
 
References 

100 

 

REFERENCES

Alexander, R.T. & Bieman, J.M. (2002) 'Challenges with Aspect-oriented Technology',  ICSE 

Workshop on Software Quality, Orlando, Flordia, 25 May 2002. 

 

Anderson, R.J. (2001) Security engineering: a guide to building dependable distributed 

systems, Wiley, Computer Publishing, New York, USA. 

 

Andrews, G.R. & Reitman, R.P. (1980) 'An axiomatic approach to information flow in 

programs', ACM Transactions on Programming Languages and Systems, vol. 2, no. 1, pp. 56-

76. 

 

Baniassad, E. & Clarke, S. (2004) ' Finding Aspects in Requirements with Theme/Doc', in 

Proceedings of Early Aspects 2004: Aspect-Oriented Requirements Engineering and 

Architecture Design, Lancaster, UK,  22 March 2004. 

 

Bell, D.E. & La Padula, L.J. (1976) Secure computer systems: Unified Exposition and Multics 

Interpretation, Technical Report ESD-TR-75-306, Electronics Systems Division, Bedford USAF 

Base. 

 

Bodkin, R. (2004) 'Enterprise Security Aspects',  AOSD'04 International Conference on 

Aspect-Oriented Software Development, Lancaster, UK, March 2004, <[Online] Available: 

http://www.cs.kuleuven.ac.be/~distrinet/events/aosdsec/papers.html>. 

 

Boehm, B. (2002) 'Get Ready for Agile Methods with Care', Computer, vol. 35, no. 1, pp. 64-

9. 

 

 
 
 

http://www.cs.kuleuven.ac.be/~distrinet/events/aosdsec/papers.html%3e


 
References 

101 

 

Boström, G. (2004) 'A case study on estimating the software engineering properties of 

implementing Database Encryption as an aspect',  Proceedings of the 3rd international 

conference on Aspect-oriented software development, Lancaster, UK, 22-24 March 2004. 

 

Briscoe, B., Rizzo, M., Tassel, J. & Damianakis, K. (2000) 'Lightweight policing and charging 

for packet networks', in 3rd IEEE Conference on Open Architectures and Network 

Programming, Tel Aviv, Israel,  26-27 March 2000, pp. 77-87. 

 

Cederquist, J.G., Corin, R., Dekker, M.A.C., Etalle, S., den Hartog, J.I. & Lenzini, G. (2006) The 

Audit Logic: Policy Compliance in Distributed Systems, Centre for Telematics and Information 

Technology, University of Twente, Enschede. 

 

Chan, M., Woon, I. & Kankanhalli, A. (2006) 'Perceptions of information security in the 

workplace: linking information security climate to compliant behavior', Journal of 

Information Privacy and Security, vol. 1, no. 3, pp. 18-41. 

 

 CHAPTER 9: A DRAFT BILL ON THE PROTECTION OF PERSONAL INFORMATION (2005), 

viewed 30 November 2009, <Available [Online] 

http://old.ispa.org.za/regcom/privacyfiles/chapter-9-draft-bill-protection-personal-

info.pdf>. 

 

Chen, L. (2004) Aspect-Oriented Programming in Software Engineering, Technical Report, 

Wake Forest University, Department of Computer Science. 

 

Chon, R., Enokido, T. & Wietrzsk, V. (2004) 'Role Locks to Prevent Illegal Information Flow 

among Objects', in 18th International Conference on Advanced Information Networking and 

Applications (AINA'04) Volume 1, Fukuoka, Japan,  29-31  March 2004, pp. 196-201. 

 

Chou, S.-C. (2003) 'Information Flow Control among Objects: Taking Foreign Objects into 

Control', in 36th Annual Hawaii International Conference on System Sciences (HICSS'03), Big 

Island, Hawaii,  6-9 January 2003, pp. 335-44. 

 
 
 

http://old.ispa.org.za/regcom/privacyfiles/chapter-9-draft-bill-protection-personal-info.pdf%3e
http://old.ispa.org.za/regcom/privacyfiles/chapter-9-draft-bill-protection-personal-info.pdf%3e


 
References 

102 

 

 

Clarke, R.E. (2002) 'e-Consent: A Critical Element of Trust in e-Business',  15th Bled 

Electronic Commerce Conference: eReality:Constructing the eEconomy, Bled, Slovenia, 17-

19 June 2002. 

 

Constantinides, C. & Hasson, Y. (2002) 'Beyond objects: Improving the modularity of 

complex software',  Workshop on Grand Challenges for Computing Research, Edinburgh, 

Scotland, 24-26 November 2002. 

 

D' Arcy, D. & Hovav, A. (2007) 'Deterring internal information systems misuse', 

Communications of the ACM, vol. 50, no. 20, pp. 113-7. 

 

De Win, B., Joosen, W. & Piessens, F. (2002) 'Developing Secure Applications through 

Aspect-Oriented Programming', in Aksit, M., Clarke, S., Elrad, T. & Filman, R.E. (eds), Aspect-

Oriented Software Development, Addison-Wesley, Boston, p. 633–50. 

 

De Win, B., Joosen, W. & Piessens, F. (2003) 'AOSD & Security: A Practical Assessment',  

Workshop on Software engineering Properties of Languages for Aspect Technologies 

(SPLAT03), Boston, Massachusetts, 17-21 March 2003. 

 

De Win, B., Piessens, F. & Joosen, W. (2002) 'On the importance of the separation-of-

concerns principle in secure software engineering',  Workshop on the Application of 

Engineering Principles to System Security Design, Boston, Massachusetts, 6-8 November 

2002. 

 

De Win, B., Vanhaute, B. & De Decker, B. (2002) 'How aspect-oriented programming can 

help to build secure software', Informatica, vol. 26, no. 2, pp. 141-9. 

 

De Win, B., Vanhaute, B. & Decker, B. (2001) 'Security Through Aspect-Oriented 

Programming', in Decker, B.D., Piessens, F., Smits, J. & Herreweghen, E.V. (eds), Advances in 

 
 
 



 
References 

103 

 

Network and Distributed Systems Security, IFIP TC11 WG11.4 First Working  Conference on 

Network Security, Leuven, Belgium,  26-27 November 2001, pp. 125-38. 

 

Denning, D.E. & Denning, P.J. (1977) 'Certification of Programs for Secure Information Flow', 

Communications of the ACM, vol. 20, no. 7, pp. 504 -13. 

 

Devanbu, P.T. & Stubblebine, S. (2000) 'Software engineering for security: a roadmap', in 

Proceedings of the Conference on The Future of Software Engineering, Limerick, Ireland,  4-

11 June 2000, pp. 227-39. 

 

Dewan, P., Grundin, J. & Horvitz, E. (2007) 'Towards a mixed-initiative access control', in 

COLCOM '07: Proceedings of the 2007 International Conference on Collaborative Computing: 

Networking, Applications and Worksharing, New York, USA,  November 12-15, 2007, pp. 64-

71. 

 

Downs, D., Rub, J.R., Kung, K.C. & Jordan, C.S. (1985) 'Issues in Discretionary Access Control', 

in 1985 IEEE Symposium on Security and Privacy, 1985, Oakland, CA,  22-24 April 1985, pp. 

208-15. 

 

Elrad, T.M., Askit, G., Kiczales, K., Lieberherr, H. & Ossher. (2001) 'Discussing Aspects of 

AAOP', Communications of the ACM, vol. 44, no. 10, pp. 33-8. 

 

Engel, M. & Freisleben, B. (2005) 'Supporting autonomic computing functionality via 

dynamic operating system kernel aspects', in Proceedings of the 4th international 

conference on Aspect-oriented software development, Chicago, Illinois,  22-26 March 2005, 

p. 51 – 62. 

 

English, C., Nixon, P., Terzis, S., McGettrick, A. & Lowe, H. (2002) 'Security Models for 

Trusting Network Appliances',  5th Annual Workshop on Networked Appliances, Liverpool, 

England, October 2002. 

 

 
 
 



 
References 

104 

 

Esquivel, A., Haya, P.A. & Garc´ıa-Herranz, M. (2007) 'Managing Pervasive Environment 

Privacy Using the “fair trade” Metaphor', in Meersman, R., Tari, Z. & Herrero, P. (eds), On 

the move to meaningful Internet systems: OTM 2007 Workshops, Springer-Verlag, Berlin, 

Germany, vol. 4806,  Lecture Notes in Computer Science, pp. 804-13. 

 

Etalle, S. & Winsborough, W.H. (2007) 'A Posteriori Compliance Control', in SACMAT '07: 

Proceedings of the 12th ACM symposium on Access control models and technologies, Sophia 

Antipolis, France,  20-22 June 2007, pp. 11-20. 

 

Falcarin, P., Baldi, M. & Mazzocchi, D. (2004) 'Software Tampering Detection using AOP and 

mobile code',  3rd International Conference on Aspect-Oriented Software Development 

(AOSD'04), Lancaster, UK, 22-24 March 2004. 

 

Ferreira, A., Cruz-Correia, R., Antunes, L., Farinha, P., Oliveira-Palhares, E., Chadwick, D.W. & 

Costa-Pereira, A. (2006) 'How to break access control in a controlled manner', in 

Proceedings of the 19th IEEE International Symposium on Computer-Based Medical Systems, 

Salt Lake City, Utah,  22-23 June 2006, pp. 847-51. 

 

Georgiev, I.K. & Georgiev, I.I. (2001) 'A security model for distributed computing', Journal of 

computing sciences in colleges, vol. 17, no. 1, pp. 178-86. 

 

Grandison, T.W.A. (2003) 'Trust Management for Internet Applications', PHD thesis, Imperial 

College London. 

 

Groher, I. & Schulze, S. (2003) 'Generating Aspect Code from UML Models',  Workshop on 

Aspect-Oriented Modeling with UML, AOSD, Boston, Mass. USA, 17-21 March 2003. 

 

Grundy, J. & Ding, G. (2002) 'Automatic Validation of Deployed J2EE Components Using 

Aspects', in 17th IEEE International Conference on Automated Software Engineering 

(ASE'02), Edinburgh, UK,  23-27 September 2002, pp. 47-57. 

 

 
 
 



 
References 

105 

 

Haldar, V., Chandra, D. & Franz, M. (2005) 'Practical, Dynamic Information Flow for Virtual 

Machines', in PLID'05 2nd International Workshop on Programming Language Interference 

and Dependence, London, UK,  6 September 2005. 

 

Harrison, W. & Ossher, H. (1993) 'Subject-oriented programming: a critique of pure objects', 

in Proceedings of the eighth annual conference on Object-oriented programming systems, 

languages, and applications, Washington D.C.,  26 September – 1 October, pp. 411-28. 

 

Herath, T. & Rao, H.R. (2009) 'Protection motivation and deterrence: a framework for 

security policy compliance in organisations', European Journal of Information Systems, vol. 

18, no. 2, pp. 106-25. 

 

Higgins, G.E., Wilson, A.L. & Fell, B.D. (2005) 'An Application of Deterrence Theory to 

Software Piracy', Journal of Criminal Justice and Popular Culture, vol. 12, no. 3, pp. 166-84. 

 

Hong, J.I. & Landay, J.A. (2004) 'An Architecture for Privacy Sensitive Ubiquitous Computing', 

in Proccedings of the International Conference on Mobile Systems, Applications and Services, 

Boston, Massachusetts, USA,  pp. 177-89. 

 

Houmb, S.H., Georg, G., France, R. & Matheson, D. (2004) 'Using aspects to manage security 

risks in risk-driven development', in 3rd International Workshop on Critical Systems 

Development with UML, Lisbon, Portugal,  11-15 October, pp. 71-84. 

 

Imine, A., Cherif, A. & Rusinowitch, M. (2009) An Optimistic Mandatory Access Control 

Model for Distributed Collaborative Editors, Technical Report, INRIA. 

 

Izaki, K., anaka, K. & Takizawa, M. (2001) 'Information Flow Control in Role-Based Model for 

Distributed Objects', in Eighth International Conference on Parallel and Distributed Systems, 

Kyongju City, Korea,  26-29 June 2001, pp. 363-70. 

 

 
 
 



 
References 

106 

 

Jones, R.L. & Rastogi, A. (2004) 'Secure Code: Building Security into the Software 

Development Life Cycle', Information Security Journal: A Global Perspective, vol. 15, no. 5, 

pp. 29-39. 

 

Jøsang, A. & Patton, M. (2001) User Interface Requirements for Authentication of 

Communication, Technical Report, Distributed Systems Technology Centre, Brisbane, 

Australia. 

 

Kersten, M. (2005)  AOP Tools Comparison, AOP@Work, DeveloperWorks, IBM, viewed 1 

December 2005, <[Online] Available: http://www.ibm.com/developerworks/library/j-

aopwork1>. 

 

Kiczales, G. (1996) 'Aspect-Oriented Programming', Computing Surveys(CSUR), vol. 28, no. 4, 

p. 154. 

 

Kiczales, G., Hillsdale, E., Hugunin, J., Kersten, M., Palm, J. & Griswold, W.G. (2001) 'Getting 

Started with AspectJ', Communications of the ACM, vol. 44, no. 10, pp. 59-65. 

 

Kiczales, G., Irwin, J., Lamping, J., Loingtier, J., Lopes, C.V., Maeda, C. & Mendhekar, A. 

(1997) 'Aspect-Oriented Programming ', in Aksit, M. & Matsuoka, S. (eds), Proceedings of the 

11th European Conference on Object-Oriented Programming (ECOOP), Springer-Verlag, 

Jyväskylä, Finland, vol. 1241,  Lecture Notes in Computer Science, pp. 220-40. 

 

Kim, S. & Leem, C.S. (2004) 'An Information Engineering Methodology for the Security 

Strategy Planning', in Lagana, A. (ed.), Computational Science and Its Applications - ICCSA 

2004, Springer, Berlin/Heidelberg, vol. 3043,  Lecture Notes in Computer Science, pp. 597-

607. 

 

Kumar, A., Singh, A.K. & Babu, R.S. (2001) 'A security assurance framework for component 

based software development', Informatica, vol. 25, no. 4, pp. 509 - 15. 

 

 
 
 

http://www.ibm.com/developerworks/library/j-aopwork1%3e
http://www.ibm.com/developerworks/library/j-aopwork1%3e


 
References 

107 

 

Läufer, K., Thiruvathukal, G.K., Elrad, T. & Bader, A. (2003) 'Enhancing the CS Curriculum 

with Aspect Oriented Software Development (AOSD), Working Paper',  International 

Conference on aspect-oriented software development, Boston, 17-21 March 2003. 

 

Lee, G., Kim, W. & Kim, D.-K. (2004) 'Novel Method to Support User's Consent in Usage 

Control for Stable Trust in E-business', in Lagan, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, 

C.J.K. & Gervasi, O. (eds), Computational science and its applications - ICCSA 2004, vol. 3045,  

Lecture Notes in Computer Science, pp. 906-14. 

 

Li, N., Moa, Z. & Chen, H. (2009) 'Usable Mandatory Access Control for Operating Systems', 

in Roa, H.R. & Upadhyaya (eds), Information Assurance, Security and Privacy (Handbooks in 

Information Systems), Emerald Group Publishing Limited, Bingley, UK, vol. 14,  pp. 335-63. 

 

Li, X., Naeem, N.A. & Kemme, B. (2005) 'Fine-Granularity Access Control in 3-tier Laboratory 

Information Systems', in Proceeding of the 9th Database Engineering and Application 

Symposium, (IDEAS '05), Montreal, Canada,  25-27 July 2005, pp. 391- 7. 

 

Mao, Z., Li, N., Chen, H. & Jiang, X. (2009) 'Trojan horse resistant discretionary access 

control', in SACMAT '09: Proceedings of the 14th ACM symposium on Access control models 

and technologies, Stresa, Italy,  pp. 237-46. 

 

March, M.T. & Smith, G.F. (1995) 'Design and natural science research on information 

technology ', Decision Support Systems, vol. 15, no. 4, pp. 251-66. 

 

Masuhara, H. & Kawauchi, K. (2003) 'Dataflow Pointcut in Aspect-Oriented Programming', in 

Ohori, A. (ed.), Proceedings of The First Asian Symposium on Programming Languages and 

Systems (APLAS'03), Springer, Beijing, China, vol. 2895,  Lecture Notes in Computer Science, 

pp. 105-21. 

 

 
 
 



 
References 

108 

 

McCollum, C.J. & Messing, J.R.N.L. (1990) 'Beyond the Pale of MAC and DAC Defining new 

forms of access control', in Proceedings of IEEE Symposium on Security and Privacy, Oakland, 

California, USA,  17-19 May 1990, pp. 190-200. 

 

Miller, S.K. (2001) 'Aspect-Oriented Programming Takes Aim at Software Complexity', 

Computer, vol. 34, no. 4, pp. 18-21. 

 

Murphy, G.C., Walker, R.J. & Baniassad, E.L.A. (1999) 'Evaluating Emerging Software 

development Technologies: Lessons learned from Assessing Aspect-Oriented Programming', 

IEEE Transactions on Software Engineering, vol. 25, no. 4, pp. 483-55. 

 

Murphy, G.C., Walker, R.J., Baniassad, E.L.A., Rollibard, M.P., Lai, A. & A., K.M. (2001) 'Does 

aspect-oriented programming work?' Communications of the ACM, vol. 44, no. 10, pp. 75-7. 

 

Offerman, P., Levina, O., Schonherr, M. & Bub (2009) 'Outline of a design science research 

process', in 4th International Conference on Design Science Research into Systems and 

Technology, Malvern, Pennsylvania,  6-9 May 2009. 

 

Osborn, S., Sandhu, R. & Munawer, Q. (2000) 'Configuring Role-Based Access Control to 

Enforce Mandatory and Discretionary', ACM Transactions on Information and System 

Security, vol. 3, no. 2, pp. 85-106. 

 

Padayachee, K. (2007) 'Instrumentation of AspectJ Programs: An Exploratory Study', in 

Proceedings of the International MultiConference of Engineers and Computer Scientists 

2007, Hong Kong, vol. 1,  21- 23 March 2007, pp. 1077-81. 

 

Padayachee, K. & Eloff, J.H.P. (2006) 'The Next Challenge: Aspect-Oriented Programming', in 

Nyongesa, H. (ed.), Proceedings of the Sixth IASTED International Conference on Modelling, 

Simulation and Optimization, Gaborone, Botswana,  11-13 September 2006, pp. 304-7. 

 

 
 
 



 
References 

109 

 

Padayachee, K. & Eloff, J.H.P. (2007) 'Enhancing Optimistic Access Controls with Usage 

Control', in Lambrinoudakis, C., Pernul, G. & Tjoa, A.M. (eds), Trust, Privacy and Security in 

Digital Business, Springer, Regensburg, Germany, vol. 4657,  Lecture Notes in Computer 

Science, pp. 75 - 82. 

 

Padayachee, K. & Eloff, J.H.P. (2009) 'Adapting usage control as a deterrent to address the 

inadequacies of access controls', Computers and Security, vol. 28, no. 7, pp. 536-44. 

 

Padayachee, K. & Wakaba, N. (2007) 'A Taxonomy of Aspect-Oriented Security',  The 2007 

European Applied Business Research Conference, Venice, Italy, 4-7 June 2006. 

 

Park, J., Zhang, X. & Sandhu, R. (2004) 'Attribute Mutability in Usage Control', in Proceedings 

of the annual IFIP WG 11.3 Working Conference on Data and Applications Security, Sitges, 

Catalonia, Spain,  26 July 2004, pp. 15-29. 

 

Pavlich-Mariscal, J., Michel, L. & Demurjian, S. (2005) 'A Formal Enforcement Framework for 

Role-Based Access Control using Aspect-Oriented Programming', in Proceedings of 

ACM/IEEE 8th International Conference on Model Driven Engineering Languages and 

Systems (MoDELS/UML 2005), Montego Bay, Jamaica,  2-7 October 2005, pp. 537-52. 

 

Pfleeger, C.P. (1997) Security in Computing, 2nd edn, Engelwood Cliffs, NJ.:Prentice Hall, 

United States of America. 

 

Pfleeger, C.P. & Pfleeger, S.L. (2003) Security in Computing, 3rd edn, Prentice Hall, Upper 

Saddle River, New Jersey. 

 

Pieprzyk, J., Hardjono, T. & Seberry, J. (2003) Fundamentals of computer security, Springer, 

Berlin. 

 

 
 
 



 
References 

110 

 

Pohl, C., Charfi, A., Gilani, W., Göbel, S. & B.G., H. (2008) 'Adopting Aspect-Oriented 

Software Development in Business Application Engineering',  7th International Conference 

on Aspect-Oriented Development, Brussels, Belgium, 31 March -  4 April 2008. 

 

Povey, D. (1999) 'Optimistic Security: A New Access Control Paradigm',  Proceedings of the 

1999 workshop on New security paradigms, Caledon Hills, Ontario, Canada, 22 - 24 

September 1999. 

 

Pretschner, A., Hilty, M., Schutz, F., Schaefer, C. & Walter, T. (2008) 'Usage Control 

Enforcement: Present and Future', IEEE S ecurity & Privacy, vol. 6, no. 4, pp. 44-53. 

 

Pretschner, A. & Walter, T. (2008) 'Negotiation of Usage Control Policies - Simply the Best?' 

in ARES '08: Proceedings of the 2008 Third International Conference on Availability, 

Reliability and Security, Washington, DC, USA,  4-7 March 2008, pp. 1135-6. 

 

Pudney, P. (2003)  e-Consent in consumer health & telemedicine, University of South 

Australia, viewed 30 November 2009, <[Online] Available: 

http://www.pudney.net.au/~phillip/papers/econsent.pdf>. 

 

Raje, R.R., Zhong, M. & Wang, T. (2001) 'Case Study: A Distributed Concurrent System with 

AspectJ', ACM SIGAPP Applied Computing Review, vol. 9, no. 2, pp. 17-23. 

 

Ramachandran, R., Pearce, D.J. & Welch, I. (2006) 'AspectJ for Multilevel Security',  The 5th 

AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Software 

(ACP4IS), Bonn, Germany, 2006, 21 March 2006. 

 

Rjaibi, W. & Bird, P. (2004) 'A Multi-Purpose Implementation of Mandatory Access Control in 

Relational Database Management Systems', in Proceedings of 30th VLDBases Conference, 

Toronto, Canada,  pp. 1010-20. 

 

 
 
 

http://www.pudney.net.au/~phillip/papers/econsent.pdf%3e


 
References 

111 

 

Robinson, P., Rits, M. & Kilian-Kehr, R. (2004) 'An Aspect of Application Security 

Management',  Proceedings of the 2nd International Workshop AOSDSEC’04, Lancaster, UK, 

March 2004. 

 

Russell, D.F. & Gangemi, G.T. (1991) Computer Security Basics, O'Reilly Media and Associate, 

Sebastopol, California. 

 

Samarati, P., Bertino, E., Ciampichetti, A. & Jajodia, S. (1997) 'Information Flow Control in 

Object-Oriented Systems', IEEE Transactions on Knowledge and Data Engineering, vol. 9, no. 

4, pp. 524-38. 

 

Samarati, P. & de Capitani di Vimercati, S. (2001) 'Access control: Policies, models, and 

mechanisms', in Focardi, R. & Gorrieri, R. (eds), Foundations of Security Analysis and Design, 

Springer-Verlag, Berlin, vol. 2172,  Lecture Notes in Computer Science, pp. 137-96. 

 

Sandhu, R. & Park, J. (2003) 'Usage Control: A Vision for Next Generation Access Control', in 

Gorodetsky, V., Popyack, L.J. & Skormin, V.A. (eds), Computer Network Security, Springer, 

Berlin/Heidelberg, vol. 2776,  Lecture notes in Computer Science, pp. 17-31. 

 

Sandhu, R.S. (2001) 'Future Directions in Role-Based Access Control Models', in Gorodetski, 

V.I., Skormin, V.A. & Popyack, L.J. (eds), Information Assurance in Computer Networks, 

Springer, Berlin, Heidelberg, vol. 2052,  Lecture Notes in Computer Science, pp. 22-6. 

 

Sandhu, R.S., Coyne, E.J., Feinstein, H.L. & Youman, C.E. (1996) 'Role-Based Access Control 

Models', IEEE computer, vol. 29, no. 2, pp. 38-47. 

 

Shah, V. & Hill, F. (2003)  An Aspect-Oriented Security Assurance Solution, Defence Advanced 

Research Projects Agency, viewed 1 December 2005, <[Online] Available: 

http://www.stormingmedia.us/50/5039/A503914.html>. 

 

 
 
 

http://www.stormingmedia.us/50/5039/A503914.html%3e


 
References 

112 

 

Shin, W. & Yoo, S.B. (2007) 'Secured Web Services Based on Extended Usage Control', in 

Washio, T.Z., Z-H., Huang, J.Z., Hu, X., Li, J., Xie, C., He, J., Zou, D., Li, K.-C. & Freire, M.M. 

(eds), Emerging Technologies in Knowledge Discovery and Data Mining, PAKDD 2007, 

International Workshops, Nanjing, China, May 22-25, 2007, Springer, Berlin, vol. 4819,  

Lecture Notes in Computer Science, pp. 656-63. 

 

Singh, A. (2005) 'The Scalablity of AspectJ', MSC thesis, University of California, Davis. 

 

Slowikowski, P. & Zielinski, K. (2003) 'Comparison Study of Aspect-oriented and Container 

Managed Security',  Proceedings of the ECOOP workshop on analysis of Aspect-Oriented 

Software, Darmstadt, Germany, 21-25 July 2003. 

 

Stevens, G. & Wulf, V. (2002) 'A New Dimension in Access Control: Studying Maintenance 

Engineering across Organizational Boundaries',  Proceedings of the ACM conference on 

Computer Supported Cooperative Work (CSCW), New Orleans, Louisiana, USA, 16 -20 

November 2002. 

 

Syalim, A., Tabata, T. & Sakurai, K. (2005) 'Usage Control Model and Architecture for Data 

Confidentiality in a Database Service Provider', in Indonesia Cryptology and Information 

Security Conference, Jakarta, Indonesia,  30-31 March 2005, pp. 155-60. 

 

Tolone, W., Ahn, G.-J., Pai, T. & Hong, S.-P. (2005) 'Access Control in Collaborative Systems', 

Acm Computing Surveys, vol. 37, no. 1, pp. 29-41. 

 

Tymann, P.T. & Schneider, G.M. (2008) Modern Software Development using Java, 2nd edn, 

Thomson Course Technology, Boston, Massachusetts. 

 

Ubayashi, N., Masuhara, H. & Tamai, T. (2004) 'An AOP Implementation Framework for 

Extending Joint Point Models',  Proceedings of the ECOOP' 2004 Workshop on Reflection, 

AOP and Meta-Data for Software Evolution, Oslo, Norway, 15 June 2004. 

 

 
 
 



 
References 

113 

 

Vanhaute, B. & De Win, B. (2001) 'AOP, Security and Genericity',  1st Belgian AOSD 

Workshop, Vrije Universiteit Brussel, Brussels, Belgium, 8 November 2001. 

 

Verhanneman, T., Piessens, F., De Win, B. & Joosen, W. (2005) 'Uniform Application-level 

Access Control Enforcement of Organizationwide Policies', in Proceedings of the 21st Annual 

Computer Security Applications Conference (ACSAC 2005), Tucson, Arizona,  5-9 December 

2005, pp. 431-40. 

 

Viega, J., Bloch, J.T. & Chandra, P. (2001) 'Applying Aspect-Oriented Programming to 

Security', Cutter IT Journal, vol. 14, no. 2, pp. 31-9. 

 

Viega, J. & Evans, D. (2000) 'Separation of concerns for security', in Tarr, P., Harrison, W., 

Ossher, H., Finkelstein, A., Nuseibeh, B. & Perry, D. (eds), ICSE 2000 Workshop on Multi-

Dimensional Separation of Concerns in Software Engineering, Limerick, Ireland,  10 June 

2000, pp. 125-38. 

 

Viega, J. & Voas, J. (2000) 'Can Aspect-Oriented Programming Lead to More Reliable 

Software', IEEE Software, vol. 17, no. 6, pp. 19-21. 

 

Wakaba, N. 2004, 'A Taxonomy of Aspect-Oriented Security (Honours Project), Unpublished 

Dissertation', University of South Africa. 

 

Walker, R.J., Baniassad, E.L.A. & Murphy, G.C. (1999) 'An initial assessment of aspect-

oriented programming', in Proceedings of the 21st international conference on Software 

engineering, Los Angeles, California,  16-22 May 1999, pp. 120-30. 

 

Wang, H., Zhang, Y. & Cao, J. (2006) 'Ubiquitous Computing Environments and Its Usage Access 

Control', in InfoScale '06: Proceedings of the 1st international conference on Scalable 

information systems, Hong Kong,  29 May - 1 June 2006, pp. 6-16. 

 

 
 
 



 
References 

114 

 

Wegner, P. (1990) 'Concepts and Paradigms of Object-Oriented Programming', ACM 

SIGPLAN OOPS Messenger, vol. 1, no. 1, pp. 7-87. 

 

Weippl, E. & Essmayr, W. (2003) 'Personal Trusted Devices for Web Services: Revisiting 

Multilevel Security', Mobile Networks and Applications, vol. 8, no. 2, pp. 151-7. 

 

Whitten, A. & Tygar, J.D. (1999) 'Why Johnny Can’t Encrypt:  A Usability Evaluation of PGP 

5.0',  Proceedings of the 8th USENIX Security Symposium, Washington DC, America, 23-26 

August 1999. 

 

Xu, Z., Feng, D., Li, L. & Chen, H. (2003) 'UC-RBAC: A Usage Constrained Role-Based Access 

Control Model ', in Qing, S., Gollmann, D. & Zhou, J. (eds), Information and Communications 

Security, Springer, Berlin, vol. 2836,  Lecture Notes in Computer Science, pp. 337-47. 

 

Zakrzewski & Haddad, I. (2002)  Linux Distributed Security Module, viewed 26 October 2007, 

<[Online]. Available: http://www.linuxjournal.com/article/6215>. 

 

Zhang, X., Nakae, M., Covington, M.J. & Sandhu, R. (2006) 'A Usage-based Authorization 

Framework for Collaborative Computing Systems', in Proceeding of Symposium on Access 

Control Models and Technologies (SACMAT’06), Lake Tahoe, California, USA,  7-9 June 2006, 

pp. 180-9. 

 

Zhao, B., Sandhu, R., Zhang, X. & Qin, X. (2007) 'Towards a Times-Based Usage Control 

Model', in Barker, S. & Ahn, G.-J. (eds), Data and Applications Security XXI, Springer, 

Berlin/Heidelberg, vol. 4602,  Lecture Notes in Computer Science, pp. 227-42. 

 

Zhao, X. & Johnson, M.E. (2008) 'Access Flexibility with Escalation and Audit', in 20th Workshop 

on Information Systems and Economics (WISE 2008), Paris, France,  13-14 December 2008. 

 

 
 
 

http://www.linuxjournal.com/article/6215%3e


 
References 

115 

 

Zheng, L.M. & Myers, A.C. (2004)  Dynamic Security Labels and Noninterference,Technical 

Report 2004., viewed 26 October 2005, <[Online]. Available:  

www.cs.cornell.edu/andru/papers/dynlabel.pdf>. 

 

Zurko, M.E. (2005) 'User-Centered Security: Stepping Up to the Grand Challenge',  21st 

Annual Computer Security Applications Conference 2005, Tucson, Arizona, USA, 5-9 

December 2005. 

 

 

 
 
 

http://www.cs.cornell.edu/andru/papers/dynlabel.pdf%3e


 
Index 

116 

 

INDEX 

A 

access control · iii, iv, 2, 3, 4, 5, 6, 7, 11, 15, 17, 18, 19, 
23, 30, 49, 50, 51, 52, 53, 67, 68, 73, 76 
Discretionary access control · 5 
mandatory access control · 18 
Mandatory access control · 5 
Optimistic access control · 8, 23 

Access control · 9, 15 
advice · 44, 45 
Advice · 43, 45 
Aspect · 4, 10, 12, 40, 41, 42, 43, 44, 46, 50, 51, 52, 53, 

74, 75, 77, 79, 83, 85, 86 
aspect orientation · 69, 70, 79 
AspectJ · 43, 44, 45 
aspect-orientation · iv, 9, 41, 48, 50, 54 
aspect-oriented programming · 4, 5, 9, 12, 38, 40, 41, 46, 

47, 48, 49, 52, 53, 54, 55, 68, 70, 76, 79, 93, 96, 99 
Aspect-oriented programming · 40, 43, 50, 53 
authentication · 4, 49, 50, 51 

B 

Break-the-Glass · 62, 63, 65, 73, 76 

C 

corrective control · 68 

D 

detective control · 68 
deterrent control · 8, 14, 23, 68 

I 

information flow controls · 50 

J 

join points · 53 
Join Points · 43 

M 

Mandatory access control · 15 
mixed initiative access control framework · iii, 3, 14 
mixed-initiative access control framework · 95, 97, 98 

O 

OAC(UCON) model · 9, 12, 26, 38, 60, 63, 71, 95, 96, 98 
object-orientated paradigm · 40 
object-oriented paradigm · 41, 48 
ongoing conditions · 58, 63, 65, 72, 76, 78, 82 
ongoing obligations · 67, 73 
ongoing Obligations · 65 
optimistic access control · iii, iv, 3, 5, 8, 9, 10, 11, 14, 21, 

23, 25, 27, 28, 29, 37, 57, 62, 63, 64, 69, 77, 95, 96, 97 
optimistic rights · 60, 63, 97, 98 

P 

Pointcut · 43 
pointcuts · 44, 46 
post-obligations · 66 
pre-conditions · 24, 58, 63, 65, 72, 81 
pre-obligations · 24, 65, 67, 72, 73, 92 
Pre-Obligations · 64 
preventative control · 68 

R 

role-based access control · 6, 15, 19, 20, 22, 36, 52, 63 

S 

structured programming · 41 
Structured programming · 41 

T 

trust · iii, 2, 3, 6, 7, 8, 10, 23, 31 

 
 
 



 
Index 

117 

 

U 

usage control · iii, iv, 2, 3, 5, 7, 8, 9, 10, 11, 14, 23, 24, 
26, 28, 29, 30, 32, 34, 36, 37, 38, 58, 63, 64, 68, 69, 85, 
92, 93, 95, 96, 97, 98, 99 

W 

Weaver · 44 
Weaving · 44 

 

 

 
 
 



 
Appendix A: Publications 

118 

APPENDIX A:         
 PUBLICATIONS 

 

The next challenge: Aspect-Oriented Programming 

Abstract:Computer Science educationists face many challenges due to the rapid evolution in 

technology. One of the more recent challenges was the introduction of object-oriented 

programming to the computing curriculum. There have been many articles based on the 

difficulties encountered in teaching object-oriented programming and many solutions 

proposed in response. While some problems remain unresolved, the pressure to keep 

abreast of technology remains. The next hurdle that academics may face will be 

incorporating aspect-oriented programming into the curriculum. Although aspect-oriented 

programming is not yet ubiquitous in industry it is receiving considerable attention from 

research and practitioner communities alike. Increasingly academics will encounter the 

tension between teaching the fundamentals and introducing real-world technologies such 

as aspect-oriented programming that address real-world concerns. This paper addresses this 

particular notion, together with the challenges that will be faced if aspect-oriented 

programming is introduced into the computer science curriculum. 

 

Reference: 

Padayachee K. & Eloff J.H.P. 2006. The Next Challenge: Aspect-Oriented Programming, In: 

The Sixth IASTED International Conference on MODELLING, SIMULATION, AND 

OPTIMIZATION (MSO 2006) ACTA Press, Gaborone, Botswana, 11-13 September 2006, pages 

123-127 

 

  

 
 
 



 
Appendix A: Publications 

119 

 
An Aspect-Oriented Implementation of e-Consent to Foster Trust 

Abstract: As society becomes increasingly dependent on software, there is an increasing 

expectation of information systems to protect the individual’s right to privacy. The process 

of attaining electronic consent (e-Consent) may perhaps improve the trust that society has 

in information systems to protect these rights. However, an issue such as e-Consent is 

usually not given due consideration, as it is a non-functional issue and the implementation 

of the e-consent mechanism in disparate and legacy systems is difficult. Hence many 

systems are implemented without such types of controls. Evidently, aspect-oriented 

software design is highly extensible, as security concerns may be easily integrated into a 

completed software product. In this paper it is proposed that aspect-oriented programming 

be used to augment an existing system with electronic consent. 

 

Reference: Padayachee, K. & Eloff J.H.P.  2006. Aspect-Oriented Implementation of e-

Consent to foster Trust, In: SAICSIT 2006: Service-oriented software and Systems, Cape 

Town, South Africa, 9 - 11 October 2006, pages 164-169  

 

 

An Aspect-Oriented Model to Monitor Misuse  

Abstract: The efficacy of the aspect-oriented paradigm has been well established within 

several areas of software security as aspect-orientation facilitates the abstraction of these 

security-related tasks to reduce code complexity. The aim of this paper is to demonstrate 

that aspect-orientation may be used to monitor the information flows between objects in a 

system for the purposes of misuse detection. Misuse detection involves identifying behavior 

that is close to some previously defined pattern signature of a known intrusion.   

 

Reference: Padayachee, K. & Eloff, J.H.P. 2006. An Aspect-Oriented Model to Monitor 

Misuse, International Joint Conferences on Computer, Information, and Systems Sciences, 

and Engineering, In: Innovations and Advanced Techniques in Computer and Information 

Sciences and Engineering, Springer (Netherlands), pages: 273 -278, December 2006 

 

 
 
 



 
Appendix A: Publications 

120 

 
An Aspect-Oriented Approach to Enhancing Multilevel Security with Usage Control: An 

Experience Report 

Abstract: The aim of this paper is to document experiences with augmenting multilevel 

security with usage control at the application level within the aspect-oriented paradigm. 

Multilevel access control is an access control policy that supports systems that process 

especially sensitive data. However, attribute-based access control is sometimes insufficient 

and needs to be combined with additional features in order to meet the demands of 

modern applications and systems. Usage control enables finer-grained control over the 

usage of digital objects than do traditional access control policies and models. 

 

Reference: 

Padayachee, K. & Eloff, J.H.P. 2007. An Aspect-Oriented Approach to Enhancing Multilevel 

Security with Usage Control: An Experience Report, In: IAGENG: Lecture Notes in 

Engineering and Computer Science Volume 1 - International, Conference on Software 

Engineering (ICSE'07), Hong Kong, 21 - 23 March 2007, Hong Kong: Newswood Ltd. 

International Association of Engineers (Hong Kong), pages: 1060 - 1065 

 

 

Enhancing Optimistic Access Controls with Usage Control 

Abstract: With the advent of agile programming, lightweight software processes are being 

favoured over the highly formalised approaches of the past. Likewise, access control may 

benefit from a less prescriptive approach with an increasing reliance on users to behave 

ethically. These ideals correlate with optimistic access controls. However, ensuring that 

users behave in a trustworthy manner may require more than optimistic access controls. 

This paper investigates the possibility of enhancing optimistic access controls with usage 

control to ensure that users conduct themselves in a trustworthy manner. Usage control 

enables finer-grained control over the usage of digital objects than do traditional access 

control policies and models. Further to ease the development and maintenance of usage 

control measures, it is posited that it is completely separated from the application logic by 

using aspect-oriented programming.  

 
 
 



 
Appendix A: Publications 

121 

 

Reference: Padayachee, K. and Eloff J.H.P. 2007.  Enhancing Optimistic Access Controls with 

Usage Control, In: Lecture Notes in Computer Science: Trust, Privacy and Security in Digital 

Business, Springer (Germany), Volume 4657 Regensburg, Germany, September 3-7, 2007, 

pages: 75 – 82. 

 

Adapting Usage Control as a Deterrent to address the Inadequacies of Access Controls  

Abstract: Access controls are difficult to implement and evidently deficient under certain 

conditions. Traditional controls offer no protection for unclassified information, such as a 

telephone list of employees that is unrestricted, yet available only to members of the 

company. On the opposing side of the continuum, organizations such as hospitals that 

manage highly sensitive information require stricter access control measures. Yet, 

traditional access control may well have inadvertent consequences in such a context. Often, 

in unpredictable circumstances, users that are denied access could have prevented a 

calamity had they been allowed access.  It has been proposed that controls such as auditing 

and accountability policies be enforced to deter rather than prevent unauthorized usage. In 

dynamic environments preconfigured access control policies may change dramatically 

depending on the context. Moreover, the cost of implementing and maintaining complex 

preconfigured access control policies sometimes far outweighs the benefits. This paper 

considers an adaptation of usage control as a proactive means of deterrence control to 

protect information that cannot be adequately or reasonably protected by access control. 

 

Reference: Padayachee K, Eloff JHP (2009), Adapting usage control as a deterrent to address 

the inadequacies of access controls, Computers and Security (2009), Vol 28, No. 7, pages 

536-544 

 

 

 
 
 



 
Appendix B: OOP Documentation 

122 

APPENDIX B:                 
 OOP DOCUMENTATION  

For full documentation refer to the accompanying CD. 

 

Hierarchy For All Packages 

Package Hierarchies:  
accessobject, authenticationSim, authorizationSim, components, testutilities, usagecontrol 

 

Class Hierarchy  

o class java.lang.Object  

o class accessobject.AccessInformation (implements java.lang.Runnable)  

o class accessobject.Access  

o class usagecontrol.BreakTheGlass  

o class usagecontrol.OngoingConditions  

o class usagecontrol.OngoingObligations 

o class javax.swing.plaf.basic.BasicComboBoxEditor (implements javax.swing.ComboBoxEditor, 
java.awt.event.FocusListener)  

o class components.JSearchableComboBox.SearchEditor 

o class components.CharUtility  

o class java.awt.Component (implements java.awt.image.ImageObserver, java.awt.MenuContainer, 
java.io.Serializable)  

o class java.awt.Container  

o class javax.swing.JComponent (implements java.io.Serializable)  

o class javax.swing.JComboBox (implements javax.accessibility.Accessible, 
java.awt.event.ActionListener, java.awt.ItemSelectable, 
javax.swing.event.ListDataListener)  

o class components.JSearchableComboBox 

o class javax.swing.JPanel (implements javax.accessibility.Accessible)  

o class components.CheckBox (implements java.awt.event.ItemListener)  

o class components.Demo  

o class components.image (implements java.awt.event.ActionListener)  

o class java.awt.Window (implements javax.accessibility.Accessible)  

o class java.awt.Frame (implements java.awt.MenuContainer)  

o class javax.swing.JFrame (implements javax.accessibility.Accessible, 
javax.swing.RootPaneContainer, javax.swing.WindowConstants)  

o class components.ImageFrame 

o class components.DoublyLinkedList  

o class components.DoublyLinkedList.DLLIterator  

o class components.DoublyLinkedList.DLLNode  

o class testutilities.MemoryUsage  

o class authorizationSim.MyCallbackHandler (implements javax.security.auth.callback.CallbackHandler)  

o class authorizationSim.SampleAuthorization (implements java.security.PrivilegedAction)  

o class authorizationSim.SampleAzn  

o class authenticationSim.SampleLoginModule (implements javax.security.auth.spi.LoginModule)  

o class authorizationSim.SamplePrincipal (implements java.security.Principal, java.io.Serializable)  

o class components.TernarySearchTree  

o class components.TernarySearchTree.TSTNode  

 
 
 

file:///C:/Thesis_2009/object/accessobject/package-tree.html
file:///C:/Thesis_2009/object/authenticationSim/package-tree.html
file:///C:/Thesis_2009/object/authorizationSim/package-tree.html
file:///C:/Thesis_2009/object/components/package-tree.html
file:///C:/Thesis_2009/object/testutilities/package-tree.html
file:///C:/Thesis_2009/object/usagecontrol/package-tree.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/Access.html
file:///C:/Thesis_2009/object/usagecontrol/BreakTheGlass.html
file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html
file:///C:/Thesis_2009/object/usagecontrol/OngoingObligations.html
file:///C:/Thesis_2009/object/components/JSearchableComboBox.SearchEditor.html
file:///C:/Thesis_2009/object/components/CharUtility.html
file:///C:/Thesis_2009/object/components/JSearchableComboBox.html
file:///C:/Thesis_2009/object/components/CheckBox.html
file:///C:/Thesis_2009/object/components/Demo.html
file:///C:/Thesis_2009/object/components/image.html
file:///C:/Thesis_2009/object/components/ImageFrame.html
file:///C:/Thesis_2009/object/components/DoublyLinkedList.html
file:///C:/Thesis_2009/object/components/DoublyLinkedList.DLLIterator.html
file:///C:/Thesis_2009/object/components/DoublyLinkedList.DLLNode.html
file:///C:/Thesis_2009/object/testutilities/MemoryUsage.html
file:///C:/Thesis_2009/object/authorizationSim/MyCallbackHandler.html
file:///C:/Thesis_2009/object/authorizationSim/SampleAuthorization.html
file:///C:/Thesis_2009/object/authorizationSim/SampleAzn.html
file:///C:/Thesis_2009/object/authenticationSim/SampleLoginModule.html
file:///C:/Thesis_2009/object/authorizationSim/SamplePrincipal.html
file:///C:/Thesis_2009/object/components/TernarySearchTree.html
file:///C:/Thesis_2009/object/components/TernarySearchTree.TSTNode.html


 
Appendix B: OOP Documentation 

123 

o class usagecontrol.UsageControl 

 

 

Java Documentation for Class BreakTheGlass 

 

usagecontrol  
Class BreakTheGlass 

java.lang.Object 

  accessobject.AccessInformation 

      usagecontrol.BreakTheGlass 

All Implemented Interfaces:  
java.lang.Runnable  

 
public class BreakTheGlass  
extends AccessInformation 

 

Field Summary 

   

Fields inherited from class accessobject.AccessInformation 

AccessType, aThread, ObjectName, SubjectName 

   

Constructor Summary 

(package 

private) 
BreakTheGlass(java.lang.String SubjectName, 

java.lang.String ObjectName, java.lang.String AccessType)  

           

   

Method Summary 

(package 

private) 

 boolean 

display()  

           

   

Methods inherited from class accessobject.AccessInformation 

endrequest, getAccessType, getObject, getSubjectName, run 

 
 
 

file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23AccessType
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23aThread
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23ObjectName
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23SubjectName
file:///C:/Thesis_2009/object/usagecontrol/BreakTheGlass.html%23BreakTheGlass(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/object/usagecontrol/BreakTheGlass.html%23display()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23endrequest()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23getAccessType()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23getObject()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23getSubjectName()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23run()


 
Appendix B: OOP Documentation 

124 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 

wait, wait, wait 

   

Constructor Detail 

BreakTheGlass 
BreakTheGlass(java.lang.String SubjectName, 

              java.lang.String ObjectName, 

              java.lang.String AccessType) 

Method Detail 
display 
boolean display() 

 

Java Documentation for Class OngoingConditions 

 

usagecontrol  
Class OngoingConditions 

java.lang.Object 

  accessobject.AccessInformation 

      usagecontrol.OngoingConditions 

All Implemented Interfaces:  
java.lang.Runnable  

 
public class OngoingConditions  
extends AccessInformation 
Author:  

Keshnee Padayachee 
 

 

Field Summary 

private 

static long 
condition  

           Controls actions relating to the conditions of access 

private 

 boolean 
stop  

           

   

Fields inherited from class accessobject.AccessInformation 

AccessType, aThread, ObjectName, SubjectName 

   

 
 
 

file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html%23condition
file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html%23stop
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23AccessType
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23aThread
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23ObjectName
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23SubjectName


 
Appendix B: OOP Documentation 

125 

Constructor Summary 

OngoingConditions(java.lang.String SubjectName, 

java.lang.String ObjectName, java.lang.String AccessType)  

            

   

Method Summary 

 boolean conditionisValid()  

           

 void conditionsWarning()  

           

 void endOngoingConditions()  

           

 long getCondition()  

           

 void run()  

           

   

Methods inherited from class accessobject.AccessInformation 

endrequest, getAccessType, getObject, getSubjectName 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 

wait, wait, wait 

   

Field Detail 
condition 
private static long condition 

Controls actions relating to the conditions of access  

 

stop 
private volatile boolean stop 

Constructor Detail 

OngoingConditions 
public OngoingConditions(java.lang.String SubjectName, 

                         java.lang.String ObjectName, 

                         java.lang.String AccessType) 

 
 
 

file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html%23OngoingConditions(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html%23conditionisValid()
file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html%23conditionsWarning()
file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html%23endOngoingConditions()
file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html%23getCondition()
file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html%23run()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23endrequest()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23getAccessType()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23getObject()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23getSubjectName()


 
Appendix B: OOP Documentation 

126 

Method Detail 
conditionsWarning 
public void conditionsWarning() 

 

getCondition 
public long getCondition() 

 

conditionisValid 
public boolean conditionisValid() 

 

run 
public void run() 

Specified by:  

run in interface java.lang.Runnable  

Overrides:  

run in class AccessInformation 

 

endOngoingConditions 
public void endOngoingConditions() 

 

Java Documentation for Class OngoingObligations 

usagecontrol  
Class OngoingObligations 

java.lang.Object 

  accessobject.AccessInformation 

      usagecontrol.OngoingObligations 

All Implemented Interfaces:  
java.lang.Runnable  

 
public class OngoingObligations  
extends AccessInformation 

 

Field Summary 

private 

 ImageFrame 
OngoingObligationsRequest  

           Controls actions relating the OngoingObligations of the Access 

   

Fields inherited from class accessobject.AccessInformation 

AccessType, aThread, ObjectName, SubjectName 

   

Constructor Summary 

OngoingObligations(java.lang.String SubjectName, 

java.lang.String ObjectName,java.lang.String AccessType)  

            

 
 
 

file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23run()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/components/ImageFrame.html
file:///C:/Thesis_2009/object/usagecontrol/OngoingObligations.html%23OngoingObligationsRequest
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23AccessType
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23aThread
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23ObjectName
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23SubjectName
file:///C:/Thesis_2009/object/usagecontrol/OngoingObligations.html%23OngoingObligations(java.lang.String,%20java.lang.String,%20java.lang.String)


 
Appendix B: OOP Documentation 

127 

   

Method Summary 

 void endOngoingObligations()  

           

 void run()  

           

   

Methods inherited from class accessobject.AccessInformation 

endrequest, getAccessType, getObject, getSubjectName 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 

wait, wait, wait 

   

Field Detail 
OngoingObligationsRequest 
private ImageFrame OngoingObligationsRequest 

Controls actions relating the OngoingObligations of the Access  

Constructor Detail 

OngoingObligations 
public OngoingObligations(java.lang.String SubjectName, 

                          java.lang.String ObjectName, 

                          java.lang.String AccessType) 

Method Detail 
run 
public void run() 

Specified by:  

run in interface java.lang.Runnable  

Overrides:  

run in class AccessInformation 

 

endOngoingObligations 
public void endOngoingObligations() 

 
 

 
 
 

file:///C:/Thesis_2009/object/usagecontrol/OngoingObligations.html%23endOngoingObligations()
file:///C:/Thesis_2009/object/usagecontrol/OngoingObligations.html%23run()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23endrequest()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23getAccessType()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23getObject()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23getSubjectName()
file:///C:/Thesis_2009/object/components/ImageFrame.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23run()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html


 
Appendix B: OOP Documentation 

128 

Java Documentation Class UsageControl 

usagecontrol  
Class UsageControl 

java.lang.Object 

  usagecontrol.UsageControl 

 
public class UsageControl  
extends java.lang.Object 

 

Field Summary 

private  Access accessObject  
           

private 

static boolean 
accessOpen  
           Controls the Usage control of an Access to an Object 

private 

 java.lang.Thread 
accessThread  
           

(package private) 

 java.lang.String 
AccessType  

           

private 

 BreakTheGlass 
breakTheGlass  

           

static boolean conditionsInvalid  
           

private 

 java.lang.Thread 
conditionsThread  
           

static boolean endAccess  
           

static boolean endObligations  
           

(package private) 

 java.lang.String 
ObjectName  

           

private 

 java.lang.Thread 
obligationsThread  

           

private 

 OngoingConditions 
OnConditions  

           

private 

 OngoingObligations 
Onobligations  
           

private 

static boolean 
preCondition  
           

(package private) 

 java.lang.String 
SubjectName  

           

   

Constructor Summary 

UsageControl(Access AccessObject)  
 

 
 
 

file:///C:/Thesis_2009/object/accessobject/Access.html
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23accessObject
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23accessOpen
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23accessThread
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23AccessType
file:///C:/Thesis_2009/object/usagecontrol/BreakTheGlass.html
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23breakTheGlass
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23conditionsInvalid
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23conditionsThread
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23endAccess
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23endObligations
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23ObjectName
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23obligationsThread
file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23OnConditions
file:///C:/Thesis_2009/object/usagecontrol/OngoingObligations.html
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23Onobligations
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23preCondition
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23SubjectName
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23UsageControl(accessobject.Access)
file:///C:/Thesis_2009/object/accessobject/Access.html


 
Appendix B: OOP Documentation 

129 

           

   

Method Summary 

(package 

private) 

 boolean 

breakTheGlass(java.lang.String SubjectName, 

java.lang.String ObjectName, java.lang.String AccessType)  

           

 boolean checkAccessType()  

           

(package 

private) 

 void 

initiateBreakTheGlassFacility()  

           

 boolean initiateUsageControl()  

           

(package 

private) 

 void 

logAccess(java.lang.String SubjectName, 

java.lang.String ObjectName, java.lang.String AccessType, 

java.lang.String Notice, java.lang.String RedFlag)  

           

(package 

private) 

 void 

postAccess()  

           

 void postObligations(java.lang.String SubjectName, 
java.lang.String ObjectName, java.lang.String AcccessType)  

           

(package 

private) 

 boolean 

preConditions(java.lang.String SubjectName, 

java.lang.String ObjectName, java.lang.String AccessType)  

           

(package 

private) 

 boolean 

preObligations(java.lang.String SubjectName, 

java.lang.String ObjectName, java.lang.String AccessType)  

           

(package 

private) 

 void 

stopAccess()  

           

(package 

private) 

 void 

stopOngoingObligations()  

           

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 

wait, wait, wait 

   

Field Detail 
accessOpen 

 
 
 

file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23breakTheGlass(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23checkAccessType()
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23initiateBreakTheGlassFacility()
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23initiateUsageControl()
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23logAccess(java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23postAccess()
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23postObligations(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23preConditions(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23preObligations(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23stopAccess()
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23stopOngoingObligations()


 
Appendix B: OOP Documentation 

130 

private static boolean accessOpen 

Controls the Usage control of an Access to an Object  

 

preCondition 
private static boolean preCondition 

 

obligationsThread 
private java.lang.Thread obligationsThread 

 

conditionsThread 
private java.lang.Thread conditionsThread 

 

accessThread 
private java.lang.Thread accessThread 

 

OnConditions 
private OngoingConditions OnConditions 

 

accessObject 
private Access accessObject 

 

Onobligations 
private OngoingObligations Onobligations 

 

breakTheGlass 
private BreakTheGlass breakTheGlass 

 

SubjectName 
java.lang.String SubjectName 

 

ObjectName 
java.lang.String ObjectName 

 

AccessType 
java.lang.String AccessType 

 

conditionsInvalid 
public static boolean conditionsInvalid 

 

endAccess 
public static boolean endAccess 

 

endObligations 
public static boolean endObligations 

Constructor Detail 

UsageControl 
public UsageControl(Access AccessObject) 

Method Detail 
checkAccessType 
public boolean checkAccessType() 

 

 
 
 

file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html
file:///C:/Thesis_2009/object/accessobject/Access.html
file:///C:/Thesis_2009/object/usagecontrol/OngoingObligations.html
file:///C:/Thesis_2009/object/usagecontrol/BreakTheGlass.html
file:///C:/Thesis_2009/object/accessobject/Access.html


 
Appendix B: OOP Documentation 

131 

initiateUsageControl 
public boolean initiateUsageControl() 

 

initiateBreakTheGlassFacility 
void initiateBreakTheGlassFacility() 

 

stopAccess 
void stopAccess() 

 

stopOngoingObligations 
void stopOngoingObligations() 

 

preObligations 
boolean preObligations(java.lang.String SubjectName, 

                       java.lang.String ObjectName, 

                       java.lang.String AccessType) 

 

preConditions 
boolean preConditions(java.lang.String SubjectName, 

                      java.lang.String ObjectName, 

                      java.lang.String AccessType) 

 

postAccess 
void postAccess() 

 

postObligations 
public void postObligations(java.lang.String SubjectName, 

                            java.lang.String ObjectName, 

                            java.lang.String AcccessType) 

 

breakTheGlass 
boolean breakTheGlass(java.lang.String SubjectName, 

                      java.lang.String ObjectName, 

                      java.lang.String AccessType) 

 

logAccess 
void logAccess(java.lang.String SubjectName, 

               java.lang.String ObjectName, 

               java.lang.String AccessType, 

               java.lang.String Notice, 

               java.lang.String RedFlag) 

 

 

Source Code for class Access 
 
package accessobject; 

import javax.swing.UIManager; 

import usagecontrol.UsageControl; 

import components.image; 

 

 

public class Access extends AccessInformation { 

 /** 

  * This class controls the object being accessed 

  */ 

   public void request(){ 

  UIManager.put("swing.boldMetal", Boolean.FALSE); 

  image.createAndShowGUI(ObjectName); 

 } 

 
 
 



 
Appendix B: OOP Documentation 

132 

      

  public Access(String SubjectName, String ObjectName, String AccessType) { 

 super(SubjectName,ObjectName,AccessType) ;     

  }  

 

public void endrequest() {  

 super.endrequest(); 

 image.close(); 

}  

 

public void run() { 

    

 super.run(); 

 UIManager.put("swing.boldMetal", Boolean.FALSE); 

 image.createAndShowGUI(ObjectName); 

    

 aThread = Thread.currentThread();  

 // Keep going as long as myThread is the same as the current thread.  

        

 while (image.WindowOpen) { 

  try { 

         Thread.sleep(500); // Tell the thread to sleep for half a second.  

  }  

  catch (InterruptedException e) {}  

  } 

     

  if (!image.WindowOpen){ 

   endrequest(); 

   //object-oriented version 

   UsageControl.endAccess = true; 

   //end object-oriented version 

  } 

} 

  

} 

 

Source code for class AccessInformation 
package accessobject; 

 

public class AccessInformation implements Runnable{ 

 /** 

  * This class maintains all the details relating to the access 

  */ 

 protected String SubjectName; 

 protected String ObjectName; 

 protected String AccessType; 

 protected Thread aThread;    

 public AccessInformation(String subName, String OName, String type) { 

   SubjectName = subName; 

   ObjectName =  OName; 

   AccessType =  type; 

  } 

  public String getSubjectName() 

  { 

   return SubjectName; 

  } 

    

  public String getObject() 

 { 

  return ObjectName; 

 } 

 public String getAccessType() 

 { 

  return AccessType; 

 } 

 public void run(){aThread = Thread.currentThread(); } 

 

 public void endrequest() {  

  aThread = null;  

 }  

  

} 

 

 

 
 
 



 
Appendix B: OOP Documentation 

133 

Source code for class BreakTheGlass 
 
package usagecontrol; 

import javax.swing.ImageIcon; 

import javax.swing.JOptionPane; 

 

import accessobject.AccessInformation; 

 

public class BreakTheGlass extends AccessInformation{ 

 /** 

  * Provides the BreakTheGlass Interface 

  */ 

 BreakTheGlass(String SubjectName, String ObjectName, String AccessType ) { 

      super(SubjectName,ObjectName,AccessType); 

 } 

  

 boolean display(){ 

  String message  = "<html>" + SubjectName +" are you <font color = green> SURE <font  

 color=black>" + 

    "you want to continue with this access?" 

  +"<br>(a) This access will be <font color=red>RED-FLAGGED<font color=black>!!!"  

  +"<br>(b) You will have justify this usage to the system adminstrator" ; 

 

  ImageIcon icon = new ImageIcon("c:\\icons\\policestop.gif");  

 

  int answer = JOptionPane.showConfirmDialog(null, message,"BREAK THE GLASS IN CASE OF  

  EMERGENCY", 

  JOptionPane.YES_NO_OPTION,JOptionPane.INFORMATION_MESSAGE, icon);  

 

  if (answer == JOptionPane.YES_OPTION) { 

   return true; 

  } 

  else if (answer == JOptionPane.NO_OPTION) { 

   return false; 

  } 

  return false; 

 }  

} 

 

Source code for class OngoingConditions 
package usagecontrol; 

import javax.swing.*; 

import accessobject.AccessInformation; 

 

public class OngoingConditions extends AccessInformation{ 

 /** 

  * Controls actions relating to the conditions of access 

  */  

 private static long condition = 0; 

 private volatile boolean stop = false; 

   public OngoingConditions(String SubjectName, String ObjectName, String AccessType ) { 

     super(SubjectName,ObjectName,AccessType); 

        

   }  

   

   // This will terminate the run() method.  

    public void conditionsWarning(){ 

     ImageIcon icon = new ImageIcon("c:\\icons\\warn1.gif"); 

  String message = "<html> <font color=blue> "+ SubjectName 

       +", is <font color = red> PROHIBITED<font color=blue> "  

       +"from accessing client file: " + ObjectName + " after   working hours"; 

  JOptionPane.showMessageDialog(null, message ,"CONDITIONS WARNING",  

  JOptionPane.INFORMATION_MESSAGE,icon); 

   

  //object-oriented version 

  UsageControl.conditionsInvalid = true; 

  //end of object-oriented version 

    } 

     

    public long getCondition(){  

     condition++; 

  return condition; 

 } 

 
 
 



 
Appendix B: OOP Documentation 

134 

  

    public boolean conditionisValid() 

    {   condition++;  

   if (condition%10 == 0) 

    return false; 

  else  

   return true; 

    } 

     public void run() {  

   super.run(); 

   while(conditionisValid()){ 

  try { 

       Thread.sleep(1000); // Tell the thread to sleep for a second.  

  }  

  catch (InterruptedException e) {}  

  } 

   if (!stop){ 

    conditionsWarning(); 

   } 

     } 

    public void endOngoingConditions(){ 

     stop = true; 

    } 

} 

 

 

Source code for class OngoingObligations 
package usagecontrol; 

 

 

import java.awt.Color; 

import javax.swing.ImageIcon; 

import components.ImageFrame; 

import accessobject.AccessInformation; 

 

public class OngoingObligations extends AccessInformation{ 

 /** 

  * Controls actions relating the OngoingObligations of the Access 

  */ 

 private ImageFrame OngoingObligationsRequest; 

 public OngoingObligations(String SubjectName, String ObjectName, String AccessType) { 

    super(SubjectName,ObjectName,AccessType); 

 }  

  

 public void run() {  

  super.run(); 

  String Message = "<html><font color = green>" + SubjectName+ "  ACCESSING...client   

 file: " 

        + ObjectName + " WITH RIGHTS "+       AccessType+". <br> "; 

  Message.toUpperCase(); 

  ImageIcon icon = new ImageIcon("c:\\files\\OBS.jpg");   

  OngoingObligationsRequest = new ImageFrame(600,300,400,400,"Ongoing            

  Obligations",Message,icon);  

  OngoingObligationsRequest.setForeground(Color.BLUE); 

  OngoingObligationsRequest.setResizable(false); 

  // Keep going as long as myThread is the same as the current thread.  

   

  while (OngoingObligationsRequest.windowOpen()) { 

   try { 

     Thread.sleep(500); // Tell the thread to sleep for half a second.  

   }  

   catch (InterruptedException e) {}  

  } 

  if (!OngoingObligationsRequest.windowOpen()){ 

    OngoingObligationsRequest.close(); 

    //object-oriented version 

    UsageControl.endObligations = true; 

    //end of object-oriented version 

  }   

  } 

 public void endOngoingObligations() 

 { UsageControl.endObligations = true; 

  if (OngoingObligationsRequest.windowOpen()){ 

 
 
 



 
Appendix B: OOP Documentation 

135 

   OngoingObligationsRequest.close(); 

 } 

 } 

}  

   

Source Code for class UsageControl 
 
package usagecontrol; 

 

import javax.swing.JOptionPane; 

import javax.swing.ImageIcon; 

import accessobject.Access; 

import components.CheckBox; 

 

public class UsageControl { 

 /** 

  * Controls the Usage control of an Access to an Object 

  */ 

 private static boolean accessOpen; 

 private static boolean preCondition = true; 

 private Thread obligationsThread; 

 private Thread conditionsThread; 

 private Thread accessThread; 

 private OngoingConditions OnConditions; 

 private Access accessObject; 

 private OngoingObligations Onobligations; 

 private BreakTheGlass breakTheGlass;  

 String SubjectName; 

 String ObjectName; 

 String AccessType; 

 

 public static boolean conditionsInvalid = false; 

 public static boolean endAccess = false; 

 public static boolean endObligations = false; 

  

 public UsageControl(Access AccessObject) 

 {   

  accessObject = AccessObject; 

  SubjectName = AccessObject.getSubjectName(); 

  ObjectName = AccessObject.getObject(); 

  AccessType = AccessObject.getAccessType(); 

 } 

  

 public boolean checkAccessType(){ 

  return true; 

 } 

  

    public boolean initiateUsageControl(){ 

  accessOpen = true; 

  conditionsInvalid = false; 

  endObligations = false; 

  endAccess = false; 

  if (preObligations(SubjectName, ObjectName, AccessType)) 

     { 

      if (preConditions(SubjectName, ObjectName, AccessType) 

       || breakTheGlass(SubjectName, ObjectName, AccessType)){  

          accessThread = new Thread(accessObject); 

          accessThread.start(); 

           

          Onobligations = new OngoingObligations( SubjectName, ObjectName, AccessType); 

          obligationsThread = new Thread(Onobligations); 

          obligationsThread.start(); 

           

          OnConditions = new OngoingConditions(SubjectName,ObjectName,AccessType); 

          conditionsThread = new Thread(OnConditions); 

          conditionsThread.start(); 

           

          while(accessOpen){ 

          try { 

           Thread.sleep(500); 

     if (conditionsInvalid){ 

      initiateBreakTheGlassFacility(); 

        } 

        if (endAccess){ 

 
 
 



 
Appendix B: OOP Documentation 

136 

         stopAccess(); 

        } 

        if (endObligations){ 

         stopOngoingObligations(); 

        } 

      

       } catch (InterruptedException e) { 

        // TODO Auto-generated catch block 

        e.printStackTrace(); 

       } 

      } 

      postObligations(SubjectName,ObjectName,AccessType); 

     } 

     else 

      System.out.println("no conditions"); 

     } 

  else 

      System.out.println("no obligations"); 

     return true; 

 }     

  

 /** 

  *  

  */ 

  

    void initiateBreakTheGlassFacility(){ 

     

     if (!breakTheGlass(OnConditions.getSubjectName(), OnConditions.getObject(), 

OnConditions.getAccessType())) 

     {   Onobligations.endOngoingObligations(); 

         postAccess(); 

     } 

      conditionsInvalid = false; 

     } 

  

    void stopAccess(){ 

     Onobligations.endOngoingObligations(); 

     if (accessOpen) 

      postAccess(); 

 } 

  

    void stopOngoingObligations(){ 

     if (accessOpen) 

      postAccess(); 

 } 

      

 boolean preObligations(String SubjectName, String ObjectName, String AccessType){ 

   

  ImageIcon icon = new ImageIcon("c:\\icons\\hand.gif"); 

  String message = "<html>" + SubjectName + ", if you click <font color=green> YES " + 

       "<font color=black> you agree to <font     color=red>NOT<font 

color=black>" + 

       " distribute client file: "  

       + ObjectName; 

  int answer = JOptionPane.showConfirmDialog(null, message,"PRE-OBLIGATIONS", 

         JOptionPane.YES_NO_OPTION,JOptionPane.WARNING_MESSAGE,icon); 

  if (answer == JOptionPane.YES_OPTION) { 

   return true; 

  }  

  else if (answer == JOptionPane.NO_OPTION) { 

      return false; 

  } 

  return false; 

 } 

      

 boolean preConditions(String SubjectName, String ObjectName, String AccessType){ 

  

 if (preCondition) {  

  ImageIcon icon = new ImageIcon("c:\\icons\\warn1.gif"); 

  String message = "<html> <font color=blue>" + SubjectName +", "  

  +" <font color=red>PROHIBITED<font color = blue> from accessing client file: " +    

  ObjectName + " at this time !" ; 

  JOptionPane.showMessageDialog(null, message ,"PRE-CONDITIONS WARNING",  

  JOptionPane.INFORMATION_MESSAGE,icon); 

  preCondition = false; 

 
 
 



 
Appendix B: OOP Documentation 

137 

  return false; 

 } 

 return true; 

 } 

  

 void postAccess(){ 

  accessOpen = false; 

  accessObject.endrequest(); 

  Onobligations.endOngoingObligations(); 

  OnConditions.endrequest(); 

  //update logs 

 } 

      

 public void postObligations(String SubjectName, String ObjectName, String AcccessType){ 

  CheckBox.createAndShowGUI(); 

 } 

  

 boolean breakTheGlass(String SubjectName, String ObjectName, String AccessType){ 

  breakTheGlass = new BreakTheGlass(SubjectName,ObjectName,AccessType); 

  if (breakTheGlass.display()){ 

   logAccess(SubjectName,ObjectName,AccessType,"Illegal Access", "YES"); 

   return true; 

  } 

  return false; 

 } 

   

 void logAccess(String SubjectName, String ObjectName, String AccessType, String Notice, 

String RedFlag){ 

   //WRITE TO LOG FILE 

 } 

}  

 

 

 

 

    

 
 
 



 
Appendix C: AOP Documentation 

138 

APPENDIX C:                 
 AOP DOCUMENTATION 

For full documentation refer to accompanying CD. 

 

 

Hierarchy For All Packages 

Package Hierarchies:  
accessobject, authenticationSim, authorizationSim, components, testutilities, usagecontrol 

 

Class Hierarchy  

o class java.lang.Object  

o class accessobject.AccessInformation  

o class accessobject.Access  

o class usagecontrol.OngoingConditions (implements java.lang.Runnable)  

o class usagecontrol.BreakTheGlass  

o class usagecontrol.OngoingObligations (implements java.lang.Runnable)  

o class javax.swing.plaf.basic.BasicComboBoxEditor (implements javax.swing.ComboBoxEditor, 
java.awt.event.FocusListener)  

o class components.JSearchableComboBox.SearchEditor 

o class components.CharUtility  

o class java.awt.Component (implements java.awt.image.ImageObserver, java.awt.MenuContainer, 
java.io.Serializable)  

o class java.awt.Container  

o class javax.swing.JComponent (implements java.io.Serializable)  

o class javax.swing.JComboBox (implements javax.accessibility.Accessible, 
java.awt.event.ActionListener, java.awt.ItemSelectable, 
javax.swing.event.ListDataListener)  

o class components.JSearchableComboBox 

o class javax.swing.JPanel (implements javax.accessibility.Accessible)  

o class components.CheckBox (implements java.awt.event.ItemListener)  

o class components.Demo  

o class components.image (implements java.awt.event.ActionListener)  

o class java.awt.Window (implements javax.accessibility.Accessible)  

o class java.awt.Frame (implements java.awt.MenuContainer)  

o class javax.swing.JFrame (implements javax.accessibility.Accessible, 
javax.swing.RootPaneContainer, javax.swing.WindowConstants)  

o class components.ImageFrame 

o class components.DoublyLinkedList  

o class components.DoublyLinkedList.DLLIterator  

o class components.DoublyLinkedList.DLLNode  

o class usagecontrol.IntertypeDeclarationOnAccess  

o class testutilities.MemoryUsage  

o class authorizationSim.MyCallbackHandler (implements javax.security.auth.callback.CallbackHandler)  

o class authorizationSim.SampleAuthorization (implements java.security.PrivilegedAction)  

o class authorizationSim.SampleAzn  

o class authenticationSim.SampleLoginModule (implements javax.security.auth.spi.LoginModule)  

 
 
 

file:///C:/Thesis_2009/accessobject/package-tree.html
file:///C:/Thesis_2009/authenticationSim/package-tree.html
file:///C:/Thesis_2009/authorizationSim/package-tree.html
file:///C:/Thesis_2009/components/package-tree.html
file:///C:/Thesis_2009/testutilities/package-tree.html
file:///C:/Thesis_2009/usagecontrol/package-tree.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html
file:///C:/Thesis_2009/usagecontrol/BreakTheGlass.html
file:///C:/Thesis_2009/usagecontrol/OngoingObligations.html
file:///C:/Thesis_2009/components/JSearchableComboBox.SearchEditor.html
file:///C:/Thesis_2009/components/CharUtility.html
file:///C:/Thesis_2009/components/JSearchableComboBox.html
file:///C:/Thesis_2009/components/CheckBox.html
file:///C:/Thesis_2009/components/Demo.html
file:///C:/Thesis_2009/components/image.html
file:///C:/Thesis_2009/components/ImageFrame.html
file:///C:/Thesis_2009/components/DoublyLinkedList.html
file:///C:/Thesis_2009/components/DoublyLinkedList.DLLIterator.html
file:///C:/Thesis_2009/components/DoublyLinkedList.DLLNode.html
file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html
file:///C:/Thesis_2009/testutilities/MemoryUsage.html
file:///C:/Thesis_2009/authorizationSim/MyCallbackHandler.html
file:///C:/Thesis_2009/authorizationSim/SampleAuthorization.html
file:///C:/Thesis_2009/authorizationSim/SampleAzn.html
file:///C:/Thesis_2009/authenticationSim/SampleLoginModule.html


 
Appendix C: AOP Documentation 

139 

o class authorizationSim.SamplePrincipal (implements java.security.Principal, java.io.Serializable)  

o class components.TernarySearchTree  

o class components.TernarySearchTree.TSTNode  

o class usagecontrol.UsageControlInjector 

 

 

Java Documentation for Class Access: 
Class Access 

java.lang.Object 

  accessobject.AccessInformation 

      accessobject.Access 

Direct Known Subclasses:  
OngoingConditions  

 
public class Access  
extends AccessInformation 

 Advised by: usagecontrol.UsageControlInjector.after(): OngoingAccess..  

 Aspect declarations: 
usagecontrol.IntertypeDeclarationOnAccess.declare parents: 

implements Runnable  

Author:  
KESHNEE TODO To change the template for this generated type comment go to Window - Preferences - Java - Code Style - Code 
Templates  

 
Inter-Type Method Summary 

void 
Access.endrequest()  

 Declared by: usagecontrol.IntertypeDeclarationOnAccess  

 

void 
Access.run()  

 Declared by: usagecontrol.IntertypeDeclarationOnAccess  

 

   

Inter-Type Field Summary 

package Thread 
Access.aThread  

 Declared by: usagecontrol.IntertypeDeclarationOnAccess  

 

   

Field Summary 

   

Fields inherited from class accessobject.AccessInformation 

accessType, objectName, subjectName 

   

Constructor Summary 

Access(java.lang.String SubjectName, java.lang.String ObjectName, 

java.lang.String AccessType)  

           
 

   

 
 
 

file:///C:/Thesis_2009/authorizationSim/SamplePrincipal.html
file:///C:/Thesis_2009/components/TernarySearchTree.html
file:///C:/Thesis_2009/components/TernarySearchTree.TSTNode.html
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23after():%20OngoingAccess..
file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html%23declare%20parents:%20implements%20Runnable
file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html%23declare%20parents:%20implements%20Runnable
file:///C:/Thesis_2009/accessobject/Access.html%23Access.endrequest()
file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html
file:///C:/Thesis_2009/accessobject/Access.html%23Access.run()
file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html
file:///C:/Thesis_2009/accessobject/Access.html%23Access.aThread
file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23accessType
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23objectName
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23subjectName
file:///C:/Thesis_2009/accessobject/Access.html%23Access(java.lang.String,%20java.lang.String,%20java.lang.String)


 
Appendix C: AOP Documentation 

140 

Method Summary 

 voi

d 

close()  

           

 voi

d 

request()  

            

 Advised by
: 

usagecontrol.UsageControlInjector.around(accessobject.Access)

: Intercept_Request..  

 

   

Methods inherited from class accessobject.AccessInformation 

getAccessType, getObject, getSubjectName 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 

wait, wait, wait 

   

Constructor Detail 

Access 

public Access(java.lang.String SubjectName, 

              java.lang.String ObjectName, 

              java.lang.String AccessType) 

Method Detail 

request 

public void request() 

 Advised by: 
usagecontrol.UsageControlInjector.around(accessobject.Access): 

Intercept_Request..  

 
close 

public void close() 

 

Java Documentation for class AccessInformation 
Class AccessInformation 

java.lang.Object 

  accessobject.AccessInformation 

Direct Known Subclasses:  
Access, BreakTheGlass, OngoingObligations  

 
public class AccessInformation  
extends java.lang.Object 
Author:  

KESHNEE TODO To change the template for this generated type comment go to Window - Preferences - Java - Code Style - Code 
Templates  

 

Field Summary 

protected 

 java.lang.String 

accessType  

           

protected objectName  

 
 
 

file:///C:/Thesis_2009/accessobject/Access.html%23close()
file:///C:/Thesis_2009/accessobject/Access.html%23request()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23around(accessobject.Access):%20Intercept_Request..
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23around(accessobject.Access):%20Intercept_Request..
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getAccessType()
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getObject()
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getSubjectName()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23around(accessobject.Access):%20Intercept_Request..
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23around(accessobject.Access):%20Intercept_Request..
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/BreakTheGlass.html
file:///C:/Thesis_2009/usagecontrol/OngoingObligations.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23accessType
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23objectName


 
Appendix C: AOP Documentation 

141 

 java.lang.String            

protected 

 java.lang.String 

subjectName  

           

   

Constructor Summary 

AccessInformation(java.lang.String subName, java.lang.String OName, 

java.lang.String type)  

           
 

   

Method Summary 

 java.lang.String getAccessType()  

           

 java.lang.String getObject()  

           

 java.lang.String getSubjectName()  

           

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 

wait, wait, wait 

   

Field Detail 

subjectName 

protected java.lang.String subjectName 

 
objectName 

protected java.lang.String objectName 

 
accessType 

protected java.lang.String accessType 

Constructor Detail 

AccessInformation 

public AccessInformation(java.lang.String subName, 

                         java.lang.String OName, 

                         java.lang.String type) 

Method Detail 

getSubjectName 

public java.lang.String getSubjectName() 

 
getObject 

public java.lang.String getObject() 

 
getAccessType 

public java.lang.String getAccessType() 

 

 

 
 
 

file:///C:/Thesis_2009/accessobject/AccessInformation.html%23subjectName
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23AccessInformation(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getAccessType()
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getObject()
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getSubjectName()


 
Appendix C: AOP Documentation 

142 

Java Documentation for Class BreakTheGlass 

Class BreakTheGlass 

java.lang.Object 

  accessobject.AccessInformation 

      usagecontrol.BreakTheGlass 

 
public class BreakTheGlass  
extends AccessInformation 

 

Field Summary 

   

Fields inherited from class accessobject.AccessInformation 

accessType, objectName, subjectName 

   

Constructor Summary 

(package 

private) 

BreakTheGlass(java.lang.String SubjectName, 

java.lang.String ObjectName, java.lang.String AccessType)  

           

   

Method Summary 

(package 

private) 

 boolean 

display()  

           

   

Methods inherited from class accessobject.AccessInformation 

getAccessType, getObject, getSubjectName 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 

wait, wait, wait 

   

Constructor Detail 

BreakTheGlass 

BreakTheGlass(java.lang.String SubjectName, 

              java.lang.String ObjectName, 

              java.lang.String AccessType) 

Method Detail 

display 

 
 
 

file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23accessType
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23objectName
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23subjectName
file:///C:/Thesis_2009/usagecontrol/BreakTheGlass.html%23BreakTheGlass(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/usagecontrol/BreakTheGlass.html%23display()
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getAccessType()
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getObject()
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getSubjectName()


 
Appendix C: AOP Documentation 

143 

boolean display() 

 

 

AJDocumentation on Aspect IntertypeDeclarationOnAccess 
java.lang.Object 

  usagecontrol.IntertypeDeclarationOnAccess 

 
public aspect IntertypeDeclarationOnAccess  
extends java.lang.Object 
Author:  

KESHNEE  

 
Declare Summary 

 

declare parents: implements Runnable  

 Declared on: accessobject.Access 

 

package Thread 
Access.aThread  

 Declared on: accessobject.Access 

 

void 
Access.endrequest()  

 Declared on: accessobject.Access 

 

void 
Access.run()  

 Declared on: accessobject.Access 

 

   

Constructor Summary 

IntertypeDeclarationOnAccess()  

             

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 

wait, wait, wait 

   

  Declare Detail 

declare parents: implements Runnable 

    

 Declared on: accessobject.Access  

 
Access.aThread 

package Thread  Access.aThread  

 Declared on: accessobject.Access  

 
Access.endrequest() 

public void  Access.endrequest()  

 
 
 

file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html%23declare%20parents:%20implements%20Runnable
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html%23Access.aThread
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html%23Access.endrequest()
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html%23Access.run()
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html%23IntertypeDeclarationOnAccess()
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/accessobject/Access.html


 
Appendix C: AOP Documentation 

144 

 Declared on: accessobject.Access  

 
Access.run() 

public void  Access.run()  

 Declared on: accessobject.Access  

Constructor Detail 

IntertypeDeclarationOnAccess 

public IntertypeDeclarationOnAccess() 

 
 

Java Documentation on Class OngoingConditions 
java.lang.Object 

  accessobject.AccessInformation 

      accessobject.Access 

          usagecontrol.OngoingConditions 

All Implemented Interfaces:  
java.lang.Runnable  

 
public class OngoingConditions  
extends Access  
implements java.lang.Runnable 
Author:  

PADAYK TODO To change the template for this generated type comment go to Window - Preferences - Java - Code Style - Code 
Templates  

 

Field Summary 

private 

static long 

condition  
           Controls actions relating to the conditions of access 

private 

 boolean 

stop  
           

   

Fields inherited from class accessobject.AccessInformation 

accessType, objectName, subjectName 

   

Constructor Summary 

OngoingConditions(java.lang.String SubjectName, java.lang.String ObjectName, 

java.lang.String AccessType)  

           
 

   

Method Summary 

 boolean conditionisValid()  

           

 void conditionsWarning()  

           

 void endOngoingConditions()  

 
 
 

file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html%23condition
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html%23stop
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23accessType
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23objectName
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23subjectName
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html%23OngoingConditions(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html%23conditionisValid()
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html%23conditionsWarning()
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html%23endOngoingConditions()


 
Appendix C: AOP Documentation 

145 

           

 long getCondition()  

           

 void run()  

            

 Advised by: 
usagecontrol.UsageControlInjector.after(): 

OngoingCondition.. 

 

   

Methods inherited from class accessobject.Access 

close, request 

   

Methods inherited from class accessobject.AccessInformation 

getAccessType, getObject, getSubjectName 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 

wait, wait, wait 

   

Field Detail 

condition 

private static long condition 

Controls actions relating to the conditions of access  

 
stop 

private volatile boolean stop 

Constructor Detail 

OngoingConditions 

public OngoingConditions(java.lang.String SubjectName, 

                         java.lang.String ObjectName, 

                         java.lang.String AccessType) 

Method Detail 

conditionsWarning 

public void conditionsWarning() 

 
getCondition 

public long getCondition() 

 
conditionisValid 

public boolean conditionisValid() 

 
run 

public void run() 

 Advised by: usagecontrol.UsageControlInjector.after(): OngoingCondition..  

Specified by:  

run in interface java.lang.Runnable 

 
endOngoingConditions 

 
 
 

file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html%23getCondition()
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html%23run()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23after():%20OngoingCondition..
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23after():%20OngoingCondition..
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/accessobject/Access.html%23close()
file:///C:/Thesis_2009/accessobject/Access.html%23request()
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getAccessType()
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getObject()
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getSubjectName()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23after():%20OngoingCondition..


 
Appendix C: AOP Documentation 

146 

public void endOngoingConditions() 

 

Java Documentation on Class OngoingObligations 
java.lang.Object 

  accessobject.AccessInformation 

      usagecontrol.OngoingObligations 

All Implemented Interfaces:  
java.lang.Runnable  

 
public class OngoingObligations  
extends AccessInformation  
implements java.lang.Runnable 

 

Field Summary 

private 

 ImageFrame 

OngoingObligationsRequest  

           Controls actions relating the OngoingObligations of the Access 

   

Fields inherited from class accessobject.AccessInformation 

accessType, objectName, subjectName 

   

Constructor Summary 

OngoingObligations(java.lang.String SubjectName, java.lang.String ObjectName, 

java.lang.String AccessType)  

           
 

   

Method Summary 

 void endOngoingObligations()  

           

 void run()  

            

 Advised by: 
usagecontrol.UsageControlInjector.after(): 

OngoingObligation..  

 

   

Methods inherited from class accessobject.AccessInformation 

getAccessType, getObject, getSubjectName 

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, 

wait, wait, wait 

   

 
 
 

file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/components/ImageFrame.html
file:///C:/Thesis_2009/usagecontrol/OngoingObligations.html%23OngoingObligationsRequest
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23accessType
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23objectName
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23subjectName
file:///C:/Thesis_2009/usagecontrol/OngoingObligations.html%23OngoingObligations(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/usagecontrol/OngoingObligations.html%23endOngoingObligations()
file:///C:/Thesis_2009/usagecontrol/OngoingObligations.html%23run()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23after():%20OngoingObligation..
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23after():%20OngoingObligation..
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getAccessType()
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getObject()
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getSubjectName()


 
Appendix C: AOP Documentation 

147 

Field Detail 

OngoingObligationsRequest 

private ImageFrame OngoingObligationsRequest 

Controls actions relating the OngoingObligations of the Access  

Constructor Detail 

OngoingObligations 

public OngoingObligations(java.lang.String SubjectName, 

                          java.lang.String ObjectName, 

                          java.lang.String AccessType) 

Method Detail 

run 

public void run() 

 Advised by: usagecontrol.UsageControlInjector.after(): OngoingObligation..  

Specified by:  

run in interface java.lang.Runnable 

 
endOngoingObligations 

public void endOngoingObligations() 

 

 

AJDocumentation on Aspect UsageControlInjector 
java.lang.Object 

  usagecontrol.UsageControlInjector 

 
public aspect UsageControlInjector  
extends java.lang.Object 

 
Pointcut Summary 

(package 

private) 
Intercept_Request(accessobject.Access) 
  

(package 

private) 
OngoingCondition() 
  

(package 

private) 
OngoingAccess() 
  

(package 

private) 
OngoingObligation() 
  

   

Advice Summary 

around(accessobject.Access): Intercept_Request.. 

   

 Advises: accessobject.Access.request 

 

 

after(): OngoingCondition.. 

   

 Advises: usagecontrol.OngoingConditions.run 

 

 

after(): OngoingAccess.. 

   

 Advises: accessobject.Access 

 

 

after(): OngoingObligation.. 

   

 Advises: usagecontrol.OngoingObligations.run 

 

 

   

 
 
 

file:///C:/Thesis_2009/components/ImageFrame.html
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23after():%20OngoingObligation..
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23Intercept_Request(accessobject.Access)
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23OngoingCondition()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23OngoingAccess()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23OngoingObligation()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23around(accessobject.Access):%20Intercept_Request..
file:///C:/Thesis_2009/accessobject/Access.html%23request()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23after():%20OngoingCondition..
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html%23run()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23after():%20OngoingAccess..
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23after():%20OngoingObligation..
file:///C:/Thesis_2009/usagecontrol/OngoingObligations.html%23run()


 
Appendix C: AOP Documentation 

148 

Field Summary 

private  Access accessObject  

           

private 

static boolean 
accessOpen  

           

private 

 java.lang.Thread 
accessThread  

           

private 

 java.lang.String 
AccessType  

           

private 

 java.lang.Thread 
conditionsThread  

           

private 

 java.lang.String 
ObjectName  

           

private 

 java.lang.Thread 
obligationsThread  

           

private 

 OngoingConditions 
OnConditions  

           

private 

 OngoingObligations 
Onobligations  

           

private 

static boolean 
preCondition  

           

private 

 java.lang.String 
SubjectName  

           

   

Constructor Summary 

UsageControlInjector()  

             

   

Method Summary 

(package 

private) 

 boolean 

breakTheGlass(java.lang.String SubjectName, java.lang.String ObjectName, 

java.lang.String AccessType)  
           

(package 

private) 

 void 

initiateBreakTheGlassFacility()  

           

(package 

private) 

 void 

logAccess(java.lang.String SubjectName, java.lang.String ObjectName, 

java.lang.String AccessType, java.lang.String Notice, 

java.lang.String RedFlag)  
           

 boolean OptimisticRights()  

           

(package 

private) 

 void 

postAccess()  

           

 void postObligations(java.lang.String SubjectName, java.lang.String ObjectName, 
java.lang.String AcccessType)  
           

 
 
 

file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23accessObject
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23accessOpen
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23accessThread
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23AccessType
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23conditionsThread
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23ObjectName
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23obligationsThread
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23OnConditions
file:///C:/Thesis_2009/usagecontrol/OngoingObligations.html
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23Onobligations
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23preCondition
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23SubjectName
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23UsageControlInjector()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23breakTheGlass(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23initiateBreakTheGlassFacility()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23logAccess(java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23OptimisticRights()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23postAccess()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23postObligations(java.lang.String,%20java.lang.String,%20java.lang.String)


 
Appendix C: AOP Documentation 

149 

(package 

private) 

 boolean 

preConditions(java.lang.String SubjectName, java.lang.String ObjectName, 

java.lang.String AccessType)  
           

(package 

private) 

 boolean 

preObligations(java.lang.String SubjectName, java.lang.String ObjectName, 

java.lang.String AccessType)  
           

   

Methods inherited from class java.lang.Object 

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, 

wait, wait 

   

   

Pointcut Detail 

Intercept_Request(accessobject.Access) 

 
OngoingCondition() 

 
OngoingAccess() 

 
OngoingObligation() 

   

Advice Detail 

around 

around(accessobject.Access): Intercept_Request..  

 Advises: accessobject.Access.request 

 
after 

after(): OngoingCondition..  

 Advises: usagecontrol.OngoingConditions.run 

 
after 

after(): OngoingAccess..  

 Advises: accessobject.Access 

 
after 

after(): OngoingObligation..  

 Advises: usagecontrol.OngoingObligations.run 

 
 
 

file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23preConditions(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23preObligations(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/accessobject/Access.html%23request()
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html%23run()
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/OngoingObligations.html%23run()


 
Appendix C: AOP Documentation 

150 

Field Detail 

accessOpen 

private static boolean accessOpen 

 
preCondition 

private static boolean preCondition 

 
obligationsThread 

private java.lang.Thread obligationsThread 

 
conditionsThread 

private java.lang.Thread conditionsThread 

 
accessThread 

private java.lang.Thread accessThread 

 
accessObject 

private Access accessObject 

 
OnConditions 

private OngoingConditions OnConditions 

 
Onobligations 

private OngoingObligations Onobligations 

 
SubjectName 

private java.lang.String SubjectName 

 
ObjectName 

private java.lang.String ObjectName 

 
AccessType 

private java.lang.String AccessType 

Constructor Detail 

UsageControlInjector 

public UsageControlInjector() 

Method Detail 

OptimisticRights 

public boolean OptimisticRights() 

 
initiateBreakTheGlassFacility 

void initiateBreakTheGlassFacility() 

 
preObligations 

boolean preObligations(java.lang.String SubjectName, 

                       java.lang.String ObjectName, 

                       java.lang.String AccessType) 

 
preConditions 

boolean preConditions(java.lang.String SubjectName, 

                      java.lang.String ObjectName, 

                      java.lang.String AccessType) 

 
postAccess 

void postAccess() 

 
postObligations 

public void postObligations(java.lang.String SubjectName, 

                            java.lang.String ObjectName, 

 
 
 

file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html
file:///C:/Thesis_2009/usagecontrol/OngoingObligations.html


 
Appendix C: AOP Documentation 

151 

                            java.lang.String AcccessType) 

 
breakTheGlass 

boolean breakTheGlass(java.lang.String SubjectName, 

                      java.lang.String ObjectName, 

                      java.lang.String AccessType) 

 
logAccess 

void logAccess(java.lang.String SubjectName, 

               java.lang.String ObjectName, 

               java.lang.String AccessType, 

               java.lang.String Notice, 

               java.lang.String RedFlag) 

 

 

 

Source Code for class Access 
 
package accessobject; 

 

import javax.swing.UIManager; 

 

import components.image; 

 

public class Access extends AccessInformation{ 

   

 public void request(){ 

  System.out.println("Inside request"); 

  UIManager.put("swing.boldMetal", Boolean.FALSE); 

  image.createAndShowGUI(objectName); 

 } 

   

 public Access(String SubjectName, String ObjectName, String AccessType) { 

  super(SubjectName, ObjectName, AccessType) ;     

 }  

    

 public void close(){ 

     image.close(); 

 } 

} 

 

Source code class AccessInformation 
package accessobject; 

 

public class AccessInformation { 

 protected String subjectName; 

 protected String objectName; 

 protected String accessType; 

 public AccessInformation(String subName, String OName, String type) { 

   subjectName = subName; 

   objectName =  OName; 

   accessType =  type; 

  } 

  public String getSubjectName() 

  { 

   return subjectName; 

  } 

    

  public String getObject() 

 { 

  return objectName; 

 } 

 public String getAccessType() 

 { 

  return accessType; 

 } 

 

} 

      

 

 
 
 



 
Appendix C: AOP Documentation 

152 

Source Code for BreakTheGlass 
package usagecontrol; 

import javax.swing.ImageIcon; 

import javax.swing.JOptionPane; 

 

import accessobject.AccessInformation; 

public class BreakTheGlass extends AccessInformation{ 

 /** 

  * Provides the BreakTheGlass Interface 

  */ 

BreakTheGlass(String SubjectName, String ObjectName, String AccessType ) { 

   super(SubjectName,ObjectName,AccessType); 

} 

  

boolean display(){ 

String message  = "<html>" + subjectName +" are you <font color = green> SURE <font 

color=black>" + 

    "you want to continue with this access?" 

  +"<br>(a) This access will be <font color=red>RED-FLAGGED<font color=black>!!!"  

  +"<br>(b) You will have to justify this usage to the system administrator" ; 

 

  ImageIcon icon = new ImageIcon("c:\\test0\\policestop.gif");  

 

  int answer = JOptionPane.showConfirmDialog(null, message,"BREAK THE GLASS IN CASE OF  

  EMERGENCY", 

  JOptionPane.YES_NO_OPTION,JOptionPane.INFORMATION_MESSAGE, icon);  

 

  if (answer == JOptionPane.YES_OPTION) { 

   return true; 

  } 

  else if (answer == JOptionPane.NO_OPTION) { 

   return false; 

  } 

  return false; 

 }  

} 

 

Source code for InterTypeDeclarationOnAccess 

package usagecontrol; 

import javax.swing.UIManager; 

import accessobject.*; 

import components.image; 

/** 

 * @author KESHNEE 

 *  

 * TODO To change the template for this generated type comment go to Window - 

 * Preferences - Java - Code Style - Code Templates 

 */ 

public aspect IntertypeDeclarationOnAccess { 

 declare parents: Access implements Runnable; 

 Thread Access.aThread; 

 public void Access.endrequest() {  

  aThread = null;  

  close(); 

 }  

 public void Access.run() { 

  aThread = Thread.currentThread();  

  UIManager.put("swing.boldMetal", Boolean.FALSE); 

  image.createAndShowGUI(getObject()); 

  // Keep going as long as myThread is the same as the current thread. 

        

  while (image.WindowOpen) { 

   try { 

    Thread.sleep(500); // Tell the thread to sleep for half 

   } 

   catch (InterruptedException e) {}  

   } 

     

   if (!image.WindowOpen){ 

     endrequest(); 

   } 

 } 

} 

 
 
 



 
Appendix C: AOP Documentation 

153 

  } 

  return false; 

 }  

} 

 

Source code for OngoingConditions 
package usagecontrol; 

import javax.swing.*; 

 

import accessobject.*; 

/** 

 * @author PADAYK 

 * 

 * TODO To change the template for this generated type comment go to 

 * Window - Preferences - Java - Code Style - Code Templates 

 */ 

 

public class OngoingConditions extends Access implements Runnable{ 

 /** 

  * Controls actions relating to the conditions of access 

  */  

 private static long condition = 0; 

 private volatile boolean stop = false; 

 public OngoingConditions(String SubjectName, String ObjectName, String AccessType ) { 

     super(SubjectName,ObjectName,AccessType); 

        

   }  

   

   // This will terminate the run() method.  

    public void conditionsWarning(){ 

     ImageIcon icon = new ImageIcon("c:\\icons\\warn1.gif"); 

  String message = "<html> <font color=blue> "+ subjectName 

       +", is <font color = red> PROHIBITED<font color=blue> "  

       +"from accessing client file: " + objectName + " after working hours"; 

  JOptionPane.showMessageDialog(null, message ,"CONDITIONS WARNING",  

  JOptionPane.INFORMATION_MESSAGE,icon); 

    } 

     

    public long getCondition(){  

     condition++; 

  return condition; 

 } 

  

    public boolean conditionisValid(){    

     condition++;  

   if (condition%10 == 0) 

    return false; 

  else  

   return true; 

    } 

      public void run() {  
     Thread aThread = Thread.currentThread(); 

  while(!stop && conditionisValid()){ 

  try { 

       Thread.sleep(1000); // Tell the thread to sleep for a second.  

  }  

       

     catch (InterruptedException e) {}  

  } 

   if (!stop){ 

    conditionsWarning(); 

   } 

     } 

    public void endOngoingConditions(){ 

     stop = true; 

    } 

} 

 

 
 
 



 
Appendix C: AOP Documentation 

154 

Source Code for OngoingObligations  

import java.awt.Color; 

import javax.swing.ImageIcon; 

 

import components.ImageFrame; 

import accessobject.Access; 

import accessobject.AccessInformation; 

 

public class OngoingObligations extends AccessInformation implements Runnable{ 

 /** 

  * Controls actions relating the OngoingObligations of the Access 

  */ 

 private ImageFrame OngoingObligationsRequest; 

 public OngoingObligations(String SubjectName, String ObjectName, String AccessType) { 

    super(SubjectName,ObjectName,AccessType); 

 }  

  

 public void run() {  

  Thread aThread = Thread.currentThread(); 

  String Message = "<html><font color = green>" + subjectName+ " ACCESSING...client file: 

  " 

  + objectName + " WITH RIGHTS "+ accessType+". <br> "; 

  Message.toUpperCase(); 

  ImageIcon icon = new ImageIcon("c:\\files\\OBS.jpg");   

  OngoingObligationsRequest = new ImageFrame(600,300,400,400,"Ongoing        

  Obligations",Message,icon);  

  OngoingObligationsRequest.setForeground(Color.BLUE); 

  OngoingObligationsRequest.setResizable(false); 

  // Keep going as long as myThread is the same as the current thread.  

  System.out.println("Obligations Window"+objectName);  

  while (OngoingObligationsRequest.windowOpen()) { 

   try { 

     Thread.sleep(500); // Tell the thread to sleep for half a second.  

   }  

   catch (InterruptedException e) {}  

  } 

   endOngoingObligations(); 

  } 

 public void endOngoingObligations(){  

  if (OngoingObligationsRequest.windowOpen()){ 

   OngoingObligationsRequest.close(); 

   

  } 

  } 

 }  

      

     stop = true; 

    } 

} 

 

Source code for class UsageControlInjector  

package usagecontrol; 

  

import javax.swing.JOptionPane; 

import javax.swing.ImageIcon; 

import testutilities.*; 

import accessobject.Access; 

import components.CheckBox; 

 

public aspect UsageControlInjector { 

 private static boolean accessOpen; 

 private static boolean preCondition = true; 

 private Thread obligationsThread; 

 private Thread conditionsThread; 

 private Thread accessThread; 

 private Access accessObject; 

 private OngoingConditions OnConditions; 

 private OngoingObligations Onobligations; 

 private String SubjectName; 

 private String ObjectName; 

 private String AccessType; 

   

 pointcut Intercept_Request(Access AccessObject):  

 
 
 



 
Appendix C: AOP Documentation 

155 

 execution(* *.request(..)) && !within(UsageControlInjector)  

 && target(AccessObject)  ; 

 void around (Access AccessObject ): Intercept_Request(AccessObject){ 

  Runtime runtime = Runtime.getRuntime(); 

  MemoryUsage.printUsage(runtime); 

  accessOpen = true; 

  accessObject = AccessObject; 

  SubjectName = accessObject.getSubjectName(); 

  ObjectName = accessObject.getObject(); 

  AccessType = accessObject.getAccessType(); 

  if (OptimisticRights()){ 

   if (preObligations(SubjectName, ObjectName, AccessType)) 

      { 

       if (preConditions(SubjectName, ObjectName, AccessType) 

        || breakTheGlass(SubjectName, ObjectName, AccessType)){  

           accessThread = new Thread(AccessObject); 

           accessThread.start(); 

            

           Onobligations = new OngoingObligations( SubjectName, ObjectName, AccessType); 

           obligationsThread = new Thread(Onobligations); 

           obligationsThread.start(); 

            

           OnConditions = new OngoingConditions(SubjectName,ObjectName,AccessType); 

           conditionsThread = new Thread(OnConditions); 

           conditionsThread.start(); 

            

           while(accessOpen){ 

           try { 

            Thread.sleep(500); 

        } catch (InterruptedException e) { 

         // TODO Auto-generated catch block 

         e.printStackTrace(); 

        } 

          } 

          postObligations(SubjectName,ObjectName,AccessType); 

           

      } 

     } 

  } 

  MemoryUsage.printUsage(runtime); 

 }     

  

 public boolean OptimisticRights(){ 

  //determine whether this information is subject to optimistic access control 

  return true; 

 } 

  

 // when there is conditions warning 

 pointcut OngoingCondition(): call(* *.conditionsWarning(..) ) && target(OngoingConditions); 

 after(): OngoingCondition(){ 

     initiateBreakTheGlassFacility(); 

 } 

  

 // when the access ends 

    pointcut OngoingAccess()  : call(* *.endrequest(..) ) && target(Access) && 

!within(UsageControlInjector); 

 after(): OngoingAccess(){ 

     postAccess(); 

 } 

     

 // when the user ends ongoingobligations 

 pointcut OngoingObligation()  : call(* *.endOngoingObligations(..) ) && 

target(OngoingObligations) && !within(UsageControlInjector); 

 after(): OngoingObligation(){ 

  postAccess(); 

 } 

  

 void initiateBreakTheGlassFacility(){ 

  if (!breakTheGlass(OnConditions.getSubjectName(), OnConditions.getObject(), 

OnConditions.getAccessType())){    

   Onobligations.endOngoingObligations(); 

      postAccess(); 

  } 

 } 

  

 
 
 



 
Appendix C: AOP Documentation 

156 

 boolean preObligations(String SubjectName, String ObjectName, String AccessType){ 

   

  ImageIcon icon = new ImageIcon("c:\\icons\\hand.gif"); 

  String message = "<html>" + SubjectName + ", if you click <font color=green> YES " + 

       "<font color=black> you agree to <font color=red>NOT<font color=black>" + 

       " distribute client file: "  

       + ObjectName; 

  int answer = JOptionPane.showConfirmDialog(null, message,"PRE-OBLIGATIONS", 

         JOptionPane.YES_NO_OPTION,JOptionPane.WARNING_MESSAGE,icon); 

  if (answer == JOptionPane.YES_OPTION) { 

   return true; 

  }  

  else if (answer == JOptionPane.NO_OPTION) { 

      return false; 

  } 

  return false; 

 } 

      

 boolean preConditions(String SubjectName, String ObjectName, String AccessType){ 

  

  if (preCondition) {  

   ImageIcon icon = new ImageIcon("c:\\icons\\warn1.gif"); 

   String message = "<html> <font color=blue>" + SubjectName +", "  

   +" <font color=red>PROHIBITED<font color = blue> from accessing client file: " +  

   ObjectName + " at this time !" ; 

   JOptionPane.showMessageDialog(null, message ,"PRE-CONDITIONS WARNING",  

                          JOptionPane.INFORMATION_MESSAGE,icon); 

   preCondition = false; 

   return false; 

  } 

  return true; 

 } 

  

 void postAccess(){ 

  accessOpen = false; 

  accessObject.endrequest(); 

  Onobligations.endOngoingObligations(); 

  OnConditions.endOngoingConditions(); 

  //update logs 

 } 

      

 public void postObligations(String SubjectName, String ObjectName, String AcccessType){ 

  CheckBox.createAndShowGUI(); 

 } 

  

 boolean breakTheGlass(String SubjectName, String ObjectName, String AccessType){ 

  BreakTheGlass breakTheGlass = new BreakTheGlass(SubjectName,ObjectName,AccessType); 

  if (breakTheGlass.display()){ 

   logAccess(SubjectName,ObjectName,AccessType,"Illegal Access", "YES"); 

   return true; 

  } 

  return false; 

 } 

   

 void logAccess(String SubjectName, String ObjectName, String AccessType, String Notice, 

String RedFlag){ 

   //WRITE TO LOG FILE 

 } 

}  

 

 

 

 

 

 
 
 



 
Appendix D: Prototype Evaluation 

157 

APPENDIX D:          
 PROTOTYPE EVALUATION 

D1. Research Methodology 

 

The Design Science Research method was applied. This methodology involves problem 

identification, design and development, and an evaluation. 

D.2 Problem Statement 

To validate the concept elucidation of the OAC(UCON) model via evaluative prototyping and 

to determine if the OAC(UCON) model is perceived as an effective countermeasure against 

data misuse.   

D.3 Design and Development 

 

The product concept was implemented by the researcher using both object-oriented and 

aspect-oriented techniques. However, in order to remove researcher bias, the product 

concept was introduced to 14 Honours students at the University of Pretoria. They were not 

shown the working version as to not to bias their judgement of the concept. Furthermore, 

as the model was intended to scale up to a real-world scenario, the product specification 

was placed in a context where optimistic access control enhanced with usage control was 

viewed within a traditional role-based access control with trust measures. The participants 

were not expected to use the aspect-oriented approach, as this concept is not currently 

taught in the syllabus. 

 

 
 
 



 
Appendix D: Prototype Evaluation 

158 

Participants were given the following specification as a term assignment: 

Using an appropriate open source database application, you will create a simple database to 

store information about a typical organisation with employees and clients to be serviced. A 

client record includes inter alia the name, occupation, employer, address, contact details 

and account details of the client. The employee record includes inter alia the name, salary 

and period of employment of employees. You will use SQL statements to query the 

database.  

 

For collaborative purposes the client information is relegated to the public domain, while 

the employee data is protected by role-based access controls. You need to enforce mixed 

initiative access controls when the user attempts to access the database.  

 

If the user attempts to access data in the public domain, then he/she is subject to the 

following usage control mechanisms:  

Pre-obligation:  The user must click on a button in a dialog box, thereby indicating that 

he/she agrees not to distribute this information.  

Pre-condition:  This information may be accessed during business hours only. 

Ongoing obligation:  A window with the following warning “This dataset must be used 

EXCLUSIVELY for work-related purposes” is to remain open while the user accesses the 

information. 

Ongoing condition:  This information may be accessed during business hours only (same as 

pre-condition, as it is time dependent). While the pre-condition may have been valid at the 

time of access, it may become invalid during the access.  

Post-obligation:  The user must send an e-mail to the administrator if he accessed these 

databases outside of business hours. 

Break-the-glass (BTG):  While the user will not be permitted to access the information 

unless the obligations have been satisfied, he/she will under special circumstances be 

allowed to access it by utilising the BTG facility even if the pre-conditions or ongoing 

conditions are invalid.  

Post-update:  A user’s rights to information in the public domain can be modified based on 

prior usage. Your program should log all access in such a way that there is a secure audit 

 
 
 



 
Appendix D: Prototype Evaluation 

159 

trail. At the onset each user has a trust level of high. However, as they demonstrate their 

untrustworthiness, the level is downgraded to medium and finally to low. As their trust level 

drops, they lose their rights to information in the public domain – i.e. information that they 

are allowed to access is limited. Users with a medium trust level can access most 

information except for account information. Users with a low trust level are not allowed to 

view account information or contact details. They can be limited to view less sensitive 

details such as the client's name, occupation, etc. 

 

After the user has accessed the database, his/her trust level is updated by using fuzzy logic. 

For test purposes, each access can be given a random priority [0, 1]. If the BTG facility was 

deployed by the user, then the trust level [0,1] is updated, dependent on the priority of the 

task and the user's previous trust level using the fuzzy matrix given below. 

 

 

 

High Medium Low 

 

High 

Trust level 

remains High 

Trust level 

downgraded to 

Medium 

Trust level downgraded 

to Medium 

Medium Trust level 

remains Medium 

Trust level 

downgraded to Low 

Trust level downgraded 

to Low 

Low Trust level 

remains Low 

Trust level remains 

Low 

Trust level remains Low 

 

 

The employee records are protected by role-based access controls. In this system there are 

three roles, namely manager, administrator and user. The manager can read, delete and 

update an employee record, whereas an administrator can read and update an employee 

record. Users can read employee records, but all salary information is concealed. 

 

You need to authenticate users (by means of passwords) and stipulate access control 

policies for the data in the database. If you prefer Java as your language of implementation, 

Priority of Task 

Previous Trust Level 

 
 
 



 
Appendix D: Prototype Evaluation 

160 

you could use the Java Sandbox model [9] to authenticate users and stipulate access control 

policies for the data in the database.   

You will need to create a policy file to grant permissions to authenticated users. 

You will need to create a login configuration file for authentication. 

 

D.4 Evaluation 

 

This small-scale experiment will test the theory that users’ interaction with the prototype 

will be perceived as an effective countermeasure against data misuse. In order to test the 

hypothesis, two qualitative data collections will be employed, namely participant 

observation and open-ended interviewing.  

 

Observation:  The idea with participant observation is to determine whether access control 

measures were implemented successfully. 

Qualitative Interview:  A qualitative interview is to be conducted to determine the 

developer's perceptions of the appeal of the prototype in terms of data misuse.  

Qualitative Questionnaire:  Participants were asked to address the following in terms of the 

model concept: Weaknesses, Strengths, Improvements, Viability, Applicability, Scalability. 

 

 
 
 



 
Appendix D: Prototype Evaluation 

161 

EVALUATION 
 

 Indicate whether you agree or disagree with the following statements and give reasons for your answer.  

Statements Agree/ 
Disagree 

The product specifications as given in the assignment were ambiguous and incomplete. 
 

Agree        [  ]                       
Disagree   [  ] 

Reason: 

The product specifications as given in the assignment could easily be translated into an 
implementable product. 

Agree        [  ]                       
Disagree   [  ] 

Reason: 

In terms of the enforcement of security, other mechanisms such as a written policy 
document or adequate training would have been more effective than the mechanisms 
identified in the product concept. 

Agree        [  ]                       
Disagree   [  ] 

Reason: 

The flexibility offered under the optimistic access control domain is a security risk. 
 

Agree        [  ]                       
Disagree   [  ] 

Reason: 

Specifying system conditions – such as limiting access according to the time of day – may 
deter users from abusing their privileges. 

Agree        [  ]                       
Disagree   [  ] 

Reason: 

The 'Break-the-Glass' facility is vulnerable to abuse. 
 

Agree        [  ]                       
Disagree   [  ] 

Reason: 

The protection mechanisms – such as fulfilling obligations – will compel users to comply 
with the established rules of behaviour in order to protect confidential information. 

Agree      [  ]                       
Disagree [  ] 

Reason: 

An individual who interacts with the system will recognise that access is dependent on user 
responsibility as well as technical access control. 

Agree        [  ]                       
Disagree   [  ] 

Reason: 

The risk of losing one's rights to information under the optimistic access control domain 
may deter one from abusing one's privileges. 

Agree        [  ]                       
Disagree   [  ] 

Reason: 

The conditions, obligations and the Break-the-Glass mechanisms may be distracting to a 
user. 

Agree        [  ]                       
Disagree   [  ] 

Reason: 

 
 
 



 
Appendix D: Prototype Evaluation 

162 

Most users will ignore the messages in terms of the conditions and obligations relating to 
access. 

Agree        [  ]                       
Disagree   [  ] 

Reason: 

 

Any other comments or critique 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 
Appendix D: Prototype Evaluation 

163 

D.5 Overview of the Experiment-and-evaluation-of-use study and its 
application 

Sessions 

Several separate sessions were held at the laboratory of the School of Computer Science. 

Each session was attended by one participant and lasted approximately 30 minutes. Prior to 

their individual session, participants were given the concept specification to implement as a 

term assignment. Each participant then had to demonstrate his/her working product and 

provide value judgements on the model concept. 

Steps involved 

The participants were given the following test cases to carry out in order to interact with the 

prototype, while the researcher observed: 

1.  An authorised user accessing data under the public domain is allowed to read client 

data but is subject to pre-conditions, pre-obligations, ongoing obligations, ongoing 

conditions and post-obligations (simulate instances where the pre-conditions and 

ongoing conditions are not satisfied). 

2. An unauthorised user is not able to access any data. 

3. An authorised user is subject to role-based access control policies when accessing 

the employee data. 

4. User's optimistic rights are downgraded. 

 

The participants were then asked several open-ended questions regarding the usability and 

perceived effectiveness of the product as a security countermeasure [see questions in D.4 

above]. 

Validity 

Postgraduate students were used to develop and evaluate the model concept in view of the 

fact that they have extensive knowledge in information systems and are currently 

employable. Seeing that some of these students are already employed within the 

 
 
 



 
Appendix D: Prototype Evaluation 

164 

information systems sector, their profile can serve as a profile of user representatives in 

systems development. 

 
 
 



 
Appendix E: Data Collection 

165 

APPENDIX E:                 
DATA COLLECTION 

Statement1: The product specifications as given in the assignment were ambiguous and incomplete. 

Participant Responses Agree Disagree 

A In fact, I just followed the instructions incorporating minimal 
creativity from class discussions 

 YES 

B It was sufficient  YES 

C It was relatively open-ended but not incomplete  YES 

D  I was able to implement it early  YES 

E  Much was left to (mis) interpretation YES  

F I think it was good but the concept of priorities should be stated 
more 

 YES 

G All the aspects of the system has been explained clearly  YES 

H To a certain extent because it did not give explicit rules of the break 
the glass 

YES  

I NO RESPONSE  YES 

J RBAC and optimistic access control were clearly specified except for 
how priority is assigned 

 YES 

K The assignment was straightforward  YES 

L NO RESPONSE YES  

M All specifications were easy to understand and implement into a 
system 

 YES 

N I found the project brief very complete, although I think the system 
would need more to be commercially viable 

 YES 

 
 
 



 
Appendix E: Data Collection 

166 

 

Statement 2: The product specifications as given in the assignment could easily be translated into an 
implementable product. 

Participant RESPONSE Agree Disagree 

A Well,  I wouldn't really know, not really an expert on access control in 
commercial environments 

YES   

B It was properly adapted for the size and situation YES   

C NO RESPONSE YES   

D NO RESPONSE YES   

E No Issues YES   

F Yes I think it can be used in certain types of industry YES   

G Since it was enough to implement the prototype, given that it is scaled 
up, the real product could be implemented 

YES   

H yes but it can only scale to certain levels YES   

I NO RESPONSE YES   

J Specification was detailed enough YES   

K It is close to that point upon completion YES   

L NO RESPONSE YES   

M Specifications were easy to divide into implementable components YES   

N Yes, if tested properly, and robust for users to define new conditions YES   

 
 

 

Statement 3: In terms of the enforcement of security, other mechanisms such as, a written policy document 
or adequate training would have been more effective than the mechanisms identified in the product 
concept. 

Participant Response Agree Disagree 

A Usage based as implemented in the project is just kinda[sic] weak, 
Maybe if the break the glass facility were removed entirely 

YES   

B PB: They are simpler to ignore   YES 

C The other mechanisms added to the current mechanisms can make 
the overall product more effective but,.. 

  YES 

D  A companies trust of their employees should have some evaluation 
criteria 

  YES 

E Depends on the environment. Ideally both should be used   YES 

F Inforcing[sic] it this way I think would be more effective   YES 

G NO RESPONSE   YES 

H Written policy can be present but they[sic] is not constant reminder 
like in a automated system 

  YES 

I NO RESPONSE   YES 

J Learning curve maybe too steep for the average people, requiring 
training 

YES   

K If used in addition it would be more secure YES   

L With the prototype concept it enables administrators to track user 
actions 

  YES 

M The main security risk still lies with the user and no amount of training 
can truly provide security against human stupidity 

  YES 

N No personal ethics would still be basis for decisions made by 
personnel. An agreement etc. would be acceptable in court 

  YES 

 
 
 



 
Appendix E: Data Collection 

167 

 
 

Statement 4: The flexibility offered under the optimistic access control domain is a security risk. 

Participant Response Agree Disagree 

A It really all depends on what you are guarding and if the users are being 
monitored 

YES  

B Never give a user more slack than the minimum YES  

C it might, depending on the level of confidentiality of the data YES  

D The users might see and distribute sensitive data YES  

E Should be controlled through other means YES  

F In some cases I think letting people access data with BTG can cause 
major harm 

YES  

G The information can be abused with optimistic access control YES  

H Because it is subject to evaluation by a human  YES 

I It can be because they is no monitor to ensure that risk free activities 
are done 

YES  

J Too much data is allowed to be viewed YES  

K NO RESPONSE  YES 

L But it depends on the nature of the organisations and its data YES  

M If used intelligently a lot of information can be accessed without dire 
consequences 

YES  

N No certain environment require that flexibility such the medical industry  YES 

 
 

Statement 5: Specifying system conditions, such as limiting access according to the time-of-day, may deter users 
from abusing their privileges. 

Participant Response Agree Disagree 

A The threat of losing trust would deter me, if I really wanted to get in I 
would rather just try avoid the access control system 

YES  

B  It may, the key being "may" YES  

C NO RESPONSE  YES 

D Error dialogues might frighten some uses and deter them from 
continuing 

YES  

E Depends on the consequences of violating them YES  

F If people want to abuse their privileges they can do it during work hours  YES 

G  Since ignoring the restrictions would lead to degradation of trust YES  

H Yes but what about a situation when a company works overtime YES  

I NO RESPONSE YES  

J As long as the user is aware of these issues it will deter them YES  

K Users should be less likely to abuse their privileges during working hours YES  

L It will give a user a feeling that they are doing something wrong YES  

M A person would mostly try to be unseen when doing misconduct and 
that the easiest after hours 

YES  

N No, not if defined correctly and the BTG functionality provides 
alternatives 

 YES 

 

 
 
 



 
Appendix E: Data Collection 

168 

 

Statement 6: The 'break the glass' facility is vulnerable to abuse. 

Participant Responses Agree Disagree 

A Most definitely in my implementation it relied mostly on the threat of an 
admin stepping in after the event 

YES  

B NO RESPONSE YES  

C The trust level drops too quickly  YES 

D The trust level drops  YES 

E Necessary nonetheless YES  

F Yes, I think some user will abuse the BTG feature YES  

G Not if the task at hand is of low priority  YES 

H Because you can use it to get back at employee when di[sic] YES  

I Everything is logged and the user will be monitored  YES 

J The priority of requests need to be better refined YES  

K To the extent that everything is vulnerable to abuse YES  

L NO RESPONSE YES  

M As stated above, if used correctly a lot of information can be accessed 
without dire consequences 

YES  

N No, not if the manager/auditor does not abuse the system by allowing 
any situation or accepting any reason 

YES  

 
 

Statement 7: The protection mechanisms, such as fulfilling obligations, will compel users to comply with the 
established rules of behaviour in order to protect confidential information. 

Participant Responses Agree Disagree 

A Nobody reads EULAs  YES 

B Well it does YES  

C  It might, do a user test YES  

D This would have to be tested as the users think and act differently  YES 

E Depends on the implementation of those obligations YES  

F If not doing degrades their access right it will compel the users to comply 
with it 

YES  

G NO RESPONSE YES  

H NO RESPONSE YES  

I NO RESPONSE YES  

J Users are intimidated by warning usually YES  

K It adds a sense of responsibility YES  

L But only if the user is trustworthy. YES  

M Because ignorance is not an excuse anymore YES  

N Yes YES  

 

 
 
 



 
Appendix E: Data Collection 

169 

 

Statement 8: An individual who interacts with the system will recognize that access is dependent on user 
responsibility as well as technical access control. 

Participant Responses Agree Disagree 

A  The warning should be a clear indication YES  

B NO RESPONSE YES  

C This depends on the level of knowledge the user have of the trust-based 
system 

YES  

D The trust level indication YES  

E Don't assume users are responsible  YES 

F As a user uses it for some time. I think he will get accustomed to 
responsible usage of the sys 

YES  

G NO RESPONSE YES  

H Yes, because the constant prompts YES  

I NO RESPONSE YES  

J Technical side may be obvious e.g. audit logs  YES 

K See above YES  

L They might notice that their amount of actions they can performs 
degrades 

YES  

M This will only be the case for the majority if it is explained clearly at the 
beginning 

 YES 

N Yes  YES 

 
 

Statement 9: The risk of losing one's rights to information under the optimistic access control domain may deter 
one from abusing one's privileges. 

Participant Responses Agree Disagree 

A Although it depends what their ultimate goal is. I.e. if they are planning 
on quitting the next day, they should even care 

YES  

B  Depends on the information content and nature. Also user registration *  

C NO RESPONSE YES  

D If the information is vital to the user YES  

E Only if the information is wanted but not needed  YES 

F If not fulfilling obligation reduces their access rights they will be careful 
with the use of data 

YES  

G Since the user can't see sensitive info YES  

H Yes fear is always a deterrent YES  

I NO RESPONSE YES  

J Lets the user know when can go wrong and violate privileges YES  

K NO RESPONSE YES  

L If the user's goal is to steal data, it won't prevent them from doing so  YES 

M  If your actions are logged that caused it , you have a higher possibility of 
being caught 

YES  

N Yes YES  

* - NO RESPONSE 

 
 
 



 
Appendix E: Data Collection 

170 

 

Statement 10: The conditions, obligations and the break-the-glass mechanisms may be distracting to a user. 

Participant Responses Agree Disagree 

A It depends on the user, I say disagree because I suspect most users 
will simply ignore the mechanisms and they will lose their meaning 
anyway 

 YES 

B If they want the info. they won't mind  YES 

C It is quite distracting at times, as all error messages/info messages 
are. 

YES  

D  At first, last they might ignore it User testing again is vital here YES  

E Depends on the implementation of UI YES  

F To some extent if they are many YES  

G NO RESPONSE  YES 

H Constant popups are distracting to the user YES  

I It might be a bit strange at first but the user should be able to get 
use to it 

 YES 

J This is needed to deter users  YES 

K NO RESPONSE  YES 

L It will only effect them when they log in and go past business hours  YES 

M Windows vista used a similar approach with permission popups and 
must users disabled this security feature due to annoyance 

YES  

N PN: If the conditions are important enough, it should not  YES 

 
 

Statement 11: Most users will ignore the messages in terms of the conditions and obligations relating to the 
access. 

Participant Responses Agree Disagree 

A Once they learn which sequence of buttons to press to get to the 
required result, why would they bother reading? Or caring for that 
matter 

YES  

B True, do you ever read the agreement when you start YES  

C Depends on what they know about the consequences of ignoring 
them 

 YES 

D If the user is forced to give response to the message  YES 

E Will after repeated exposure but then users will know its contents  YES 

F NO RESPONSE YES  

G NO RESPONSE  YES 

H  Yes until they are warned that they will loose[sic] access YES  

I They might at first but once they notice that is limits their access 
after it will be taken seriously 

 YES 

J Most sensible users will feel threaten by the messages  YES 

K Initially they will pay heed, but later it becomes routine YES  

L Most users will just want to get the data to do their work YES  

M This will only happen if the consequences are not clearly specified  YES 

N Yes but the responsibility still lies with the them and holds them 
accountable 

YES  

 

 
 
 



 
Appendix F: Aspect J Semantics 

 

171 

APPENDIX F:              
 ASPECTJ SEMANTICS 

The following list of pointcut designators describe only those designators that were used in 
the context of thesis: 
 
 

 

 

Wildcards 

Type names that contain the two wildcards "*" and ".." are also type patterns. The * 

wildcard matches zero or more characters except for ".", so it can be used when types have 

a certain naming convention.  

 

Operators 

Pointcuts compose through the operations or (“||”), and (“&&”) and not (“!”) 

 

 

Cited from: 

1. Kiczales, G., et al. An Overview of AspectJ. In ECOOP '01: Proceedings of the 15th 

 European Conference on Object-Oriented Programming. 2001. Budapest, Hungary: 

 Springer-Verlag. p. 327-353 

2. http://www.eclipse.org/aspectj/doc/released/progguide/semantics- pointcuts.html  

 (Last accessed 1 October 2009) 

call(signature) 

execution(signature) 

Matches call/execution joinpoints at which the 
method or constructor matches the signature 

target(ClassName) All the join points where the object on which the 

method called is an instance of ClassName 

within(className) matches join points of any kind at which the 
currently executing code is contained with 
ClassName 

declare parents: ClassName 

implements InterfaceName 

declares the ClassName type to implement the 
InterfaceName Interface 

 
 
 



 
Appendix G: Running Demo Project 

 

172 

 

APPENDIX G:           
 RUNNING DEMO PROJECT 

Go to: 

http://cs-cert.unisa.ac.za/internet/keshnee/content.html 

 

Instructions for Running Demo: 

 (1) Create a directory called test0 on your C drive 

(2) Unzip test0.zip to into test0 directory 

(3) Search for aoptest.exe in directory test0 and double click to run 

(4) Read Manual.pdf for more details on the operation of the  software 

 

This software was built using: 
Aspect J version 1.4.0 
Eclipse version 3.2 
Java SDK 1.4.2_05 
 

 

 

 
 
 

http://cs-cert.unisa.ac.za/internet/keshnee/content.html
test0.zip
Manual.pdf

	Front
	Part 1
	Part 2
	Part 3
	BACK
	References
	Index
	Appendices
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G





