as well 

as the derivation thereof for three dimensions. These equations were subsequently 

reduced to their one-dimensional strong form to describe both steady compressible 

and incompressible flow. A flow network discretization strategy was also discussed 

and a flow network example using the nodal technique considered. A heat transfer 

network using the one-dimensional energy formulation was described and applicable 

formulations were derived.  
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CHAPTER 4 

Numerical Implementation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 4 discusses the Numerical Implementation of the theoretical network model 

derived in Chapter 3. Different applicable numerical schemes are reviewed, and a 

proposed numerical scheme is explained in detail and compared to the other 

numerical methods in terms of complexity and applicability.  
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4.1 Preamble 
 

hapter 3 provided the derivation of the governing equations in strong form as 

well as an outline of the basic discretization strategy which will be used to 

simulate fluid flow in a pipe network. Two basic equations governing the steady 

compressible and incompressible flow in the network branches were derived viz. mass 

and momentum conservation. 

  

In this chapter solution strategies are discussed and a solution algorithm developed. 

The solution algorithm furnishes a so-called pressure correction matrix, which is to be 

solved in order to calculate pressures at nodes within the network. Steady state flows 

are calculated from the discretized momentum equation. 

 

Two methodologies to construct the solution matrix were implemented. The first 

method is the one published by Greyvenstein and Laurie [8] and the second method is 

a hybrid pipe network method based on the work of latter. It, however, employs a 

single equation set to describe both steady incompressible liquid and gas and fully 

compressible gas flows where the dynamic pressure component is fully taken into 

consideration. In addition, the model has the capability to compute flows through 

variable area ducts with discontinuous changes in cross-sectional area in the case of 

incompressible flow. The differentiation of flow related non-linearities such as flow 

friction are further dealt with in a straightforward manner when constructing the 

pressure correction equation. The inclusion of the latter will be shown in the next 

chapter to furnish notably improved convergence characteristics. The above 

developments are viewed as contributions to the pipe-network flow modelling 

research fraternity. 

C 
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The pressure correction matrix is solved by a direct solution method for linear systems 

and some of these methods are investigated, together with matrix reordering 

techniques. The choice of a particular solution method and matrix-ordering technique 

will have an influence on the efficiency of the solver. In this study the LU 

factorization method was used due to its proven track record in pipe network analysis 

problems [8] and ease of implementation. 

  

4.2 Implementation of the Greivenstein and Laurie method 
 

This is a constant cross-section pipe, variable density hybrid pipe flow simulation 

scheme which is based on the SIMPLE pressure correction methodology developed 

by Patankar and Spalding [18, 34]. When first published, this was a ground breaking 

scheme which allowed for the solution of both compressible and incompressible 

flow provided that the dynamic pressure component is small [8]. This basic 

methodology was selected for this work as it is viewed as a most proficient steady-

state hybrid pipe network scheme. 

 

For compressible flow, the initial temperature field is usually guessed. The continuity, 

pressure drop and density equations are then solved simultaneously to yield the flow 

rate, pressures and densities. The energy equations are subsequently solved for and 

the temperature field is updated. The continuity, pressure drop and density equations 

are then solved again, and the process repeats itself until convergence is reached. For 

incompressible flow, it would be sufficient to solve the energy equation once after the 

flows, pressures and densities have been solved because of the ineffectual link 

between the flow and the energy equations [8]. 

 

As mentioned, the pressures, flows and densities are solved simultaneously via the 

pressure-correction method. The corrected values are calculated adding a correction 

value to the guessed or predicted values using the following relationships [18]: 
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pi   = p*i + p′i               (4.1) 

Qi,j  = Q*i,j + Q′i,j             (4.2) 

ρi,j   = ρ*i,j + ρ′i,j             (4.3) 

 

where pi is the nodal pressure at node i, Qi,j is the flow at element i,j and ρi,j the 

density at element i,j. Note that, as pointed out above, this method is only valid for 

cases where the dynamic pressure is much smaller than the static pressure viz. pi ≈ poi, 

and hence no distinction is made between the two pressures. The nodal temperatures 

and pressures are initially guessed. The initial values are denoted with a star (*).  The 

initial density is then calculated using either the equations of state for the fluid, or any 

other table or formulation giving the fluid’s density for a specified pressure and 

temperature. With these initial values, the initial flows may be calculated by 

employing the flow equations. The values tagged with an accent (′ ) are the correction 

values that have to be obtained through the pressure drop-flow equation. The 

corrected values are then calculated via Equations (4.1) to (4.3). During the iterative 

solution procedure, the initial or guessed values are then set equal to the corrected 

values, and the whole process is repeated. 

 

4.2.1 Flow Equations 
 

From Chapter 3, the continuity equation, the pressure drop equation and the density 

equation are applied to the computational stencil given in Figure 3.3, as follows:  

 

For continuity at a node, 

iji

J

j
jiji dQs −=∑

=
,

1
,, ρ              (4.4) 

 

where   i = 1,2,…,I at a node 

  ⎥
⎦

⎤
⎢
⎣

⎡
−

=
node  theexits flow the if1

node  theenters flow if1
, jis  

  di = external mass flow into the node. 
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For the pressure drop-flow rate relationship across a constant cross-sectional area 

element [8], 

 

jijijijiinji fgHsppp
ji ,,,,, ,

=−=∆             (4.5) 

 

 

where, 

     ( )
( )jijiji

jijiji

ji

ji
ji

Qff

gg

Q

Q
H

,,,

,,,

,

,
,

=

=

=

ρ  

 

For the ideal gas density at a node i, 

i

i
i RT

p
=ρ              (4.6a) 

 

or for a branch / element 

 

ji

ni
ji RT

pp
ji

,
, 2

,
+

=ρ            (4.6b) 

 

where 

Ti,j = temperature of the element (the average gas temperature       

         in the case of a duct.) 
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4.2.2 Pressure Correction Equation 
 

As mentioned previously, the discretization strategy involves calculating pressure 

correction values and then updating the latest pressure accordingly. A relation for the 

pressure-correction is obtained by differentiation of the pressure drop-flow equation 

(Equation (4.5)) with respect to the element flow [8]: 

 

jijiji
ji

jijijiji
ji

i

ji

n Fgs
Q

GfHs
Q
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Q
p
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,,,
,

,,,,
,,

, +
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′ ρ             (4.7) 

 

where 
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∂
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Through substituting the density equation (Equation (4.6)) into Equation (4.7) above, 

and rearranging the terms, an equation for the flow correction is established as 
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where 
ji

ji RT
a

,
, 2

1
=  and where the superscript ‘*’ indicates the guessed values of Qi,j 

and ρi,j to evaluate the expression [8]. To arrive at an equation for the pressure 

correction, the corrected flow (Equation (4.2)) and the corrected density values 

(Equation (4.3)) are substituted in the continuity equation (Equation (4.4)), resulting 

in 
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where the density and flow correction term, jiji Q ,, ′′ρ , has been omitted. This term is 

insignificant as the solution approaches convergence [8]. The pressure correction 

equation, the equations for flow corrections (Equation (4.8)) and density corrections 

obtained from (Equation (4.6)) are now substituted into Equation (4.9), resulting in 
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This pressure correction equation (Equation 4.10) is now solved for every node of the 

network simultaneously, and the corrected values for pressure, flow and density are 

calculated by means of Equations (4.1) to (4.3) and (4.8).  The density correction used 

in Equation (4.3) is merely calculated through Equation (4.6) using the pressure 

correction values of Equation (4.10) instead of the nodal static pressure. A more 

thorough derivation of the pressure correction equation may be found in Appendix B 

and reference [8].  
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4.3  A proposed compressible and incompressible flow method  
 
Greyvenstein and Laurie’s model was implemented and applied to a number of test 

cases (see Chapter 5).  Although this model is able to solve steady state compressible 

fluid flow, it does not in general furnish an accurate solution for mach numbers higher 

than 0.3. This is particularly due to the dynamic pressure component not being fully 

taken into consideration when significant, which was noted by the authors. It may 

therefore be viewed as an incompressible flow model where the density is allowed to 

change during the solution. Due to the volatile nature of airflow within a combustor 

chamber (jet mach numbers have been tested up to speeds of 240m/s or M≈0.7, 

Levebre [23]) we believe that the dynamic pressures do play an important part in a gas 

turbine combustor, and that a numerical model must be able to accurately describe 

such flow. Using the general fluid flow equations as derived in Chapter 3, an 

alternative solution strategy, able to handle fully compressible as well as 

incompressible flows with a significant dynamic pressure was developed. This should 

be applicable to variable area ducts in the case of incompressible flow. Note that this 

set of governing equations employed differs from Greyvenstein’s [20] transient 

compressible work. This will be detailed in the following paragraphs.  

 

As per Greyvenstein and Laurie [8], the pressure correction methodology of Patankar 

and Spalding [18,34] is once again applied in the improved method. As before, the 

corrected values are calculated adding a correction value to the guessed or predicted 

values using the following relationships [18]: 

 

p0i   = p0i* + p0i′              (4.1) 

Qi,j  = Qi,j* + Qi,j′             (4.2) 

ρi,j   = ρi,j* + ρi,j′             (4.3) 

 

where p0i,j denotes the total nodal pressure, Qi,j the element flow and ρi,j the element 

density. 
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4.3.1   Flow Equations 
 

The discretization strategy in Chapter 3 again refers. For mass-continuity at a node, 

 

iji

J

j
jiji dQs −=∑

=
,

1
,, ρ              (4.4) 

 

where   i = 1,2,…,I 

  ⎥
⎦

⎤
⎢
⎣

⎡
−

=
node  theexits flow the if1

node  theenters flow if1
, jis  

  di = external mass flow into the node. 

 

Next, the momentum equation for 1-D compressible and incompressible flows at a 

point along the general pipe element derived in Chapter 3 is discretized over the one-

dimensional element shown schematically in Figure 4.1. The equation is repeated for 

convenience. 

( ) Fru
xx

p
=

∂
∂

+
∂
∂ 2ρ                    (3.20) 

 

           As     

                Aj 

     

          x  

         

            Ai 

 

Figure 4.1  Element over which the discretization takes place 

Equation (3.20) is now integrated over the control volume in Figure 4.1  

 

( ) ( ) v
VV

FrdVu
x

dVp
x

=
∂
∂

+
∂
∂

∫∫ 2ρ            (4.11) 
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where V denotes the total volume of the element and 2
,,, , jifjijiv ucHsFr

ji
= . Applying 

the Divergence Theorithm to the volume integrals, the following surface integrals in 

the x-direction are obtained: 

 

FrdAnudApn
A

x
A

x =+ ∫∫ 2ρ             (4.12) 

 

where sji AAAA ∪∪=  and jjifjiji AucHsFr
ji

2
,,, ,

=  . Here nx is the component of the 

surface normal vector in the direction of the pipe. For convenience, the two terms on 

the left-hand-side of Equation (4.12) will be evaluated separately. The first term may 

be expanded as follows: 

 

∫∫∫∫ ++=
sij A

x
A

x
A

x
A

x dApndApndApndApn           (4.13) 

 

The third term of Equation (4.13), ∫
sA

xdApn , will be expanded separately later and is 

now referred to as β. Removing p from the integral and substituting the applicable 

value for nx for the remaining terms, Equation (4.13) becomes  

 

( ) β+−+= ∫∫∫
ij A

i
A

j
A

x dApdApdApn 1            (4.14) 

 

where, in line with the 1-D approach, pj and pi denotes the average static pressures 

over the cross section normal to the flow. 

 

Evaluating the integrals, Equation (4.14) becomes  

 

β+−=∫ iijj
A

x ApApdApn                                    (4.15) 
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The second term of Equation (4.12) is now evaluated and may be expanded as 

follows: 

 

∫∫∫∫ ++=
sij A

x
A

x
A

x
A

x dAnudAnudAnudAnu 2222 ρρρρ          (4.16) 

 

Because there is no flow through the surface As, the third term on the right-hand-side 

of Equation 4.16 becomes zero. Density and velocity is not functions of the area and 

may therefore be moved from the integral viz.  

 

∫∫∫ +=
ij A

xii
A

xjj
A

x dAnudAnudAnu 222 ρρρ           (4.17) 

 

Applying the value for nx and evaluating the integral, Equation (4.17) becomes 

 

iiijjj
A

x AuAudAnu 222 ρρρ −=∫             (4.18) 

 

Substituting Equations (4.15) and (4.18) into (4.12) an expression for the momentum 

equations is obtained. 

 

FrAuAuApAp iiijjjiijj =−++− 22 ρρβ           (4.19) 

 

Rearranging the expression for static pressure (Equation (3.21)), substituting the 

expression for static pressure into Equation (4.19) and assuming negligible change in 

fluid density over a branch connection, Equation (4.19) is written in terms of the total 

pressure as 

 

( ) FrAuAuApAp iiijjjiijj =−++− 22
00 2

1 ρρβ          (4.20) 
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The β-term in Equation (4.14) accounts for the change in static pressure due to 

changes in pipe flow area. As per the study objectives an expression will be developed 

for β for incompressible flow. From Figure 4.1 and Bernoulli we may obtain the 

following expression for the pressure from the definition of total pressure. 
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( )
( )xA
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pxp ji 2

2

0 2
1 ρ−=             (4.21) 

 

In terms of Qi, Equation (4.21) becomes 
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Substituting Equation (4.22) into the expression for β and evaluating the integral over 

the element, the following results  
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which is applicable to a generic axisymmetric duct with varying cross-sectional area. The 

latter includes geometrically complex pipes such as sudden expansions, as no simplifying 

assumption has been made in the derivation with regards to the element-wise static pressure 

distribution. Note that the effect of flow frictional loss is already accounted for via the 

Fr term. Substituting Equation (4.23) and the expression for Fr into Equation (4.20) 

the following expression for the momentum is obtained.  
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The subscript i,j refers to the element properties which is evaluated at the centre of an 

element whereas the subscript i and j refer to the nodal properties. In comparison with 

the previous pressure drop-flow equation (Equation (4.5)), this relationship is a 

function of the elemental-flow, the elemental-density, the nodal densities, the element 

in and out flows and a loss coefficient of the particular element. Therefore it is 

necessary to obtain relationships or equations for each of these in terms of the 

variables solved for i.e. p0i, Qi,j, and ρi,j.  

 

As the objective is to solve for the elemental flow Qi,j and not the elemental flow 

velocity ui,j, we need to obtain an expression for the element and element in and out 

flow velocities ui,j, ui and uj in terms of the variables solve for. The elemental velocity 

ui,j is merely the elemental flow divided by the mean elemental cross sectional area. 

 

jijiji AQu ,,, =            (4.25) 

 

The velocity ua is calculated from Qa in a similar manner where a = {i,j}. 

Unfortunately Qa is not explicitly solved for and must be calculated as a function of 

Qi,j which may be obtained through the conservation of mass-flow. This implies that 

the nodal densities ρi and ρj need to be solved simultaneously with Qa. This is detailed 

next.  

 

From continuity, the nodal velocities are calculated as 

 

aa

jiji
a A

Q
u

ρ
ρ ,,=               (4.26) 

where a = {i,j} 

 

However, ρa is a function of ua, which is in turn a function of the static pressure at 

node a. The relation for ρa in terms of  ua and p0a is given by: 
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( )aaiai
a

a
aca T

RT
p ρδδρ +=             (4.27) 

where  
⎩
⎨
⎧

=
gasses idealfor 1

fluids ibleincompressfor 0
acδ , 

⎩
⎨
⎧

=
gasses idealfor 0

liquids and fluids ibleincompress pressurefor 1
aiδ , 

 

Here a=c denotes compressible gas and a=i denotes incompressible gas and liquid, R 

is the ideal gas constant and T the temperature. The elemental density is taken as the 

linear average of the nodal densities: 

( )ijji ρρρ +=
2
1

,            (4.28) 

 

The above density interpolation expression is second order accurate. Equations (4.26) 

and (4.27) need to be solved simultaneously via numerical iteration to obtain ρa and ua 

for a given p0a. After implementing the above, Equation (4.24) becomes 

 

     2
2

2
2

2
,,,,0 ,

,

,

,

,

11
2

11
2 ji

ji

ji

ji

ji
Q

AAA
Q

AAA
QcHsp

iijjjijjj
jfijijiji ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=∆

ρρ
ρ

ρ
ρ

         (4.29) 

 

The above equation constitutes the weak form of the momentum equation which is to 

be solved for over each element and describes compressible and incompressible 

steady flows in constant area ducts as well as incompressible flow in variable area 

ducts2. 

 

4.3.2 Pressure Correction Equation 
 

As previously, to determine the relationship between the pressure correction and the 

flow correction, the pressure drop-flow equation (Equation (4.29)) is differentiated 

                                                 
2 Matters pertaining to the validity of Equation (4.29), kindly refer to the Appendix G:                                                                 
   “Validity of Equation (4.29)”. 
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with respect to the element flow. Before the equation is differentiated, it is 

advantageous to rewrite it in the following form 
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Equation (4.30) is now differentiated with respect to the element flow:  
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Because the partial differential terms ∂() on the left-hand-side will become zero as 

convergence is reached, they may be replaced by the correction term ()′ [8]. Equation 

(4.31) therefore becomes 
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Provided that the Jacobian term
jiQ ,∂

∂ϕ is known, this expression for the flow-correction 

in terms of the pressure-correction, which is applicable to both compressible gas and 

incompressible gas and liquid flow, is viewed as straightforward to implement. A 

further advantage of this approach is that the non-linearities introduced in the cf 
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coefficient such as friction is automatically taken in consideration in 
jiQ ,∂

∂ϕ which may 

have a significant effect on convergence (See Chapter 5). To complete the proposed 

algorithm, 
jiQ ,∂

∂ϕ is computed numerically to first order accuracy as follows: 
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where dQi,j = max(10-3Qi,j, 10-5Qmax
i,j). The latter value keeps dQi,j from becoming 

zero. The effect of the order of accuracy of Equation (4.33) on solution accuracy and 

convergence characteristics was found to be negligible. The cost of computing the 

above Jacobian term was also found to be insignificant in terms of the scheme’s 

overall CPU cost, as the bulk of the computational effort is expended on inverting the 

pressure correction matrix. 

 

Through rearranging the terms of Equation (4.32), an equation for the flow correction 

is now established as 
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              (4.34) 

 

The density correction may be obtained via Equation (4.28) as follows 

 

( )ijji ρρρ ′+′=′
2
1

,            (4.35) 

 

The expression for the pressure correction in terms of the flows and the densities may 

now be derived by substituting Equations (4.1) to (4.3), (4.34) and (4.35) into 

Equation (4.9), which results in 
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This pressure correction equation is now solved, at all nodes in the network 

simultaneously, and the corrected values for pressure, flow and density are calculated 

by means of Equations (4.1), (4.34), (4.2), (4.35) and (4.3).   

 

 

4.4 Flow Elements 
 

Three types of flow elements are used in this work and will be discussed next. These 

three elements are a pipe element, a sudden expansion element and a liner hole 

element. Using the Darcy-Weisbach equation, an expression for the flow coefficient cf 

may be derived.  

 

jijif Kc ,,2
1 ρ=            (4.37) 
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where Ki,j is the element loss factor. Different expressions for Ki,j for the flow 

elements used are given in Table 4.1. 

 

 

 

 

Table 4.1  Loss factors for flow elements 

 Element Type Loss factor expression 

1 Pipe element 
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jiji
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2 Sudden expansion element 
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Note that the loss factors for the first two elements may be found in a fluid mechanics 

textbook [28] and that the loss factor of the last element is derived from the 

expression for liner hole flow in Chapter 2.    

 
 
4.5 Friction Factor 
 

Many equations to determine the friction factor are available in the literature. Two of 

the equations apply for laminar flow conditions, and the remaining three equations are 

used for turbulent flow conditions. The equations for laminar flow conditions for 

circular and rectangular duct are  

 

       
Re
64

=f              (4.38) 

 and  
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Re
96

=f              (4.39) 

 

respectively. The equations for turbulent flow conditions all fit the well-known 

Moody diagram. These equations are also known as Chen’s equation, Churchill’s 

equation and Swamee-Jain’s equation, and are as follows 

 

Chen’s equation [54]:                (4.40) 
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Haaland’s equation [28]:       
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Swamee and Jain’s equation [33]:               
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Equation (4.41) is an accurate representation of the Colebrook relation, which fits the 

Moody diagram for transitional and turbulent flows. In all the equations above, f is the 

friction factor, Re is the Reynolds number and ε is the surface roughness. 

 

4.6 Numerical solution strategies 
 
In Chapter 1, one noticed that amid the advantages of nodal methods in the simulation 

of gas networks, the most troubling disadvantage has traditionally been the poor 

convergence characteristic, which renders the method impractical for simulation 
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purposes. It is also very sensitive to initial values. Using the SIMPLE method, related 

difficulties are encountered, especially when the pressure correction coefficients differ 

significantly between elements [18].  A remedy to these difficulties is to properly 

solve the pressure correction matrix before one moves on to the next iteration of the 

overall solution algorithm [8]. 

 

The pressure correction equation can be written in matrix form as 

 

Ap' = b              (4.43) 

 

with     iiii ca ,, =             (4.44) 

                jini ca
ij ,, −=             (4.45) 

 

and the other elements of A equal to zero. If the pressure correction equation is solved 

exactly, by definition, the continuity equation will also be satisfied exactly, and the 

reliability of the nodal method would subsequently be improved. 

 

4.6.1 Solution methods 
 

The system of equations to be solved (i.e., the pressure equations), were developed in 

such a way that they form a linear system of equations. The advantage inherited by 

this means of development is that the linear system may be solved through direct 

methods. These direct methods consist of the notorious Gauss elimination method, the 

LU factorization method, the LDLt factorisation method, the Coleski method, Crout 

factorisation for tridiagonal linear systems and the Envelope method [36].  

 

Apart from the direct methods for solving linear systems, there are also indirect 

methods. These methods are often used to solve large sparse matrices and include the 

Jacobi iterative method, the Gauss-Seidel iterative method and the SOR method [36]. 

The penalty paid for utilizing indirect methods is that of longer computational times in 

the case of small systems. Also it is not always possible to solve sparse matrices with 
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indirect methods. When a matrix is singular, an indirect method will converge to a 

solution, namely, the absolute value of which is decided by the initial guess [18]. 

However, a direct method would refuse to furnish a solution. 

 

Three of these methods have been considered in this study, two of which fall into the 

direct method category and the remaining one into the indirect method category. The 

direct methods considered were Gauss elimination method and LU factorisation. The 

indirect method considered was the Gauss-Seidel iterative method.  The LU 

factorization method was found to offer comparable or improved performance as 

compared to the other methods, while being relatively simple to implement. It was 

therefore chosen for the purposes of this study. Further information may be found in 

Appendix C.   

 

4.6.2 Matrix reordering 
 

Matrix-reordering methods are often considered when being tasked with inverting a 

matrix due to the potential savings in both storage space and computational time [37].  

Numerous matrix forms have been proposed as objectives for ordering strategies. 

Extensive research has been done on banded and variable-band matrices such as 

shown in Figure 4.3. Variable-band forms are commonly referred to as skyline, profile 

or envelope forms.  

***
****
*****

*****
*****

*****
*****

*****
****

***

 

**
****
******

***
******
****

******
****
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***

 

Figure 4.3 Band and variable-band forms 
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To obtain these matrix forms, numerous methods and algorithms have been developed 

by various authors and a discussion of these methods may be found in the references 

[33, 37–38]. Some of these methods include block tridiagonal methods, the reversed 

Cuthill-McKee (RCM) method, one-way dissection and nested dissection methods. 

The reversed Cuthill-McKee method (A detailed description of the working of the 

reversed Cuthill-McKee method is found in Appendix D) was chosen for utilization in 

this study because of its success, as elaborated by many authors [37]. Trail runs of the 

Cuthill-McKee method revealed that, for small networks, no substantial improvement 

in solution time was obtainable. Therefore the computing effort incurred using the 

reversed Cuthill-McKee does not warrant the use thereof at this stage, however, it 

may be important to apply this method when large networks are examined.  

 

4.7 Convergence  
 

As described in Chapter 1, various authors [7,9,10,11,28,39] use the variation in 

computed nodal or element flow between successive iterations as a convergence 

criterion in a network that, more often than not, yields inaccurate results when applied 

to nodal methods if the solution converges. This criteria is usually in the form of 

 

 

( )
n

nn

Q
QQ∑ −−

≥
1

ε                   (4.46) 

 

where   ε  = convergence criteria / tolerance 

  Qn  = flow rate obtained from the current iteration 

  Qn-1  = flow rate obtained from the previous iteration 

 

Greyvensteyn and Laurie [8] discovered that these accuracy problems do not originate 

from an inherent flaw in the methods, but from an inappropriate choice of the 

convergence parameter. They propose a convergence criterion for pressure-based 
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nodal methods that consists of two convergence parameters, namely, a continuity 

convergence parameter and a pressure drop convergence parameter. The continuity 

parameter checks if the continuity equation is satisfied, while the pressure drop 

parameter checks if the pressure drop-flow equation has been satisfied.  

 

The continuity convergence parameter, εm, is defined as 

mean

i
m m

h
&

max=ε             (4.47) 

 

where 
mean

m&  is the mean of the absolute values of all the mass element flows and 

maxih  is the maximum of the absolute residual nodal mass flow. The mean mass 

element flow and is given as  
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where  b is the number of branches/elements 

 

and the residual nodal mass flow by 

( ) i

J

j
jijijii dQsh += ∑
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The pressure drop convergence parameter, εp, is defined as 

 

∑
= ∆

∆−∆
=

b

n
p p

pp
1 1

21ε             (4.50) 

 

where   b  =  number of elements. 

∆p1  = pressure drop across an element as calculated from flows via    

    the momentum equation.   
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∆p2  = pressure difference between the two nodes associated with an  

    element as calculated from the pressure-correction matrix. 

 

To ensure an accurate solution, both εm and εp should become sufficiently small (e.g., 
310, −≤pm εε ). Finally for stability, all the pressure drop-flow rate coefficients must 

be positive [8,18].  

 

4.8 Closure  
 

In this chapter, a network numerical solution methodology was developed. The 

proposed method is capable of dealing with both compressible flow in constant area 

ducts as well as incompressible flows in variable area ducts. It is further simpler to 

implement than existing hybrid pipe-network methods and naturally takes into 

account all flow related non-linearities when constructing the pressure correction 

matrix. The latter will be shown to result in significantly improved convergence 

characteristics. By deriving the appropriate pressure drop-flow relationships, elements 

for any type of axi-symmetric flow device may be created.  
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CHAPTER 5 

Simulation Package and Validation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 5 considers the Simulation Package and the Validation thereof. A brief 

description of the package is given as well as the simulations of published networks to 

validate the accuracy of the proposed method.  
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5.1 Preamble 
 

his chapter deals with the incorporation of the proposed numerical routine into a 

simulation package. The simulation package allows the user to design the 

network visually, specify the boundary conditions at certain locations and adjust fluid 

parameters, flow characteristics and solver options. In the subsequent paragraphs a 

visual discussion of the simulation package, with figures of the relevant windows, will 

be provided.   

 

During the development of the simulation package, the network model was tested on 

published and textbook networks. These test networks not only established a basis of 

accuracy for the network model, but also tested the characteristics of the proposed 

numerical scheme in terms of stability and efficiency. The networks used for 

verification purposes are an air gas network published by Greyvenstein and Laurie 

[8], a compressible helium pipeline network published by Greyvenstein [20], a sudden 

expansion test case from the textbook of White [28] and a liner hole. 

T 
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5.2 The Simulation Package 
 

 

THE OPERATING ENVIRONMENT 

 

The simulation package was designed and developed for the Microsoft® WindowsTM 

environment. The program is an interactive simulation package with user and graphics 

capabilities. The programming language used for this project was Borland C++ 

Builder 5. A modular program structure was used in the development of the 

simulation package. The first module allows the user to design and to define a 

network using a graphical interface. The other modules are utilised automatically by 

the simulation package as soon as the user wishes to solve the network. The second 

module sets up the connectivity matrices for the particular network. The third module 

calculates the initial values for pressures and flows whereafter the solution 

coefficients are calculated and placed in the solution matrix. A solver module is 

activated and the pressure correction is calculated. The correction module sets the 

corrected values for the pressures, flows and densities. The results are subsequently 

shown after convergence or once the maximum number of iterations, as specified by 

the user, is reached.   

 

THE DESIGN WINDOW 

 

The design window shows an arbitrary network (Figure 5.1), which may be modified 

by adding branches (elements) or nodes by selecting the relevant drawing mode in the 

upper left-hand corner of the design window.  Branch or nodal data are entered on the 

right-hand side before the node or branch is placed. Choosing the select option can 

also change branch or nodal data accordingly. Standard Windows operations (such as 

New, Open, Save, and Save As) can be found in the ‘File’ menu. 
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Figure 5.1 The main program interface including the design window 

 

 

BOUNDARY CONDITIONS 

 

Some of the necessary boundaries are set in the boundary conditions window 

(Figure 5.2).  This enables the user, for instance, to specify constant duct parameters 

to facilitate the design of the network. Outlets and inlets are boundary conditions that 

have to be designed along with the network, (i.e., a branch connected to a remote node 

with a specific pressure will be regarded as a boundary condition). This will be either 

an input or an output boundary, depending on the particular network. 
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Figure 5.2 Boundary conditions window 

 

FLUID PROPERTIES 

 

 
 

Figure 5.3 Fluid properties window 
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Different working fluids, as well as their reference properties, may be added by using 

the fluid properties window (Figure 5.3). From the working fluid list, a fluid may be 

selected for a particular network. The solver will then use the properties of the chosen 

fluid in the solution of the network.  

 

 

FRICTION OPTIONS 

 

 

Figure 5.4 shows the friction options box. The user may use either a constant value for 

the friction factor as specified in the design window at every branch, or may select a 

friction factor formula for a particular case. Provided within the simulation package 

are two laminar flow friction factors and three turbulent flow friction factor 

formulations. If any of these friction factor relations are chosen, the previously 

specified friction factor will be omitted and a friction factor using the chosen 

relationship will be calculated.  

 

 
 

Figure 5.4 Friction options window 
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SOLVER PROGRESS AND SOLVER OPTIONS 

 

In Figure 5.5 the solver options dialog box and the solver progress window are 

displayed. The solver progress window shows the number of iterations that are 

completed as well as the level of convergence of the solution and the convergence 

criteria (horizontal line on graph). The convergence of the solution is a logarithmic 

value and is plotted against the number of iterations. The convergence of the solution 

is calculated from the nodal pressure difference as explained in Chapter 4.  

 

 
Figure 5.5 Solver progress and solver options window 

 

The solver options dialog box enables the user to specify different solver types as well 

as some solver values. The solver type refers to the type of direct or indirect solution 

method to be used. Because these methods originate from linear algebra, they should 

eventually all yield the same results although their solution times may differ. The 

solver values to be specified include the minimum and the maximum number of 
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iterations as well as the convergence criteria. Because of the pressure-based method 

used, the pressure corrections may have to be under-relaxated in order to obtain a 

converged solution [18].   

 

RESULTS WINDOW 

 

Figure 5.6 depicts the results window, which contains the solved flows, densities, 

pressures and temperatures. In this network a constant temperature field and a 

constant pipe friction factor were used.  

 

 
Figure 5.6 Results window 
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5.3 Verification of the numerical scheme 
 

 

COMPRESSED AIR NETWORK 

 

Greyvenstein and Laurie [8] published a compressed air network example in their 

paper to demonstrate the performance of their method. The developed algorithm will 

now be used to analyse this network in order to verify accuracy. Figure 5.7 shows the 

layout of the network with boundary conditions. The element related data is available 

in the paper of Greyvenstein and Laurie [8]and is included for convenience in 

Table 5.1. 

 

Table 5.1  Element (pipe) data for the compressed air network 

Element no Inlet node Exit node Diameter [m] Length [m] 
1 1 2 200 0.019 
2 2 3 400 0.01588 
3 3 5 400 0.01588 
4 5 6 100 0.01 
5 6 7 100 0.01 
6 6 8 100 0.01 
7 8 9 100 0.01 
8 8 10 100 0.01 
9 5 11 400 0.01588 

10 11 12 100 0.01 
11 11 13 400 0.01588 
12 14 13 200 0.019 
13 13 15 400 0.01588 
14 15 16 100 0.01 
15 17 15 400 0.01588 
16 17 18 100 0.01 
17 18 19 100 0.01 
18 18 20 100 0.01 
19 21 17 400 0.01588 
20 21 22 100 0.01 
21 23 21 400 0.01588 
22 23 24 100 0.01 
23 24 25 100 0.01 
24 26 23 400 0.01588 
25 26 27 100 0.01 
26 2 26 400 0.01588 
27 3 4 100 0.01 
28 5 28 100 0.01 
29 24 29 100 0.01 
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Figure 5.7 Compressed air network 

  The boundary conditions to this network are inlet or supply pressures of 600 kPa, 

while the outlet or discharge pressures are set equal to 300 kPa. The supply pressures 

are applied to nodes one and fourteen, and the discharge pressures are applied to all 

nodes with only one connecting element. The friction factor is initially fixed to f=0.03 

as per the aforementioned paper. The temperature field has been kept constant at 15oC 

with no heat addition or subtraction. The relaxation factor was set to 1.0. 
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Table 5.2  Results of the simulation package for the compressed air network.  
Results 

Constant friction network (f=0.03) Variable friction network 
Published[8] This work This work 

Mass 
flow Pressure 

Mass 
flow Pressure

Mass 
flow Pressure 

no [kg/s] [kPa] [kg/s] [kPa] [kg/s] [kPa] f 
1 0.01646 600.00 0.01645 600.00 0.03109 600.00 0.008 
2 0.00803 521.51 0.00803 521.51 0.01517 529.37 0.009 
3 0.00360 411.34 0.00360 411.37 0.00663 419.93 0.010 
4 0.00338 300.00 0.00337 300.00 0.00610 300.00 0.009 
5 0.00178 385.50 0.00178 385.53 0.00328 390.66 0.011 
6 0.00159 320.57 0.00159 320.58 0.00282 324.93 0.011 
7 0.00080 300.00 0.00080 300.00 0.00141 300.00 0.013 
8 0.00080 304.23 0.00080 304.23 0.00141 305.91 0.013 
9 -0.00360 300.00 -0.00360 300.00 -0.00663 300.00 0.010 

10 0.00444 300.00 0.00443 300.00 0.00855 300.00 0.009 
11 -0.00803 411.34 -0.00803 411.37 -0.01517 419.93 0.009 
12 0.01646 300.00 0.01645 300.00 0.03109 300.00 0.008 
13 0.00843 521.51 0.00842 521.51 0.01592 529.37 0.008 
14 0.00413 600.00 0.00413 600.00 0.00802 600.00 0.009 
15 -0.00429 398.49 -0.00429 398.51 -0.00790 408.65 0.010 
16 0.00280 300.00 0.00280 300.00 0.00513 300.00 0.010 
17 0.00140 359.77 0.00140 359.78 0.00256 366.92 0.012 
18 0.00140 312.86 0.00140 312.87 0.00256 316.43 0.012 
19 -0.00149 300.00 -0.00149 300.00 -0.00277 300.00 0.013 
20 0.00299 300.00 0.00299 300.00 0.00553 300.00 0.010 
21 0.00149 354.80 0.00149 354.82 0.00277 359.86 0.013 
22 0.00280 300.00 0.00280 300.00 0.00513 300.00 0.010 
23 0.00140 359.77 0.00140 359.78 0.00256 366.92 0.012 
24 0.00429 312.86 0.00429 312.87 0.00790 316.43 0.010 
25 0.00413 300.00 0.00413 300.00 0.00802 300.00 0.009 
26 0.00843 398.49 0.00842 398.51 0.01592 408.65 0.008 
27 0.00444 300.00 0.00443 300.00 0.00855 300.00 0.009 
28 0.00382 300.00 0.00382 300.00 0.00715 300.00 0.009 
29 0.00140 300.00 0.00140 300.00 0.00256 300.00 0.012 
 

The solved pressures and flows are shown in Table 5.2 (Constant friction network) 

and compare well with the results of Greyvenstein and Laurie. The convergence 

history of the solution process is depicted in Figure 5.8. The initial residual is 

different from that of the other authors which is suspected to be due to different initial 

guessed values employed. In this work guessed nodal pressures were used as initial 

values. These were chosen just below the highest specified pressure in the network 

and are automatically calculated by the solver. Convergence to engineering accuracy 
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(log(εp)=-4) was however reached within 8 iterations, which is similar to that of the 

other authors. The proposed formulation therefore offers similar accuracy and 

performance to the methodology of Greyvenstein and Laurie.  

 

In real life pipe networks, friction is a function of the flow through the network and 

not fixed as previously simulated. Therefore the analysis for the same compressed air 

pipe network was repeated with friction values as a function of the flow (f(Q)) 

through the network via the described method. This analysis was also used to evaluate 

the effect on convergence of taking the friction factor as a function of the flow (f(Q)) 

when constructing the pressure correction matrix. The surface roughness was set to e 

= 0.001mm for all the pipes, which corresponds to that of drawn tubing. All the other 

properties and conditions were as per the previous analysis. 

 

For the first simulation, the friction f was kept constant when constructing the 

pressure correction equation (df/dQ = 0), the relaxation factor was kept at 1.0 and 

convergence to engineering accuracy was reached in 11 iterations as shown in 

Figure 5.8. The simulation was repeated, and this time the friction factor was taken as 

a function of the flow when constructing the pressure correction matrix (df/dQ ≠ 0). 

Convergence was now reached in 7 iterations.  Note that the solved pressures and 

flows for both construction methodologies were identical and is given in Table 5.2.  
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Figure 5.8 Convergence plots for the compressed air network simulation 

 

Therefore, from this test case it can be concluded that the proposed methodology 

offers similar performance compared to that of the other hybrid formulation in terms 

of both accuracy and convergence characteristics. It is also demonstrated that all types 

of flow related non-linearities should be taken into consideration when constructing 

the pressure correction matrix as this may have a significant effect on convergence. 

The proposed methodology facilitates this in a natural manner. 

  

ISOTHERMAL STEADY-STATE COMPRESSIBLE FLOW THROUGH A 

100M LONG PIPELINE 

 

The steady-state compressible flow benchmark example recently published by 

Greyvenstein [20] refers. The test case involves a 100m long pipeline with a diameter 

of 0.5m. Helium flows through the pipeline with a total outlet pressure of 200kPa and 

an inlet temperature of 300K. The friction factor is assumed to be constant at f = 0.02. 

The results of Greyvenstein as well as an “analytical” solution obtained via a fourth 
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order Runga Kutta numerical integration procedure of the following equation set [26], 

will be used for validation purposes. 

 

( )( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ +

+⎟
⎠
⎞

⎜
⎝
⎛

−
−+

=
T
dTM

D
fdxM

M
M

M
dM

2
1

21
15.01 22

2

2 γγγ       (5.1) 

 

The additional flow properties may be obtained from the following formulations [26]: 
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where the properties in uppercase refers to the stagnation condition and in lowercase 

to the static condition. M denotes the Mach number. 

 

In order to analyse this example, the mass flow through the pipeline needs to be 

calculated so that it can be used as an input at the inflow boundary. The mass flow is 

calculated through Equation (5.2) for the outlet conditions by utilizing the total 

temperature as a function of the outlet Mach number. The values for the properties of 

Helium are supplied, in brackets, where appropriate.  
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where   A  =  cross sectional area 

  p2  =  static outlet pressure 

  M2 =  outlet Mach number 

  T2 =  total outlet temperature 
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  R =  gas constant (2077.1 J/kgK) 

  γ    =  specific heat ratio (1.667) 

 

The static outlet pressure in terms of the total outlet pressure and the outlet Mach 

number can be calculated by means of Equation (5.3). Table 5.3 show the results. 

 

Table 5.3 Calculated mass flows at the respective outlet Mach numbers. 

M2 T2 (K) p2 (kPa) mdot2 (kg/s) 
0.0 300.000 200.00 0.00 
0.1 301.001 198.34 6.37 
0.2 304.002 193.48 12.43 
0.3 309.005 185.75 17.90 
0.4 316.008 175.63 22.56 
0.5 325.013 163.72 26.29 
0.6 336.018 150.65 29.03 
0.7 349.025 137.01 30.80 

 

The pipeline problem was analysed using the Greyvenstein and Laurie method and the 

proposed method. The simulation package solved for the total inlet pressures and the 

total pressure ratios for the pipeline were subsequently calculated for the respective 

outlet Mach numbers. The results are plotted on the same graph as the benchmark 

problem as well as the solution of Greyvenstein [20] (Figure 5.9). The proposed 

method agrees well with the benchmark solution but the Greyvenstein and Laurie 

method deviates from the benchmark solution at Mach numbers exceeding Mach 0.3. 

This deviation is due to the dynamic pressure term being neglected or very small, as 

the latter was assumed by Greyvenstein and Laurie [8]. 
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Figure 5.9 The pressure ratio as a function of outlet Mach number for steady 

isothermal flow in a 100m long pipe line.  

 

In this work we employ 10 elements to discretize the pipeline, as opposed to the 20 

elements used by the other author. As similarly accurate simulation values were 

obtained, this deems the equation set employed in this work as more accurate. The 

trade-off is that it is limited to networks where the change in density over a branch 

connection is small, which is not the case with the other author’s work. 

 

Table 5.4 documents the convergence statistics for different relaxation factor values 

and outlet Mach numbers for this test case. It is clear that in general, the lower the 

relaxation factor the more stable the method, however, the number of required 

iterations increases dramatically (more than twice that of the highest relaxation factor 

in almost all the cases). A reasonable trade-off between stability of the method and the 

cost of computation was found to be a relaxation factor of 1.0. 
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Table 5.4  Convergence data for different Mach numbers and relaxation 

factors for the isothermal pipeline.  

Relaxation Factor 
M2 

0.5 0.8 1 1.2 
0.1 16 9 7 unstable 

0.2 18 10 7 7 

0.3 20 12 9 6 

0.4 22 13 10 8 

0.5 23 14 11 9 

0.6 28 18 13 11 

0.7 32 19 14 12 
 

SUDDEN EXPANSION ELEMENT 

 

This test case is aimed at demonstrating the algorithm’s capability to, in addition to 

accurately describing compressible flow, model incompressible flow with the added 

complexity of a discontinuously varying duct cross section. For this purpose, the 

sudden expansion incompressible flow problem described by White [28] was 

modelled. A schematic of the test case is shown in Figure 5.10.  

 

As shown, two reservoirs are connected by cast-iron pipes of varying diameters, 

which are joined abruptly, with sharp-edged entrance and exit. Including minor losses, 

the water flow rate is to be calculated if the surface of reservoir 1 is 13.716m higher 

than that of reservoir 2, which results in a pressure difference of 134.5 kPa. 

 

 The following properties for water at 20oC are used: 

Density  = 999.8 kg/m3 

Viscosity = 0.001 kg/m.s 

 

Using White [28], the following data for the pipes, entrance and exit is obtained.   

Surface Roughness   = 0.04572mm 

Entrance Loss coefficient  = 0.5 
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Exit loss coefficient    = 1 

 Lengths both    = 6.096m 

 Pipe diameters   = da = 0.0254m and db = 0.0508m 

  
Figure 5.10 Textbook problem schematic 

 

Figure 5.11 shows how the problem was modelled via the simulation package where 

element 1 = entrance, element 2 = pipe a, element 3 = sudden expansion, 

element 4 = pipe and element 5 = exit.  

 
Figure 5.11 Sudden expansion model 

 

The relaxation factor was set to 0.5 and the simulation package was set to use the 

density as a constant. The predicted flow was calculated as 0.003262 m3/s, which is 

within three percent of the value published by White [28]. This result was obtained 

within 15 iterations as shown in the convergence plot (Figure 5.12). The capability of 

the proposed scheme to model incompressible flow over a sudden expansion is 

therefore demonstrated.   

 

1 

Pipe A 
L = 6.096m 
D = 0.0254m 

 
Pipe B 
L = 6.096m 
D = 0.0508m 

 

2 
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Figure 5.12 Convergence plot for the sudden expansion  

 

LINER HOLE ELEMENT 

 

The following test case was created to verify the network model’s capability to 

simulate airflow through a liner hole element. The expression for a liner hole from 

Chapter 4 and the following data was used:  

   Mass flow  = 0.05 kg/s 

   Density (air) = 1.22 kg/m3 

   Diameter of the liner hole = 0.024495 m2 

   Cd (plain holes) = 0.62 

 

 

 

 

Substituting these values into the liner hole expression, a total pressure drop of 

 

   ∆p0   = 7.3889 kPa 
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was calculated, which will be used to validate the simulated pressure drop. 

 

Figure 5.13 shows how the problem was modelled via the simulation package where 

element 1 = pipe, element 2 = liner hole and element 3 = pipe. The liner hole element 

is automatically handled by the simulation package. The pipe elements were made 

short (L1 = L2 = 0.1m) and a fixed friction of 0.01 to limit their influence on the final 

result. 

 

 
 

Figure 5.13 Liner hole model 

 

 

The relaxation factor was set to 0.8. The problem converged and the pressure drop 

calculated in the simulation matched that of the above calculation very well. The 

pressure drop obtained from the simulation was  

 

∆p0 = 7.5781 – 0.18841 = 7.3896 kPa  

 

This result was obtained within 8 iterations as shown in the convergence plot 

(Figure 5.14). The capability of the simulation package to calculate flow over a liner 

hole is therefore demonstrated 

 

 

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  PPrreettoorriiuuss,,  JJ  JJ    (2005)    



Simulation Package and Validation
 

94 

 
 

-4

-3

-2

-1

0

1

2

1 2 3 4 5 6 7 8 9 10

Iteration

lo
g 1

0(
C

on
ve

rg
en

ce
)

 
Figure 5.14 Convergence plot for the liner hole  

 

5.4 Closure   
 

The modular user-interface of a developed pipe-network flow simulation package was 

detailed. The accuracy and performance of the simulation package was validated 

through several benchmark problems. The proposed methodology’s ability to 

accurately model both fully compressible and incompressible flow was demonstrated. 

In the case of the latter, a variable area element was also successfully dealt with. This 

methodology was also found to yield similar or improved results as compared to that 

of other methods. Convergence performance was also found to be similar to other 

techniques. 
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Chapter 6 

Applications 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 6 describes the application of the network model to a gas turbine combustor 

and a turbine blade, and discusses the results that were obtained. 
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6.1 Preamble 

 

The literature survey shown that in the preliminary design phase, there is a need to 

simulate flows in gas turbine combustors in a more efficient and simplified manner. A 

pipe network model therefore may prove to be helpful in addressing this need because 

the network model is able to link the different flow paths to one another easily. In the 

previous chapters a network methodology has been proposed which is able to solve a 

range of flow problems including flow through liner holes. The proposed model was 

validated against published networks and a basis for accuracy was established. In this 

chapter the proposed network model is used to simulate the flow splits through a 

research combustor.  

 

6.2 Research combustor 

 

Figure 6.1 shows a single can research combustor with a reference length (Lref) and 

diameter (Dref) of 174.8 mm and 88.4 mm respectively. This combustor has been 

analysed in various research studies, and details may be found in the references [39-

42]. The combustor is made of stainless steel and coated with thermal barrier coating 

on the inside of the liner. There are three distinct zones into which the combustor can 

be divided namely, the primary, secondary and dilution zones. Six jets are located in 

the primary zone, twelve jets in the secondary zone and ten jets in the dilution zone. 

Film-cooling air is injected into the secondary and dilution zones by means of stacked 

rings with 40 entry holes.  
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Figure 6.1 The single can research combustor 

 

The research combustor is geometrically representative of practical combustors, and 

was designed to operate with a mass flow rate of 0.1 kg/s. The combustor was tested 

at atmospheric conditions, and an overall pressure drop of 1.94 kPa across the 

combustor was measured [40].  

 

Table 6.1 The experimental isothermal mass flow splits of a research 

combustor [41] 

Hole type Ag [mm2] % Mass flow 

Swirler 184.19 8.35 

Primary 205.27 12.50 

Secondary 235.62 15.26 

Dilution 1084.34 60.52 

Cooling 1 25.45 1.73 

Cooling 2 25.45 1.74 

 

 

96

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  PPrreettoorriiuuss,,  JJ  JJ    (2005)    



Applications
 

 

This pressure drop represents a pressure change of 2.45 percent, which is well within 

the 5 percent range of practical combustors. The various flow splits in the combustor, 

i.e. the swirler, primary, secondary, dilution jets and cooling air flows, are obtained 

experimentally during isothermal conditions and are summarised with the geometrical 

areas in Table 6.1 

 

The combustor chamber is modelled in 2D due to the current interface of the 

simulation package. Note that every flow path may be simulated individually which 

will require a more advanced program interface. The holes for the air jets in the 

primary, secondary and dilution zones therefore have to be reduced to two inlet holes 

in each zone (Figure 6.2). The appropriate hole area in 2D for a specific zone is then 

calculated by dividing the sum of the areas of all the holes by two. The same strategy 

is used to take the cooling airflow into account.  

 

 
 

Figure 6.2 The 2D network representation of the research combustor  

 

Each flow path in the combustor chamber is represented by an element with specific 

properties, and these elements are connected via nodes placed on specific points. The 

properties related to each element include flow, density, and friction as in normal duct 

segments. Table 6.2 explains the different elements and supplies the elemental data.  

The nodes contain the massflow, pressure and temperature information.  
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Table 6.2  The elemental data table 

E
le

m
en

t(
s)

 Representation Total 

area 

 

[mm2] 

Effective 

area/ 

element 

[mm2] 

Effective 

diameter/ 

element 

[m] L
os

s t
yp

e 

L
os

s v
al

ue
  

Length 

[m] 

1 

2, 18 

3, 24 

4, 25 

5, 26 

6, 27 

7, 19 

8, 20 

9, 21 

10, 22 

11, 23 

12 

13 

14 

15 

16 

17 

Inlet annulus 

Contracting section 

Annulus C1 

Annulus P 

Annulus S 

Annulus C2 

Cooling ring 1 

Primary holes 

Secondary holes 

Cooling ring 2 

Dilution holes 

Swirler 

Swirl chamber 

Primary zone 

Secondary zone 

Dilution zone 

Outlet 

31415.93 

27878.00 

26275.64 

26275.64 

26275.64 

25566.52 

25.45 

205.27 

235.62 

25.45 

1130.97 

184.19 

4476.97 

5140.28 

5140.28 

5849.40 

9852.03 

31415.93 

13939.00 

13137.82 

13137.82 

13137.82 

12783.26 

12.725 

102.64 

117.81 

12.725 

565.49 

184.19 

4476.97 

5140.28 

5140.28 

5849.40 

9852.03 

0.200000 

0.133200 

0.129300 

0.129300 

0.129300 

0.127600 

0.004025 

0.011430 

0.012250 

0.004025 

0.026830 

0.015310 

0.075500 

0.080900 

0.080900 

0.086300 

0.11200 

Friction 

Friction 

Friction 

Friction 

Friction 

Friction 

Cd 

Cd 

Cd 

Cd 

Cd 

Cd 

Friction 

Friction 

Friction 

Friction 

Friction 

- 

- 

- 

- 

- 

- 

0.80 

0.73 

0.76 

0.80 

0.68 

0.54 

- 

- 

- 

- 

- 

0.1000 

0.0237 

0.0220 

0.0220 

0.0220 

0.0338 

- 

- 

- 

- 

- 

- 

0.0457 

0.0220 

0.0558 

0.0437 

0.3000 

 

In this cold flow simulation of the combustor the air was allowed to flow freely 

through the combustor. This is necessary to see how the network model picks up the 

flow splits.  The annulus area around the liner wall was modelled as a series of 

elements connected to one another. Nodes were placed at positions where air had to 

go through the different zones and cooling channels.  

 

An inlet mass-flow of 0.1 kg/s and an outlet pressure of 101.32 kPa were specified at 

node 1 and node 14 respectively.  A fixed temperature field of 288 K at all nodes was 

specified.  Every element was constructed with the data found in Table 6.2. The 

discharge coefficients that were used originate from the experimental data compiled 

by Turck and Van Niekerk [40 - 42]. 
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The results from the network model were compiled as percentages of the total mass 

flow (See Table 6.3), enabling a comparison to the measurements in Table 6.1. The 

network simulation converged in 18 iterations using a relaxation factor of 0.5. The 

pressure drop over the combustor chamber was calculated as 3.2 kPa. 

 

A 3-D CFD model of the research combustor was obtained from a previous 

study [40]. The CFD analysis is conducted to obtain a second set of data for 

verification purposes. The inputs to this analysis are an inlet mass-flow boundary of 

0.1 kg/s and an outlet pressure boundary of 101.3 kPa. The results obtained by the 

CFD model were converted to the same format as Table 6.1. The mass-flows through 

the holes in the various zones were all added together to give the total mass-flow in 

each zone. Because the total mass-flow is known, these mass-flows can be expressed 

as a percentage of the total mass-flow.  The CFD analysis is now readily comparable 

with that of the network analysis and the experimental data. 

 

  

 
Figure 6.3  A plane view of cold air velocity [m/s] through the combustor 
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The results obtained with the CFD model are shown in table 6.3 and compares 

acceptably with experimental data [41 (Table 6.1), although differences in the flow as 

a percentage of the total mass-flow were observed. A pressure drop of 2.8 kPa is 

calculated from this analysis. Figure 6.3 shows the results of the CFD simulation of 

the combustor during cold flow operation. Table 6.3 gives the results obtained by the 

simulations.  

 

Table 6.3 Numerical results of the network model and CFD simulations for 

cold flow operation 

 Mass flow [kg/s] Area [mm2] % Mass flow 

Network model: 

Swirler 

Primary 

Secondary 

Dilution 

Cooling 1 

Cooling 2 

 

0.00803 

0.01300 

0.01447 

0.06212 

0.001644 

0.001644 

 

184.19 

205.27 

235.62 

1130.97 

25.45 

25.45 

 

7.96 

12.88 

14.34 

61.56 

1.63 

1.63 

CFD model: 

Swirler 

Primary 

Secondary 

Dilution 

Cooling 1 

Cooling 2 

 

0.00744 

0.01086 

0.01274 

0.06549 

0.00173 

0.00173 

 

184.19 

205.27 

235.62 

1130.97 

25.45 

25.45 

 

7.44 

10.86 

12.74 

65.5 

1.73 

1.73 
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Evaluation 

 

From the results it is evident that the network model solves the flows and the flow 

splits in the combustor adequately. The pressure drop over the combustor of 3.2 kPa is 

calculated with the network model, which is 10% higher than that of the CFD results. 

Both these values are higher than the experimental pressure drop of 1.94 kPa and may 

be explained by the fact that the pressure measurement was not taken at sea level 

while the simulations were conducted at sea level. In comparison to the experimental 

data given in Table 6.1, the network model yielded results quite close to the measured 

isothermal mass-flow values. In comparison to the CFD data, the network model 

calculated the flow split adequately, although differences in the primary, secondary 

zones are more significant compared to the experimental data. Reasons for these 

deviations may result from an incorrect specification of the surface roughness 

coefficient, which leads to an incorrectly calculated frictional loss coefficient. This 

may result in an decreased loss coefficient that will decrease the flow resistance in a 

particular element, allowing more flow through the element. Therefore the accurate 

specification and use of the friction factor is of importance in the numerical model. 

  

In another observation of the primary and secondary zones, the network model 

predicted approximately 2 percent more mass-flow than the CFD model, while the 

mass-flow in the dilution zone was under-predicted by approximately 4 percent. This 

raises questions about the accuracy of the discharge coefficients as supplied by the 

references [41, 42]. It may be concluded that the results of the network model are 

bound to agree with the experimental measurements because the values used for the 

discharge coefficients (CD) in the network model are the same as those determined 

experimentally. Using the mass flow splits from the CFD analysis one may estimate 

the value for the discharge coefficient which was found to be approximately 0.64 

which is close to the limit value of 0.62 as explained by Levebre [23]. One may 

therefore conclude that the discharge values for the liner holes supplied by Turck [41] 

are erroneous. This explains the difference in mass flow between the CFD analysis 

and the measured mass flows.  The discharge coefficient should therefore be applied 

with caution. A better remedy would be to calculate the discharge coefficients 

101

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  PPrreettoorriiuuss,,  JJ  JJ    (2005)    



Applications
 

 

empirically, if possible, to avoid inaccuracies as a result of inaccurate CD values. In 

conclusion, the network model showed remarkable promise in adequately simulating 

difficult geometries, such as gas turbine combustors. 

 

6.3 Closure 

 

Gas flow and gas flow-splits in a gas turbine combustor were simulated. The 

combustion chamber of a research combustor was simulated using the proposed 

network methodology derived previously and also with a commercial CFD solver. 

The network simulation gave comparable results in comparison to the measured data 

and the CFD results. The promise of the gas network approach as a very useful 

preliminary design tool was illustrated.  
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CHAPTER 7 

Conclusions and Recommendations 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The conclusion summarises the achievements and limitations of the proposed pipe 

network methodology. Recommendations are made for further work. 
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7.1 Summary 

 

The preliminary design of a gas turbine combustor is a tedious task and normally 

requires the use of simplified semi-empirical models during the initial design phase. 

When different configurations and new technological designs are required that differ 

significantly from proven concepts, these empirical procedures prove to be extremely 

limited. The requirement therefore, was identified for an improved empirical model 

that can be used for the initial overall geometrical design of gas turbine combustors 

account for the effect that the different zone layouts will have on each another.  

 

The general governing equations of fluid flow were presented, as well as the 

derivation thereof for three dimensions. These equations were subsequently reduced 

to their one-dimensional strong form to describe both steady compressible and 

incompressible flow. A flow network discretization strategy was discussed and a flow 

network example using the nodal technique considered. A network simulation 

methodology, which solves a single set of equations for both compressible and 

incompressible flows or flows with significant dynamic pressure fluctuations across 

the elements, was constructed. The resulting set of governing equations are further 

applicable to pipe elements with large area changes in the case of incompressible 

flow. The formulation allowed for combustor type components to be modelled as an 

element in the network. This work constituted the first phase in the development of a 

network simulation technology for application to gas-turbine combustors, and was 

therefore limited to isothermal flow. 

 

The proposed network method is implemented into a Windows based simulation 

package with a user interface. The ability of the proposed method to accurately model 

both compressible and incompressible flow is demonstrated through the analysis of a 

number of benchmark problems. It was shown that the proposed methodology yields 

similar or improved results as compared to that of others. The proposed method is 

applied to a research combustor to solve for isothermal flows and flow splits.  
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7.2 Contributions and conclusions  

 

The following contributions were made in this study: 

 

• A single equation set network simulation model able to describe both steady 

incompressible and compressible flow where the dynamic pressure component is 

fully taken in consideration was developed.  

 

• The model was shown to be able to compute compressible flows at Mach numbers 

up to 0.7 for constant area cross sectional pipe accurately with an analysis time of 

a few seconds.   

 

• The proposed model was further able to compute flows through geometrically 

complex variable cross-sectional area elements, such as sudden expansions, for 

incompressible flows as well as flows through liner holes  

 

• For validation purposes, the proposed methodology was applied to a number of 

benchmark problems. It was found to yield similar or improved solutions as 

compared to that of other work. Convergence performance was found to be 

similar. 

 

• Elements where the friction factor is highly flow dependant was solved efficiently 

due to the fact that such flow related non-linearities was properly treated in the 

methodology. When the friction factor was taken as a function of the flow when 

constructing the pressure correction matrix (i.e. df/dQ ≠ 0) a notable improved 

convergence characteristic in terms of the number of iterations was observed 

while retaining the accuracy of the solution. Only 7 iterations were needed to 

reach convergence in comparison to the 11 iterations where the friction was kept 

constant. 

 

• The developed methodology was applied to model flow trough a research 

combustor. Isothermal flow and flow splits were successfully calculated and the 
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predicted flows were in relative close agreement to measured data as well as 

detailed CFD analysis. 

 

Finally, following is a summary of non-numerical technology related insights gained 

from this study: 

  

• The developed user interface of the simulation package makes it possible for the 

user to set up a problem with ease, and the solution methodology furnishes a 

solution in a few seconds.  

• Use of the network approach to solve physical problems one-dimensionally 

proved to be a very helpful tool indeed. Difficult and complex geometries can be 

modelled with ease. It takes very little time to obtain a converged solution; 

therefore computing costs are reduced and numerous design iterations may be 

performed quickly.  

• The accuracy of the solution to a particular problem using the network approach 

depends on various factors. Firstly, accuracy depends on how well the initial 

problem is represented geometrically by the network approach (i.e., typically, the 

more elements used the more accurate the solution). Secondly, the accuracy of the 

solution is influenced by empirical relationships such as flow friction factors. 

 

7.3 Recommendations for further work 

 

A methodology for the simulation of combustor flow problems, which may be 

represented by a pipe network, has been developed successfully. The following 

recommendations for further work are made to further this design tool: 

  

• The ability of the network methodology can be greatly enhanced by deriving a 

simulation network model for compressible flow in pipes with variable flow cross 

sectional area.    

• The ability of the network methodology may be extended by adding the energy 

equation to the methodology. The three methods of heat transfer which are 

prevalent in gas turbine combustors are conduction, convection and radiation. In 
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the simulation of the hot flows in combustors, all three modes of heat transfer will 

have to be considered.  

 

• The development of new elements that describes other flow processes (e.g. 

pumps) will enhance the functionality of the network approach making it a more 

general and versatile as a design tool. However, the accuracy of the network 

method will depend on how accurate the derived formulation describes the 

physical process of that particular element.  

 

• During the course of this study, a program that solves the combustor flows one-

dimensionally was encountered. The program, HoleFlow, developed by Dr. J.E. 

van Niekerk [42], uses the flow split loss coefficients of the combustor as inputs, 

among others, to calculate the performance, flows and temperatures of the 

combustor. This program and the network model may be integrated in such a way 

that the network model provides the flow splits while HoleFlow acts as the energy 

equation to the network model.  

 

• The program created in this study is limited to a few hundred nodes and branches. 

Possible code improvements include dynamic allocation of memory so that any 

number of nodes and elements may be used. An extended database for different 

fluids or gases is also advisable, as well as a database for the different element 

types if the program is to be commercially viable. 
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Nomenclature  

 

 

Symbols 
 

A 

Ai,j  

bi,j 

B 

cf

di

D 

E 

f(Q) 

F 

g(ρ) 

G 

hc 

hi

Hi,j 

i 

I 

j 

J 

L 

m&  

ni,j 

N 

p 

Flow coefficient matrix 

1/( 2 R Ti,j) 

Element associated with node i and branch j 

Element connectivity matrix 

Friction coefficient 

External mass flow into the node i 

Hydraulic diameter 

Total number of elements 

Function in terms of the flow (used in the pressure drop eq.) 

First order derivative of f in terms of the flow 

Function in terms of the density (used in the pressure drop eq.)  

First order derivative of g in terms of the density 

Heat transfer coefficient 

Mass flow error in node i 

Flow direction correction factor 

Node number 

Total number of nodes 

Element number 

Total number of elements connecting to a node 

Element length 

Mass flow rate 

Node associated with node i and branch j 

Node connectivity matrix 

Static pressure 
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p0

Q 

R 

si,j 

Ta

Ti,j

Tg

 

Total pressure 

Flow or heat transfer 

Gas constant 

Flow direction factor 

Nodal temperature 

Elemental temperature 

Average gas temperature 

 

 

Greek Symbols 
 

∂ 

∆ 

ε 

Σ 

λ 

Partial differential operator 

Delta, a difference 

Convergence parameter 

Summation of specific terms 

Effectiveness 

 

 

Subscripts 
 

i,j 

a 

 

Quantities that apply to ei,j

a = { i or j } 
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Appendix F.  

 

VALIDITY OF THE EMPLOYED STRONG FORM OF THE GOVERNING 

EQUATIONS (EQUATIONS (3.16) AND (3.20)) 

 

The text to follow is to prove that the strong form of the governing equations 

employed in this dissertation, is in fact in agreement with that used by others [20]. 

The difference is merely due to others employing a form in which all terms (p, u and 

ρ) have been reduced to 1-D.  

 

FIGURE 

 
 

MASS CONSERVATION 

The continuity equation for a point in the flow field is given by 

( ) ( ) 02
2

1
1

=
∂
∂

+
∂
∂ u

x
u

x
ρρ     (F1) 

Average each term over the cross-sectional area: 

    ( )
( )

( )

( )
( )

( )

022
2

21
1

2

2

1

1

=
∂
∂

+
∂
∂

∫∫
−−

dxu
x

dxu
x

xh

xh

xh

xh

ρρ    (F2) 

Consider the first term on the LH side of Equation (F2) and implement the Leibnitz’s 

rule for x1;i=1,2: 

 

Cross-flow Area: A(x1) 
• Compressible 
• Viscous flow 
• Steady State 
• dA=1dx1 
• A=2h h(x1) 

x2 

x1 

(u2 not shown, but not zero)

u1
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For viscous flow ui(xi,h) = ui(xi,h) = 0. Substitute this into the RH side of 

Equation (F3) and reduce it to  
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where iuρ denotes ( )
( )

( )

dAu
A

xh

xh
i∫

−

1

1

1 ρ . Note that mathematically ii uu ρρ ≠ . Therefore, 

( ) ( ) 02
2

1
1

=+ Au
dx
dAu

dx
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As 02 =uρ for symmetrical ducts                  

( ) 02
2

=Au
dx
d ρ  

      ( ) ( )Au
dx
dAu

dx
d

1
1

1
1

.ρρ ≠               (F5) 

 

MOMENTUM CONSERVATION 

 

The momentum equation in the direction of flow reads 

Fruu
xx

p
j =∂

∂
+

∂
∂

1
11

ρ      (F6) 

Where x1 is aligned wit the duct axisymmetric axis1. Average each term over the 

cross-sectional area: 

                                                 
1 The averaged momentum equation in other directions is identically zero. This is trivial to prove and is 
left for to the reader. 
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Consider the pressure term on the LH side of Equation (F7) and apply the Leibnitz’s 

rule. Assume ( ) ( )
11 dx

hd
dx

hd −=  and ( ) ( )hxphxp −= ,, 11  due to symmetry: 
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In the case that ( ) ( )hxpxp ,11 =  
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In the case that ( ) ( )hxpxp ,11 ≠  
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Consider the second term in Equation (F6). Then, as previously 
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Substituting Equations (F10) and (F11) into the LH side of Equation (F7) 
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Fundamentally then 
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However, if the following approximation is made that ( ) ( )hxpxp ,11 ≈  
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The above governing equation is identical to that of the other’s report as well as that 

by Greyvenstein [20]. This proves that the strong form of the governing equation as 

employed in this dissertation must be supported by the examiner if considered clearly. 

Finally, it is noted that over the duct cross-sectional area A, it is clear that 0=ju . In 

passing, we note that even for laminar flow, there is an error made with this 

approximation. 
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Appendix G.  

 

VALIDITY OF EQUATION (4.29) 

 

In this appendix, a proof is documented to show that the proposed discreet momentum 

equation of others [20], which describes the elemental (global) momentum 

conservation pertaining to flow through a duct of constant cross-sectional area, is in 

fact an approximation and not exact. It will further be proven that the discreet 

equation employed in this dissertation represents the exact expression.  This will be 

done with the proposed momentum Equation (23) of others as starting point such that 

there is no room left for doubt. 

 

VALIDITY OF THE MOMENTUM EQUATION 

Equation (23) of others; 

Fr
x
uu

x
p

−=
∂
∂

+
∂
∂ ρ      (23) 

refers and is valid for both compressible and incompressible flow with variable cross-

sectional area in a infinitesimal one-dimensional control volume.  We will start at  

Fr
dx
duu

dx
dp

−=+
11

ρ                 (G1) 

Applying the quotient rule 
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dx
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1

2
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              (G2) 

 

Consider the third term on the LH side. By introducing area, applying the quotient 

rule and ensuring mass conservation over the element, the latter term can be expressed 

as 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  PPrreettoorriiuuss,,  JJ  JJ    (2005)    



Appendices
 

 

 
 

( )

( )

χ

ρ

ρρ

ρρ

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

11

11

0
dx
dAu

A
u

dx
dAuuA

dx
d

A
u

u
dx
dA

A
uu

dx
duu

 

Thus, Equation (G2) becomes 
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Equation (G3) can now be integrated over the element 
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where ∆x denotes the length of the element. Implementing the total pressure concept 

as explained in this dissertation, i.e. Equation (3.21) and treating the subsequent 

dynamic pressure terms, Equation (G4) may be rewritten as 
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The expression above, as derived, is valid for both compressible and incompressible 

flow with variable cross-sectional area. In the case where the cross-sectional area 

remains constant, therefore χ=0, Equation (G5) reduces to 
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Equation (G6) is identical to that of others, i.e. equation (30), which was an area of 

concern. The latter equation is identical to that which the examiner obtained derived 

from Equation (4.24). Consequently Equation (G6) is then mathematically identical to 

Equation (4.29). As the aforementioned equations (Equation (G6) and (4.29)) were 

obtained via exact integration (no approximations made), these must be more accurate 

than that of others. This will be demonstrated in the following section. One may 

conclude that the latter expression is therefore more accurate than that of others.   

 

VALIDATION OF THE ABOVE 

Regarding the accuracy of the dissertation’s formulation, the following comparative 

analysis was done to further validate which of the conflicting expressions (i.e. 

Equation (23) above and Equation (G6)) is in error (an approximation). This was done 

by choosing arbitrary functions (polynomials) for ρ and u and then calculating the 

resulting ∆p0 exactly. This can then be compared to that obtained via the expressions 

proposed by others as well as the author. 

 

We commence by selecting the following equation for velocity:   

 

322 ++= xxu  

 

Satisfying the continuity equation, i.e. ( ) 0=
∂
∂ u
x
ρ , the expression for ρ follows as  

32
5

2 ++
=

xx
ρ  

 

The above relations for velocity and density are now substituted into the momentum 

governing equation (i.e. Eq. (3.20)) for a constant area duct. After differentiation and 

integration it follows that: 
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For the purposes of this response, Fr∆x is kept constant at a value of -7.5 in all cases. 

The values of x are as follows: 
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Considering next the expressions for dp0 proposed by others: a formulae for pressure 

drop can be derived (Eq.(29):Others) as  
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Therefore, substituting the relations for velocity and density into eq.(G8), dp0 

becomes: 
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We now plot the Eq.(G9) against the exact solution Eq. (G7):  
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Thus, it is clear that the other’s expression is not exact particularly if dx becomes 

large. Considering next the expression for dp0 proposed by the author: Eq.(4.29) of 

the author was reduced to the same form to that of the above pressure drop equation 

(i.e. Eq.(G8)).  

( ) jiij uuFrdp ρρ −+=
2
1

0                (G10) 

By substituting the relations for velocity and density into Eq.(G10) it can be shown 

that Eq.(G10) is exactly the same as Eq.(G7): 
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Therefore, the greater dx, the greater the error of other’s Eq. (29) becomes compared 

to the analytical solution. However, it is evident that Eq.(4.24) as described in this 

dissertation satisfies the analytical solution exactly as shown. 
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