

56

PART 3:

CHAPTER 7:
THE OAC(UCON) MODEL

CHAPTER 8:
THE PROTOTYPING AND MODEL EVALUATION

CHAPTER 9:
 CONCLUSION

Chapter 7: The OAC(UCON) Model

57

CHAPTER 7:

 THE OAC(UCON) MODEL

7.1 Introduction

This chapter introduces the concept of the Optimistic Access Control with Usage Control

model, designated the OAC(UCON) model. In the previous chapters the inadequacies of

traditional access controls models were highlighted, and it became clear that the

requirements for the OAC(UCON) had to include flexibility, adaptability and an open

architecture. However, there should also be provisos that prevent abuse of the openness

offered by this model. An example of the model that meets these requirements is presented

at this juncture.

7.2 A motivating example

Suppose company ABC is an e-Recruitment company where clients and prospective

candidates (job seekers) place job orders and applications respectively online. Company ABC

then maintains databases of candidates and clients. While internally the company places

access controls on sensitive information such as salaries, the information for collaborative

job matching is unrestricted. Suppose an employee decides to download all the telephone

numbers that are available on these databases and sells it to a telemarketer. Due to the lack

of deterrents, this act is relatively easy to carry out. Furthermore, the employee may claim

that he was unaware of the fact that his act was unethical. This type of security breach is

typically blamed on the user and a lack of user training. The rationale behind such a security

breach is contradictory to the security usability requirements that should be implemented in

a software system. According to Zurko (2005) we have to ask, ‘why did the system make the

insecure option so easy and attractive' – and in this case ultimately lucrative? Perhaps if

Chapter 7: The OAC(UCON) Model

58

synchronous system deterrents had been deployed at the time of usage, the employee may

have been deterred from carrying out an illegitimate act.

In this scenario, the following stipulations or mechanisms could have been used as usage

control deterrents:

 Pre-obligation: The user must click on a button in a window to indicate that he/she

agrees not distribute this information.

 Ongoing obligation: A window with the following warning 'This dataset must be used

exclusively for work-related purposes ONLY' is to remain open at all times.

 Pre-condition: The user is warned beforehand that ‘this information may be

accessed during business hours only’.

 Ongoing conditions: The information may be accessed during business hours only

(same as the pre-condition as it is time dependent). However, although the user may

have accessed the information during business hours (i.e. initially satisfying all the

conditions), the ongoing condition may become invalid as time passes.

 Post-obligation: The user must indicate the priority of the task completed if he/she

actually accessed these databases outside business hours. This information could be

used to develop a profile on the user.

The post-obligation implies that an employee may in fact access the databases after hours.

Under the optimistic paradigm the employee should ultimately be able to download the

data in the case of an emergency. This is permitted, as the employee should not be

hampered in the performance of his/her duties. While fulfilling the post-obligations facet is

within a user's control, the pre-conditions and ongoing conditions are not. For this reason a

break-the-glass tool may be included to allow for overriding the pre-conditions or ongoing

conditions.

The Break-the-Glass policy

The Break-The-Glass (BTG) policy provides a mechanism to override access control policies

(Ferreira et al., 2006) as part of the access control policy stated in the previous section. This

act can be justified because there are situations when access is required, even if it means

Chapter 7: The OAC(UCON) Model

59

Sending Replies Sending Requests

W
eb

 Tier

Web Pages

XML SECURITY
POLICIES

A
p

p
licatio

n
 Tier

Sandbox

Application

D
ata A

ccess Tier

ACCESS CONTROL
POLICIES

Database

OPTIMISTIC SECURITY POLICIES

Data Access Logic

that confidentiality is breached. The important issue is that this breach is openly declared to

the responsible parties and the access is properly analysed afterwards. At that stage it can

then be considered whether the breach was well justified or whether it was an intrusion.

The following section investigates how such deterrents may be practically implemented

under the optimistic paradigm.

7.3 Architecture

Many systems are based on a three-tiered architecture – access is via the web, the

application programs reside within an application server, and the data is stored within a

database system (Li et al., 2005). Only the application tier is considered in the next section

(Figure 7-1).

Figure 7-1: Architectural Diagram

Chapter 7: The OAC(UCON) Model

60

In Chapter 8 the prototype is designed within the Application Layer where it is protected by

the Sandbox offered by the Java Authentication and Authorisation Service (JAAS). In the

basic Java security model, trusted code is allowed full access to the system, and untrusted

code is forced to execute in a restricted environment called the sandbox. The access control

policies of the sandbox are established by an instance of the SecurityManager class. A

security manager provides methods that determine whether a particular operation is

permissible (Tymann and Schneider, 2008).

The conceptual structure of the OAC(UCON) model is shown in Figure 7-2. The Usage

Enforcement Facility includes the Customisation Module, which can be used to constrain a

user's access to specific components of an object. Within the model, it is presumed that as

the user’s optimistic rights are downgraded, the data that he/she is allowed to access may

be constrained according to sensitivity levels. The Monitoring Module involves logging all

accesses, while the Update Module is involved in changing the access rights.

The Usage Decision Facility includes the Condition, Obligation, Break-the-Glass and

Authorisation Modules. In general, most accesses are allowed – except for those users who

breached the system in the past. The Authorisation Module therefore determines the level

of access that is permitted. For example, an authenticated user is permitted to view data of

all sensitivity levels. In most cases users are trusted to view all objects that are given

optimistic access rights. The Condition Module decides whether conditional requirements

for authorised requests are satisfied or not by using usage rules and contextual information

(such as current time, IP address, etc.). The Obligation Module decides whether certain

obligations have to be performed or not, either, before, during or after the requested usage

has been performed. If there exists any post-obligation that has to be performed, this must

be monitored by the Monitoring Module and the result has to be resolved by the Update

Module in the Usage Decision Facility. If the user does not satisfy the obligations before or

during the access, he/she is not permitted to access the information. However, when the

conditions are invalid, the user is allowed to access the information by using the Break-the-

Glass Module. This Module is intended for emergencies only and the user is clearly informed

Chapter 7: The OAC(UCON) Model

61

about the consequences of accessing this information illegitimately. Access by ‘breaking the

glass’ is always red flagged for auditing purposes.

The Usage Protection Facility is used to protect the integrity of the information. The Audit

Module will check through all accesses and identify possible illegal accesses. It will

additionally create a list of red-flagged accesses. If the user cannot justify an illegal access,

then the Authorisation Module will restrict the user's optimistic access rights in future. This

may also involve punitive action. If the user has performed some illegal modification to the

data, the Roll-back Module will attempt to return the data back to its original state.

Figure 7-2: Conceptual Structure for Optimistic Access Control enhanced with Usage Control

Condition
Module

Obligation
Module

Authorisation
Module

Roll-back
Module Audit Module

Usage Decision Facility

Usage Protection Facility

Request Information
Result Information

Information regarding Accesses Information regarding Authorisation

Break-the-Glass
Module

Subjects Objects Customisation
Module

Monitoring
Module

Update Module

Usage Enforcement Facility

Usage
Rules

Contextual
Information

Reference Monitor

Chapter 7: The OAC(UCON) Model

62

The Break-the-Glass Module, which provides a mechanism to override access control

policies, is used in the same way as by Ferrieria et al. (2006). It is important to note that the

responsible parties are fully aware of this security breach and that the access is properly

analysed afterwards so as to consider whether the breach was well justified or a mere

intrusion. What is different from the way in which the Break-the-Glass policy is used by

Ferrieria et al. (2006) is that with the OAC(UCON) Model it is enforced when the system

conditions are not satisfied. For instance: users are only allowed to access data from 8:00am

to 5:00pm. In an emergency, the user will be allowed to override this system condition by

making use of the Break-the-Glass facility.

The sequence of a user’s interaction with the OAC(UCON) model can be summarised as

follows:

1. The Authorisation Module checks the constraints on the information requested by

using the Customisation Module. In general, the user is allowed to access the

information if he/she is authenticated and the data is under the optimistic access

control domain.

2. Before the user is allowed access, he/she has to fulfil one or more specific pre-

obligations set up by the Obligation Module. If these obligations are not met, the user

is not allowed to access the information.

3. If the system pre-conditions are valid, the user is allowed to access the information.

These permissions are maintained by the Condition Module. However, if the system

conditions are not valid, the user is presented with an opportunity to use the Break-

the-Glass facility deployed by the Break-the-Glass Module. The user is given adequate

warning about the usage of this facility. Moreover, it is red-flagged and logged.

4. The system is frozen until the user decides whether or not to use the Break-the-Glass

facility.

5. If the user employs the Break-the-Glass facility, the system verifies whom it needs to

notify and proceeds with the access.

6. All notifications and user actions are registered automatically by the Monitoring

Module.

Chapter 7: The OAC(UCON) Model

63

7. During the access, the user has to meet the ongoing obligations. If they are not met,

the user's access to the information is automatically revoked.

8. During the access, the ongoing conditions may become invalid. The user then has the

opportunity to use the Break-the-Glass facility to continue with the access.

9. After the access, the user may have to satisfy a post-obligation. This will be monitored

by the Monitoring Module.

10. The Update Model may change the access rights of a user if he/she has committed an

unjustified breach.

11. The Audit Model checks for red flags and unjustified breaches.

12. The Roll-back Module may be deployed if an unjustified breach resulted in the data

being compromised.

The OAC(UCON) model is intended to fit into a mixed-initiative access control framework

(see Figure 7-3), encompassing traditional access control such as role-based access control

for highly classified information and optimistic access control enforced with usage control

for information that is unclassified. Under the optimistic access control paradigm, users

should be allowed access under most circumstances. Thus, access would not depend on the

subject attributes or the object attributes. It is assumed that data is freely available and not

subject to authorisation unless the user's optimistic rights have been downgraded. While

the user will not be permitted to access the information unless the obligations are satisfied,

he/she will under special circumstances be allowed to access the data by utilising the Break-

the-Glass facility – even if the pre-condition(s) or ongoing condition(s) are invalid.

Chapter 7: The OAC(UCON) Model

64

Figure 7-3: A Mixed-Intiative Access Control Framework – combining RBAC with OAC(UCON)

7.4 Detailed Design

7.4.1 Formal Specifications

The formalised definition of the optimistic access control enhanced with usage control is as

follows:

Pre-Authorisation:

- Subjects S, Objects O, Rights R

- Function that checks if the user s, requesting access o with right r has Optimistic Rights:

 OptimisticRights(s,o,r)

- Function that checks if the set of Pre-Conditions are satisfied or not:

 PreC(s,o,r)

- Function that checks if the set of Pre-Obligations are satisfied or not:

 PreB(s,o,r)

Optimistic Access Control enforced with Usage Control

Role-based Access Control

……
…..

Role 1

…
…
….
.

Role 2

Role 3

Obligations

Conditions

Public Domain

Break-the-Glass

Yes

Yes

Yes

No

Chapter 7: The OAC(UCON) Model

65

- Function that requests if the user wants to override pre-conditions or not by using the

Break-the-Glass facility:

 Break-the-Glass(s,o,r)

- Access is allowed momentarily if the pre-obligations and pre-conditions are satisfied:

allowed (s,o,r) OptimisticRights(s,o,r) → {true, false}

 ^ PreB(s,o,r) → {true, false}

 ^ PreC(s,o,r) → {true, false}

- Otherwise allow the user to use the Break-the-Glass facility

allowed (s,o,r) OptimisticRights (s,o,r) → {true, false}

 ^ PreB (s,o,r) → {true, false}

 ^ ¬PreC (s,o,r) → {true, false}

 ^ Break-the-Glass(s,o,r) → {true, false}

- Access is revoked if the pre-obligations are not met or if the Break-the-Glass is not used

when the pre-conditions are invalid:

 revokeAccess(s,o,r) ¬ Break-the-Glass(s,o,r) → {true, false}

 ¬preB (s,o,r) → {true, false}

Ongoing Authorisations

- Subjects S, Objects O, Rights R

- Function that checks if the set of ongoing Conditions are satisfied or not:

 onC (s,o,r)

- Function that checks if the set of ongoing Obligations are satisfied or not:

 onB (s,o,r)

- Function that requests the user to override the ongoing conditions or not, using the Break-

the-Glass facility:

 Break-the-Glass (s,o,r)

- Sustain access if the ongoing obligations and ongoing conditions are momentarily

satisfied:

allowed(s,o,r) onB (s,o,r) → {true, false}

 ^ onC (s,o,r) → {true, false}

Chapter 7: The OAC(UCON) Model

66

- Otherwise allow the user to employ the Break-the-Glass facility if the ongoing conditions

are invalid in order to sustain access:

allowed (s,o,r) onB (s,o,r) → {true, false}

 ^ ¬onC (s,o,r) → {true, false}

 ^ Break-the-Glass (s,o,r)→ {true, false}

- Access is revoked if the ongoing obligations are not met or if the Break-the-Glass facility is

not accepted when the ongoing conditions are invalid:

 -revokeAccess(s,o,r) ¬onB (s,o,r) → {true, false}

 ¬ Break-the-Glass(s,o,r) → {true, false}

Post Authorisation

If a user does not satisfy their post-obligations or is involved in an unjustified breach, then

the user's optimistic rights are downgraded and his/her access will be constrained in future.

PostUpdate (OptimisticRights (s,o,r)): OptimisticRights (s,o,r)

 ¬PostObligations (s,o,r) → {true, false}

 ¬JustifiedBreach (s,o,r) → {true, false}

Administrator-controlled attributes can be modified by administrative actions. These

attributes are modified at the administrator's discretion but are 'immutable' in that the

system does not modify them automatically. Mutable attributes are automatically modified

by the system (Park et al., 2004). For instance, if the users cannot justify having used the

Break-the-Glass procedure, their optimistic access rights may be revoked or constrained in

future.

Chapter 7: The OAC(UCON) Model

67

7.4.2 The Use Case Diagram of Usage Control under the Optimistic Access Control

Paradigm

Figure 7-4:Use Case Diagram of OAC(UCON)

The implementation of pre-authorisation is relatively simple as it warrants checking the

conditions and obligations before the user may proceed. The implementation of ongoing

authorisation is, however, non-trivial. The implementation decision taken to deal with this

issue is to be addressed in Chapter 8. As the OAC(UCON) model is based on optimistic access

control, most users are trusted to access information that is relevant to their context. Note

that this is a less prescriptive approach than, say, role-based or mandatory access control.

Due to the openness of the architecture, the user has to meet all pre-obligations and

ongoing obligations, as he/she is expected to behave in a trustworthy manner.

User

Request Access to Object

Accept Pre-Obligations

Break-The Glass

Accept Post-Obligations

Validate Ongoing Conditions

Post Update

Audit

Roll-back

Validate Pre-conditions

System’s Conditions (time of day etc.)

System Administrator

Accept Ongoing Obligations

Chapter 7: The OAC(UCON) Model

68

In terms of the enforcement of security policies, it is imperative that this function be located

centrally and enforced uniformly. The same notion would apply to the implementation of

such policies in terms of application logic (Verhanneman et al., 2005). This type of

deployment may be achieved through the use of aspect-oriented methodologies. The

premise of the model is to create an aspect that will intercept calls when a subject requests

access to an object and to enforce optimistic access control enhanced with usage control. A

significant amount of work has been conducted in aspect-oriented security in respect of

access control. The implementation of access control using aspect-oriented programming

has been shown to ease the development of security-type concerns such as access control

(De Win et al., 2001), as it results in an implementation that is easier to maintain and port to

different environments.

According to Jones and Rastogi (2004), security controls may fall in one of four categories:

corrective control, deterrent control, detective control and preventative control. Access

control falls in the preventative control category. Information under this protection is

typically secured in terms of roles or attributes. However, information under the public

domain is not. Securing a distributed computing environment against malicious or otherwise

disruptive use involves two aspects (Georgiev and Georgiev, 2001):

 Social, where the safeguarding of a computer system relies on social deterrents, such

as shameful exposure or prosecution.

 Technical, where the system is protected by technical means, such as encryption

algorithms and access controls.

Detective functions attempt to identify unwanted events while they are occurring or after

they have occurred. Recovery controls restore lost computing resources or capabilities and

help the organisation to recover monetary losses caused by a security violation. Corrective

controls either remedy the circumstances that allowed the unauthorised activity or return

conditions to what they were before the violation (Kim and Leem, 2004). Deterrent controls

are intended to discourage individuals from intentionally violating information security

policies or procedures. Typically, organisations implement deterrents such as anti-virus

systems, passwords or they foster security awareness. However, with the use of the

OAC(UCON) model, deterrents are achieved in a proactive manner.

Chapter 7: The OAC(UCON) Model

69

7.5 Conclusion

This chapter presented the OAC(UCON) model together with specifications for a practical

and implementable system. One of the criticisms levelled at the model in earlier

presentations was its applicability. This problem was addressed by viewing the model within

a mixed-initiative context, that is, within the context of traditional access controls. The

model is highly applicable in contexts where some data cannot be reasonably protected by

traditional access controls and needs to be openly available. This data can now be relegated

to the public domain but remain subject to usage control rules under the optimistic access

control paradigm. In the next chapter, the prototype will demonstrate a subset of the

functionality of the OAC(UCON) that focuses more on the usage decisions component of the

model. The prototype is implemented by using aspect orientation to demonstrate the

suitability of the paradigm for this context. In addition, the model concept is evaluated in

terms of the design science research methodology to assess its effectiveness and scalability.

Chapter 8: Prototype Implementation

70

CHAPTER 8:

 PROTOTYPING AND MODEL EVALUATION

8.1 Introduction

The literature survey presented in Chapters 2, 3 and 4 has led to the development of a

Usage Control Model for Optimistic Access Control (OAC(UCON) model) (Chapter 7). The

current chapter presents the design of a proof-of-concept prototype to demonstrate a

subset of the model concept, based specifically on the usage decision. The prototype was

developed using an aspect-oriented programming language namely AspectJ. In addition, the

model was evaluated in terms of the design science research method (March and Smith,

1995) to test its scalability and efficacy as a security measure. During this process, several

evaluative prototypes were developed so as to verify the model concept for commercial

systems. Hence, the evaluative prototype encompassed a larger subset of the model

concept than the proof-of-concept prototype. The programming paradigm for the evaluative

prototypes was not stipulated. Consequently, the evaluative prototypes were implemented

by using various design techniques and programming languages in order to provide a more

comprehensive assessment of the model.

8.2 The aim of the proof-of-concept prototype

The aim of the prototype was to provide key working points to show how the model can

scale up using aspect orientation. The prototype was developed using AspectJ to evaluate

the aspect-oriented paradigm. Furthermore, for comparative purposes, the proof-of-

concept prototype was developed using Java as an object-oriented language and it focused

specifically on the Usage Decision Facility of the OAC(UCON) model. Section 8.3 is a

formalisation and consolidation of an earlier publication by Padayachee and Eloff(2009).

Chapter 8: Prototype Implementation

71

8.3 Implementation of the proof-of-concept prototype

Figure 8-1 shows the activity diagram for the OAC(UCON) model. In terms of the formal

specification presented in Section 7.4.1, this relates to the pre-authorisation and ongoing

authorisations as well as to the post-authorisation formulations.

Figure 8-1: State Activity diagram of OAC(UCON) Model)

When a user requests access to an object, authorisation is performed by utilising subject

and object information (attributes). Usage rules are used to check whether the request is

permissible and whether the data is classified and subject to access control. If the data is in

the public domain and hence unprotected by access controls, then the usage deterrence

pre-conditions valid

ac
ce

p
te

d
 o

n
go

in
g

o
b

lig
at

io
n

s

accepted pre-obligations

unclassified and authorized

BREAK GLASS

o
n

go
in

g
co

n
d

it
io

n
s

va
lid

re
fr

ai
n

ed
 f

ro
m

 u
si

n
g

B
R

EA
K

G
LA

SS
 fa

ci
lit

y

rejected ongoing obligations

o
n

go
in

g
co

n
d

it
io

n
s

in
va

lid

pre-conditions invalid

classified and authorizednot authorized

Access Control

Access Object

User Request Access

Ongoing Obligations Access Object Ongoing Conditions

End Request

Post Obligations Post Update

user ends request

rejected pre-obligations

Break the Glass

Chapter 8: Prototype Implementation

72

mechanisms are deployed. Otherwise, the access control proceeds as expected with

traditional access control based on user attributes.

Multithreading was used to implement the ongoing authorisations (see Figure 8-2). If a

subject requests an object (such as a file), the pre-conditions and pre-obligations are

checked and then two separate threads are invoked, representing the ongoing conditions

and ongoing obligations respectively.

Figure 8-2: Thread Diagram of the OAC(UCON) model

User requests to access object
-Check pre-conditions
-Check pre-obligations
- Deploy Break the Glass (BTG)
 if pre-conditions are not satisfied

Start Ongoing Obligations Thread

Verify conditions
- use BTG if
conditions are not
satisfied Uphold

Ongoing
Obligations

End Request

Stop Ongoing Conditions
Thread

Stop access if ongoing
obligations are not
satisfied

Main thread

Post obligation
Post updates

Start Ongoing Conditions
Start Ongoing
Obligations Thread
itions

Start Access Thread

Post access

Stop Ongoing Obligations

Stop access if user
does not use BTG
when conditions
are invalid

Uphold access while
ongoing conditions
are valid and ongoing
obligations are
satisfied

Stop Access Thread

Chapter 8: Prototype Implementation

73

As this model is based on optimistic access control, most users are trusted to access

information that is relevant to their context. However, owing to the openness of the

architecture, the user has to meet all pre-obligations and ongoing obligations. As the user is

expected to behave in a trustworthy manner, the trust is maintained by the user’s

acceptance of the pre-obligations and ongoing obligations that are coupled with accessing

the information. However, if the pre-conditions or ongoing conditions are invalid, the user is

allowed to deploy the Break-the-Glass facility to access the information.

If the user does not accept the pre-obligations, he/she is not allowed to access the

information at all. If the user does not accept the ongoing obligations, access is revoked.

These refusals are not considered as breaches of trust. On the other hand, if the user

accessed the information and then refuses to accept the post-obligations, such refusal is

considered to be a breach of trust.

In the previous chapter, aspect-orientation was proposed as means of implementing usage

control without making invasive changes to the code base of a fully operational system. To

illustrate the utility of the aspect-orientation in terms of the enforcement of usage control, a

scenario is considered where a fully operational software system that performs traditional

access control has to be complemented with the features offered by the OAC(UCON) model

during post-delivery maintenance. In this scenario, the class SampleAuthorization, as

shown in Program Listing 8-1, controls user accesses to objects by using traditional access

controls. An object could be a file 'c:\candidate.txt'.

Program Listing 8-1: ‘SampleAuthorization’ class
public class SampleAuthorization implements PrivilegedAction {

 public Object run() {

 AccessObject Access(SubjectName,ObjectName,"READ");

 AccessObject.request();

 }

}

Chapter 8: Prototype Implementation

74

As shown in Program Listing 8-1, the execution point where the request() method is

called involves checking whether this access request by a subject to an object is permissible.

The operational system has classes that represent the access and access information called

Access and AccessInformation respectively, where the Access class extends the

AccessInformation class. The AccessInformation class represents the nature of

the access, in terms of the subject-object attributes and the type of access. The Unified

Modelling Language (UML) diagram provided in Figure 8-3 shows how these classes may be

integrated with usage control features without modifying the operational system.

Since Aspect-Oriented Programming is a relatively new paradigm, there are no specific

standards available in terms of designing aspects with regard to the UML. A position paper

by Groher and Schulze (2003) was used to produce the UML diagram (Figure 8-3). The

symbol was created to show an intertype declaration.

As is shown, the Ongoing Obligations, Ongoing Conditions and Break-the-Glass mechanisms

are represented by classes OngoingObligation, OngoingCondition,

BreakTheGlass; and would inherit from the AccessInformation class as these

classes require information about the access. The UsageControlInjector collaborates

with these classes to perform its usage control functionality when a subject requests access

to an object. As the Access class was not intended to cater for instances where access

needs to be revoked owing to invalid usage control obligations and conditions, an

intertypeTypeInjectorOnAccess aspect was included to perform the requisite

actions when access needs to be terminated. For the sake of readability, only core classes

that are affected by the aspects are shown. The Sampleauthorization class is not

shown in the diagram as the UsageControlInjector provides its supplemental

functionally around the request() method found in the Access class which is actually

responsible for mediating a request between a subject and an object.

Chapter 8: Prototype Implementation

75

Figure 8-3: UML Diagram showing Aspect UsageControlInjector and Core Classes

<<advises>>

<<advises>>

<<declared on>>

<<advises>>

+close()
+request()

-accessObject:image

Access

+getAccessType()
+getObject()
+getSubjectName()

-accessType:String
-objectName:String
-subjectName:String

AccessInformation

+OngoingObligations(String, String, String)
+endOngoingObligations()
+run()

-OngoingObligationsRequest: ImageFrame

OngoingObligations

+conditionisValid()
+conditionsWarning()
+endOngoingConditions()
+getCondition()
+run()

-condition : long

OngoingConditions

+display()

BreakTheGlass

+Access.endrequest()
+Access.run()

-Access:Thread
declare parents:Access implements Runnable;

Aspect
<<IntertertypeInjectorOnAccess>>

-accessOpen: boolean
-preCondition: boolean
-accessObject: Access
-accessThread: Thread
-conditionsThread: Thread
-obligationsThread:Thread
-OnConditions: OngoingObligations
-Onobligations: OngoingConditions
-ObjectName:String
-SubjectName: String
-AccessType: String

Aspect
<<UsageControlInjector>>

+breakTheGlass(String, String, String)
+checkAccessType()
+initiateBreakTheGlassFacility()
+logAccess(String, String, String, String, String)
+OngoingAccess()
+OngoingCondition()
+OngoingObligation()
+postAccess()
+postObligations(String, String, String)
+preConditions(String, String, String)
+preObligations(String,String,String)

<<advises>>
<<pointcut>> OngoingAccess

<<after>>Access.endrequest()

<<pointcut>> OngoingCondition

<<after>>
OngoingConditions.conditionsWarning()

<<pointcut>> Intercept_Request()

<<around>> Access.request()

<<pointcut>> OngoingObligations

<<after>>
OngoingObligations.endOngoingObligations()

Chapter 8: Prototype Implementation

76

8.4 An implementation overview of the proof-of-concept prototype

With aspect-oriented programming, the existing authorisation module which has methods

for traditional access control can be augmented with usage control without modifying the

source code. Furthermore, all details relating to usage control can be confined in a singular

modular structure, namely an aspect, without it being mixed in with this module. To

accomplish this, a generic aspect UsageControlInjector that delineates four

pointcuts was defined. The first pointcut Intercept_Request intercepts those calls

where a user requests access to an object, i.e. during programs execution where the

method body of request() executes. The naming of the request method may differ from

application to application. The!within expression is used to prevent infinite recursive

calls. If no special precautions are taken, aspects that advise other aspects can easily and

unintentionally advise each other recursively. The target keyword has to ensure that the

executing code belongs specifically to class Access. The around advice defines code that is

executed around the request() method when it is called. This advice initially determines

if this information is in the public domain (i.e. controlled by Optimistic Access Control),

otherwise it allows traditional access control to proceed as usual. The advice also contains

operations to test the preObligations and preConditions. If the preObligations are not

satisfied, the user is not allowed to access the object. If the preConditions are invalid, the

user has the opportunity to use the Break-the-Glass facility to access the feature. The aspect

invokes threads to maintain the ongoing conditions and ongoing obligations to control the

request to use the object.

Chapter 8: Prototype Implementation

77

Program Listing 8-2: Showing the UsageControlInjector Aspect
public aspect UsageControlInjector {

 private static boolean accessOpen;

 private static boolean preCondition = true;

 private Thread obligationsThread;

 private Thread conditionsThread;

 private Thread accessThread;

 private Access accessObject;

 private OngoingConditions OnConditions;

 private OngoingObligations Onobligations;

 private String SubjectName;

 private String ObjectName;

 private String AccessType;

 pointcut Intercept_Request(Access AccessObject):

 execution(* *.request(..)) && !within(UsageControlInjector)

 && target(AccessObject) ;

 void around (Access AccessObject)

 : Intercept_Request(AccessObject){

 accessOpen = true;

 accessObject = AccessObject;

 SubjectName = accessObject.getSubjectName();

 ObjectName = accessObject.getObject();

 AccessType = accessObject.getAccessType();

 if (OptimisticRights()){

 if (preObligations(SubjectName, ObjectName, AccessType)){

 if (preConditions(SubjectName, ObjectName, AccessType)

 || breakTheGlass(SubjectName, ObjectName, AccessType)){

 //start access Thread

 //start OngoingObligation Thread

 //start OngoingCondition Thread

 while(accessOpen){

 //wait

 }

 postObligations(SubjectName,ObjectName,AccessType);

 }

 }

 }

 }

 public boolean checkAccessType(){

 //determine whether this information is subject to optimistic access

control

 return true;

 }

// when there is conditions warning

pointcut OngoingCondition(): call(* *.conditionsWarning(..)) &&

target(OngoingConditions);

after(): OngoingCondition(){

 initiateBreakTheGlassFacility();

}

// when the user ends ongoingObligations

pointcut OngoingObligation() : call(* *.endOngoingObligations(..)) &&

target(OngoingObligations)&& !within(UsageControlInjector);

after(): OngoingObligation(){

 postAccess();

}

Chapter 8: Prototype Implementation

78

// when the access ends

pointcut OngoingAccess() : call(* *.endrequest(..)) && target(Access) &&

!within(UsageControlInjector);

after(): OngoingAccess(){

 postAccess();

 }

void initiateBreakTheGlassFacility(){

//method to initiate the Break-the-Glass facility

}

boolean preObligations(String SubjectName, String ObjectName, String

AccessType){

//method to perform preObligations

}

boolean preConditions(String SubjectName, String ObjectName, String

AccessType){

//method to perform preconditions

}

void postAccess(){

//clear up

//update logs

}

public void postObligations(String SubjectName, String ObjectName, String

AcccessType){

//method to perform postObligations

}

boolean BreakTheGlass(String SubjectName, String ObjectName, String

AccessType){

 //perform Break-the-Glass facility

}

void logAccess(String SubjectName, String ObjectName, String AccessType,

String Notice, String RedFlag){

//write to log file

}

}

The next two pointcuts, pointcut OngoingCondition and pointcut

OngoingObligation, intercept execution points that indicate that the ongoing

conditions and ongoing obligations are no longer satisfied. The after advices of each

pointcut define code that is executed after such an irregularity is detected. In this case, if

some action results in the ConditionsWarning or an endObligations method

being called on either the conditions object or the obligations object, then this call

will be intercepted by these pointcuts. If the ongoing obligations are no longer satisfied,

then the access is revoked immediately. If the ongoing conditions are no longer satisfied,

the user has the opportunity to use the Break-the-Glass facility to continue with the access.

Chapter 8: Prototype Implementation

79

The last pointcut is used to intercept execution points where the access is terminated by the

user. Subsequently post-access activities such as logging the access are performed and the

Ongoing Conditions and Obligations threads are ceased. (Appendix F provides details on the

AspectJ semantics.)

The Access class would require additional functionality to mediate users' requests to an

object and to end requests when required. This functionality may not have been provided in

a way that fits in with the current usage of the Access class. To maintain the integrity of

the class, aspect orientation permits a seamless integration of this additional functionality

by facilitating the creation of a special aspect known as an intertype declaration without

modifying the Access class. The intertype declaration construct is supported by aspect-

oriented programming languages such as AspectJ. An intertype declaration is generally used

to add on information such as methods or fields to an object without modifying the existing

class. Furthermore, as this process needs to be controlled within thread, in Java it implies

that this class must implement the java.lang.Runnable thread interface. With

AspectJ, this can be done using the declare parents syntax so that Access class can

be an active object. The relevant classes are provided in Appendix C.

Program Listing 8-3: Depicting an InterTypeDeclaration Aspect
public aspect IntertypeDeclarationOnAccess {

 declare parents: Access implements Runnable;

 Thread Access.aThread;

 public void Access.endrequest() {

 aThread = null;

 close();

 }

 public void Access.run() {

 //perform the request

 }

}

The UsagecontrolInjector is relatively generic as it can be reused within other

contexts as well. Only the method specified that performs the access control, namely

request(), would have to be re-specified according to the system naming. The

IntertypeDeclarationonAccess aspect is partially generic, as the class name

Chapter 8: Prototype Implementation

80

Access would have be re-specified accordingly. Unlike typical instrumentation, using the

aspect-oriented paradigm results in better consistency, as all methods that match the

pointcuts are identified. Evidently, it is possible to augment usage control features in a

system without modifying the existing system.

8.5 Proof-of-concept prototype operation

Step 1: Login and authentication of the user

Step 2: An application interface appears which allows searching of files.

Step 3: User selects a file to open and the pre-obligation dialogue box opens. User has to

accept the pre-obligation to move on to the next step.

Chapter 8: Prototype Implementation

81

Step 4: Pre-conditions warning appears if the pre-conditions are NOT met.

Step 5: The Break-the-Glass facility is invoked. User has to accept the Break-the-Glass option

in order to access the file.

Step 6: Ongoing Obligations pop up while user accesses the file. The ongoing obligations

window on the right is an example of an ongoing obligation that involves presenting the user

with the security policies related to the file being accessed.

Chapter 8: Prototype Implementation

82

Step 7: Ongoing Conditions pop up intermittently if the ongoing conditions are not met

whilst the user is accessing the file.

Step 8: The Break-the-Glass facility is invoked.

Step 9: User is allowed to sustain the access by accepting the Break-the-Glass option.

Step 10: Post-Obligations are invoked once the user closes the file concerned. This is an

example of a post-obligation that is used to assess the user's trustworthiness.

Chapter 8: Prototype Implementation

83

Step 11: Back to Original Interface

8.6 Evaluation of the Aspect-Oriented Approach

In this section, the aspect-oriented approach is evaluated against the object-oriented

approach. An object-oriented version of the proof-of-concept prototype was developed for

comparative purposes.

8.6.1 The Design Approach

The UML diagram of the Object-Oriented Version is presented in Figure 8-4 below.

Compared to the Aspect-Oriented Approach presented in Figure 8-3, it can be observed that

the coupling between classes in the system have increased. It is not always clear how to

best measure a metric such as coupling in an aspect-oriented system and how to compare it

to its equivalent in a corresponding object-oriented system; as yet there does not exist a

definitive work for metrics for aspect-oriented systems. However, it is still possible to

observe fine-grained changes in coupling by reasoning about the changes in the code base

(Singh, 2005).

Chapter 8: Prototype Implementation

84

Figure 8-4: Showing the OOP UML of Core Classes

Access

+request()
+Access(String, String, String)
+endrequest()
+run()

+run()
+endOngoingObligations()

OngoingObligations

-OngoingObligationsRequest: ImageFrame

Access

+OngoingConditions(String, String, String)
+conditionwarning()
+getCondition()
+conditionisValid()
+run()
+endOngoingConditions()

OngoingConditions
Access
-condition: boolean

display()

BreakTheGlass

Employs

-accessOpen: boolean
-preCondition: boolean
-obligationsThread: Thread
-conditionsThread: Thread
-accessThread: Thread
-OnConditions: OngoingConditions
-accessObject: Access
-Onobligations: OngoingObligations
-breakTheGlass: BreakTheGlass
-SubjectName: String
-ObjectName: String
-AccessType: String
+conditionsInvalid: boolean
+endAccess: boolean
+endObligations: boolean

UsageControl

run()

SampleAuthorization
Access
-ans:boolean

getSubjectName()
getObject()
getAccessType()
run()
stop()

AccessInformation

SubjectName: String
ObjectName: String
AccessType: String

+UsageControl(Access)
+checkAccessType()
+initiateUsageControl()
+initiateBreakTheGlassFacility()
+stopAccess()
+stopOngoingObligations()
+preObligations(String, String, String)
+preConditions(String, String, String)
+postAccess()
+postObligations(String, String, String)
+breakTheGlass(String, String, String)
+logAccess(String, String, String)

Chapter 8: Prototype Implementation

85

Compared to the aspect-oriented version, there appears to be a reduction in the scattering

of concerns (see Figure 8-5) at the package level. For example, the aspect-oriented version

does not cross-cut the class responsible for authorisation (i.e. AuthorizationSim in the

diagram). In the case of the object-oriented version, the Usagecontrol class has to

interact with the Access, OngoingObligations and OngoingConditions classes,

as the class has to be aware of the fact that the conditions are no longer met; that the

OngoingObligations are not being fulfilled; or that the user has terminated the

request. In the case of the aspect-oriented version, the UsageControlInjector aspect

observes each of these objects and decides what action to perform. It has been calculated

that the usage control function is scattered across four classes in the object-oriented

version.

Figure 8-5: OOP package level diagram vs AOP package level diagram (on the right)

8.6.2 Execution Time and Memory Usage

Figure 8-6 shows the change in execution time. In the bar graph, the upper bar represents

the time used by the aspect-oriented system while the lower bar represents the quantity for

the object-oriented system. The values for these evaluations are calculated by averaging the

data of several test runs. It can be noted that the object-oriented version is 1.9% faster than

the aspect-oriented version, a difference that is actually negligible. Several reasons could

account for this, such as user speed and the speed of the computer processor used for the

experiments.

accessObject

authentication
-Sim

authorization-
Sim

testUtilities components

usagecontrol

accessObject

authentication
-Sim

authorization-
Sim

testUtilities components

usagecontrol

Chapter 8: Prototype Implementation

86

Figure 8-6: Showing comparisons of the execution time of OO vs AOP

Next, the amount of memory (Figure 8-7) that the Java Virtual Machine had demanded from

the operating system at the end of each test run was compared. The object-oriented version

used only 1.9% less memory than the aspect-oriented version. This figure is within a

reasonable margin of error. The results of the tests, which were conducted on an Intel(R)

Core 2 Duo CPU E6850 with 3.00 GHz and 1.96 GB of RAM, show that aspect-oriented

programming can compete with object-oriented version.

Figure 8-7: Showing comparisons of and Memory Usage of OO vs AOP

Chapter 8: Prototype Implementation

87

8.7 Evaluation of the model concept

The design science research methodology was used to conduct a small-scale experiment

based on the following activities: build, evaluate, theorise, and justify (March and Smith,

1995). The experiment involved a problem identification stage (which was done in Chapter

1), design and development of prototypes stages, and an evaluation (Offerman et al., 2009)

stage. The participants who were involved in the design and implementation of evaluative

prototypes were Computer Science Honours students from the University of Pretoria. The

concept specification was scaled up to a real-world scenario and included a mixed-initiative

access control framework together with trust (see Appendix D). The purpose of this process

was to identify if there were any vacuities, ambiguities or inconsistencies in the model

concept. During the evaluation stage, the participants interacted with the evaluative

prototypes and provided value judgements on it in terms of the efficacy of the security

mechanism provided by the product concept.

A small segment of the evaluation involved the usability of the security mechanisms

provided by the model concept. According to Jøsang and Patton (2001), security usability is

concerned with the study of how security information should be handled in the user

interface. In this context, the usability of the security mechanisms was evaluated. According

to Whitten and Tygar (1999) security software is usable if the people who are expected to

use it

 are reliably and made aware of the security tasks they need to perform;

 are able to figure out how to successfully perform those tasks;

 do not make dangerous errors; and

 are sufficiently comfortable with the interface to continue using it.

Qualitative data collections were employed, namely participant observation and open-

ended interviewing (see Appendix D):

Observation: The idea with participant observation was to determine whether the end-

user can successfully complete a task relating to the evaluative prototypes.

Qualitative interview: A qualitative, open-ended interview was conducted to determine the

participants' perceptions of the appeal of the model concept in terms of data misuse.

Chapter 8: Prototype Implementation

88

Participants had to address the following in terms of the model concept: Weaknesses,

Strengths, Potential improvements, Viability, Applicability and Scalability.

To facilitate the process, the issues concerning the evaluation were formulated into 11

statements. The participants then provided a judgment on each statement. The following

data was gathered from the experiment and are discussed in the paragraphs that follow:

Statement 1: The product specifications as given in the assignment were ambiguous and

incomplete.

Statement 2: The product specifications as given in the assignment could easily be

translated into an implementable product.

Both statements above focused on the viability (or not) of the product, and it was found

that 78% of the participants judged the specifications to be unambiguous and complete.

Two participants stated that the notion of priorities of tasks needed to be addressed, as the

priorities of tasks were assigned randomly in the specification. The priority of the task and

the use of the Break-the-Glass feature were examined to determine whether the user

utilised the Break-the-Glass facility for a bona fide emergency. If this priority of task did not

warrant ‘breaking the glass’, then the user's rights to information under the optimistic

access control domain were constrained. Three of the participants in the study felt that the

specifications given were ambiguous and incomplete, and claimed that this had led to

misinterpretation. Another participant claimed that the specification "did not give explicit

rules for the break-the-glass". All participants nevertheless agreed that the specifications

could easily be translated into an implementable product. In fact, one participant indicated

that the specifications were easy to divide into implementable components. The product

concept was judged to be highly viable and the participants were able to implement it using

several approaches, including Java, C# and PHP.

Chapter 8: Prototype Implementation

89

Statement 3: In terms of the enforcement of security, other mechanisms such as a written

policy document or adequate training would have been more effective than the

mechanisms identified in the product concept.

With regard to the effectiveness of the product concept in relation to other non-technical

approaches, 78,5% of the participants disagreed that other mechanisms such as training

would have been more effective than the product concept. Three participants felt that other

mechanisms – in combination – would increase the security overall, while four others felt

that the training and policy documents were "simpler to ignore" and "not a constant

reminder" as was the case with an automated system. In addition, the prototype concept

enabled the tracking of a user's actions.

Statement 4: The flexibility offered under the optimistic access control domain is a security

risk.

Based on the risk of using optimistic access control (owing to its flexibility), 78,5% agreed

that optimistic access control was a security risk and that data should be protected by other

means. However, some participants indicated that it depended on the nature of the

organisation and its data, and that some environments such as the medical industry actually

required the proposed level of flexibility.

Statement 5: Specifying system conditions, such as limiting access according to the time-

of-day, may deter users from abusing their privileges.

Altogether 78.5% of the participants agreed that specifying conditions would deter users

from abusing their privileges. Most participants felt that these conditions would give the

user the feeling that they were “doing something wrong" and that they would be deterred

as a result. They also felt that the threat of punishment and losing trust might provide a

motivation for users not to abuse their privileges.

Chapter 8: Prototype Implementation

90

Statement 6: The 'break-the-glass' facility is vulnerable to abuse.

In terms of the susceptibility of the break the glass facility 71% of the participants agreed

that the Break-the-Glass system was vulnerable to abuse. However, most of them indicated

that the threat of being discovered after the event was a way of preventing the Break-the-

Glass facility from being misused.

Statement 7: The protection mechanisms, such as fulfilling obligations, will compel users

to comply with the established rules of behaviour in order to protect confidential

information.

In terms of satisfying obligations, 85% of the participants agreed that the fulfilment of

obligations would compel users to comply with the established rules of behaviour. Using

obligations would prevent users from claiming ignorance as an excuse for not complying.

Furthermore, since users are intimidated by warnings, user responsibility could be expected

to increase.

Statement 8: An individual who interacts with the system will recognize that access is

dependent on user responsibility as well as technical access control.

With regard to security usability, 71.4 % of the participants agreed that an individual who

interacted with the system would recognise that access was dependent on user

responsibility as well as technical access control. Those participants who opposed the

statement argued that users were irresponsible and untrustworthy.

Statement 9: The risk of losing one's rights to information under the optimistic access

control domain may deter one from abusing one's privileges.

Due to the severity of punishment, 84.6% agreed that the risk of losing one's rights to

information under the optimistic access control domain might act as a deterrent against

abusing one's privileges. The threat of being caught and losing one's trust was a strong

motivator. However, participants agreed that if the user's premeditated goal was to steal

data, these mechanisms would not prevent such incidences.

Chapter 8: Prototype Implementation

91

Statement 10: The conditions, obligations and the break-the-glass mechanisms may be

distracting to a user.

In terms of security usability, 57% of the participants disagreed that the conditions,

obligations and the Break-the-Glass mechanism would be distracting to the user. Even those

users who agreed felt that after some time most users would ignore these pop-ups anyway.

However, all of this would depend on how the user interface was designed. It was important

to be presented in such a way that users should not become complacent or exasperated

about the messages.

Statement 11: Most users will ignore the messages about conditions and obligations

relating to the access.

Half of the participants agreed that users would ignore the messages about conditions and

obligations relating to the access. They felt that, in time, users would eventually pay no

attention to these messages. The other 50% of participants, who disagreed, proposed that

users should be forced to respond to the message. Furthermore, participants posited that

users would ignore these messages unless the consequences were clearly specified.

Although most participants regarded optimistic access control as a security risk, participants

reasoned that the additional facilities of obligations and conditions might deter users from

abusing their privileges. Participants suggested that constant reminders would ensure that

users would not perform illegitimate actions seeing that they would be monitored. Some

participants indicated that the separation of public domain information from the private

domain was strength, as it allowed for information to be subject to different controls.

Furthermore, it was quite a simple task to maintain the access control policies for

information under the optimistic access control domain. Regarding improvements, it was

suggested that the conditions should be more dynamic and that they should be based on

user profiles. Participants also suggested that rather than displaying pop-ups for every

access, a single-sign or a pop-up should be flashed intermittently. Regarding weaknesses,

the participants felt that users might try to bypass warning messages because they were

annoyed by them and that there was too much reliance on the trustworthiness of users.

Chapter 8: Prototype Implementation

92

The evaluation exercise revealed that the model concept could be appropriate to call

centres, dynamic environments, medical information systems and Wikipedia. It was

reasoned that the system would be relevant in situations where users were transitory. This

kind of system would also be more fitting for users who were professionals rather than the

average user. It would furthermore be more suitable in environments where damage was

reversible or in small organisations that used data that was not that sensitive.

Augmenting traditional access control with usage control features is expected to slow down

program execution, as it involves the inclusion of additional code in the functional system.

In terms of security usability, controls such as pre-obligations and ongoing obligations may

be distracting and impact negatively on the productivity of users. Perhaps, as the user

becomes more 'trustworthy", some obligations or conditions may be relaxed or negotiated.

The costs of implementing usage control as a deterrent may have to be weighed up against

the cost of information misuse. South Africa’s draft bill on the protection of personal

information is viewed as a means to ensure South Africa’s future participation in the

information market by providing ‘adequate’ information protection of an international

standard (see (CHAPTER 9: A DRAFT BILL ON THE PROTECTION OF PERSONAL INFORMATION,

2005)). If individuals are ensured that their privacy is taken into account in a software

system, it is understandable that they will trust the system with their private information.

The survival of e-business will probably depend on its ability to guarantee the privacy of its

clients.

The proposed OAC(UCON) model does not account for trust issues; thus this needs to be

addressed in future renditions of the model. In addition, the relationship between using the

Break-the-Glass facility and the priority of the task needs to be explored. Since using this

facility is dependent on the urgency of the task, the rules governing the Break-the-Glass

facility need to be defined in more detail.

Chapter 8: Prototype Implementation

93

8.8 Conclusion

The aspect designed for the enhancement of optimistic access control was tested in terms

of a proof-of-concept prototype. It was found that confining all the operations relating to

usage control to a single modular structure would reduce both development and

maintenance costs. Next, the relationship between multithreading and cross-cutting

behaviour was explored in this chapter. It was shown that the aspect-oriented approach

does not impact significantly on execution time or memory usage and that aspect-oriented

programming introduced fewer scattering of usage control concerns and less coupling

between classes.

Owing to the sample size which was quite modest (i.e. 14 participants), the limitations of

the experiment need to be taken into account when making generalisations from the

research. The nature of the study required participants to be competent at programming a

large system independently and to deliver the product within a reasonable time frame.

Purposive sampling had to be employed as the participant had to be an advanced

programmer who also had the time available to do the task. These two requirements were

met by the students enrolled for the Computer Science Honours programme at the

University of Pretoria. It is difficult to find members of society who would fit this unique

profile. The other limitation posed by the research method was that every participant's final

product had to be evaluated and the participants had to share their insights on the model as

well as their design decisions. Having a large sample would make this task extremely time

consuming. It would also imply that each participant's involvement would have been

superficial. A small sample, on the other hand, allowed for a more in-depth analysis of each

participant's value judgement. A future study may involve replicating the research method

with a new group of students from another university.

The model has not been tested within a large distributed system with several end-users in

an organisational setting. However, participants who tested the model concept can be

considered the representatives of stakeholders in the information technology industry. As

postgraduate students, they have extensive knowledge of information systems and are

Chapter 8: Prototype Implementation

94

currently employable or employed within the information systems sector. The product was

found to be highly viable as all participants were able to implement the scaled-up version of

the concept. The usability of the system was reasonable, except for the criticism that the

usage control features might be distracting and could eventually be ignored. However, the

evaluation revealed that users would understand that access control was based on technical

control as well as user responsibility. The effectiveness of optimistic access control was

found to be largely dependent on the usage control features, as optimistic access control on

its own posed a security risk. The evaluation nevertheless proved that by employing usage

control features of obligations and conditions, this risk would be reduced.

Chapter 9: Conclusion

95

CHAPTER 9:

 CONCLUSION

9.1 Introduction

The study in hand focused on a model for usage control under the optimistic access control

paradigm, i.e. the OAC(UCON) model. To increase the applicability of the model, it was

presented within a mixed-initiative access control framework. The pragmatic issue of

implementing such a model within the wider context of access control formed the topic of

discussion in this thesis. To ease the integration of the proposed model into an existing

access control framework, an aspect-oriented approach was selected. The motivation for

this study was posited in Chapter 1 and required a number of research goals to be

addressed. In this closing chapter the researcher evaluates the extent to which the

objectives of the research goals have been met. Finally, it concludes with a discussion of the

main contribution of the research and suggestions for further research.

9.2 Main contribution

This research did not promote the notion that traditional access control models were

inferior to optimistic access control. Rather, it suggested that the two approaches might

work well in a mixed-initiative approach. The OAC(UCON) model is flexible and reduces the

burden of setting pre-configured security policies for every subject-object relationship, and

thereby reduces the load on system administrators. However, the model acknowledges that

the gains realised by flexibility should not be negated through data misuse. Thus, the model

provided sufficient deterrents against data misuse by leveraging the security mechanisms

Chapter 9: Conclusion

96

offered by usage control. It was suggested that data that cannot be reasonably protected

within traditional access control could be protected by these usage control deterrents.

As was stated earlier, the proposed solution could well ease the burden of system

administrators significantly. It is rather difficult for administrators to predict all of the

possible usage scenarios and thus all of the necessary permissions. With optimistic access

control, it is ultimately left to the users to make that judgement. Consequently, the

complexity of implementing and maintaining pre-configured access control policies is

shifted to the way the user interacts with the system. Adapting usage control as a deterrent

provides a proactive mechanism over and above the retroactive methods of auditing and

accountability. By using the OAC(UCON) model, a larger subset of information may be

relegated into the public domain.

This research also addresses the issue of continuity within usage control and its practical

implementation within the access control context rather than within the digital rights

management context. The thesis is consequently presenting pragmatic ways of introducing

continuity within the access control dimension. In terms of the proof-of-concept that was

developed, the ongoing obligations involved presenting the user with the relevant security

policies while he/she accesses the related information. This is an example of the type of

application that educates the user on approved security policies with regard to the specific

data that he/she is interacting with.

Investigating the efficacy of the aspect-oriented programming language can be considered

one of the major contributions of this research. It was found that usage control can be

completely separated from access control and other application logic. It was also

determined that the performance differences between the object-oriented and aspect-

oriented version were negligible. Additionally, there was less coupling between classes with

the aspect-oriented version, which increased the readability and understandability of the

code. The relationship between multithreading and cross-cutting behaviour was also

explored and the study demonstrated how ongoing authorisations could be maintained with

multithreading.

Chapter 9: Conclusion

97

The model is unique in that the access controls are applied in the application layer. It

provides supplemental usage control to objects that have their access rights defined within

the database layer. The rights defined in the database layer may be relaxed in the

application layer or maintained as specified. If the rights were relegated to optimistic rights,

then the rights are relaxed and supplemented with optimistic rights. Alternatively, if these

rights were considered to be highly classified, then the OAC(UCON) allowed these rights to

remain as specified.

9.3 Revisiting the problem statement

The problem statement highlighted the inadequacies of current access control models,

namely their lack of flexibility and difficulties in assigning pre-configured access control

policies. To this end, a critical overview of popular access control models was provided and

an optimistic access control model was recommended as a means of correcting these

deficiencies. Since it was noted that optimistic access control is far too flexible to be used in

practice, it was enhanced with usage control in order to offer greater rigour. In this model,

usage control was reformulated under optimistic access control to act as a mechanism for

deterrence rather for denial of access. Thus the OAC(UCON) model was developed. To

improve its general applicability, it was presented in a mixed-initiative access control

framework, where pessimistic access control models were complemented with optimistic

access control models. In order for this type of integration to be successful, a software

approach was inferred that would allow for the seamless augmentation of traditional access

control with optimistic access control enhanced with usage control, namely the aspect-

oriented approach. A partially generic usage control aspect was presented that could, in

theory and with minor modifications, be augmented seamlessly into a fully operational

system. The aspect-oriented approach was also evaluated in terms of performance against

an object-oriented approach. Finally, the design science research methodology was

employed to test the model concept and to assess its scalability with other access control

measures and within a wider context so as to gain insight into the usability of the model

concept.

Chapter 9: Conclusion

98

9.4 Future Research Directions

The element of trust within the OAC(UCON) model warrants an investigation into human

behaviours and the responses to its application. It would be pragmatic to investigate

whether the model concept in fact dissuades individuals from accessing and misusing

information in the public domain. Future research could be directed at the inclusion of trust-

based mechanisms to update a user's optimistic rights. Presently the model does not

account for how trust levels may change when a user loses his/her optimistic rights. In order

to test the scalability of the model concept, the notion of trust needs to be considered and

its inclusion would complete the mixed-initiative access control framework. The issue of

trust was considered in terms of how a user's rights to information under the optimistic

paradigm may be modified based on prior usage. In the case of the evaluative prototype of

the model it was presumed that, at the onset, each user had access to optimistic rights

rated as 'high'. However, as the user demonstrated his/her untrustworthiness, the level of

access was downgraded to 'medium' and finally to 'low'. As their optimistic rights were

demoted, the view to information became increasingly constrained. The users’ optimistic

rights were updated using fuzzy logic. Future research could well involve considering the

factors that influence trust levels. In the specification given to the participants as part of the

design research method, the priority of the task and the user's previous trust level were

used to update his/her optimistic rights in a fuzzy matrix.

An alternative research direction may involve investigating whether the model concept

increases the propensity towards compliant information security behaviour. This refers to a

set of core information security activities that has to be carried out by end-users so as to

maintain information security as defined by information security policies (Chan et al., 2006).

It is also suggested that future studies should involve a case study to test the usability of the

aspect-oriented approach since it has not been tested in an organisational context yet.

However, confining all the operations pertaining to usage control to a single modular

structure will alleviate both development and maintenance costs as it can be integrated

seamlessly into a system based on traditional access control.

Chapter 9: Conclusion

99

9.5 Conclusion

The proposed solution to access control draws inspiration from some of the principles

advocated by agile methods. For example, consider the agile principles relating to

embracing change and maintaining simplicity. In the case in hand access control was

implemented in its most rudimentary form. As with agile methods, the reliance was on

people rather than on complicated processes to maintain control.

The viability of the model concept was demonstrated in a scaled-up version where it was

possible to create a mixed-initiative access control model. It was found that optimistic

access control is a security risk, but that the combination of usage control features coupled

with monitoring and punitive action may deter users from abusing their privileges. The

security usability aspect of the concept would need to be improved, as users would

probably sooner or later disregard the obligations and conditions. Accordingly these notions

needed to be more dynamic and responsive. The obligations and conditions messages need

to be updated constantly and they have to be reformulated to retain a user's focus. The

evaluation revealed that the concept may be appropriate to call centres, medical

information systems, temporal environments and smaller organisations where data is not

viewed as particularly sensitive. This kind of system would also be more appropriate for

users who have a degree of professionalism more so than the average user and in

environments where damage is reversible.

The use of aspect-oriented programming contributed to the principles of embracing change

and maintaining simplicity. Adapting usage control as a deterrent provides a proactive

mechanism over and above the retroactive methods of auditing, accountability and

recoverability. It is envisioned that a larger subset of information may be transferred to the

public domain, thus obviating the need for specifying convoluted access control policy

decisions.

	Front
	Part 1
	Part 2
	PART 3
	Chapter 7
	7.1 Introduction
	7.2 A motivating example
	7.3 Architecture
	7.4 Detailed Design
	7.5 Conclusion

	Chapter 8
	8.1 Introduction
	8.2 The aim of the proof-of-concept prototype
	8.3 Implementation of the proof-of-concept prototype
	8.4 An implementation overview of the proof-of-concept prototype
	8.5 Proof-of-concept prototype operation
	8.6 Evaluation of the Aspect-Oriented Approach
	8.7 Evaluation of the model concept
	8.8 Conclusion

	Chapter 9
	9.1 Introduction
	9.2 Main contribution
	9.3 Revisiting the problem statement
	9.4 Future Research Directions
	9.5 Conclusion

	Back

