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ADDENDUM A: PRELIMINARY MATLAB CODE FOR EDA 

The preliminary code towards the implementation of EDA software written in MATLAB 

and used throughout this research to design the LNAs is given below. 

clear all; 

 

%----- SPECIFICATIONS ------------% 

%The specified frequency range, gain and max NF for the design are set here 

fl = 1e9;   wl = 2*pi*fl; 

fu = 18e9;  wu = 2*pi*fu; 

S21_spec = 20;  %dB 

NFmax = 4;  %dB 

RS = 50; 

 

 

%----- PLOT SETTINGS -------------% 

%Settings related to the display of the result plots 

flcalc = fl/10;      % The range overwhich values are  

fucalc = fu*10;      %   calculated beyond the operting frequency band 

pts = 500;           % Number of points in the plot 

linewidth = 2;       % Linewidth used in plots 

calc_colour = 'k-.'; % Colour and line style used for calculated and  

sim_colour = 'k-';   %   simulated result plots 

%---------------------------------% 

 

%----- PLOT FLAGS ----------------% 

% Flags for choosing when to plot input impedance, individual noise 

% contributions, IIP3 or simulated results read from a csv file 

plotZIN = 0; 

plotNSources = 0; 

plotIIP3 = 0; 

plot_sim = 0; 

 

 

%----- SIMULATED RESULTS READIN -------------% 

if( plot_sim == 1 ) 

    cnt = 451; 

    load sim_1GHz_to_18GHz_gain_cur_pas/S11_s.csv; 

    load sim_1GHz_to_18GHz_gain_cur_pas/S21_s.csv; 

    load sim_1GHz_to_18GHz_gain_cur_pas/NF_s.csv; 

    f_sim = 1:cnt; 

    S11_sim = 1:cnt; 

    S21_sim = 1:cnt; 

    NF_sim = 1:cnt; 

    for u = 1:cnt 

        f_sim(u) = S11_s( u, 1 ); 

        S11_sim(u) = S11_s( u, 2 ); 

        S21_sim(u) = S21_s( u, 2 ); 

        NF_sim(u) = NF_s( u, 2 ); 

    end; 

end; 

 

 

%************************************************************************* 

%Environment setup 

%************************************************************************* 

%Create logarithmic frequency values based on the range and no. of points 

ll = log10( flcalc ); 

lh = log10( fucalc ); 

l_inc = (lh-ll)/pts; 

lf = ll:l_inc:lh; 

f = 10.^lf; 

w = 2*pi.*f; 
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%Physical constants definition 

k = 1.38e-23;      %   Boltzmann's constant 

q = 1.602e-19;     %   Electron charge 

T = 290;           %   Temperature in Kelvin 

VT = k*T/q;        %   Thermal voltage 

 

%Load transistor parasitic values and process parameters 

%---- TRANSISTOR1 PARAMETERS -----% 

Rb1  = 13.7 + 5.8; 

Re1  = 1.53; 

Cmu1 = 1.38e-15 + 9.52e-15 + 9.11e-15; 

Cpi1 = 18.1e-15 + 18.6e-15; 

 

%---- TRANSISTOR2 PARAMETERS -----% 

Rb2  = 13.7 + 5.8; 

Re2  = 1.53; 

Cmu2 = 1.38e-15 + 9.52e-15 + 9.11e-15; 

Cpi2 = 18.1e-15 + 18.6e-15; 

 

%------ PROCESS PARAMETERS -------% 

Beta0 = 300; 

Vcc = 1.5; 

Vce = 0.2; 

VA = 16.36; 

Q1 = 1.5; 

Q2 = 3; 

Q3 = 5; 

%---------------------------------% 

 

 

%************************************************************************* 

%These values are changed during the design phase 

%These and selected calculated values are printed in the output to aid 

%in the optimization process. 

%************************************************************************* 

%------- DESIGN PARAMETERS -------% 

Av1_set = 27;  %Used to modify the first stage gain - initial value should 

               %be the maximum allowed by the GBP 

 

NF_impr = 2;   %Expected NF improvement through optimization process 

               %Allows for less stringent yet appropriate Av1_req values 

                

%Equations to calculate the initial IMN reactive elements 

C1 = 1/RS/wu; 

C2 = 1/RS/wl;  

L1 = RS/wl;    

L2 = RS/wu;    

%During optimization the above equations are commented and the values 

%  modified below 

%C1 = 40e-15; 

%C2 = 3.18e-12; 

%L1 = 9.91e-9; 

%L2 = 363e-12; 

 

%Additional first stage load capacitance added during optimization 

CL1_add = 0e-15;   %Initial value = 0 

 

%Amount by which the first stage collector current is increased above the 

%  calculated value; RL1 is modified to maintain the gain specified in Av1_set 

Ic1_factor = 1; 

 

%At the moment the second stage Ic2 and L3 is set by hand, but could be 

%  determined from the calculated first stage gain 

Ic2 = 5e-3; 

L3 = 376e-12; 

 

%Value of the second stage bias choke 

LB2 = 400e-9; 
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%************************************************************************* 

%Performance measure calculations 

%************************************************************************* 

 

%------- INPUT MATCHING: IC1 AND CAPS -------% 

CL1  = Cpi2 + Cmu2 + CL1_add; 

 

CBC  = (C2-Cpi1) / (1+Av1_set); 

if( CBC < Cmu1 ) 

    CBC = Cmu1; 

end; 

CF   = CBC - Cmu1; 

 

Ic1 = (1 + CL1/CBC) * VT / RS * Ic1_factor; 

 

 

%------- CALCULATED TRANSISTOR PARAMETERS -------% 

gm1   = Ic1/VT; 

Beta1 = Beta0 ./ ( 1 + Beta0*(Cpi1+Cmu1)/gm1*i.*w ); 

Rpi1  = Beta1/gm1; 

Ro1   = VA/Ic1; 

 

gm2 = Ic2/VT; 

Beta2 = Beta0 ./ ( 1 + Beta0*(Cpi2+Cmu2)/gm2*i.*w ); 

Rpi2  = Beta0/gm2; 

Ro2 = VA/Ic2; 

 

 

%------- EQUIVALENT IMPEDANCES FOR LATER USE -------% 

R_L1  = L1.*w/Q1;  %Inductor parasitic resistance 

R_L2  = L2.*w/Q2;   

R_L3  = L3.*w./Q3; 

Z_L1  = R_L1 + i.*w*L1;  %Equivalent impedance of inductor with parasitics 

Z_L2  = R_L2 + i.*w*L2; 

Z_L3  = R_L3 + i.*w*L3; 

ZS    = 1./(1/RS + 1./Z_L1 + i.*w*C1);  %Parallel combination of RS/C1/L1 

Yin2  = 1/Rpi2 + i.*w*(Cpi2+Cmu2) - gm2.*w.^2*Cmu2*L3; %2nd stage Yin 

 

 

%------- STAGE 1 LOAD RESISTANCE & IMPEDANCE -------% 

RL1   = Av1_set / gm1; 

ZL1   = 1 ./ ( Yin2 + 1/RL1 + 1/Ro1 + i.*w*CBC + 1./(i.*w.*LB2) + i.*w*CL1_add ); 

 

 

%------- S11 CALCULATION -------% 

ZM   = (ZL1 + 1/i./w/CBC)./(1 + gm1.*ZL1); 

ZTeq = 1./( 1./Rpi1 + i.*w*Cpi1 + 1./ZM ); 

 

Zin = 1./( 1./( ZTeq + Z_L2 ) + i.*w*C1 + 1./Z_L1 ); 

S11 = 20*log10( abs( (Zin-RS)./(Zin+RS) ) ); 

 

 

%------- S21 CALCULATION -------% 

Avin = ZS./RS.*( ZTeq./(ZTeq + Z_L2 + ZS) ); 

 

GM1  = gm1 - i.*w*CBC; 

Av1  = GM1.*ZL1; 

 

ZL2  = 1./( 1./Z_L3 + 1/RS ); 

Av2  = gm2.*ZL2; 

 

Av   = Avin.*Av1.*Av2; 

 

AV_IN = 20*log10( abs(Avin) ); 

 

AV1   = 20*log10( abs(Av1) ); 

AV2   = 20*log10( abs(Av2) ); 

S21   = 20*log10( abs(2*Av) ); 
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%------- REQUIRED VOLTAGE GAIN - NF vs BW TRADE-OFF -------% 

Fmax  = 10^((NFmax+NF_impr)/10); 

ZS_fu = abs( 1/(1/RS + 1/(i*wu*L1 + wu*L1/Q1) + i*wu*C1) ); 

Z2_fu = abs( i*wu*L2 + wu*L2/Q2 ); 

Fvce  = Fmax - 1 - 1/ZS_fu^2*RS*wu*L2/Q2; 

CF_max = sqrt( ((Fvce)/RS/(Rb1 + VT/2/Ic1) - 1/ZS_fu^2) / (1+Z2_fu/ZS_fu)^2 ); 

Av1_req = abs( 1/(RS*wl/wu*CF_max) ); 

 

 

%------- NOISE FIGURE STAGE 1 -------% 

CiT = Cpi1 + CF + Cmu1; 

 

eR_L1 = 4*k*T*R_L1; 

eR_L2 = 4*k*T*R_L2; 

eRs   = 4*k*T*RS; 

VCE   = 4*k*T*(Rb1 + 1/2/gm1) + 2*q*Ic1/Beta0*Rb1^2; 

ICE   = abs( 2*q*Ic1/Beta0 + 2*q*Ic1./(Beta1.^2) ); 

 

Veq_ICE = ICE .* abs(Z_L2+ZS).^2; 

Veq_VCE = VCE .*(1 + abs(Z_L2+ZS).^2.*(w.*CiT).^2); 

Veq_RL1 = eR_L1.*abs(ZS./Z_L1).^2; 

Veq_RL2 = eR_L2; 

Veq_RS  = eRs .*abs(ZS./RS).^2; 

 

Veq1_T = Veq_ICE + Veq_VCE + Veq_RL1 + Veq_RL2 + Veq_RS; 

F1  = Veq1_T./Veq_RS; 

NF1 = 10*log10( abs(F1) ); 

 

 

%------- NOISE FIGURE STAGE 2 -------% 

ZL1 = 1./(1/RL1 + i.*w*(CBC+CL1_add+Cpi2+Cmu2)); 

 

iRL1 = 4*k*T/RL1; 

iRs  = 4*k*T/RS; 

VCE2 = 4*k*T*(Rb2 + 1/2/gm2) + 2*q*Ic2/Beta0*Rb2^2; 

ICE2 = abs( 2*q*Ic2/Beta0 + 2*q*Ic2./(Beta2.^2) ); 

 

In2_VCE = VCE2./abs(ZL1).^2; 

In2_ICE = ICE2; 

In2_RL1 = iRL1; 

 

In2 = In2_VCE + In2_ICE + In2_RL1; 

F2  = 1 + In2 ./ iRs; 

NF2 = 10*log10( abs(F2) ); 

 

Veq_In2 = abs( In2./GM1.^2 ); 

 

FT  = F1 + Veq_In2./Veq_RS; 

NFT = 10*log10( abs(FT) ); 

 

 

%------- IIP3 APPROXIMATION -------% 

VIIP3_CE = 2*sqrt(2)*VT; 

IIP3 = 10*log10( abs( (VIIP3_CE ./ Av1 ./ Avin / sqrt(2)).^2 /  RS * 1e3 ) ); 

 

 

 

%------- POWER CONSUMPTION -------% 

Pdc1 = Vcc * Ic1; 

Pdc2 = Vcc * Ic2; 

 

 

%************************************************************************* 

%Plotting of performance measures 

%************************************************************************* 

%------- ZIN PLOT -------% 

if plotZIN == 1 
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    figure( 1 ); 

    semilogx( f, abs( Zin ), calc_colour,'LineWidth',linewidth ); 

    hold on; 

    y = 0:0.1:130; 

    semilogx( fl, y, 'k' ); 

    semilogx( fu, y, 'k' );  

    hold off; 

    xlim( [ flcalc fucalc ] ); 

    ylim( [ 0 130 ] ); 

    xlabel( 'Frequency [Hz]' ); 

    ylabel( 'Zin [ohm]' ); 

end; 

 

%------- S11 PLOT -------% 

figure( 2 ); 

semilogx( f, S11, calc_colour,'LineWidth',linewidth ); 

hold on; 

if plot_sim == 1 

    semilogx( f_sim, S11_sim, sim_colour,'LineWidth',linewidth ); 

    legend( 'Calculated S_1_1', 'Simulated S_1_1', 'Location', 'Southwest' ); 

end 

y = -25:0.02:0; 

semilogx( fl, y, 'k' ); 

semilogx( fu, y, 'k' );  

hold off; 

xlim( [ flcalc fucalc ] ); 

xlabel( 'Frequency [Hz]' ); 

ylabel( 'S_1_1 [dB]' ); 

 

%------- S21 PLOT -------% 

figure( 3 ); 

semilogx( f, S21-6, calc_colour,'LineWidth',linewidth ); 

hold on; 

%semilogx( f, AV_IN, 'r','LineWidth',linewidth ); 

%semilogx( f, AV1, 'm','LineWidth',linewidth ); 

%semilogx( f, AV2, 'b','LineWidth',linewidth ); 

if plot_sim == 1 

    semilogx( f_sim, S21_sim, sim_colour,'LineWidth',linewidth ); 

    legend( 'Calculated S_2_1', 'Simulated S_2_1', 'Location', 'South' ); 

end 

y = -30:0.1:40; 

semilogx( fl, y, 'k' ); 

semilogx( fu, y, 'k' );  

hold off; 

xlim( [ flcalc, fucalc ] ); 

ylim( [ -30 35 ] ); 

xlabel( 'Frequency [Hz]' ); 

ylabel( 'S_2_1 [dB]' ); 

 

%------- NOISE SOURCES PLOT -------% 

if plotNSources == 1 

    figure( 4 ); 

    semilogx( f, Veq_RS , 'k-s','LineWidth',linewidth ); 

    hold on; 

    semilogx( f, Veq_VCE, 'k-^','LineWidth',linewidth ); 

    semilogx( f, Veq_ICE, 'k-','LineWidth',linewidth ); 

    semilogx( f, Veq_RL1, 'k--','LineWidth',linewidth ); 

    semilogx( f, Veq_RL2, 'k-d','LineWidth',linewidth ); 

    semilogx( f, Veq_In2, 'k-o','LineWidth',linewidth ); 

    hold off; 

    xlim( [ fl fu ] ); 

    xlabel( 'Frequency [Hz]' ); 

    ylabel( 'Equivalent noise voltage [V  ^2/ Hz]' ); 

    legend( 'n_R_S', 'n_V_C_E', 'n_I_C_E', 'n_R_L_1', 'n_R_L_2', 'n_A_2', 

'Location', 'Best' ); 

end; 

 

%------- NOISE FIGURE PLOT -------% 

figure( 5 ); 
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semilogx( f, NFT, calc_colour,'LineWidth',linewidth ); 

hold on; 

if plot_sim == 1 

    semilogx( f_sim, NF_sim, sim_colour,'LineWidth',linewidth ); 

    legend( 'Calculated NF', 'Simulated NF', 'Location', 'North' ); 

end 

hold off; 

xlim( [ fl fu ] ); 

xlabel( 'Frequency [Hz]' ); 

ylabel( 'NF [dB]' ); 

 

%------- IIP3 PLOT -------% 

if plotIIP3 == 1  

    figure( 6 ); 

    semilogx( f, IIP3, calc_colour,'LineWidth',linewidth ); 

    xlim( [ fl fu ] ); 

    xlabel( 'Frequency [Hz]' ); 

    ylabel( 'IIP3 [dBm]' ); 

end; 

 

 

%************************************************************************* 

%Print the design parameters to the output 

%************************************************************************* 

disp( '--------------------------------------------' ); 

disp( 'Power consumption (excluding biasing):' ); 

power_stages = sprintf( 'Pdc1 = %g mW\tPdc2 = %g mW', Pdc1/1e-3, Pdc2/1e-3 ); 

disp( power_stages ); 

power_total = sprintf( 'Pdc  = %g mW\n', (Pdc1+Pdc2)/1e-3 ); 

disp( power_total ); 

 

disp( 'DC biasing:' ); 

dc_biasing = sprintf( 'Ic1 = %g mA\tIc2 = %.3g mA\n', Ic1/1e-3, Ic2/1e-3 ); 

disp( dc_biasing ); 

 

disp( '' ); 

required_av1 = sprintf( 'Required stage 1 gain: %.3g\n', Av1_req ); 

disp( required_av1 ); 

 

disp( 'Matching:' ); 

match_components_L = sprintf( 'L1 = %.3g nH\tL2 = %.3g pH',L1/1e-9, L2/1e-12 ); 

disp( match_components_L ); 

match_components_C = sprintf('C1 = %.3g fF\tC2 = %.3g pF\n',C1/1e-15, C2/1e-12 ); 

disp( match_components_C ); 

 

disp( 'Aplifier stage 1 components:' ); 

amp_components1_C = sprintf( 'CF = %.3g fF\tCL1 = %.3g fF',CF/1e-15, CL1_add/1e-

15 ); 

disp( amp_components1_C ); 

amp_components1_R = sprintf( 'RL1 = %.3g Ohm\n', RL1 ); 

disp( amp_components1_R ); 

 

disp( 'Aplifier stage 2 components:' ); 

amp_components2 = sprintf( 'L3 = %.3g nH\n', L3/1e-9 ); 

disp( amp_components2 ); 
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ADDENDUM B: DETAILED FIGURES OF THE LAYOUT 

 
Figure B.1. Layout of the first stage on-chip bias circuit, showing the diode connected 

transistor and decoupling dual-MIM capacitor. To the left is the connection from the 

input pad to inductor L1, and to the right the ground connection. 

 

Figure B.2. On-chip spiral inductor layout showing the 80 µm guard ring where 

neither other components nor substrate contacts are placed. This area is enclosed by 

substrate contacts.  
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Figure B.3. First, second and third transistor stages with DC-blocking dual-MIM 

capacitors and load resistances. The connections on the right are to the second stage 

load inductor. At the top and bottom are the respective connections to the second and 

third stage bias pins, and at the top left the signal input to Q1 and CF from L2. 
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Figure B.4. Layout of the LNA with the linearity improvement showing the added 

emitter resistors of transistors Q2 and Q3. 
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Figure B.5. Layout of the input matching network showing the connection from the 

input pin on the left connected to C1 and also the shunt L1 at the bottom and series L2 

at the top of which the other terminal is connected to Q1 and CF. 

 

Figure B.6. Layout of the standard LNA (without local feedback) and its connection 

to bond pads. 
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Figure B.7. Bonding diagram of the fabricated LNAs on the MPW chip, showing the 

standard LNA in the top left, the LNA with feedback below that and the separate first 

and second stages to the right. 
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ADDENDUM C: DATASHEET OF THE LNA 

In the research carried out toward the derivation of a mathematical model for the proposed 

LNA configuration, it was necessary to design certain LNAs to verify the model. As such 

two LNAs have been submitted for fabrication in order to absolutely corroborate the 

simulated results, and the datasheet below serves as a summary of these particular LNAs 

which will be used to obtain measured results. 

3-14 GHz LNA Data Sheet 

A very robust 3-14 GHz wideband LNA implemented with the LC-ladder and 

capacitive shunt-shunt feedback configuration. Both a standard LNA and one with 

improved linearity, but slightly poorer noise performance, are available. Two 

individual testing amplifier stages are also included. 

 
Biasing 

The first stage of the LNA uses current biasing 

and the current should be set using a 400 Ω 

series resistance to the positive supply. 

The second and third stages require voltage 

biasing for which the active bias circuit in  

Figure 1 is suggested. 

Signal connections 

50 Ω input and output signal traces should be 

connected to the input and output pins through 

15 pF DC-blocking capacitors. 

 

 

 

 

 

 

 

 

Figure 1. Active bias circuit example.  

Specifications 

 Standard High IIP3 

BW 3-14 GHz 3-14 GHz 

S11 < -10 dB < -9.8 dB 

S21 20.9 dB 20 dB 

NF 1.7-3.3 dB 2.2-3.9 dB 

IIP3 
-22.6 dBm 
@ 4.2 GHz 

-14.5 dBm 
@ 4.2 GHz 

VCC 1.8 V 1.8 V 

IC1 2.5 mA 2.5 mA 

IC2 2.7 mA 8 mA 

IC3 2.7 mA 8 mA 

Ptotal 12.8 mW 23.3 mW 
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Pin Diagram 

 

Figure 2. Pin diagram of the 3-14 GHz LNA 

Pin Name Description 

2 Std_Vcc Standard LNA 1.8 V supply 

1 Std_Gnd Standard LNA ground 

63 Std_Bias1 Standard LNA stage 1 current bias (400 Ω R to supply) 

60 Std_Bias2 Standard LNA stage 2 voltage bias 

3 Std_Bias3 Standard LNA stage 3 voltage bias 

62 Std_In 
Standard LNA RF input from 50 Ω source with15 pF 

DC-blocking capacitor 

61 Std_Out 
Standard LNA RF output to 50 Ω load with15 pF  

DC-blocking capacitor 

9 Lin_Vcc Linear LNA 1.8 V supply 

8 Lin_Gnd Linear LNA ground 

7 Lin_Bias1 Linear LNA stage 1 current bias (400 Ω R to supply) 

4 Lin_Bias2 Linear LNA stage 2 voltage bias 

10 Lin_Bias3 Linear LNA stage 3 voltage bias 
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6 Lin_In 
Linear LNA RF input from 50 Ω source with15 pF  

DC-blocking capacitor 

5 Lin_Out 
Linear LNA RF output to 50 Ω load with15 pF  

DC-blocking capacitor  

59 S1_Vcc Testing stage 1 LNA 1.8 V supply 

56 S1_Gnd Testing stage 1 LNA ground 

57 S1_Bias1 Testing stage 1 current bias (400 Ω R to supply) 

55 S1_In 
Testing stage 1 LNA RF input from 50 Ω source with 

15 pF DC-blocking capacitor 

58 S1_Out 
Testing stage 1 LNA RF output to 50 Ω load (on-chip 

blocking capacitor) 

54 S2_Vcc Testing stage 2 LNA 1.8 V supply 

53 S2_Gnd Testing stage 2 LNA ground 

50 S2_Bias1 Testing stage 2 current bias (400 Ω R to supply) 

51 S2_In 
Testing stage 2 LNA RF input from 50 Ω source with 

(on-chip blocking capacitor) 

52 S2_Out 
Testing stage 2 LNA RF output to 50 Ω load (on-chip 

blocking capacitor) 

 

Pins not referred above were used for prototyping by other parties/students (MPW).  
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