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ABSTRACT

Ultra-déep mining (to depths of 5 000 m and greater) would be a world first and, accordingly,
no previous experience in the determination of acceptable heat stress limits, criteria or
indices is wholly applicable. However, some South African gold mines are already operating
at depths beyond 3 500 m and much of the knowledge gained in reaching and working at such
depths will be helpful in making adequate provision for acceptable environmental control at
the greater depths being contemplated. Accordingly, it is necessary to take cognizance of the
industry’s experience in deep-level mining and of standards and regulations already
established in South Africa and elsewhere in order to ensure acceptable working conditions,
and standards to control them, that compare favourably and defensibly with those in other

mining industries.

The purpose of this project was therefore to investigate the physical and economic impact of
environmental design criteria to be used in ultra-deep-level mining. It was necessary 10
establish a new basis from which the cooling and ventilation requirements for ultra-deep
mines could be simulated and evaluated. For this reason it was important to establish in
what way these environmental design parameters would affect the productivity of the
workforce (physiologically and psychologically) and what economic and environmental

constraints would be involved.

Another purpose of this investigation was to establish the basis and application of workplace
environmental criteria, standards and limits, both locally and internationally, to determine
norms for occupational exposure to various environmental stressors and to evaluate
standards for controlling them. The motivation was to ascertain the requirements for
providing environmental conditions that would compare favourably and defensibly with those
in other mining industries and to ensure the health, safety and productivity of workers, as well
as the confidence of potential investors. A further aspect of the work was reviewing the
relevant environmental factors in order to identify those that would become more critical at
mining depths approaching 5 000 m, including their potential impact on workers and the
extent to which they would affect mine designs and planning. The relevant standards and

limits pertaining to the factors identified were then evaluated in terms of their
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appropriateness and practicability for ultra-deep mining, and their cost implications were

analyzed for the mining depths being contemplated.

The local and international use of heat stress limits, criteria and indices were also
investigated. These are intended to ensure the health, safety and productivity of workers and,
in the case of a heat stress index, to quantify the level of heat stress imposed by the
environment. It was necessary to determine to what extent any other indices, limits or criteria
would be applicable to South African deep mine conditions. In addition, it was necessary to
establish whether there was a single heat stress index that could be used for South African
deep mining conditions. Various practitioners from the industry were also consulted with

regard to parameters that might influence ultra-deep mining.

Six heat stress indices that satisfied most of the important criteria were identified. The
findings detailed in this report indicate that it is likely that an appropriate combination of
heat stress indices will be required in planning for and ultimately controlling thermal
conditions in ultra-deep mining. The depths being contemplated and the concomitant
potential heat hazard present too great a risk for reliance on a single heat stress index, such
as the wet-bulb temperature index at present in common use locally. Although this index is
expected to be useful in ultra-deep mining, it is likely that it would be more beneficial when
used in combination with others, such as wet-kata cooling power and specific or air cooling
power (SCP and ACP, respectively). This would allow the use of the index most appropriate
for a specific purpose, for example determining ventilation and cooling requirements,
specifying minimal cooling power/maximal heat stress limits or monitoring workplace
conditions. However, it would be essential to ensure that any inconsistencies among the
indices adopted for these various purposes are quantified in order to avoid discrepancies
between what is stipulated or planned and what is ultimately achieved. It was found that
numerous heat stress indices are currently applied throughout the world’s mining industries,
and that some countries use a combination of indices as a means of specifying and

quantifying heat stress limits.

The need to quantify the costs associated with various levels of wet-bulb temperature and air

velocity (the two most important determinants and means of controlling heat stress) was
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addressed through an analysis of a model mine operating at a depth of approximately
5000m. Several combinations of these two parameters were considered and the costs
compared, enabling an assessment to be made of the relative costs involved in limiting
environmental heat stress at various levels. It was also found that the ideal situation would
be to provide a reject wet-bulb temperature of 25°C or, at least, lower than 27,5°C, to ensure
productivity or, alternatively, to control the risk of heat disorders without resorting to formal
heat stress management and all that it entails. The decision as to whether to provide a reject
wet-bulb temperature of, say, 25°C or 27°C requires incremental quantifications of the
decrement in performance and the difference in cost implications between such temperature
levels. This would be particularly important for critical mining tasks and should clearly be
considered in combination with the results of a detailed analysis of the costs of providing

these various levels of wet-bulb temperature.

From this investigation it was also found that it is possible that the provision of a given level
of cooling power at a working depth near 5 000 m would be more cost-effective through
increasing refrigeration and reducing the amount of ventilation air. This implies that lower

wet-bulb temperatures may be more viable than had previously been expected.

The specific wet-bulb temperatures and stope face air velocities used in this study were
adopted for the purpose of comparative cost analyses and should not be regarded as
recommended levels. Such levels can only be determined through due consideration of the
relevant physiological and work performance criteria, and within the specific design
constraints for each mine. It is therefore imperative that the results of this investigation be
interpreted with circumspection as the cost implications for environmental control in ultra-
deep mining appear to differ significantly from those for current mining depths. However, the
major conclusion, namely that reducing the design reject wet-bulb temperature, within limits,
does not affect ventilation and cooling costs to the same extent as increasing the total air-flow
quantity, appears to be valid for the mining depths being contemplated. In this regard, the
simulation results indicate a cost increase of approximately 30% for reducing wet-bulb reject
temperatures from 31°C to 25°C, as opposed to an increase of approximately 60% for

increasing the stope face air velocity from 0,5 to 1,5 m/s.
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Although it is recommended that the required level of environmental cooling power be
provided at a minimum total air mass flow rate, it is recognised that practical constraints will
dictate the minimum air flow quantity that can be used. Should existing mines be extended to
ultra-deep levels, increasing refrigeration capacity may be preferable to increasing air
quantities, given the relatively higher costs implied by the latter approach. To further contain
the cost of providing a given air velocity at great depth, recommendations are provided on the
implementation of controlled recirculation strategies. It must be noted, however, that such an
approach could indicate the need to consider reducing emissions at source and/or
introducing control measures for major contributors to air pollution in order to control air
quality. In this regard, the potential benefits of controlled recirculation, together with the
problems that could arise from its inappropriate implementation, formed an integral part of

this investigation. An indication of the optimal use of controlled recirculation is also given.

From the various recirculation models for a longwall follow-behind mining layout that were
investigated, it was found that global recirculation of air seemed to be the most cost-effective
system in planning ventilation requirements at ultra depth. It was also found that a global
recirculation percentage of return air of approximately 30% seemed to be the optimum for
planning purposes with this type of mining layout. It appears that the application of
recirculation strategies will be imperative in future if mining is to be done profitably. A
saving of approximately 5% with recirculation was indicated in a comparison with a base-
case ultra-deep-level simulation in which there was no recirculation of air. An expected cost
figure of $38.9, in terms of dollar/ounce of gold produced, for the cooling and fan
requirements for ultra-deep-level mining was calculated. The simulations done were based

on conditions for a typical ultra-deep-level mine in the Carletonville area.

Finally, practitioners indicated the need for a multi-disciplinary approach to planning mine
environmental control systems, for the establishment of a common virgin rock temperature
database and for measures to control air pollutants based on health risk assessments. They
also identified the need for research to resolve uncertainties regarding the significance of
backfill as a heat source and regarding the control of heat transfer through the effective use

of insulation. Practitioners’ differing views on issues such as open-circuit vs. closed-circuit
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pumping, surface vs. return airway heat rejection, and ice vs. chilled water as a cooling

medium may be similarly indicative of additional research needs.
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