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Summary

In this dissertation we establish results concerning the following:

e Liapounoff convexity-type theorems for certain locally convex space-valued measures

defined on fields of sets.

e The improved properties of the composition of nuclear mappings with measures and
measurable functions as compared to the measures and measurable functions considered

on their own.

e The factorization of various classes of measurable functions and mappings.

These results are explained in three parts.

In Chapter 2, we establish Liapounoff convexity-type results for locally convex space-
valued measures defined on fields (of sets) or equivalently on Boolean Algebras.

A. Liapounoff [Lia40] showed that the range of a non-atomic vector measure, taking values
in a finite dimensional space, is compact and convex. Liapounoff convexity-type theorems
concern the compactness and convexity of the closure of the range of a vector measure. We
specifically investigate such results for certain classes of locally convex space-valued measures
defined on fields and fields of sets with the interpolation property.

We find that vector measures defined on fields with the interpolation property have prop-
erties very similar to the status quo. However, for vector measures defined on (general) fields,

similar results may not hold.
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Properties stronger than non-atomicity, specifically, the strong continuity property, yield
results comparable to the status quo. Such properties are thoroughly considered. Then we
investigate certain locally convex spaces for which some of the summability conditions can be
relaxed.

In the second part of this dissertation, in Chapter 3, we consider the existence of weak
integrals in locally convex space. In general, the existence of the Dunford (and Gel’'fand)
integral depends on whether the closed graph theorem for the dual of space under consideration
holds. Since barrelled spaces can be characterized in terms of the validity of the closed graph
theorem, we consider locally convex spaces whose duals are barrelled spaces.

J. Diestel [Die72] discovered that the composition of an absolutely summing map (between
two Banach spaces) with a Pettis integrable function has ”improved” integrability properties,
compared to that of the integrable function considered on its own. J. Rodriguez [Rod06]
has recently, generalized Diestel’s result to the case of a composition with Dunford integrable
function.

In Chapter 4, we investigate the ”improved” properties of the composition of a nuclear
map with a locally convex space-valued measure and we investigate the properties of nuclear
space-valued vector measures.

A natural consequence is the investigation of the composition of nuclear maps with mea-
surable functions. We also find that the measurability and integrability properties of locally
convex space-valued measurable functions are improved with such a composition.

The third part of this dissertation concerns the factorization of measurable functions and
certain mappings. In Chapter 5, we first consider the factorization of Polish space-valued
measurable functions along the lines of the ”Doob-Dynkin’s lemma” (cf. [Rao84, Proposition
3, p.7]), a result found in (scalar-valued) stochastic processes. This allows us to determine
when, for two measurable functions, f and g it is possible to find a measurable function h,

such that g = ho f.
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Similar results are established for various classes of measurable functions. We discover
similar factorization results for certain multifunctions (set-valued functions) and operator-

valued measurable functions. Another consequence is a factorization scheme for operators on

Li(p).
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Chapter 1

Preliminaries

The notation in this dissertation is generally consistent with that of [DU77] and [KK76].
Suggested references for locally convex spaces are [Sch71], [RR73] and [Rud91]. For references

relating to measurable functions and Polish spaces, see [Coh80] and [HJ94].

1.1 Locally Convex Spaces

Here follows a short summary of some of the definitions and results from the theory of locally

convex spaces that we shall employ.

Definition 1.1. Let E be a vector space over a (real or complex) field F. Let A be a subset

of E. Then A is
(i) convex if tx + (1 —t)y € A for allx andy € A and 0 <t < 1;
(ii) balanced (circled) if tx € A for each x € A and for all |t| < 1;
(iii) absorbing (radial) if for each x € E there exists at € F such that tx € A;
(iv) barrel if it is absorbing, convex, balanced and closed;

(v) relatively compact if its closure is compact (when E is a Hausdorff uniform space);
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(vi) precompact if it is relatively compact in the completion of E.
Definition 1.2. Suppose that T is a topology on a vector space E, we write (E,T), such that
(i) every point in E is a closed set, and

(ii) the vector space operations are continuous with respect to T, i.e. (x,y) — x +y for all

x,y € E and (a,z) — ax for x € E and scalar o are continuous mappings.
then (E,T) is called a topological vector space.
Here follows a list of some topological vector spaces used in this dissertation.
Definition 1.3. A topological vector space (E,T) is
(i) locally convez if E has a base whose members are convez, balanced and absorbent;

(ii) a quasi-complete locally convex space if every bounded, closed subset of the space E is

complete;
(iii) metrizable if T is compatible with some metric d;
(iv) a metric space if its topology is induced by some metric d;
(v) a Fréchet space if it is a complete metrizable locally convez space;

(vi) a barrelled space if it is a locally convex space where every barrel in E is a neigbourhood

of 0;

(vii) a nuclear space if it is a locally convex space with a base B consisting of convez, balanced,

0-neighbourhoods such that for each V€ B, the canonical map £ — EV is nuclear.!

Every 0-neighbourhood of a topological vector space, F is an absorbing set.

'See Chapter 1.1.1 for the definition of E’v.
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A locally convex space can also be represented in an equivalent manner in terms of semi-
norms. A family of seminorms which topologizes (generates) locally convex space E is denoted
by Pg.
If E is a quasi-complete locally convex space then every precompact set in E is relatively
compact. A quasi-complete locally convex space is sequentially complete, see [Sch71, p. 7].
A nuclear space E can also be characterized as a space where all of its continuous maps
into any Banach space is nuclear, see [Sch71, Theorem III.7.2].
Consider the duality (F, F'). The weakest locally convex topology under which all semi-

norms of the form
py(x) = [z, )]

for all y € F, is continuous, is called the weak topology on E. This topology is denoted by
o(E,F).

Note that every o(E, F)-bounded subset of a locally convex space is bounded.

The Mackey topology, 7(E, F') is the finest locally convex topology on E consistent with
(E,F). That is, it is the topology of uniform convergence on all o(F, F)-compact, convex,
balanced subsets of F.

The strong topology, 3(F, F), is the topology of uniform convergence on all the o(F, E)-
bounded subsets of F.

Note that if E is a barrelled space, then the Mackey and strong topologies coincide, that
is 7(E,F)=p(E,F).

Let E* indicate the algebraic dual of F, that is all linear functional defined on F.

The topological dual of F is the linear subspace E’ of E* which consists of all continuous
(with respect to a certain topology) linear forms in E*.

The strong dual of E is defined as (E', 3(E’, E)), that is, E’ endowed with the strong

topology B(E', E). If we write E' we mean (E’, B(E', E)).
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The topological dual of E’, given the 3(E’, E), is denoted by E”. It is called the bidual
of E.

Consider the duality (E, E’). The polar of a set U is defined as

U°={2' € E' :sup|{x,2’)| < 1,2 € U}

1.1.1 Quotient and Normed Spaces

Let (E, 7) be a locally convex space generated by a family of seminorms denoted by Pg. Then

for any p € Pg,

I, : E — E,:= E\p~"(0)

is a canonical quotient map i.e. Il,(z) = z + p~1(0) for all z € E. The space p~1(0) = {x €
E :p(x)=0}.

If we let ||TL,(2)|l, := p(z) for all € E. Then |- |, is a well-defined norm on E,. Let E,
indicate the completion of E, with respect to || - ||,. That is, Ep is a Banach space.

Let V be a convex, balanced 0-neighbourhood of E. Let
py(xz) =inf{A > 0:2 € AV}

be the (Minkowski) gauge for V. Let Ey denote the quotient space E\py. Let Ey indicate
the completion of Ey .

Let B # () be a convex, balanced, bounded subset of E. Then
Ey :=U)cr+AB
is a subspace of E. The gauge of B,
pp(x) =inf{\ > 0: 2 € AB}

is a norm on FE;. Let Ep indicate the normed space (E1,pp). The embedding map ¥p :

Ep — F is continuous. If B is complete in £ then Ep is a Banach space.
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For any vector measure m € fa(F, E) where F is a field of subsets of a set Q, let m, :=
II, o m define a measure
my,: % — E, C E,
for all p € Pg.
If E and F are vector spaces and T : £ — F' a linear map then 7" defines an isomorphism
Ty € L(E\T~(0),T(E)) called the bijective map associated with T. If ¢ € L(E, E\T~1(0))

is the quotient map and ¢ € L(T(FE), F') the embedding map then 7" = 1 o Tj o ¢.

1.2 Vector Measures

In this dissertation the notion of "measure” is used for any finitely additive set function.

The range of a measure m over a set A € J is denoted by
(Rm)(A) :={m(B): B€ ¥, B C A}

Let Rm := (Rm)(Q).

Let P(£2) denote the collection of all finite partitions of . If F is a field of subsets of a
set © then P(§2, F) denotes the collection of all elements of P(2) consisting of elements of F.
If no confusion can occur we use the notation P(€2) instead of P(, F).

A field F of subsets of a set Q has the interpolation property (I) if and only if for any two
sequences (A;,) and (By,) in J satisfying the condition that A,, C By, for all n,m there exists

a set C' € F such that A, CC C B,,.

1.2.1 Spaces of Measures

Let cay(F) (resp. bay(F)) indicate the space of real valued non-negative bounded o-additive
(resp. finitely additive) measures.
Let E be a locally convex space. The space ca(F, E) (resp. fa(F, E)), indicates all E-

valued o-additive (resp. finitely additive) measures defined on F. The space of all of the
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bounded elements in fa(F, E) is denoted by ba(F, E). Let sa(F, E) indicate the space of all
strongly additive measures, that is, all E-valued measures m defined on F, with the property
that 2, m(A,) converges and the sum belongs to E, for any collection of pairwise disjoint
elements {A,}>°, C F. For any 2/ € F’, let (m,2’) : F — C denote the complex measure
A — (m(A),2') for all A € F. Let wea(F, E) indicate the space of all weakly o-additive

measures, that is all measures m : ¥ — E with the property that (m,z’) € ca(F,C).

1.2.2 Stone Representation

If ¥ is a field of subsets of a set ) then there exists a Boolean isomorphism ¢ from F onto
F, the field of all clopen sets of a totally disconnected compact Hausdorff space €2;. Under a
Boolean isomorphism unions, intersections and complements are continuous. There exists an
isomorphism denoted by B from sa(JF, E) onto ca(o(F1), E) where for each m € sa(F, F), the
vector measure Bm(iA) := m(A) for all A € F. We call the triple [, 0(F1), Bm] the Stone

Representation of (2, F,m). See for instance [DS58, Section 1.12] and [DU77, Theorem 1.5.7].

1.2.3 p-semivariation

Let E be a locally convex space topologized by a family of seminorms Pg. For p € Pg, the

p-semivariation of a measure m : F — F is denoted by the function
p(m) : F —[0,00)
defined by
p(m)(A) = sup{[(m,2")[(4) : 2" € U°}

for all A € F. The set U° denotes the polar of U = {x € E : p(z) < 1} and |[(m, 2)| denotes
the total variation of (m,z’).

The p-semivariation of m of any set A € F equals the semivariation in the quotient space
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|IIL,, o m||p, see [Pan08, Proposition 1.2.15], that is
p(m)(A) = [, o m|l, (A)

We have the following connection between boundedness of the range of a vector measure

and the boundedness of its variation:
sup{p(z) : z € (Rm)(A)} < p(m)(A) <4sup{p(z) : x € (Rm)(A)}

for all A € F, see [KK76, Chapter II.1].

Let m : ¥ — E be a vector measure and p € bay (F). The following notions take the place
of “absolute continuity” for measures defined on a field: m is p-null if m(A) = 0 whenever
u(A) = 0; p is m-null if g(A) = 0 whenever m(A) = 0; p is m-continuous if u(A) — 0
whenever p(m)(A) — 0 for all p € Pg (equiv. m(A) — 0 in F) and m is p-continuous if
p(m)(A) — 0 for all p € P whenever u(A) — 0. A vector measure m is said to be equivalent
to p € bay(F) if m is p-continuous and p is m-continuous.

The space ba,(F, E) is of all elements in ba(F, E) equivalent to a scalar measure p €
bay (F). Likewise, the space sa,(JF, E) is the space of all elements in sa(JF, E) equivalent to
a scalar measure p1 € bay(F). The space ca,(F, E) is the space of all elements in ca(F, E)

equivalent to a scalar measure p € caq ().

1.2.4 Bartle-Dunford-Schwartz-type Theorems

Let F be a locally convex space and X a o-field of subsets of 2.

For every p € Pg and m € ca(X, E) there exists a p), € cay(X) such that

pp(A) < p(m)(A)

for every A € ¥ and p,(A) — 0 implies that p(m)(A) — 0, see [KK76, Theorem II.1.1].

10
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As a result of the Stone Representation theorem there exists a p, € bay(F) for every

m € sa(F, A) such that

1p(A) < p(m)(A4)
for every A € F and p,(A) — 0 implies that p(m)(A) — 0. The proof is along the lines of
[DU77, Corollary 1.5.3].

Let F' be a Fréchet space generated by a countable collection of seminorms Pg. For
every m € ca(X, F') there exists a u € cay(X) such that m and p are equivalent, see [KK76,
Corollary II.1.2]. As a result of the Stone Representation theorem there exists a u € bay (%)
for every m € sa(F, F) such that m and p are equivalent. The proof is along the lines of
[DU77, Corollary 1.5.3]. If m € sa(F, F) is weakly o-additive then m has a unique extension

to a o-additive F-valued measure on (%), see [Klu73al.

1.3 Polish Spaces

For a space F, let B(FE) denote the Borel o-field of E.

Definition 1.4. Let E be a Hausdorff topological space. Then,
(i) E is a Polish space if it is separable and can be metrized by means of a complete metric;
(i) E is a Lusin space if it is the image of a Polish space under a continuous bijection;

(i) (E,%) is a standard measurable space if there exists a Polish space S such that (E,X)
and (S, B(S)) are isomorphic i.e. there exists a bijection f : E — S such that f is

(2, B(S))-measurable and f~1 is (B(S),X)-measurable.

Of particular interest is Lusin spaces. If E' is a Lusin space then (E, B(FE)) is a standard
measurable space, see [Coh80, Propopsition 8.6.12]. Every Hausdorff topology weaker than a
Lusin topology is also a Lusin topology. Examples of Lusin spaces are the weak topology on

any Banach space X and the weak™ topology on X'.

11
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Consider E7 x F5 the Cartesian product between two topological spaces Fq and Es. The

product-o-field on F; X E5 denoted by
B(E1) @ B(E»)
is the smallest o-field making the projections
i B1 x By — E;
i = 1,2 measurable. It is always true [Coh80, Proposition 8.1.5] that
B(E,) ® B(E2) C B(Ey x E3)
The question of when
B(E)® B(F)=B(E x E) (1.3.1)

is of vital importance. For instance if (F, d) is a metric space then this is a sufficient condition
for the mapping w — d(w,w) to be measurable. Property (1.3.1) is true if F is a Polish space.
In fact it is event true if F is a Souslin space.

Talagrand [Tal79] showed that if E is a normed space then (1.3.1) is true if and only if
addition, that is A : E x F — E where A : (wj,ws) — wi + ws, is (B(E) ® B(F),B(E))-
measurable.

It must be noted that there are non-separable spaces for which 1.3.1 hold. For instance,

Talagrand [Tal79] showed that
BU®) © B(I®) = BI® x )

under the continuum hypothesis and Zermelo-Fraenkel.

1.4 Vector-valued Measurable Functions

The triple (2,3, 1) indicates a finite measure space. Let E be a topological space and let

B(FE) denote the Borel sets of E. A function f :  — E is called (3, B(FE))-measurable

12
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(X-measurable if the meaning is clear) if f~*(A) € ¥ for every Borel set A € B(E). Hence
o(f) == {f1(A) : A € B(E)} is a sub-o-field of ¥.. The function f is called a Y-simple
function if there exists x1,xs,...,x, € F and pairwise disjoint sets Aj, Ao, ..., A, € X such
that f =", z;xa, where x4,(w) =1if w € A; and x4,(w) =0 if w ¢ A;. It is well-known

that X-simple functions are Y-measurable.

Definition 1.5. Let E be a quasi-complete locally convexr space. Let (2,%,u) be a com-
plete finite measure space. (Following from the discussion in Chapter 1.3 the completeness

assumption can be dropped in certain cases). Consider a function f:Q — E:

(i) f is called p-measurable (strongly measurable) if there exists a sequence (fy) of E-valued

Si-simple functions such that
limp(f — fn) =0 p-a.e.
for all p € Pg;

(ii) f is measurable by seminorms if for every p € Pg there exists a family of simple functions

{fE} such that

limp(ff = f) =0 p-a.c.

(i11) f is called weakly p-measurable (scalarly measurable) if for every x’ € E' the numerical
function x'f is p-measurable i.e. for every x' € E’ there exists a sequence of scalar-

valued ¥-simple functions, (ry) such that

lim |r, — (f,2)| = 0 p-a.e.

Theorem 1.6. (The Pettis’s Measurability Theorem)(cf. [DUT7, Theorem I11.1.2]) (2,3, u).
Let X be a Banach space. A function f : Q — X is u-measurable if and only if f is weakly-

p-measurable and there exists a set N of measure zero such that f(QQ\N) is separable.

13
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The Pettis’s Measurability Theorem translates in the following way to locally convex space.

Lemma 1.7. (0, %, u). Let E be a locally convex space. A function f: Q — E is measurable
by seminorms if and only if f is weakly p-measurable and for p € Pg there exists a set Ny, of

measure zero such that f(Q\N,) is separable with respect to p.

1.4.1 Integrability and Integrals

Let (€2, %, p) be a finite measure space.
Let E be a quasi-complete locally convex space. In general, we shall assume that (2, %, u)
is complete. (Following from the discussion in Chapter 1.3 the completeness assumption can

be dropped in certain cases).

Definition 1.8. A function f : Q — FE is called Dunford integrable if (f, ') € L1(u) for all

z' € E' and for each A € ¥ there exists an element z'y € E" such that

(2y,2") = /A<f, a')dp (1.4.1)

If for each A € X, the values of z'y are essentially contained in E then we say that f is a

Pettis integrable.

Let ms : ¥ — E” be defined by m¢(A) = 2’} then my is a finitely additive measure. If f
is Pettis integrable then it can be verified that my is o-additive.
The following definition are from [Mar07], it generalizes the concept of Bochner integra-

bility to locally convex spaces:

Definition 1.9. Let E be a locally convex space. A function f : Q — E is Bochner (strongly)

integrable if there exists a sequence of simple functions (fy) such that
(i) fu— [ pae;

(ii) for each p € Pg and everyn € N, p(fn — f) € L1(p) and limy, .o [ p(fr — f)dp = 0;

14
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(iii) there exists an x4 € E such that lim,,_, p(fA fndp —x4) =0 for all A € X.

Condition (i77) in Definition 1.9 and Definition 1.10 is superfluous if E is quasi-complete.

Definition 1.10. Let E be a locally convex space. A function f : Q0 — FE is integrable by
seminorm if for every p € Py there exists a sequence of simple functions (f5) and a set N, €

of measure zero such that, for all p € Pg,

(1) p(fi — f) — 0 on Q\N,;
(i) for each p € Pg and every n € N, p(ff — f) € L1(n) and limy, .o [ p(frn — f)dp = 0;
(iii) there exists an x4 € E such that lim,,_, p(fA fodp —x4) =0 for all A € X.

If F is a Banach space then the concepts of Bochner integrability and integrability by

seminorm are the same.

1.5 Nuclear maps and Nuclear spaces

The reader is referred to the definition and discussions on nuclear maps and nuclear spaces in
Schaefer [Sch71, p.97 to 99]. Here follows only the most essential definitions for the purposes
of this disseration:

The following definition is given in [Jar81, p.376] and is given as a characterization in

[Sch71, Theorem 7.1]:

Definition 1.11. A continuous linear map u : £ — F between two arbitrary locally convex

spaces is nuclear if and only if it is of the form
u(z) = X521 A (2, fn)Yn

where {\,} C 01, {f.} is an equicontinuous sequence in E' and {y,} is a sequence which
converges to 0 in the space Fg for some balanced, convex, bounded subset B of F for which

Fp is complete.
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We continue with remarks in [Sch71]:

Remark 1.12. ([Sch71, Remark and Corollary, p. 99, 100]). The sequence {y,} converges to
0 in a suitable Banach space Fg and we may assume that (A,) C 1! is such that 3 o0 | |A,| < 1.

Let
U={ze€E:|(z,fn)] <1l,neN} (1.5.1)

The set U is convex, balanced and a 0-neighbourhood in E. The set w(U) is contained in
the closed, convex, balanced hull C' of {yn} in Fp; since {yn} is relatively compact in Fp and

Fg is complete, C is compact in Fg and thus also compact in F, since Fg — F' is continuous.

The nuclear map u can be factorized as follows (this is the definition of a nuclear map in
[Sch71, Remark and Corollary, p. 98]):

Let Ey indicate the quotient space of E with respect to the gauge pyy on U and E‘U its
closure with respect to py. If ¢ € L(E,EU) is the quotient map and ¢ € L(Fp,F) the

embedding map, then
u=1ougoae (1.5.2)

where ug € L(Ey, Fp) is a nuclear map.
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Chapter 2

Liapounoff Convexity-type

Theorems

A. Liapounoff [Lia40] showed that if m is a o-additive measure defined on a o-field, ¥, taking
values in a finite dimensional vector space, E1, we say m € ca(3, E1), then the range of m
denoted by Rm is compact and if m is non-atomic then Rm is convex, see also J. Lindenstrauss
[Lin66].

Various well-known related theorems for infinite dimensional vector spaces exists. Some
of these theorems are listed below.

Let E be a quasi-complete locally convex space and m € ca(X, E) a non-atomic measure:

e (I. Kluvanek [Klu73a, Theorem 1, Corollary 3.1]. The weak closure of Rm coincides

with the closure of co(Rm).
Let F be a Fréchet space and m € ca(X, F') a non-atomic measure:

e (S. Ohba [Ohb78] see also I. Kluvdnek and G. Knowles [KK76, Theorem IV.6.1] and

[SS03]). If Rm is relatively compact then the closure of Rm is convex.

e (J.J. Uhl [Uhl69] generalized by S. Ohba [Ohb78]). If F' has the Radon-Nikodym prop-
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erty and if m is also of bounded variation then the closure of Rm is compact and

convex.

In this chapter, these theorems are investigated for the case of finitely additive, bounded
finitely additive and strongly additive vector measures defined on fields (of sets) and fields of
sets with the interpolation property (I) of G.L Seever [See68].

In Section 2.1, we show that none of the above mentioned theorems may hold if the o-field
is replaced by a field. Here a property stronger than non-atomicity must be considered.

A. Sobczyk and P.C. Hammer [SH44] utilized the concept of “continuous” set function.
To avoid confusion, we call this concept strongly continuous as done in [BRBRS83]. In Section
2.2, we investigate the relationship between non-atomicity, strong continuity and Darboux
properties for the case of non-negative finite measures defined on a fields of sets and fields of
sets with property (I). The strong continuity property is introduced for the case of Fréchet
space-valued measures in Section 2.3. Finally in Section 2.4 we give the mentioned Liapounoff
theorems and discuss conditions under which bounded finitely additive measures are strongly

additive.

2.1 Counterexample

The following example is la raison d’étre for the structures studied in this chapter. This
example shows that the classical Liapounoff Convexity theorem and the mentioned theorems
by I. Kluvanek , J.J. Uhl and S. Ohba can’t be extended to the case of a non-atomic vector
measure on a field. In fact these theorems can’t even be extended to a non-atomic o-additive
vector measure of bounded variation on a field.

Let = [0,1] and let F be the field generated by all sets of the form [a,b) where a < b
and are rational numbers in . Let a be any number in Q. It is important to note that,

since a o-field isn’t under consideration, {a} ¢ F. Let u be the ”indicator” measure on F

18
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for the point « i.e. for any set A € F if o € A then p(A) = 1 otherwise u(A) = 0. Clearly,
1 is an atomic measure. Let A\ be the restriction of the Lebesgue measure on 2 to &F. The
non-negative measure A is non-atomic, since for every set A € F such that A(A) > 0 there
exists a subset B of A in F such that 0 < A\(B) < A(A4). The vector measure m : F — R?

defined by

A

I
is o-additive since A and p are both o-additive measures on F. For any m € P(£, ), only
one set in 7, say set A, can contain the point o. Under the sup-norm of R?

Y ImD)llee = lm(Dllss + Y~ [Im(D)]loo < 2

Der Den,D#A

Hence, the measure m is of bounded variation and thus also strongly additive, see [DU77,
Proposition 1.1.9].

Now, since A is non-atomic, m is also non-atomic. It is obvious that Rm is neither
compact, nor convex. Since the rational numbers are dense in the real numbers the closure of
Rm denoted by Rm is compact but non-convex.

Let m denote the extension of m to o(F). Since Rm is dense in R, it’s worth studying
the relationship between m and m, specifically the non-atomicity relationship. Although m

on ¥F is non-atomic, m on o(¥F) is atomic, since

m{a}) = | | #0

but {a} does not contain any non-empty subset. We call {a} an imbedded atom of & in terms
of m. That is, an imbedded atom of a field F in terms of a vector measure m is a set in o(F)

which is an atom of m, the extension of m to o(F).
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2.2 Non-negative Scalar Measures

We consider the relationships between the following properties of scalar measures:
Definition 2.1. Let F be a field of subset of a set Q and p € bay (F), then

(i) w is non-atomic if for any A € F such that u(A) # 0, there exists a B C A in F such

that p(B) # 0 and p(B) # p(A);

(ii) p is strongly continuous if for every € > 0 there exists a m € P(Q,F) such that u(D) < €
for every D € 7 i.e.

inf D)=
g aP) =0

where the infimum is taken over all m € P(Q,F);

(iii) p has the Darboux property if for any A € F and 3 € (0, u(A)) there exist a set B C A

in F such that u(B) = (.

If 1 is non-negative then it is trivial to show that (iii) = (i) = (7).
For a full treatment of these concepts in the setting of non-zero scalar measures, see

[BRBRS3].

Lemma 2.2. (Sobczyk-Hammer Decomposition, [SH44]). Let F be a field of subsets of a set

Q and p € bay(F). Then the following decomposition of u is unique

o0
p=po+ Y pn
n=1
where po € bay(F) is a strongly continuous and () C bai(F), is a sequence of distinct,

two-valued measures.

N. Dinculeanu [Din67, p.26] showed that if a o-additive non-negative measure on a d-ring
is non-atomic, then it has the Darboux property. Here we use a construction from this proof

to show the same result for the case of a field with the interpolation property (I).
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Theorem 2.3. Let F be a field of subsets of a set Q and p € cay(0(F)). Then the following

statements are equivalent:
(i) w has the Darbouz property on o(F);
(7i) w is strongly continuous on o(F);
(iii) p is non-atomic on o(F);
(iv) wlg is strongly continuous on F;
If F has property (1) these results are also equivalent to

(v) plg has the Darbouzx property on F;
(vi) p|g is non-atomic on F.

Proof. The following are easy to show: (i) = (ii) = (iii); (v) = (iv); (iv) = (vi). (i1) & (v)
is from [BRBRS&3, Proposition 5.3.7].

We now prove that (vi) = (v) and since a o-field has the interpolation property it also
follows that (iii) = (7).

Let D € F be of positive measure and « € (0, u(D)). Dinculeanu [Din67, Theorem 1.2.7]
constructed sequences (4,) and (B,,) in F with the following properties: (Note that this

construction only depends on the non-atomicity and finite additivity of ).
(a) ApC AyCAyC..CByCBCD
(b) If we put
an =sup{u(A): Ap,—1 CAC Bp_1,u(A) < a}

and

by, =sup{u(B): A, C BC Bp_1,u(B) > a}

then the sequence (a,) is monotone decreasing and (b,,) is monotone increasing and we

have a,, < a <b, for all n € N.
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(¢) There exist sequences (k) and (l,,) which tend to zero such that
an — kn < p(Ap) < ay
and
b < u(Bp) < by + 1y
Taking the limits of sequences (ay,) and (b,) to a and b respectively, we have

lim p(4,) =a<a<b= lim u(By)

n—oo n—oo

From property (I) of F there exists a set C' € F such that
AgC A CcCAyCc..cCC..CByCB
and a < p(C) < b. If 4(C) < a from Conditions (b) and (c) we deduce that
an — kn < p(C) < anqy

for every n. Consequently, 11(C) = a. We can show in a similar manner that pu(C') = b. Hence

p(C) = a. The converse is trivial. O

2.3 Vector measures

Definition 2.4. Let F be a field of subsets of a set ), E a quasi-complete locally convex space

topologized, E' the dual space of E and m : F — E an E-valued measure. Then

(i) m is non-atomic, if for every A € F such that m(A) # 0 there exists a B C A in F such

that m(B) # 0 and m(A — B) # 0;

(ii) m is strongly continuous if there exists a sequence {mp}nen in P(Q,F) such that for
every € > 0 and every p € Pg there exists N, € N such that p(m)(D) < € for every
D e m, andn > N, i.e.

lim max p(m)(D) =0

n—o0 DEmy,
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(it') m is strongly continuous if there exists a sequence {my }nen in P(Q) such that for every
€ > 0 and every p € Pg there exists N, € N such that sup{p(z) : x € R(D)} < € for

every D € 7, and n > Ny;

(#ii) m is p-strongly continuous if for every p € Pg there exists a sequence {my, }nen in P(2, F)
such that for every € > 0 there exists N € N such that p(m)(D) < € for every D € m,

and n > Np;
(iv) m is w-strongly continuous if (m,x’) is strongly continuous for all 2’ € E’.

Condition (7i') is an alternative, but equivalent, version of Condition (ii) since for each
p€ Pp

sup{p(z) : © € (Rm)(A)} < p(m)(A) < 4sup{p(z) : x € (Rm)(A)}

for all A € F, see [KK76, Chapter II.1].

It is obvious that Condition (i) implies Condition (#i1).

Example 2.5. U.K. Bandyopadhyay [Ban7/] studied a Darbouz-type property of Banach space
valued measures, that is, a Banach space valued measure m on a ring R has this property if
for any set A € R and o € (0,1) there exist a set B C A in R such m(B) = am(A). This
property implies the non-atomicity of m in fact it implies that the range of m over R is convex.

However, unlike the scalar case, a non-atomic o-additive Banach space valued measure
defined on a o-field need not have this Darbouz property. See [Uhl69] for an example of
a non-atomic Banach space valued measure on a o-field with a non-convex range, thus not

possessing this Darboux property.

It is obvious that if a quasi-complete locally convex space-valued measure m : F — FE is
strongly continuous then |(m,z')| is strongly continuous for all 2’ € E’. That is, the strong

continuity of m, implies its w-strong continuity.
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A Fréchet space F' has the Rybokov property if for every F-valued, o-additive measure m
there exists an 2’ € F’ such that m is |(m, 2’)|-continuous.
A Fréchet space F' has the Rybakov property if and only if F' does not contain a linear
homeomorphic copy of CV, see [FN97] and [Ric98]. A list of conditions implying the Rybakov
property for real Fréchet spaces is stated in [KK76, Theorem VI.3.1]. All Banach spaces have

the Rybakov property, see [DU77, Chapter I1X.2].

Lemma 2.6. Let F be a field of subsets of a set Q and E a quasi-complete locally convex
space. If E has the Rybakov property then the strong continuity property and the w-strong

continuity property are equivalent for all strongly additive E-valued measures.

Proof. We only need to show that w-strong continuity implies strong continuity.

Let F be a field and m € sa(F, E). Let [Q1,0(F1), m1] be the Stone Representation of
(Q,F,m). There exists an 2’ € E’ such that my is |(m1,2’)|-continuous. This still holds if
we restrict the domain of m; to F1. Since my(iA) = m(A) for all A € F it follows that m is
|(m, ’)|-continuous.

Let 7 indicate the Boolean isomorphism from JF onto F1. Let 2’ € E’ be such that m is
|(m, z")|-continuous. For every € > 0 there exists a 7 € P(2, F) such that |(m,z')|(A) < € for

every A € m. The strong continuity of m follows since m is |[(m, z’)|-continuous. O

Lemma 2.7. Let F be a field of subsets of a set ) and E a quasi-complete locally convex

space space. Let p € bay(F) and m € sa(F, E). Then
(i) m is non-atomic if m is p-null and p is non-atomic;
(ii) p is non-atomic if p is m-null and m is non-atomic;
(iii) m is strongly continuous if m is p-continuous and p is strongly continuous;

(iv) w is strongly continuous if p is m-continuous and m is strongly continuous.
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Lemma 2.8 and Theorem 2.9 is a consequence of Lemma 2.7 and Theorem 2.3.

Lemma 2.8. (Q,%). Let E be a quasi-complete locally convex space and m € ca(o(F), E). If

m is non-atomic then m is p-strongly continuous.

Proof. For every seminorm p € Pg, there exists a u, € ba(X) such that pu(A) < p(m)(A) for
every A € ¥ and such that ,(A) — 0 implies that p(m)(A) — 0, see Chapter 1.2.4.
If m is non-atomic then p, is also non-atomic and hence strongly continuous for every

p € Pg. It follows that m is p-strongly continuous.

O]

Theorem 2.9. Let F be a field of subsets of a set ), E a quasi-complete locally convex space

and m € ca(o(F), E). Consider the following:
(i) m is strongly continuous on o(F);
(i) m is non-atomic on o(F);

(#ii) m|g is strongly continuous on F;

(iv) m|g is non-atomic on F;

(v) mo € sa(Fo, F) is strongly continuous on a field Fo of subsets of a set g, this is if

[Q,0(F), m] is the Stone Representation of (2o, Fo, mp).

Then (i) = (ii), (iii) = (iv), (iii) < (v) and (i) < (iii). If m € ca,(o(F), E) then (ii) = (i)

and (iv) = (iit). If F has property (I) then (iii) = (iv).

Proof. For every seminorm p € P, there exists a u, € bay(o(F)) such that pu(A) < p(m)(A)
for every A € o(J) and such that p,(A) — 0 implies that p(m)(A) — 0, see Chapter 1.2.4.
The fact that (i) < (éi7) follows immediately from Theorem 2.3.
(1) = (it). If m is strongly continuous then g, is also strongly continuous for every p € Pg.

Since p, is defined on a o-field, it follows from Theorem 2.3 that p, is non-atomic. Hence, if
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A € o(F) such that m(A) # 0 then there exists a seminorm p € Pg such that p(m(A)) # 0
and therefor p(m)(A) # 0. Since p(m)(A) # 0, it follows that j,(A) # 0. There exists
a subset B € o(F) of A such that p,(B) # 0 and p,(Q\B) # 0 hence p(m)(B) # 0 and
p(m)(Q\B) # 0. We can find two sets By C B and By C Q\B of ¥ such that p(m(B1)) # 0
and p(m(Bsg)) # 0. Hence m(B1) # 0 and m(Bz) # 0 it follows that m is non-atomic. The
fact that (iii) = (iv) follows directly.

(7i1) < (v). For every € > 0 there exists a partition m € P(Qq, Fo) such that p(m|g)(iA) =
p(mg)(A) < € for every A € Fy. It is trivial to verify that im := {iA : A € 7} is a finite
partition of € consisting of elements of F. The converse is proved in the same way.

(77) = (i). If m € cau(o(F), E) then there exists a p € ca(o(F)) equivalent to m. Hence
if m is non-atomic, so is u. Theorem 2.3 implies that p is strongly continuous which in turns

implies that m is strongly continuous. The fact that (iv) = (ii7) follows directly. O

Corollary 2.10 is in the Fréchet space setting. Its proof is much simpler because there

exists a p € caq(o(F)) equivalent to m.

Corollary 2.10. Let F be a field of subsets of a set Q, F' a Fréchet space and m € ca(o(F), F).

The following statements are equivalent:
(i) m is strongly continuous on o(F);
(i) m is non-atomic on o(F);
(iii) m|g is strongly continuous on F;
(iv) m|g is non-atomic on F if F has property (I);
(v) any of the statements in Theorem 2.3 for any p € cay(o(F)) equivalent to m;

(vi) moy € sa(Fo, F) is strongly continuous on a field Foy of subsets of a set g, this is if

[Q,0(F), m] is the Stone Representation of (2o, Fo, mp).
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Lemma 2.11. Let F be a field, E a quasi-complete locally convex space and m, € sa(F, E).
Let [Qq,F1,m1] be the Stone Representation of (Q,F,m). Then the closures in E of the sets

—~

Rm and Rmi are equal i.e. Rm = Rmj.

Proof. From its definition, Rm = Rm; |5, and Rmq|y, C Rm; are obvious. If i is the Boolean
isomorphism then g1 (-) := p(i(+)) € bay(F1) is equivalent to m;.

For every set A € o(J) there exists a sequence {Dy}72, in F; such that p1(DpAA) — 0,
with A the symmetric difference. This is from [DK67] or classical scalar valued measure

theory [Din67, Proposition 1.5.13]. Thus my(DpAA) — 0. Since {Dy}72, is in I, it follows

that mq|g, (Dr) — m1(A), thus Rm; C Rma|g,. O

2.4 Liapounoff Convexity-type Theorems

Lemma 2.12. Let F be a field of subsets of a set ). Let E be a quasi-complete locally convex

space. If m : F — E is of bounded variation or Rm is compact then m is strongly continuous.

This result must be well-known. For each p € Pg let m,, := 11, om. If Rm is precompact,
then Rm,, is also precompact since I, is a continuous map or if m is of bounded variation
then it is easy to verify that m, is also of bounded variation. In both cases it follows from
the Banach space-valued case that m,, is strongly continuous for all p € Pr and hence m is

strongly continuous.

Theorem 2.13. Let F be a field of subsets of a set ), E a quasi-complete locally convex space
and m € sa,(F,E). Then the weak closure of Rm coincides with its closed convex hull and
1s weakly compact.

If F has the interpolation property (I) then the strong continuity condition can be replaced

by non-atomicity.
Proof. Let [Q1,0(F1), m1] be the Stone Representation of (2,F, m). From the definition of
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Stone Representation, my is o-additive on o(F1). Also, my is non-atomic since m is strongly
continuous or alternatively if F has property (I) and m is non-atomic, see Corollary 2.10.
From Lemma 2.11 we know that Rm = 7/5?71/1 Since the weak closure and closed convex hulls

of Rm and Rm; are equal. An appeal to [Klu73b] completes the proof. O

Theorem 2.14. Let F be a field of subsets of a set ), F' a Fréchet space and m € fa(F, F)

strongly continuous. Then

(i) if m € sa(F, F) then the weak closure of Rm coincides with its closed convexr hull and

s weakly compact;
(ii) ifﬁz is compact then Rm is convex;

(iii) if F' has the Radon-Nikodym property and m is of bounded variation then the closure of

Rm is compact and convex.

If F has the interpolation property (I) then the strong continuity condition can be replaced by

non-atomicity.

Proof. The proof of (i) follows from above since the existence of a measure pu € bay(F) is
guaranteed, since F' is a Fréchet space.

If m has a precompact range or is of bounded variation then m is strongly continuous,
see Lemma 2.12. Let [Qq,0(F1),m1] be the Stone Representation of [0, F,m|. From the
definition of Stone Representation, m; is o-additive on o(F;). Also, m; is non-atomic since
m is strongly continuous or alternatively if F has property (I) and m is non-atomic, see
Corollary 2.10. From Lemma 2.11 we know that Rm = 7?7771 To complete each proof:

—

(ii) the proof follows immediately from [Klu73b] since Rm = Rmq;

(iii) since m is of bounded variation, m; is also of bounded variation. An appeal to [Ohb78]

completes the proof.
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O

We now consider a case where the strong additivity assumption in Theorem 2.14(i) can

be relaxed.

Definition 2.15. A field F of subsets of a set Q) has the Vitali-Hahn-Saks property, if every
sequence {pn} C bay(F), where {un,(A)} converges for every A C F, is uniformly strongly

additive.

Lemma 2.16. Let X be a Banach space and let F be a field of subsets of a set Q) and let
m € ba(F, F). If m takes values in a finite dimensional subspace of X then m is of bounded

variation and hence strongly additive.
The proof of this lemma follows easily from the case of signed measures.

Lemma 2.17. The space C(—o00,00), of all continuous functions on the reals equipped with

the topology of uniform convergence on compact sets is a Fréchet space with a Schauder basis.

Proof. C(—o00,00) equipped with the topology of uniform convergence on compact sets is a
Fréchet space, see [Rud91, Example 1.44]. C(—oc, 00) is isomorphic to C([0, 1])V, a countable
product of copies of C(]0,1]), this follows easily from [Val82, Theorem 3.3.6.2, p 496]. It is
well-known that C([0,1]) has a Schauder basis [Woj91, I1.B.12], hence C([0,1])" and thus
C(—o00,00) also have Schauder bases.

O
The following theorem contains some ideas in [Die73] applied to a Fréchet space setting.

Theorem 2.18. Let I’ be a separable Fréchet space gemerated by an increasing family of
seminorms denoted by Pr and let F be a field of subsets of a set Q) with the Vitali-Hahn-Saks

property. Let m € ba(F, F') then m is strongly additive.
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Proof. Every separable Fréchet space is linearly homeomorphic to a subspace of C(—o0,c0)
equipped with the topology of uniform convergence on compact sets, see [MO53, p. 144].
Denote the Schauder basis of C(—o0,00) by (e,) and let (f,) denote the associated se-
quence of coefficient functionals. Each f,, € F’ and each x € F can be uniquely represented

in the form x = %, f,,(x)e,, hence m(A) = X, f,(m(A))e,. The vector measure
my(A) = S5_y fu(m(A))en

takes its values in a finite dimensional subspace of C(—o0, 00).

Let p € Pr and (ﬁp, || - |p) be the Banach space defined in terms of the quotient map
I, : F — F/p~!(0). Since m is bounded, my is also bounded and it follows that II,, o my
is a bounded finitely additive measure; hence II, o my, is strongly additive. There exists
a measure ug € bay(F) such that my is pg-continuous, see [DUT7, Corollary 1.5.3]. Hence
I, omy||p,(D) — 0 as px (D) — 0 where ||II,0myg]|,(D) indicates the semivariation of IT,0my
over a set D € F, see [DU77, p.2].

Since JF has the Vitali-Hahn-Saks property, fi, := sup{u; : k& € N} is strongly additive,
hence bounded. If fi,(A) — 0 then ||II, o mg||,(A) — 0 for each k& € N which implies that
p(m(A)) = |[II, o m(A)|| — 0, see [DU77, Corollary 1.5.4].

We can construct a single measure i € bay (F) from the set {i,}pcp, as done in [KK76,
Corollary I1.2.2], with the property that i(A) — 0 implies that fi,(A) — 0 for all p € Pp.

If {A,,} C F is a mutually disjoint sequence of sets then [i(A,,) — 0 which implies that

p(m(Ap)) = ||, o m(An)||p — 0 for each p € Pp. O
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Chapter 3

Barrelled spaces

In this chapter we investigate the existence of weak (Dunford, Gel’fand, Pettis) integrals in

locally convex space. In general, the existence of the Dunford (and Gel’fand) integral depends

on whether the closed graph theorem for the dual of the space under consideration holds.
Since barrelled spaces can be characterized in terms of the validity of the closed graph

theorem, we consider locally convex spaces whose duals are barrelled spaces.

3.1 Existence of the Dunford Integral

All of the proof of the existence of the Dunford integral relies on the closed graph theorem.

We consider barrelled spaces because of the following theorem:

Theorem 3.1. (Closed Graph Theorem). Let (E,T) be a barrelled space, X a Banach space

and f: E — X a linear mapping with closed graph in E x X. Then f is continuous.

This is not the most general version of the closed graph theorem. But will suffice for
our purposes. For a more complete discussion on the closed graph theorem, see [PCB87],
specifically Chapters 4 and 7.

Theorem 3.2. Let X be a Banach space and E a locally convex space. If the fact that a
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linear mapping u : E — X with closed graph in E x X implies that u is continuous then E is

a barrelled space.
Lemma 3.3. (c¢f. [Sch71]) Fréchet spaces (and hence Banach spaces) are barrelled spaces.
We now prove the existence of the Dunford integral.

Theorem 3.4. Let (E,7) be a locally convex space and suppose that E’', equipped with the
B(E', E)-topology, is a barrelled space and f : Q — E is a weakly p-measurable function and

(f(-),2") € Li(p) for all ' € E'. Then for each A € ¥ there exists an 2’} € E" satisfying

(aly, 2y = /A (), a")dp

Proof. We first prove that the integration operation is a continuous linear map.

Let A € ¥ and define Ty : E' — Li(u) by Ta(2') = (fxa,2').

Let {z/,} be a net in E' which converges to 2’ in the 3(E’, E)-topology of E’, hence also
in the o(FE, E')-topology, and suppose that T4 (x),) = (fxa,z,,) converges to a function g in
the norm topology of Lj(u).

Then {(fxa,x,,)} has (a subsequence which also converges to g, which has) a subsequence

{(fxa,z,)} which converges p-a.e. to g, but
lim (fxa,25;) = (fxa,2)
j—00

everywhere. Hence (fx4,2’) = g p-a.e. This means that the mapping T4 has a closed graph,

hence T4 is continuous by the closed graph theorem. Now,

| /A (2 dul < | (Fxa 2l

= [Tl
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Thus, the mapping @’ — [,(f,2')dp defines a continuous linear functional /) on E’ for

each A € X. O

The existence of the Gel’fand integral is an immediate consequence of the same duality
argument.

Let my : ¥ — E” be defined by m¢(A) := 2/}. It is easy to see that m € fa(X, E").

Corollary 3.5. Let E be a locally convex space and suppose that E' is a barrelled space. Let
f:Q — E be a Dunford integrable function. Then Rmy is bounded in the o(E", E")-topology

of E".
Proof. Let 2’ € E'. For every A € X,
(s} = | [ (7.
< [ 1(.ala
A
< T
O

Corollary 3.6. Let E be a locally convex space and suppose that E' is a barrelled space. Let
f:Q — E be a Dunford integrable function. Then the Dunford integral of f is o-additive in

the o(E", E')-topology of E".

Proof. If we consider a set A = U, A; in ¥ where {4;} is a collection of pairwise disjoint
sets of 3 then the series 3;m¢(A;) converges in the o(E", E) because for any k € N and for

all 2/ € F,

Sl (4,0 < S [ |70l

J

- / (2 dp
uk A

=144

< [ Ta(@)
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From which it follows that

(Symy(as),a') =5 [ {0

Aj
— [ ().
A

= (my(A4),2)
for all 2’ € E'. Hence the Dunford integral is o-additive in the o(E”, E')-topology. O

We now turn to the existence of Pettis integrable functions. First consider the following

result due to A. Grothendieck in the locally convex space setting.

Theorem 3.7. ([Gro53]). Let (E,T) be a locally convex space then a finitely additive measure
m : ¥ — E is weakly o-additive, that is, o-additive in the o(E, E')-topology of E if and only

if m is o-additive.

Corollary 3.8. Let E be a locally convexr space and suppose that E' is a barrelled space. Let
f: Q — FE be a Dunford integrable function. Then f is Pettis integrable if and only if the

Dunford integral of f is o-additive (strongly additive).
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Chapter 4

Nuclear spaces and Nuclear maps

In this chapter we find that measures and measurable functions of nuclear spaces have ”im-
proved” properties, above those of general locally convex spaces and Banach spaces. For
example the range of a bounded nuclear space-valued measure is precompact, from which a
Liapounoff convexity result follows. Also weakly-u-measurable functions are measurable by
seminorm.

J. Diestel [Die72] discovered that the composition of an absolutely summing map (between
two Banach spaces) with a Pettis integrable function has ”improved” integrability properties,
compared to that of the integrable function considered on its own. This naturally leads to
the investigation of the composition of nuclear maps (between two locally convex spaces) with
weakly measurable functions in locally convex spaces.

A reminder of some of the notation which is used in this chapter: For a locally convex
(Hausdorff topological vector) space E, a family of seminorms which topologizes E will be
denoted by Pg. Throughout this chapter we will use the notation II, for the extension of the
quotient map between E and its quotient space, the normed space £, := E\p~1(0), to the

completion Ep of Ep.
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4.1 Measures

Theorem 4.1. Let F be a field of subsets of a set ). Let E and F' be locally convex spaces.
Let uw: E — F be a nuclear map. If m € ba(F, E), then uwom is of bounded g-variation for

every q € Pr.

Proof. We first show that u o m is of bounded ¢-semivariation.

Let ¢ € Pr. Then II; o u is a nuclear map and mg :=Il;ouom € ba(9, fp). Since Rm is
bounded it follows that Rm, = (II;ou)(Rm) is relatively compact in ﬁq, see [Sch71, Corollary
II1.7.1]. From this it immediately follows that m, € sa(F, ﬁq), see [DU77, Corollary 1.5.3].

The g-semivariation of m on any set A € F equals the semivariation in the quotient space

lmygl|q, see [Pan08, Proposition 1.2.15], that is

q(m)(A) = [[mqllq (4)
Since a strongly additivity, Banach spaces-valued measure is of bounded semivariation, the

fact that m, € sa(F, F;;) implies that
q(m)(A) < q(m)(Q2) < oo

for all A € &F.
Now to show that u o m is of bounded g-variation.

For each ¢ € Pr, we consider the factorization of the nuclear map (Il o u), therefore

(Ilg o u)(z) = X1 A, fn)Yn

where {\,} C ¢, {f,} is an equicontinuous sequence in E’ and {y,} is a sequence which
converges to 0 in the space Fp for some balanced, convex, bounded subset B of F' for which
Fp is complete.

Since {f,} is equicontinuous and hence uniformly bounded, there exist a finite number
M > 0 such that

[(z, )] < My
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for every x € U, and f € {fy,}, hence {f,,/M;} C Ug.
For any finite set m € P(Q,F), where P(2,F) consists of the elements of F which forms a

pairwise disjoint partitions of €2, we have

DMy ouom(A)y <) Z [An(m(A), fr)ynllq

Aer AEwn 1
—ZZ’ A), fn) |||)‘nyan
n= 1A€w
= Mlz Antinlly Y [(m(A), fu/M0).

Aer

Now
o o0
D Anynllg < Mz > [An| < My
n=1 n=1

where |ly,|q < My for all n since {y,} is contained in a bounded set and the summation can

be taken as Y 7, [A,] < 1. Also,

S [(m(A), fu/M2)] < g(m)(Q) < o0

Aem

because m is of bounded ¢-semivariation.

In conclusion, u o m is of bounded g-variation because

> Mg ouom(A)|, < MiMag(m)($2)
Aem

is bounded for all elements of P(Q2, F). O

Corollary 4.2. Let F be a field of subsets of a set Q). Let E and F be locally convex spaces.

Let u: E — F be a nuclear map. If m € ba(F, E), then
(i) R(uom) is a precompact set;
(i) there exists a measure p € bay(F) such that wom is p-continuous;

(iii) the closure of R(uom) is a convex set if the closure is contained in F' and m is strongly

continuous (or non-atomic and F has property (I)).
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Proof. We use the factorization of u as described in (1.5.2).

(7). Since m € ba(F, E), the set Rm is bounded. Thus the set ¢(Rm) = R(¢ o m) is
bounded and (ugo¢)(Rm) = R(ugopom) is relatively compact in Fz. Hence ¢ (R (ugopom)) =
R(uom) is precompact in F, by the continuity of .

(7). Since R(ug o ¢ o m) is relatively compact in Fp, it follows from [DU77, Corollary
1.5.3] that ug o ¢ om € sa(¥F, Ey) and there exists a control measure p € ba(F) equivalent to
ug o ¢ om. Hence v om is p-continuous.

(7i7). If m is strongly continuous then it follows directly from, for instance the proof of
Theorem 2.9, that ug o ¢ o m is also strongly continuous in Fp because of the continuity of
up © ¢. In addition it follows from Theorem 2.14 that the closure of R(ug o ¢ o m) is convex
because the closure of R(ug o ¢ om) is compact. From the continuity of ¢ it follow that the
closure of ¥(R(ug o ¢ om)) is also convex if it is contained in F.

The same proof will hold if ”strong continuity” is replaced by ”"non-atomic” and if in

adddition F has property (I). O

Corollary 4.3. Let F be a field of subsets of a set Q). Let E be a nuclear space. If m € ba(F, E)
then m is of bounded p-variation for every p € Pg, that is, the variation with respect to the

quotient space induced by every p is bounded.

Proof. Let p € Pg. Since II, : E — Ep is a continuous linear map from a nuclear space to a

Banach space, it is also nuclear. The result follows from Corollary 4.2. O

Corollary 4.4. Let F be a field of subsets of a set ). Let E be a nuclear space and X a
Banach space. Let u: E — X be a continuous linear map. If m € ba(F, E) then uwom is of

bounded variation.

Theorem 4.5. (c¢f. [Sch71, Corollary II1.7.2.1]). Every bounded subset of a nuclear space is

precompact.
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The following Liapounoff-type results for nuclear spaces follow:

Theorem 4.6. Let F be a field of subsets of a set Q. Let E be a nuclear space. If m € ba(F, E)
then Rm is precompact.
If in addition, if E is quasi-complete and m is strongly continuous (or non-atomic and F

has property (I)), then the closure of Rm is a compact, convex set.

Proof. If m € ba(F, E) then Rm is a bounded subset which is precompact.
Let m be strongly continuous. If 7 is a neighbourhood base of 0 in F consisting of convex,

balanced sets, then there exists an isomorphism, v, on E to a subspace of II BETE B defined by
v:x — {¢p(z): BerT}

see [Sch71, Theorem II.5.4 and Corollary I1.5.4.2].

Let B € 7. Since the quotient map ¢p : £ — EB is continuous, the measure ¢g o m is
strongly continuous (and relatively compact). Then according to Theorem 2.14, the closure
of the range of ¢p o m is convex.

For any A and Ay in F and scalar r € (0, 1),

v(rm(A) + (1 —r)m(Ao))

= {rép(m(A4)) + (1 —r)¢p(m(A)) : B € T}

€ {¢p(Rm): B €1} =v(Rm)

where ¢p(Rm) indicates the closure of ¢p(Rm), etc. For the last equality, see [Eng68,
Theorem 2, p. 74].
This means that the closure of measure v o m is convex. Since v is an isomorphism it

follows
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hence

rm(A) + (1 — r)m(Ag) € Rm

This means that the closure of measure m is also convex. O

4.2 Measurability and Integrability

In this section, unless stated differently, we consider the triple (€2, %, 1) which indicates a
complete finite measure space.
The following lemma holds true for Banach spaces, see [Pie72, Proposition p. 52]. In

general, this results follows from the factorization of the nuclear map.
Lemma 4.7. Fach nuclear mapping between two locally convex space has a separable range.

Theorem 4.8. Let E be a nuclear space and f : Q0 — E a weakly p-measurable function.

Then f is measurable by seminorms.

Proof. Let p € Pg, notice that II, is a nuclear map. Now, the range of II, is separable hence
IT, 0 f(Q2) is a separable set. The mapping I, 0 f is also weakly y-measurable since eoIl, € E’
for every e € E;/o Hence, by Pettis’s measurability theorem, II, o f, is y-measurable.

It means that there exists a sequence {gi} of Ep—valued simple functions such that
Mo f—gkllp —0

on Q\N for some N € ¥ where pu(N) = 0. Since II, is linear and surjective, we can

construct a sequence of E-valued simple functions, {gj} such that II, o g = g;. Hence
p(f = g) =My o f = gell, —0

on Q\N. This means that f is measurable by seminorms.
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For a discussion on the integrability properties of functions measurable by seminorm, see

[Mar07] authored by V. Marraffa.

Corollary 4.9. Let E be a nuclear space and X a Banach Space. Let u : E — X be a
continuous linear map. If f : Q — E is a weakly p-measurable function then wo f is u-

measurable.

Theorem 4.10. Let E be a locally convex space, F' a quasi-complete locally convex space and
u: FE — F a nuclear map. If f:Q — E is a weakly p-measurable function then uo f is a

p-measurable function.

Proof. Since ug o ¢ is a nuclear map, (ug o ¢)(E) is a separable subset of Fg. Hence ugo¢o f
takes its values p-essentially in a separable set.
Since f is weakly-p-measurable and y' ougo ¢ € E' for all y' € F;, there exists a sequence

of scalar-valued simple functions (r,) such that

rn = (f,y ougo¢) = (upogo f,y)

Hence ug o ¢ o f is weakly-u-measurable. It follows from Pettis’ measurability theorem that
ugo¢o f is y-measurable. It follows that there exists a sequence of Fp-valued simple functions
(gn) that tends to ug o ¢ o f, p-a.e. on a set Q\N where u(N) = 0. Hence ¥ o g,, tends to

uo f, p-a.e. on Q\N. The theorem is proved. O

Lemma 4.11. (¢f. [Sch71, Lemma 1, p. 169]). Let E and F be locally convezr spaces,
u: B — F a continuous linear map which maps a suitable 0-neighbourhood of E into a weakly

compact subset of F. Then u”, the second adjoint of w, maps the bidual E" into F C F”".

Theorem 4.12. Let E be a locally convex space, F a quasi-complete locally convex space,
u: E — F a continuous linear map which maps a suitable 0-neighbourhood of E into a weakly
compact subset of F. If f : Q — E is a Dunford integrable function then wo f is a Pettis

integrable function.
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Proof. Since f is a Dunford integrable, there exists a finitely additive measure my : ¥ — E”

where

(my(A).a') = [ (.0
for some A € 3. Then wo f is Pettis integrable because
/ (wo f,y)dp = / (fou oy )du
A A

= (my(A),u’ 0 yf)

= (u" oms(A),y)

where v’ and u” are the adjoint and second adjoint, respectively, of u. It follows from Theorem

4.11 that, u” o my takes its values in F, hence u o f is Pettis integrable. O
It is of course important to note that this means that
Mo f ::u”omf X - F

is a bounded o-additive measure.

Theorem 4.13. ([Rod06]). Let u: X — Y be an absolutely summing mapping between two
Banach spaces and f : Q@ — X a Dunford integrable function. Let g : Q@ — Y be scalarly

equivalent to wo f. Then g is Bochner integrable if and only if g is p-measurable.

Theorem 4.14. Let E be a locally convex space, F' a quasi-complete locally convex space,
u: FE — F a nuclear map and f : Q — E a Dunford integrable function. Then wo f is

Bochner integrable.

Proof. We verify that u o f satisfies Definition 1.9.

42



<&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

W YUNIBESITHI YA PRETORIA

It follows from Theorem 4.10 that the function w o f is p-measurable. According to the
same theorem, it also follows that ug o ¢ o f is p-measurable since u is a nuclear map if and
only if ug is nuclear.

It is trivial to show that since f is weakly p-measurable, so is ¢ o f. Hence ugo ¢ o f is
Bochner integrable, since it is y-measurable and scalarly equivalent to itself.

Hence, there exists a sequence of (defining) ¥-simple functions (h,) taking values in Fp

such that
=00 60 flydu— 0
Q
Let p € Pr and let ®, : F' — F}, denote a quotient map.

The map

S o0V : Fp— F,

is a continuous linear functional between two Banach spaces which means that ®, o ¥ is a
bounded linear functional. Hence there exists a finite scalar M, > 0 such that for every
h € Fpg,

[@p 0 W (R)|lp < Mpllh| Fy
from which it follows that
pluof)=||®pouo fll, < Mpllugo do fllr,
hence
[ ptwe pdu= [ &, 0uo
Q Q
< Mp/QHU()OQSOfHFBdM < 00
and further
[ ¥ o= wo fyd = [ 19,09 0 (=060 1)y

< Mp/Q Vi — w0 0 0 fllpd
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Notice that (Vo h,) is a sequence of Y-valued Y-simple functions.
This inequality implies that p(Woh,, —uo f) € Li(u) since hy, —ugopo f € Li(u, X) and
since [q, ||hn —ug o ¢ o f|lpydp — 0 it follows that [, p(¥ o hy —uo f)dp — 0. Hence uo f is

Bochner integrable. O
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Chapter 5

Factorization of Measurable

Functions

In this chapter we derive results concerning the factorization of vector-valued, set-valued
and operator-valued measurable functions. Of special interest is the existence of an operator
between two L1-spaces.

In this chapter, to correspond with the main related reference material, we shall refer to
mappings as operators.

We utilize a generalization of a celebrated result in classical stochastic processes, sometimes

called Doob-Dynkin’s Lemma, which we refer to as the Factorization Theorem.

Theorem 5.1. (¢f. [Rao84, Proposition 3, p. 7). If (2, %;), i = o, B are two measure spaces,
[ Qq — Qp is a (Xq, Xg)-measurable function and g : Qo — R is a (X4, B(R))-measurable
function, where B(R) indicates the Borel sets on R, then there exists a (X5, B(R))-measurable
function h : Qg — R such that g = h o f if and only if g is measurable with respect to the

smallest o-field generated by f.

In Chapter 5.1 we generalize the Factorization Theorem to the case where g takes its
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values in a Polish space and more generally in a standard measurable space. We then give a
similar result for the case where g is a u-measurable Fréchet space-valued function.

We find an application of the Factorization Theorem in the theory of multifunctions pre-
sented in Chapter 5.2.1 and in the theory of operator-valued measures which is presented
in Chapter 5.2.2. A well-known application of the Factorization Theorem is found in the
theory of conditional expectations. In Chapter 5.2.3 we show a similar result for conditional
expectation with respect to pu-measurable functions. Finally we consider the factorization of

operators on Lq(u) in Chapter 5.2.4.

5.1 Core Results

Here we give a complete proof of the Factorization Theorem for the case, referring back to
the introduction, where the function g and hence h take their values in a Polish space. From
there we can extend this result further to where g and h take values in a standard measure
space and to the case where g is y-measurable.

Throughout this section, unless mentioned otherwise, P is a Polish space, ), a set and
(23,33) a measurable spaces. Let

f:Qq —Qp
be a function with o(f) the smallest o-field on €2, making f measurable.

Lemma 5.2. Let P be an uncountable Polish space, Qq a set and let (23,33) be a measurable
spaces. A function g : Qo — P is o(f)-measurable i.e. o(g) C o(f) if and only if there exists

a Yg-measurable function h : Qg — P with the property that g = ho f.

Proof. There exists a Borel isomorphism ¢ : P — R, i.e. a bijection ¢ which is (B(P), B(R))-
measurable and i1 is (B(R), B(P))-measurable, see [Coh80, Theorem 8.3.6]. It follows that

iogis a (X4, B(R))-measurable function. According to the original Factorization Theorem, cf.
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ao84, Proposition 3, p. 7|, there exists a , “measurable function h : — R suc
Rao84, P ition 3 7], th i X3, B(R ble f ion h:Qg— R h

that iog=ho f, hence h:=ilohisa (X, B(P))-measurable function and g = ho f. [

It is known that for every Polish space P, the measurable space (P, B(P)) is isomorphic
to one of the following Polish spaces: (R, B(R)), (N, P(N)) and (N¢, P(Nf)) where P indicates
power sets and Ny is any finite subset of N.

We now proceed to give a proof that is valid for all three cases. The proof is along the
lines of the original case, again see [Rao84, Proposition 3, p. 7].

We know that if Ay, Ay € o(f) are disjoint then it is not guaranteed that By, By € ¥g,

where f~1(B;) = Ay and f~!(By) = As, are disjoint.

Proposition 5.3. If (A;) C P(Qa,0(f)) is a sequence of pairwise disjoint sets and for each
A; there exists a set B; € Xg such that A; = f_l(Bi), then it can be assumed that the elements
of the collection (B;) are pairwise disjoint.

Proof. We prove the theorem for the case of two sets A1, Ay € o(f). Let By, By € ¥3 be any
two sets such that Ay = f~1(By) and Ay = f~1(By). Let C = By — By then C N By = ) and
fHO) = f 1By — By) = f~YB2) N [f1(B1)]¢ = Ay N AS = Ay. The full result follows by

induction. O

The Factorization Theorem for the case where P is a finite Polish space is contained in the
following lemma. This is because measurable functions on finite Polish spaces are essentially

simple functions.

Lemma 5.4. Let g : Qo — P be a X-simple function where ¥ C o(f) is a o-field then there

exists a Xg-simple function h : Qg — P such that g = ho f.

Proof. There exists a finite set (s;) C P and a set (4;) C P(21,X) such that g = > 7" | sixa,-

From Proposition 5.3 we can construct a sequence of pairwise disjoint sets (B;) C ¥3. Let
n
h = Z SiXB;
i=1
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then h is a simple function on (£23,33). Next,
h(f(w) = sixn(f(w))
i=1
= siXs1py W)
i=1
= 9(w)
0

Theorem 5.5. Let P be a Polish space, Q0 a set and let (23,%3) be a measurable space.
A function g : Qo — P is o(f)-measurable i.e. o(g) C o(f) if and only if there exists a

Yg-measurable function h: Qg — P with the property that g = ho f.

Proof. Since g is a measurable function, there exists a sequence (gx) of o(g)-simple functions
such that gi(w) — g(w) for all w € Q.
Let (hy) be a sequence of ¥g-simple functions where hy, : Q3 — P is defined in terms of

g as in Lemma 5.4. Now, we know from the proof of Theorem 5.7 that
L ={weQg: (ht(w)) is Cauchy} € X3

and
hw) = Jim hy()xz (@)

is ¥ g-measurable. Since (hi o f)(w) = gr(w) — g(w) for all w € Qq, it follows that f(w) € L

for all w € Q, hence (ho f)(w) = g(w) for all w € Q.
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For the converse, let A be any set in o(g) then there exists a set B € B(P) such that
A={weQ,:9(w) € B}
={weQy: h(f(w)) € B}
={weQ: flw)eh(B)}

= 71 (h7H(B)) € o(f)

since h™1(B) € 5. O

Corollary 5.6. Let (S,%) be a standard measurable space and let (23,3g) be a measurable
space. A function g : Qo — S is o(f)-measurable i.e. o(g) C o(f) if and only if there exists

a Yg-measurable function h : Qg — S with the property that g = ho f.

Proof. Let i be the isomorphism that associates S with a Polish space P. Since iog: ) — P
it follows that {(iog) 1 (A): A€ B(P)} ={g ' (A): A€ X} thus o(iog) = o(g).
If o(g) C o(f) then there exists a (X3, B(P))-measurable function h: 23 — P such that

10g= ho f. Let h =4~} o h then g = ho f. The converse is trivial. O
We now consider the link between Borel-type measurability and p-measurability.

Theorem 5.7. (0, %, u). Let F be a Fréchet space and k : Q — F a p-measurable function,

then

(i) there exists a complete, separable, (Polish) subspace S of F' and a (3, B(S))-measurable

function k:Q— S such that k =k -a.e.;

(ii) k is p-a.e. unique, that is, if S is another Polish spaces and El : Q — 51 a X-measurable

function where k = k1 w-a.e. then k =k u-a.e.;
(7i3) if (Q, %, p) is complete then k is a (X, B(S))-measurable function.
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Proof. (i). Since k is pu-measurable, there exists a sequence (ky) of X-simple functions which

converges strongly to k on a set F € ¥ where u(E°) = 0. The set
T :=U; 2 {kn(w) :w e Q}

is denumerable hence S := sp T is a separable closed subspace of F', that is, a Polish space.
Thus (k) takes its values in S. Since (ky) is a sequence of Y-simple functions, its elements

are (X, B(S))-measurable. Therefore

L={weQ: (ky(w)) is Cauchy}

1

since w — d(kjyn(w), kj+n(w)) is continuous hence (X, B(S))-measurable and S is Polish, see
[Coh80, Proposition 8.1.9]. Then pu(E¢N L°) =0 and k := ky = k p-ae.. Since (knxz) and
k take their values in S , it follows that k is Y-measurable.

(73). There exist sets £ and Ej in ¥ such that u(E€) =0 = p(EY) and k(w) = E(w) for all

w € E and k(w) = k1 (w) for all w € Ey. Thus k(w) = ki (w) for all w € EN E; and
W((B 0 E)?) = p(B° U BS) < pu(B°) + p(BS) = 0

(iii). If A € B(F) then k~1(A4) = k=1 (AN S) Uk~ (A\S). Now, k~1(A\S) C E¢ and

pw(E°) = 0 thus k~1(A\S) € . Since k1 (ANS) = k(AN S) € %, it follows that k is

Y-measurable. ]

Corollary 5.8. Let pq : o(f) — R be a finite o-additive measure, F' a Fréchet space and
g : Qo — F a po-measurable function. There exist a complete separable (Polish) subspace
S of F and a (Xg,B(S))-measurable function h : Qg — S C X, with the property that
g = ho f pg-a.e. if and only if o(g) C o(f) where g = g pg-a.e. and g : Qo — S is a

(3a, B(S))-measurable function.
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Proof. According to Theorem 5.7 there exist a complete separable subspace S of F' and a
measurable function g : 1 — S such that g = g ps-a.e. Theorem 5.5 gives the existence of a

Y.3-measurable function h : 23 — S such that g = ho f then g = ho f p-a.e. O

For i = «, (3, let (2,%;, 1;) be a finite measure space and r; : Q — F p;-measurable.
According to Lemma 5.7 there exists a Y;-measurable function 7; :  — S; such that 7; =
;i pi-a.e. where S; is some complete separable (Polish) subspace of F.

A natural question is, if ¥3 is a sub-o-field of ¥,, is Sg a subset of S, and is o(rg) a
sub-o-field of o(r,)? The following example shows that this is not the case, not even if o(ry)

and o(rg) are closely related.

Example 5.9. Let X = R3, Q, = [0,1] = Qp, Yo the Borel sets on Q0 and let pq be the
Lebesgue measure on Q. Let X5 a sub-o-field of X on Qg and pg the restriction of pa to
Y. Let rg := xxa + yxB with A, B non-empty subset of X3 and hence of ¥, and x and
y linearly independent vectors in X and let ro := xxa. Clearly, r; is a ¥;-simple function
and hence p;-measurable, for i = a, 3. R® is of course a Polish space, but we can construct
smaller Polish spaces as done in Lemma 5.7 as follows: S, = sp{z} and Sg = sp{z,y}, so S,
is a line contained in the plain Sg. Hence, 75 : §; — S; is measurable functions and v; = r;
fori =, B. It is then obvious that {To(w) 1w € Qo } ={0,2} C {0,z,y} = {rp(w) : w € Qg}

and thus that o(re) C o(rg).

5.2 Applications

5.2.1 Set-valued Operators

In this section we investigate the factorization of set-valued operators (multifunctions). Let
(©,%) be a measurable space and let Cx (Ox) indicate all the closed (open) subsets of a

topological space X. A multifunction M : ) — Cx is a mapping of subsets from 2 to closed
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subsets of a topological space X. The multifunction M is Y-measurable if
M~ (A)={weQ: Mw)NA#£D}eX
whenever A € Oy.

Theorem 5.10. ([Iof79, Theorem 1]). Let X be a Polish space (compact metrizable space).
There exists a Polish space (compact metrizable space) Z such that for any Y-measurable
multifunction M : Q — Cx with ¥ := o(M), that is the o-field on Q generated by all sets of

the form M~ (A) where A € Ox, there exists a mapping f : Q x Z — X such that
(i) f(w,-) is continuous for allw € Q and f(-,z) is X-measurable for all z € Z;

(ii) for allw € dom(M) = {w € Q : M(w) # 0}, one has M(w) = f(w, Z) :={f(w,2) : z €

Z}.
We say that (Z, f) represents M.

It is important to note that the construction of the Polish space Z only depends on the

Polish space X and is independent of M.

Theorem 5.11. Let X be a Polish space and let M; : Q — Cx be a X-multifunction with
i =a,B. Let (Z, f;) indicate a representation of M; which is a consequence of Theorem 5.10.

Then (i) < (ii) and (i1) — (iii) — (iv) where
(1) o(fs) € o(fa);
(11) there exists a (B(X), B(X))-measurable function h : X — X such that fz = ho fu;

(i1i) there exists a (B(X),B(X))-measurable function h : X — X such that Mg(w) =

h(My(w)) for allw € Q;

() o(Mpg) C 0(My).
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Proof. (i) < (it) is as a consequence of Theorem 5.5 and (ii) = (éii) follows from Theorem
5.10(ii).
(7i1) = (iv): We first show that

o({f(2) 1z € Z}) = o(M)

Let M : Q — Cx be a Y-multifunction represented by (Z, f). Since f(-,2) is o(M)-

measurable for every z € Z it immediately follows that o({f(-,2): z € Z}) C o(M). Now,

M~ (A)={weQ: Mw)NnA+# 0D}
={weQ: f(w,z) € A for some z € Z}

co({f(2):2€2})

for every A € Ox. Since (M) is generated by sets of the for M~ (A) for all A € Ox, it

follows that,
o({f(,2):z€Z})=0c(M) (5.2.1)
Since o(Mp) is generated by sets of the form My (A) for all A € Oy, it follows that,

Mgz (A) ={weQ:hoMy(w)NA#0}
={weQ:ho fo(w,z) € A for some z € Z}

co({fi(,2):z€ Z}) =o(M,)
hence o(Mg) C o(M,) O

It is obvious that (i7i) need not imply (i¢) because each multifunction can be represented

by different (point-valued) functions. The following example illustrates that (iv) need not

imply (7).
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Example 5.12. (Q,X%). Let Z = [0,1], X = [0,2] where fo(w,z) := xa(w) for a set A € X

and fg(w, z) := z then it follows from (5.2.1) that

o(Mp) = o({fs(2) : 2 € Z}) Co({fal-2) : 2 € Z}) = 0(Ma)

but

o({fa(w,) :weQ}) Co({fp(w, ) :we})

Hence o(fa) and o(fg) are not comparable.

5.2.2 Operator-valued Measurable Functions

Let L(FE, F) indicate the space of all continuous linear operators between Fréchet spaces FE
and F. Let Lo(E, F) indicate the space L(E, F') equipped with the topology of uniform
convergence on the compact subsets of E, the space Lo (F, F) is a Lusin space, see [Sch73,
Theorem 7, p.112]. It follows that all Hausdorff topologies on L(FE, F') weaker than Lo (E, F)
are also Lusin. These topologies are discussed in [BJY95, p.1818]. They include the topology
of simple convergence on L(FE, F') which we shall denote by Lg(F, F'). Let (£, %, ) indicate
a finite measure space and L(FE) indicate the space of all continuous linear operators on E.
An operator-valued function A : Q — L(FE) is strong operator measurable if and only if
A(-)z : Q — E is p-measurable for all x € E. If (2, %, ) is a complete measure space and FE
a separable Banach space then strong operator measurability is equivalent to (3, B(Lg(E)))-

measurability, see [Joh93].

Theorem 5.13. Let E, F and G be three separable Fréchet spaces and let (Q,%) be a mea-
surable space. Further let

A:Q = L(E,F)
be (X,B(Lc(FE, F)))-measurable and let
B:Q— L(E,G)
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be (X, B(Lc(E,G)))-measurable. Then there exists a function
T:L(E,F)— L(E,G)
which s
(B(Le(E,F)),B(Lc(FE,Q)))-measurable

such that B =T o A if and only if 0(B) C o(A).

The existence of T follows immediately from Corollary 5.6. The same statement holds if
the topology of uniform convergence is replaced by a weaker Hausdorff topology. T' does have
some linearity properties. Let u,v € E and o € F then T'o(aA(u)+A(v)) = ToA((au+v)) =

B(au+v) = aB(u) + B(v) = aT o A(u) + T o A(v).

Corollary 5.14. Let (2, %, u) be a complete measure space and E a separable Banach space.

If operators A, B : Q — L(E) are both strong operator measurable, then there exists a function
T:L(E)— L(E)
which is
(B(Ls(E)), B(Ls(E))-measurable
such that B =T o A if and only if o(B) C o(A).

Theorem 5.15. Let (2,%, 1) be a finite measure space and E be a Banach space. Let
A, B : Q — L(E) be two strong operator measurable functions then AB is a strong opera-

tor measurable function.

Proof. A is strong operator measurable i.e. A(-)(xz) :  — FE is py-measurable for every
x € E, then there exists a (X, B(P))-measurable (resp. (X, B(F;))-measurable) function
A()(z) : @ — P (B(-)(z) : @ — Py) for some separable complete (Polish) subspace P (resp.
P1) of E such that A(-)(z) = A(-)(z) p-ae. (resp. B(-)(z) = B(-)(z) p-ae.) for all z € E.

Fix z € E. Since A(-)(z) only takes its values in P, we can restrict the domain of B to P

thus B|p(y) : Q — Py for all y € P. O
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5.2.3 Conditional Expectation

Definition 5.16. Let (2,3, u) be a finite measure space, F a sub-o-field of ¥ and let d €
Li(p, X) where X is a Banach space. An element g € Li(p, X) is called the conditional

expectation of d relative to F if g is ug-measurable and

/ gdpg = / ddug for ol E € F (5.2.2)
E E
In this case g is denoted by E(d|F).

The integral above is a Bochner integral, see [DU77, Chapter II and V].

Some ideas of Conditional Expectation is contained in the following lemma.

Lemma 5.17. Let (4, ¥q, ita) be a finite measure space, (Qg,%3) a measurable space and
[ :Qq — Qg a measurable function, that is, o(f) is a sub-o-field of ¥. Let d: Qq — X be a
p-measurable function and g : Qo — X a pg(p-measurable function such that g = d pg(p)-a.e.

Then there exists a Polish subspace S of X and Xg-measurable function h : Qg — S such that

g="hof usy)-a.e.

It should be noted that h depends on more than just the o-field o(f). Even if two
measurable functions f1, fo : 2o — g, have the same range and generate the same o-field

it still doesn’t mean that there exists a single Y g-measurable function A : 23 — X such that

g="ho fi ps)-a.e and g = ho fa piy(p,)-a.e.

Example 5.18. In the notation above, let g and X equal R. Let fi : Qo — R where f1 :=
XA, —Xxa_ for any pairwise disjoint sets A, , A_ € ¥ of non-zero pio-measure. Let fo := — f.
Then it is clear that fi and fo are both ps-measurable and measurable i.e. o(f1) and o(fy)
are both o-fields on Q.. The range of fi equals {0,—1,1} which equals the range of fo and
o(f1) = o(f2). Choose Cy,C_ € B(R) such that they are pairwise disjoint and Cy. contains

1 but neither —1 nor 0 and C_ contains —1 but neither 0 nor 1. Then XZJlr (Cy) = A4 and
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(—xa_)"HC-) = A_ and also x ;' (Cy) = A_ and (—xa,) N C-)=A;. Leth= xc, —Xxc_

then
h(f1(w)) = xoy (filw)) = xe_ (fr(w))
= xcy (Xa; (W) = xo_ (—xa_ (w))
= x4, (W) = xa_(w)
=g(w)
but

h(f2(w)) = xoy (f2(w)) = xe (fa(w))
= xcy (xa_(w)) = xo_ (=xa, ()
= xa- (@) = xa, (@)
= —g(w)

Theorem 5.19. (c¢f. [DU77, Theorem V.I.4]). Let (2, X, 1) be a finite measure space and let

F be a sub-o-field of . Then E(d|F) ezists for every d € Ly(u, X).
We continue with the notation of Lemma 5.17

Corollary 5.20. Let d € Li(pt, X) then E(d|o(f)) := ho f ps)-a.e., that is, conditional
expectation is s py-a.e. equal to a Xg-measurable function on Qg which takes values in a

Polish subspace of X.

5.2.4 Operators on L;(p) and L;(u, X)

Definition 5.21. A Banach space valued bounded linear operator T : Li(u) — X is Riesz

representable (or simply representable) if there exists a g € Loo(p, X) such that
Tf= / fadu
Q
for all f € Li(p).
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For a complete discussion on representable operators, see [DU77, Chapter III].

Theorem 5.22. (Factorization Operator). Let (;,%;, p;) be finite measure spaces, for i =
a,0 and let f: Qo — Qp. Let (X, ||-]|) be a Banach space and let || - ||1; indicate the norm on
L1 (pi, X) where i = v, 3. There exists a bounded linear operator F': Li(pia, X) — L1(pg, X)

with the property that
F(g)of =g pa-a.e.
for all g € Li(pa, X) if and only if S = {f~1(A) : A € B}
This proof is along the lines of [DU77, Lemma I11.2.1].
Proof. Let Fr, : Li(fta, X) — L1(pp, X) be defined by
F

s (8) o= ZjBemeB (5.2.3)

(observing the convention that 0/0=0) for all s € Li(uq, X) where m3 € P(Qg, X3).

Let s € Li(fiq, X), then

ff*l B) Sdiia
1 Fry (5)l1,6 = ||EBEMM;(§B)XBHW

= Spen| / sdpta
f~YB)

< / lslldpa = [lsll1.
Qa

hence ||Fr,|| < 1. We first consider the dense linear subspace, M, of L1 (i, X) consisting of
all simple functions. A quick calculation shows that if s € M, say, s = Y 4cx54Xx4a then the

net (Fr,(s))r, is eventually constant. Let 7’ € P(§3,%5) be such a partition, then,
Fri(s) = Epersaxn
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where A = f~1(B), hence

(Frr(s))(f (@) = Epewsaxn(f(a))

= Ypersaxala) = s(a)

for all o € Q.
Since the pointwise limit of bounded linear operators is again a bounded linear operator,
the necessity is proved.

The converse is proven in the same way as Corollary 5.8.

O]

Let Koo(pi, X) indicate the subspace of Lo (p;, X) consisting of all members of Lo (p;, X)

whose ranges are essentially relatively compact.

Corollary 5.23. (Factorization Operator). There exists a bounded linear operator
F: KOO(:UOMX) - KOO(MB7X)

with
F(g)o f =g pa-ae.

for all g € Koo(pta, X).
Operators constructed in this way will be called factorization operators.
Lemma 5.24. F;,(X,) is isometrically isomorphic to £;°, where n = dim(Fr,(Xa))

Theorem 5.25. Let X be a Banach space and G : Li(uo) — X a representable operator.
Then there exists a bounded linear operator F : L1 (jto) — L1(pg) and a representable operator

H : Li(pg) — X such that G = HF.
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Proof. Since G is representable, there exists a g € Loo (o, X ) such that if s € Lq(u,) then

G(s) = / sgdia
- / (F(s) o £)(ho f)dpa

[e3

— [ F(s)hdus
Qg

= (HF)(s)

where F': Li(pa) — L1(pg) is a factorization operator and h : g — X is a pg-measurable
function with g = h o f. From the above lemma, it follows that g € Lo (13). The operator
H(s):= fQﬁ shdpg for all s € L1(Qg, ).

O

Example 5.26. If o = (3, that is puo = pg and Li(pa) = Li(pg) then F is the identity

operator.

Corollary 5.27. Let X be a Banach space and G : Li(uqo) — X be a compact linear operator.
Then there exists a bounded linear operator F : Li(ua) — Li(pg) and a compact linear

operator H : L1(pg) — X such that G = HF'.

Proof. There exists a sequence of conditional expectation operators, G := L1 () — L1(tta)

defined by

Gr.(s) == Yaen, TR (5.2.4)

such that GG, is a finite rank operator and lim,, |GG, — G| = 0, see [DU77, Corollary
I11.2.3]. From [DU77, Theorem III1.2.2] we know that there exist a gr, € Koo(fta, X ), defined

by
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G(xa)

such that if s € L;(pqa) then

GG (s) = / 5. i
Qq

= [ (Fs)o (Flan) o Fie
— [ PP )dns
Q2
= (Hry F)(s)
where F : Ly (pto) — L1(pg) and F': Koo (fta, X) — Koo(15, X) are factorization operators.
Since F(gr,) is a simple function it follows that Hy, @ Li(pg) — X defined by Hy,(t) =
fQﬁ tF(g,ra)d,ug for all ¢ € Li(ug), is a finite rank operator. Since we assume that (7g) is

directed by refinement it follows that the operator H : Li(ug) — X is a compact linear

operator. A quick computation reveals that G = HF.
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