
 1

Chapter 1 

 

 

 

Introduction 

The modern day technological advancement is almost entirely dependent on the 

semiconductor devices. The application of semiconductors in the device fabrication 

commonly requires that defects be introduced in the semiconductor lattice, 

intentionally by radiating with energetic particles or unintentionally during processing 

stages. Defects can be introduced in the lattice during semiconductor processing 

techniques such as semiconductor growth, ion implantation, plasma etching, 

annealing, metallization, (sputter and electron beam deposition) or by particle 

irradiation. These defects modify the properties of the substrate and therefore 

influence the performance of devices fabricated thereon. Defects may have 

detrimental effects on the performance of devices such as solar cells, wherein they act 

as efficient recombination centers and degrade minority carrier lifetimes [1]. 

However, there are other instances when defects are created intentionally to produce 

impurity - related defect levels in the semiconductor band gap, i.e. to absorb low 

energy photons known as impurity photovoltaic effect and as efficient recombination 

centers in fast-switching silicon power devices [2]. A true understanding of a defect in 

a semiconductor usually requires achieving four steps (a) defect observation and 

characterization, (b) defect identification, (c) defect control, and (d) influence of 

defects on device performance. The knowledge of how defects influence the device 

performance is the basis for development of improved semiconductor devices.  For 

this basic motivation, defect characterization is still a very much active field for all 

technological important semiconductors until all aspects of defects are well 

understood. Although a lot of work has been done on defects introduced in silicon (Si) 

materials in the last two decades, most of the defects have not been identified. Silicon 

integrated circuits presently dominate the semiconductor industry and recently it has 

been used to develop, high efficiency and low cost solar cells as the search for 
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alternative energy sources continues. To achieve high efficiency (i.e. faster switching 

speeds, low power consumption, etc) devices, great emphasis is now placed on 

decreasing the lateral and vertical dimensions of the individual transistors 

(miniaturization). With the reduction in size the devices become sensitive to minute 

defect concentration therefore it is essential to identify and control defects in the 

substrate, thereby reducing or eliminating those that are detrimental to the device and 

retaining those that are beneficial to the device operation. 

 

It is interesting to note that the first transistor invented in 1947 by J. Bardeen and W.H 

Brattain used elemental germanium (Ge) as the semi-conducting material, but since 

then silicon soon replaced germanium as substrate material because of its inherent 

advantages, such as thermal stability, abundance and availability of a stable oxide, 

(SiO2). Recently there has been a sudden growing interest in Ge as a possible 

candidate for high performance complimentary metal-oxide-semiconductor (CMOS) 

devices and faster switching transistors because of the higher electron and hole 

mobilities of Ge at low electric fields when compared to Si [3]. 

 

Conventional Deep Level Transient Spectroscopy (DLTS) [4] is a powerful junction 

capacitance tool that is used to study defects introduced in semiconductors. DLTS is 

particularly attractive because it can be used to characterize defects using various 

kinds of space-charge-based devices, ranging from simple Schottky barrier diodes 

(SBDs) and p-n junctions, MOS structures (which are all standard building blocks of 

solid state circuitry) to device structures with higher degrees of complexities [5]. The 

recent development of high-resolution Laplace – DLTS [6,7] has significantly 

increased its spectroscopic ability, by giving over an order of magnitude improved 

energy resolution in studies of thermal emission of carriers from deep states, thereby 

facilitating the separation of the closely spaced energy levels that show up as a single 

broad feature in conventional DLTS. The L-DLTS has a remarkable sensitivity (it can 

probe very low concentrations of defects >10
10

 cm
-3

), can be used to probe very 

narrow regions of semiconductors (e.g. regions of shallow implants) and even be used 

to study selectively the active regions of devices (Differential DLTS [8,9]).  

 

Deep levels in crystalline Si and Ge have been systematically characterized by DLTS 

and LDLTS after exposing the materials to energetic particles (MeV electrons or keV 
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Ar ions) and metal deposition (resistive deposition, electron beam deposition or 

sputter deposition). Particle irradiation and metal deposition are crucial and necessary 

stages during device processing steps, such as ion implantation for doping, 

metallization for low resistive for low resistive ohmic contacts as well as rectifying 

contacts, and plasma etching. Therefore it is of paramount importance to study the 

properties of these defects and their effects on device application. 

 

An overview of the semiconductor theory with the emphasis on Si and Ge is given in 

chapter 2 since these materials are the substrates used in this study. Defects, their 

creation and annealing mechanisms, resulting from bombardment with energetic 

particles in semiconductors, are described in chapter 3. The underlying theory behind 

DLTS and Laplace-DLTS is presented in chapter 4 followed by the experimental 

techniques in chapter 5. The results of defects created during processing steps or by 

irradiation of silicon and germanium are presented in chapters 6, 7, 8, 9 and 10, while 

chapter 11 gives a summary of the work covered in this thesis. 
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Chapter 2 

 

 

Semiconductor Theory 

 

 

2.1 Introduction 

In this chapter semiconductor theory is discussed. Section 2.2 presents the crystal 

structure and the energy band theory, particularly for silicon and germanium. The 

importance of energy band theories for a crystalline solid is due to the fact that many 

important physical and optical properties of a solid can be readily explained using its 

energy band structure. In principle, the energy band structure of a solid can be 

constructed by solving the Schrödinger equation for electrons in a crystalline solid 

that contains a large number of interacting electrons and atoms. Section 2.3 discusses 

the metal-semiconductor junctions. A metal–semiconductor contact will either form a 

Schottky or an ohmic contact. These contacts are very important since they make it 

possible to electrically probe the semiconductor underlying layer by various 

characterization tools, such as current-voltage, capacitance-voltage and deep level 

transient spectroscopy (DLTS) measurements, which have been employed in this 

work. Section 2.4 presents the current transport mechanism through the metal-

semiconductor junctions. 

 

2.2 The Crystal and Band Structure of Si and Ge 

Elemental semiconductors such as silicon and germanium crystallize into the diamond 

structure. The diamond structure shown in Fig. 2-1 is actually formed by two 

interpenetrating face-centered cubic (fcc) lattices with the vertex atom of one fcc 

sublattice located at (0, 0, 0) and the vertex atom of another fcc sublattice located at 

(a/4, a/4, a/4), where a is the lattice constant. In the diamond lattice structure, the 
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Fig. 2-1. Diamond structure redrawn from ref. 1. 

 

primitive basis of two identical atoms located at (0, 0, 0) and (a/4, a/4, a/4) is 

associated with each lattice point of the fcc lattice. The band structure of a crystalline 

solid, that is, the energy-momentum (E-k) relationship is usually obtained by solving 

the Schrödinger equation of an approximate one-electron problem. The Bloch 

theorem, states that if a potential energy )(rV
�

 is periodic with the periodicity of the 

lattice, then the solutions )(rk

�
φ  of the Schrödinger equation [1-2] 
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are of the form 
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=φ  (Bloch function)    (2.2) 

 

where, ),( rkU n

��
 is periodic in r

�
with periodicity of the lattice and n is the band index. 

From the Bloch theorem one can show that the energy 
k

E �  is periodic in the reciprocal 

lattice. For a given band index, to label the energy uniquely, it is sufficient to use only 

k’s in a primitive cell of the reciprocal lattice. 

 

The energy bands of solids have been studied theoretically using a variety of 

numerical methods. For semiconductors the three methods most frequently used are 

the orthogonalized plane-wave method [3-4], the pseudopotential method [5], and the 

k.p method [6]. Fig. 2-2 depicts the energy-band structures for Ge and Si [1,7]. For 

any semiconductor there is a forbidden energy region in which allowed states cannot 

exist, which is called the energy gap Eg. The energy gap is the most important 
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parameter in semiconductor physics. Electron states are permitted above and below 

this energy gap. The bands above the energy gap are called the conduction bands and 

below the energy gap,  the valence bands. The two top valence bands (Fig. 2-2) can be 

approximately fitted by two parabolic bands with different curvature: the heavy-hole 

band (the wider band with a smaller 22 / kE ∂∂ ) and light-hole band (the narrower 

band with larger 22 / kE ∂∂ ). The lowest conduction minimum is along the 111  axes 

in Ge and along 100 axes in Si. The band structure of Si shows six equivalent 

conduction minima and three valence band maxima all at the center of Brillouin zone. 

The valence band tops are degenerate and the third one is split-off by 44 meV. 

 

Fig. 2-2. Energy band structure of Ge and Si, where Eg is the energy band gap. Plus 

signs indicate the holes in the valence band and minus signs indicate electrons in the 

conduction band (after ref. 1). 

 

At room temperature (300 K) and under normal atmosphere, the values of the band 

gap are 0.66 eV for Ge, and 1.12 eV for Si [1]. These values are for high-purity 

materials. For highly doped materials the band gaps become smaller. Experimental 

results show that the band gaps of Ge and Si decrease with increasing temperature and 

the relationship can be expressed approximately by a universal function given by 

equation (2.3), 
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where, Eg(0) is the energy gap at T = 0 K , α and β are material constants given in 

Table 2.1.  

 

Table 2.1. Coefficients for the temperature dependent energy band gap of Si and Ge. 

Material Eg(0) (eV)  α (x 10
-4

 eV/K)  β (K) 

 

Si  1.519   4.730    636 

Ge  1.170   4.774    235 

 

The temperature coefficient dTdE g /  is negative for Ge and Si [1]. Near room 

temperature, the band gap of Ge increases with pressure and that of Si decreases with 

pressure [8] as shown in equation (2.4), 

  





×−

×
=

−

−

Sifor   )eV/(kg/cm 104.2

Gefor    )eV/(kg/cm  100.5

26

26

dP

dEg
    (2.4) 

 

The mobility of electrons and holes is an important semiconductor property, which 

depends on the band structure. For bulk-grown Si and Ge the hole and electron 

mobilities at room temperature are listed in Table 2.2.  

 

Table. 2.2. Mobilities (at room temperature) in bulk Si and Ge 

Material   µe (cm
2
/Vs)   µh (cm

2
/Vs)  

 

Si    1500    450  

Ge    3900    1900   

 

The values show higher mobilities in Ge when compared to Si, by nearly a factor of 2 

for electron mobility and a factor of 4 for hole mobility. Experiment [9] has shown 

that the band structure can be affected by the application of stress, breaking the 
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degeneracy of both the conduction and the valence band. This has an effect of 

increasing the electron and hole mobility in a given semiconductor. 

 

2.3 Metal – Semiconductor Junctions 

Metal-semiconductor contacts are an integral part of the semiconductor industry. It is 

well known that one of the most important aspects of realizing the potential of a 

semiconductor device is the preparation of high quality metal contacts to the material. 

There are two types of metal-semiconductor contacts, ohmic and Schottky (rectifying) 

contacts. The Schottky contacts can be used for a wide variety of device applications 

e.g. microwave receiver detectors, mixers [10] and used as gate electrodes of field-

effect transistors (MESFETS), the drain and source in MOSFETS [1]. In addition to 

these several device applications, Schottky contacts may also be used to study bulk 

defects (introduced during material growth, during device processing or by energetic 

particles such electrons or protons) and interface properties of a metal-semiconductor 

system.  In this study the Schottky contacts have been used to form the space charge 

region, which is used to probe the semiconductor forbidden gap and measure the 

electrical properties of the defect levels on and beneath the metal-semiconductor 

interface. 

 

2.3.1 Schottky Barrier Junctions 

In principle, for a Schottky barrier junction, there is nonlinear current flow through 

the device, allowing current to flow in one direction but not the other (rectifying 

effect). According to the Schottky-Mott model, [11-12] the barrier height of an ideal 

Schottky contact between a metal and an n-type semiconductor in the absence of 

surface states is equal to the difference between the metal work function mφ  and the 

electron affinity χ  of the semiconductor, which can be written as 

 

  
Bn m

φ φ χ= −        (2.5) 

 

The work function of a metal mφ  is defined as the minimum amount of energy 

required to remove an electron completely from the metal into free space (the so 

called vacuum level). The work function of a metal is a fundamental property of the 
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particular metal (measured in eV). Similarly the work function of a semiconductor scφ  

is the difference in energy between the Fermi level and the vacuum level. The 

electron affinity χ  is the difference between the vacuum level and bottom of the 

conduction band and is independent of the doping concentration of the semiconductor 

material. The work function of the semiconductor material scφ  and the electron 

affinity χ  are related by the following equation, 

 

  ξχφ +=sc        (2.6) 

 

where, ξ is the energy difference between the Fermi level and conduction band in the 

neutral region of the semiconductor and is given by 

 

  )/(ln DC NNkT=ξ       (2.7) 

 

where, k is the Boltzmann constant, T is the temperature, NC is the effective density of 

states in the conduction band and ND is the free carrier concentration. The schematic 

energy band diagrams in Fig. 2-3 show the process of barrier formation according to 

the Schottky-Mott theory. We assume a uniformly doped n-type semiconductor and 

that scm φφ > , Fig. 2-3a shows the case when the materials are isolated from each 

other. The average energy of electrons in the semiconductor is greater than the 

average energy of those in the metal. When the metal is brought into intimate 

(perfect) contact with the semiconductor (with no surface states), the difference in the 

average electron energy will transfer electrons from semiconductor to the metal. The 

electron transfer will take place until the Fermi levels coincide, and thermal 

equilibrium is established, Fig. 2-3b. Relative to the Fermi level in the metal, the 

Fermi level in the semiconductor is lowered by an amount equal to the difference 

between the two work functions, causing band bending. This difference between the 

work functions is called the built-in-voltage (Vbi) given by, ( )
bi m sc

V φ φ= − . 

Simultaneously an electric field is created due to the negative charge on the surface of 

the metal that is balanced by an equal but positive charge in the semiconductor. Due 

to the relatively low dopant concentration, this positive charge is distributed 
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throughout a barrier region near the semiconductor surface, up to a thickness Wo in 

the semiconductor, which is the depletion width.  

 

An electron at the Femi level in the metal will see a potential barrier towards the 

semiconductor of 
Bn

φ  which is the difference between mφ  and χ. Whereas an electron 

deep in the semiconductor at E = EC sees a potential barrier towards the metal of 

( )
bi m sc

V φ φ= − . 

 
 

 

 

(a)      (b) 

Fig. 2-3. Energy band diagrams of a metal/n-type semiconductor with scm φφ >  (a) 

materials isolated from each other and (b) at thermal equilibrium after contact is 

made, redrawn from ref. 13. 

 

When a bias voltage is applied across the junction, non-equilibrium conditions are 

established. Under zero bias conditions, electrons at the Fermi level from both the 

metal and semiconductor see the same barrier height. Therefore there is no net flow of 

electrons over the barrier in either direction. Applying a negative potential Va on the 

semiconductor side, causes the band bending to decrease. This reduces the barrier for 

electrons crossing from the semiconductor toward the metal from qVbi to q(Vbi -Va), 

i.e. forward biasing condition. The electrons can now cross from the semiconductor to 

the metal more easily since they now see a reduced barrier.  When a positive potential 

Va is applied to the semiconductor, the barrier for electron from the metal increases by 
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qVa. This also increases the depletion width. The number of electrons with enough 

energy to cross the barrier from the semiconductor to the metal is reduced due the 

increased barrier, i.e. reverse biasing condition. The barrier seen by electrons from the 

metal stays the same as the number of electrons crossing from the semiconductor to 

metal decreases.     

 

(a)      (b) 

Fig. 2-4. Energy band diagrams of a metal/p-type semiconductor with scm φφ <  (a) 

materials isolated from each other and (b) at thermal equilibrium after contact is 

made, redrawn from ref. 13. 

 

A barrier can also be formed between a metal and p-type semiconductor. Consider a 

p-type semiconductor having scm φφ <  with the two materials isolated from each 

other, Fig. 2-4(a). When the two substrates are brought into intimate contact, electrons 

will flow from the metal into the semiconductor until, EF, is the same throughout, 

Fig. 2-4(b). Each electron flowing into the semiconductor removes a hole from the 

valence band, leaving behind an unneutralized charge of ionized acceptors in the 

semiconductor, forming a depletion region in the semiconductor. Since the current in 

p-type semiconductors is carried mainly by holes, the contact shown in Fig. 2-4(b) is 

therefore rectifying and in the absence of surface states the barrier height Bpφ  can be 

expressed by 
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( )
g

Bp m

E

q
φ φ χ= − −       (2.8) 

 

where, Eg is the energy band gap and q is the electron charge. From equation (2.8) it 

follows that, according to the Schottky-Mott theory, for a given semiconductor and 

for any metal, the sum of the barrier heights on n-type and p-type substrates is equal 

to the band gap, or 

 

gBpBn Eq =+ )( φφ       (2.9) 

 

      

Fig. 2-5. Energy band diagram of a metal-semiconductor contact with surface states 

and an interfacial oxide layer of thickness δ. 

 

It should be noted that in reality the measured barrier heights for most of the metal-

semiconductor contacts do not always follow the simple predictions given by the 

equations (2.5) and (2.8) because in their derivation we did not consider the thin 

insulating layer of oxide on the semiconductor surface, interface states and the image 

force lowering effect. In fact, for most compound semiconductors, because of high 

surface state density and Fermi-level pinning at the interface states, the barrier height 

formed is found to be independent of the metals used [1], and this is also true for 

covalently bonded semiconductors like Ge and Si [13]. In a covalently bonded crystal, 

the surface atoms have no neighbors on the vacuum side, with which they can form 

covalent bond. Thus, each surface atom has one broken covalent bond known as the 
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dangling bond. Dangling bonds give rise to surface states that are continuously 

distributed in energy within the forbidden gap. These states pin the Fermi level at the 

surface and thus influence the barrier height. Prior to metal deposition, the 

semiconductor surface is chemically cleaned. This process invariably leaves a thin (5 

to 20 Å thick) [13] insulating oxide layer on the semiconductor surface. In the 

presence of interface states and a thin interfacial layer (Fig.2-5) the barrier height is 

given by [14], 

 

 ))(1()( ogmB E φγχφγφ −−+−=      (2.10) 

 

where,  

 

si

i

Dqδε

ε
γ

+
=        (2.11) 

 

δ being the thickness of the interfacial layer, Eg the band gap, oφ  the so-called neutral 

level, εi the permittivity of this film and Ds the density of interface states per eV per 

unit area in the band gap. The surface states are characterized by the neutral level oφ  

such that all the states below oφ  are filled, while those above are empty. Equilibrium 

is reached when electrons from the semiconductor adjacent to the surface occupy 

states above oφ . Thus, the surface becomes negatively charged and a depletion region 

is created within the semiconductor near the surface. If a metal is now brought into 

contact with the semiconductor, exchange of the electrons takes place between the 

metal and the semiconductor surface states, while the depletion charge remains 

practically unchanged. Thus Bφ  tends to the Schottky-Mott limit )( χφφ −= mB  as 

Ds→ 0 and to the Bardeen limit )( ogB E φφ −= as Ds→ ∞.  Thus, if the density of 

surface states becomes high enough, the Fermi level is said to be pinned at oFE φ≈  

so that, 

 

 ogB E φφ −≈         (2.12) 

 

which is the Bardeen limit.  
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2.3.2 Depletion Layer 

It has been discussed in the previous section that when a metal is brought into 

intimate contact with a semiconductor, the conduction and valence bands of the 

semiconductor are brought into a definite energy relationship with the Fermi level in 

the metal. Once this relationship is known, it serves as the boundary condition on the 

solution of the Poison equation in the semiconductor. The boundary conditions are 

obtained from,  

(i) barrier height and 

(ii) taking electric field in the bulk of the semiconductor as zero. 

At the interface, taking x = 0, the boundary condition can now be written as V(0) = Vbi 

and E(∞) = 0, where V is the contact potential, Vbi is built-in potential and E is the 

electric field. The Poisson’s equation in the semiconductor can be written in one 

dimension as  

 

 )(
1

2

2

x
dx

Vd

s

ρ
ε

−=        (2.13) 

 

where, ρ(x) is the total charge density in the semiconductor at a depth x and εs is the 

permittivity of the semiconductor. Generally, ρ(x) should include contributions form 

the valence band, conduction band, ionized donors and acceptors, and deep levels in 

the band gap. This will lead to a complicated equation which requires numerical 

methods to solve. To simplify the equation, the abrupt approximation is used. 

Considering the abrupt approximation, it is assumed that the semiconductor can be 

divided into two regions: (i) the depletion region, directly below the metal, which 

contains no free carriers, and (ii) the bulk semiconductor, which is electrically neutral, 

and in which no electric field exists. In the depletion region, DqNx ≈)(ρ , and in the 

semiconductor bulk, ρ(x) ≈ 0 and dV/dx ≈ 0. If the width of the depletion region is W, 

the charge density in the semiconductor can be written as  
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where, ND is the density of dopants and q the electronic charge.  Integrating equation 

2.13 twice and applying the boundary condition, the depletion width can be written as 

  

 
D

bis

qN

V
W

ε2
=         (2.15) 

 

When the contact is biased by an externally applied voltage Va, the depletion width 

can be written as 

 

 







−−=

q

kT
VV

qN
W abi

D

sε2
      (2.16) 

 

where, the term kT/q arises from the contribution of the majority carrier distribution  

tail. It is seen from equation (2.16) that the depletion layer width is directly 

proportional to the square root of the applied voltage, and inversely proportional to 

the square root of the dopant density of the semiconductor. The electric field in the 

semiconductor is given by 

 

 m

s

D

e

D Ex
qN

xW
qN

xE −=−−=
εε

)()(      (2.17) 

 

where, Em is the maximum field strength which occurs at x = 0. Integrating the 

electric field yields the electrostatic potential, 

 

 Bn

e

D xWx
qN

xV φ
ε

−−= )
2

1
()( 2

      (2.18) 

  

The space charge Qsc per unit area of the semiconductor and the depletion-layer 

capacitance C per unit area are given by 

  

 





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q

kT
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equation (2.20) can be written in the form, 
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or  

 

 
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12
2ε

      (2.22) 

 

If ND is constant throughout the depletion region, a plot of 1/C
2
 versus V should yield 

a straight line graph. If ND is not a constant then the differential capacitance method 

can be used to determine the doping profile from equation (2.22). Using the voltage 

axis intercept, the barrier height can be determined from the equation, 

 

 
Bn i

kT
V

q
ϕ ξ φ= + + − ∆        (2.23) 

 

where Vi, is the voltage axis intercept (equivalent to Vbi), φ∆  is the image force 

barrier lowering, and ξ , the depth of the Fermi level below the conduction band, 

which can be computed if the doping level is known. 

 

2.3.3 Ohmic Contacts 

An ohmic contact is defined as a metal-semiconductor contact that has a negligible 

contact resistance Rc, relative to the bulk or spreading resistance of the 

semiconductor, given by 

1

0

−

=










∂

∂
=

V

C
V

J
R , when evaluated at zero bias. A good ohmic 

contact would have very small voltage drop even at large current levels, and that the 

voltage drop would be the same for both forward and reverse current flow. 
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The following two major approaches can be used to achieve ohmic contacts to 

semiconductors: 

(a) If one can find metal-semiconductor combinations in which the barrier height 

is determined by the difference in their work functions, it should be possible to 

create an ohmic contact by choosing the metal with scm φφ <  in the case of n-

type semiconductor, (Fig. 2-6a and b) and scm φφ >  in p-type semiconductor, a 

typical ideal ohmic contact. A low-resistance symmetrical contact to a 

semiconductor is obtained if the barrier is small compared with kT. When this 

is the case, carriers can flow over the barrier in either direction with little 

resistance as shown in Fig.2-6c. It can be shown that, [1] 

 

*
exp Bn

C

qk
R

qA T kT

φ 
=  

 
     (2.24) 

 

Equation (2.24) shows, that low barrier height should be used to obtain small 

Rc. Since for most semiconductors, because of the presence of interface states, 

ohmic contacts cannot be obtained by proper choice of metal work function 

and a metal does not generally exist with low-enough work function to yield a 

low barrier. 

(b) An alternate and more practical contact is a tunnel contact shown in Fig. 2-6d. 

Such contacts have a high enough doping in the semiconductor so that there is 

only a thin barrier separating the metal from the semiconductor interface, and 

carriers can readily tunnel across such barrier. The required doping density for 

such contact is 10
19

 cm
-3

 or higher [1]. 

 

The fabrication of ohmic contacts frequently includes a high temperature annealing 

step so that the deposited metals can either alloy with the semiconductor or the high-

temperature anneal, reduces the unintentional barrier at the interface. In case of Ge, 

Au-Sb alloy with (0.1% Sb) is first evaporated onto back of the Ge. These contacts 

are then annealed at 350˚C under inert conditions such as nitrogen or argon [12] to 

reduce contact resistance by increasing the tunneling current as shown in Fig 2-6 (d). 

The use of a reducing atmosphere reduces any further oxidation of the metal during 
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annealing, while it can also reduce any interfacial oxide between the metal and 

semiconductor. 

 

  

(a)       (b)                                                         

             

 

(c)        (d) 

Fig. 2-6. Energy band diagrams of a metal/n-type semiconductor with scm φφ < . (a) 

Materials isolated from each other and (b) at thermal equilibrium after contact is 

made (ideal ohmic contact formation) redrawn from ref. 16. Ohmic contact formation 

by, (c) low barrier height and (d) high doping contacts, redrawn from ref. 1. 
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2.4 Current Transport Mechanisms in Metal – Semiconductor 

Junctions 

The electrical properties of Schottky contacts are determined by the transport 

mechanisms across the barrier. The current transport in metal-semiconductor contacts 

is mainly due to majority carriers. The various ways in which electrons can be 

transported across a metal – semiconductor junction under a forward bias are:  

(a) emission of electrons from the semiconductor over the top of the barrier into 

the metal [the dominant process for Schottky diodes with moderately doped 

semiconductor (e.g., 1710≤DN  for Si) operated at moderate temperatures (e.g., 

300 K)], 

(b) quantum-mechanical tunneling through the barrier (important for heavily 

doped semiconductors and responsible for most ohmic contacts), 

(c) recombination in the charged space region, and 

(d) hole injection from the metal to semiconductor (equivalent to recombination in 

the neutral region). 

In addition, we may have edge leakage current due to a high electric field at the 

contact periphery or interface current due to traps at the metal-semiconductor 

interface. The inverse processes occur under reverse bias. It is possible to make 

practical diodes in which (a) is the most important and such diodes are generally 

referred to as ‘nearly ideal’. Process (b), (c) and (d) cause departures from ideality. 

There are two basic processes that govern the emission of electrons from the 

semiconductor over the top of the barrier into the metal, (i) electrons are transported 

from the bulk of the semiconductor and across the depletion region of the 

semiconductor by the mechanism of drift and diffusion in the electric field of the 

barrier, and (ii) at the interface, their emission into the metal is determined by the rate 

of transfer of electrons across the boundary between the metal and semiconductor. 

These two processes are effectively in series and according to the diffusion theory by 

Schottky [10] the first process is more important, whereas according to the 

thermionic–emission theory of Berthe [14] the assumption is that the current-limiting 

process is the actual transfer of electrons across the interface between the 

semiconductor and the metal.  In case of the moderately doped Si and Ge Schottky 

diodes used in this study, the dominant mechanism for reverse bias and small forward 

bias is thermionic-emission. Assuming that the velocity distribution of the electrons in 
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the conduction band is Maxwellian and ideal rectifier characteristics, the current 

density, J flowing across the barrier can be written as, 

 

 ( ) ]1)/[exp(/exp2* −−= kTqVkTqTAJ Bφ     (2.25) 

 

where, A
*
 is the effective Richardson constant, Bφ is the barrier height and, T the 

temperature of the junction, provided the barrier height is independent of bias. The 

current density for a non-ideal diode can be written as, 

 

 ]1)/[exp(0 −= nkTqVJJ ,  where ( )* 2 exp /o BJ A T q kTφ= −  (2.26) 

 

with series resistance Rs and qkTV /3> equation (2.26) is now given by, 
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where, Jo, is the saturation current density obtained by extrapolating the current 

density from the log-linear region to V = 0 and, n, is the ideality factor defined as  
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The ideality factor has been introduced in equations (2.26) and (2.27) to account for 

deviation of the diodes from ideal behaviour. For an ideal Schottky diode, the barrier 

height is independent on the bias and current flows only due to thermionic emission. 

The saturation current density, Jo, can be expressed as, 
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where, Boφ  is the zero bias barrier height, and iflφ∆  is the barrier lowering by the 

image force. The effective zero bias barrier height is given by, iflBoe φφφ ∆−= . From 
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the graph of ln(J) versus V, it is possible to determine n, Jo and Rs. A least squares 

curve fitting procedure is applied to the linear region (forward bias region) of this 

graph. The ideality factor is proportional to the inverse of the gradient of this fit. The 

value of Jo, is obtained by the extrapolation of the linear fit to V = 0 V. An expression 

for the effective barrier height (at V = 0 V), is given by, 

 

 







=−

o

VI

eo
J

TA

q

kT
2*

lnφ         (2.29) 

 

A theoretical value for the effective Richardson constant, A
*
, can be determined by 

using the following equation, 

 

 
3
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where m
*
 is the electron effective mass. 
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