
Chapter 1

Preliminaries

The notation in this dissertation is generally consistent with that of [DU77] and [KK76].

Suggested references for locally convex spaces are [Sch71], [RR73] and [Rud91]. For references

relating to measurable functions and Polish spaces, see [Coh80] and [HJ94].

1.1 Locally Convex Spaces

Here follows a short summary of some of the definitions and results from the theory of locally

convex spaces that we shall employ.

Definition 1.1. Let E be a vector space over a (real or complex) field F. Let A be a subset

of E. Then A is

(i) convex if tx+ (1− t)y ∈ A for all x and y ∈ A and 0 ≤ t ≤ 1;

(ii) balanced (circled) if tx ∈ A for each x ∈ A and for all |t| ≤ 1;

(iii) absorbing (radial) if for each x ∈ E there exists a t ∈ F such that tx ∈ A;

(iv) barrel if it is absorbing, convex, balanced and closed;

(v) relatively compact if its closure is compact (when E is a Hausdorff uniform space);
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(vi) precompact if it is relatively compact in the completion of E.

Definition 1.2. Suppose that τ is a topology on a vector space E, we write (E, τ), such that

(i) every point in E is a closed set, and

(ii) the vector space operations are continuous with respect to τ , i.e. (x, y) → x + y for all

x, y ∈ E and (α, x)→ αx for x ∈ E and scalar α are continuous mappings.

then (E, τ) is called a topological vector space.

Here follows a list of some topological vector spaces used in this dissertation.

Definition 1.3. A topological vector space (E, τ) is

(i) locally convex if E has a base whose members are convex, balanced and absorbent;

(ii) a quasi-complete locally convex space if every bounded, closed subset of the space E is

complete;

(iii) metrizable if τ is compatible with some metric d;

(iv) a metric space if its topology is induced by some metric d;

(v) a Fréchet space if it is a complete metrizable locally convex space;

(vi) a barrelled space if it is a locally convex space where every barrel in E is a neigbourhood

of 0;

(vii) a nuclear space if it is a locally convex space with a base B consisting of convex, balanced,

0-neighbourhoods such that for each V ∈ B, the canonical map E → ẼV is nuclear.1

Every 0-neighbourhood of a topological vector space, E is an absorbing set.

1See Chapter 1.1.1 for the definition of ẼV .
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A locally convex space can also be represented in an equivalent manner in terms of semi-

norms. A family of seminorms which topologizes (generates) locally convex space E is denoted

by PE .

If E is a quasi-complete locally convex space then every precompact set in E is relatively

compact. A quasi-complete locally convex space is sequentially complete, see [Sch71, p. 7].

A nuclear space E can also be characterized as a space where all of its continuous maps

into any Banach space is nuclear, see [Sch71, Theorem III.7.2].

Consider the duality 〈E,F 〉. The weakest locally convex topology under which all semi-

norms of the form

py(x) = |〈x, y〉|

for all y ∈ F , is continuous, is called the weak topology on E. This topology is denoted by

σ(E,F ).

Note that every σ(E,F )-bounded subset of a locally convex space is bounded.

The Mackey topology, τ(E,F ) is the finest locally convex topology on E consistent with

(E,F ). That is, it is the topology of uniform convergence on all σ(F,E)-compact, convex,

balanced subsets of F .

The strong topology, β(E,F ), is the topology of uniform convergence on all the σ(F,E)-

bounded subsets of F .

Note that if E is a barrelled space, then the Mackey and strong topologies coincide, that

is τ(E,F ) = β(E,F ).

Let E∗ indicate the algebraic dual of E, that is all linear functional defined on E.

The topological dual of E is the linear subspace E′ of E∗ which consists of all continuous

(with respect to a certain topology) linear forms in E∗.

The strong dual of E is defined as (E′, β(E′, E)), that is, E′ endowed with the strong

topology β(E′, E). If we write E′ we mean (E′, β(E′, E)).
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The topological dual of E′, given the β(E′, E), is denoted by E′′. It is called the bidual

of E.

Consider the duality 〈E,E′〉. The polar of a set U is defined as

U◦ = {x′ ∈ E′ : sup |〈x, x′〉| ≤ 1, x ∈ U}

1.1.1 Quotient and Normed Spaces

Let (E, τ) be a locally convex space generated by a family of seminorms denoted by PE . Then

for any p ∈ PE ,

Πp : E → Ep := E\p−1(0)

is a canonical quotient map i.e. Πp(x) = x + p−1(0) for all x ∈ E. The space p−1(0) = {x ∈

E : p(x) = 0}.

If we let ‖Πp(x)‖p := p(x) for all x ∈ E. Then ‖ · ‖p is a well-defined norm on Ep. Let Ẽp

indicate the completion of Ep with respect to ‖ · ‖p. That is, Ẽp is a Banach space.

Let V be a convex, balanced 0-neighbourhood of E. Let

pV (x) = inf{λ > 0 : x ∈ λV }

be the (Minkowski) gauge for V . Let EV denote the quotient space E\pV . Let ẼV indicate

the completion of EV .

Let B 6= ∅ be a convex, balanced, bounded subset of E. Then

E1 := ∪λ∈R+λB

is a subspace of E. The gauge of B,

pB(x) = inf{λ > 0 : x ∈ λB}

is a norm on E1. Let EB indicate the normed space (E1, pB). The embedding map ΨB :

EB → E is continuous. If B is complete in E then EB is a Banach space.
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For any vector measure m ∈ fa(F, E) where F is a field of subsets of a set Ω, let mp :=

Πp ◦m define a measure

mp : Σ→ Ep ⊂ Ẽp

for all p ∈ PE .

If E and F are vector spaces and T : E → F a linear map then T defines an isomorphism

T0 ∈ L(E\T−1(0), T (E)) called the bijective map associated with T . If φ ∈ L(E,E\T−1(0))

is the quotient map and ψ ∈ L(T (E), F ) the embedding map then T = ψ ◦ T0 ◦ φ.

1.2 Vector Measures

In this dissertation the notion of ”measure” is used for any finitely additive set function.

The range of a measure m over a set A ∈ F is denoted by

(Rm)(A) := {m(B) : B ∈ F, B ⊂ A}

Let Rm := (Rm)(Ω).

Let P(Ω) denote the collection of all finite partitions of Ω. If F is a field of subsets of a

set Ω then P(Ω,F) denotes the collection of all elements of P(Ω) consisting of elements of F.

If no confusion can occur we use the notation P(Ω) instead of P(Ω,F).

A field F of subsets of a set Ω has the interpolation property (I) if and only if for any two

sequences (An) and (Bn) in F satisfying the condition that An ⊆ Bm for all n,m there exists

a set C ∈ F such that An ⊆ C ⊆ Bm.

1.2.1 Spaces of Measures

Let ca+(F) (resp. ba+(F)) indicate the space of real valued non-negative bounded σ-additive

(resp. finitely additive) measures.

Let E be a locally convex space. The space ca(F, E) (resp. fa(F, E)), indicates all E-

valued σ-additive (resp. finitely additive) measures defined on F. The space of all of the
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bounded elements in fa(F, E) is denoted by ba(F, E). Let sa(F, E) indicate the space of all

strongly additive measures, that is, all E-valued measures m defined on F, with the property

that
∑∞

n=1m(An) converges and the sum belongs to E, for any collection of pairwise disjoint

elements {An}∞n=1 ⊂ F. For any x′ ∈ E′, let 〈m,x′〉 : F → C denote the complex measure

A → 〈m(A), x′〉 for all A ∈ F. Let wca(F, E) indicate the space of all weakly σ-additive

measures, that is all measures m : F → E with the property that 〈m,x′〉 ∈ ca(F,C).

1.2.2 Stone Representation

If F is a field of subsets of a set Ω then there exists a Boolean isomorphism i from F onto

F1 the field of all clopen sets of a totally disconnected compact Hausdorff space Ω1. Under a

Boolean isomorphism unions, intersections and complements are continuous. There exists an

isomorphism denoted by B from sa(F, E) onto ca(σ(F1), E) where for each m ∈ sa(F, E), the

vector measure Bm(iA) := m(A) for all A ∈ F. We call the triple [Ω1, σ(F1), Bm] the Stone

Representation of (Ω,F,m). See for instance [DS58, Section I.12] and [DU77, Theorem I.5.7].

1.2.3 p-semivariation

Let E be a locally convex space topologized by a family of seminorms PE . For p ∈ PE , the

p-semivariation of a measure m : F → E is denoted by the function

p(m) : F → [0,∞)

defined by

p(m)(A) = sup{|〈m,x′〉|(A) : x′ ∈ U◦}

for all A ∈ F. The set U◦ denotes the polar of U = {x ∈ E : p(x) ≤ 1} and |〈m,x′〉| denotes

the total variation of 〈m,x′〉.

The p-semivariation of m of any set A ∈ F equals the semivariation in the quotient space
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‖Πp ◦m‖p, see [Pan08, Proposition 1.2.15], that is

p(m)(A) = ‖Πp ◦m‖p (A)

We have the following connection between boundedness of the range of a vector measure

and the boundedness of its variation:

sup{p(x) : x ∈ (Rm)(A)} ≤ p(m)(A) ≤ 4 sup{p(x) : x ∈ (Rm)(A)}

for all A ∈ F, see [KK76, Chapter II.1].

Let m : F → E be a vector measure and µ ∈ ba+(F). The following notions take the place

of “absolute continuity” for measures defined on a field: m is µ-null if m(A) = 0 whenever

µ(A) = 0; µ is m-null if µ(A) = 0 whenever m(A) = 0; µ is m-continuous if µ(A) → 0

whenever p(m)(A) → 0 for all p ∈ PE (equiv. m(A) → 0 in F ) and m is µ-continuous if

p(m)(A)→ 0 for all p ∈ PE whenever µ(A)→ 0. A vector measure m is said to be equivalent

to µ ∈ ba+(F) if m is µ-continuous and µ is m-continuous.

The space baµ(F, E) is of all elements in ba(F, E) equivalent to a scalar measure µ ∈

ba+(F). Likewise, the space saµ(F, E) is the space of all elements in sa(F, E) equivalent to

a scalar measure µ ∈ ba+(F). The space caµ(F, E) is the space of all elements in ca(F, E)

equivalent to a scalar measure µ ∈ ca+(F).

1.2.4 Bartle-Dunford-Schwartz-type Theorems

Let E be a locally convex space and Σ a σ-field of subsets of Ω.

For every p ∈ PE and m ∈ ca(Σ, E) there exists a µp ∈ ca+(Σ) such that

µp(A) ≤ p(m)(A)

for every A ∈ Σ and µp(A)→ 0 implies that p(m)(A)→ 0, see [KK76, Theorem II.1.1].
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As a result of the Stone Representation theorem there exists a µp ∈ ba+(F) for every

m ∈ sa(F, A) such that

µp(A) ≤ p(m)(A)

for every A ∈ F and µp(A) → 0 implies that p(m)(A) → 0. The proof is along the lines of

[DU77, Corollary I.5.3].

Let F be a Fréchet space generated by a countable collection of seminorms PE . For

every m ∈ ca(Σ, F ) there exists a µ ∈ ca+(Σ) such that m and µ are equivalent, see [KK76,

Corollary II.1.2]. As a result of the Stone Representation theorem there exists a µ ∈ ba+(F)

for every m ∈ sa(F, F ) such that m and µ are equivalent. The proof is along the lines of

[DU77, Corollary I.5.3]. If m ∈ sa(F, F ) is weakly σ-additive then m has a unique extension

to a σ-additive F -valued measure on σ(F), see [Klu73a].

1.3 Polish Spaces

For a space E, let B(E) denote the Borel σ-field of E.

Definition 1.4. Let E be a Hausdorff topological space. Then,

(i) E is a Polish space if it is separable and can be metrized by means of a complete metric;

(ii) E is a Lusin space if it is the image of a Polish space under a continuous bijection;

(iii) (E,Σ) is a standard measurable space if there exists a Polish space S such that (E,Σ)

and (S,B(S)) are isomorphic i.e. there exists a bijection f : E → S such that f is

(Σ,B(S))-measurable and f−1 is (B(S),Σ)-measurable.

Of particular interest is Lusin spaces. If E is a Lusin space then (E,B(E)) is a standard

measurable space, see [Coh80, Propopsition 8.6.12]. Every Hausdorff topology weaker than a

Lusin topology is also a Lusin topology. Examples of Lusin spaces are the weak topology on

any Banach space X and the weak* topology on X ′.
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Consider E1 ×E2 the Cartesian product between two topological spaces E1 and E2. The

product-σ-field on E1 × E2 denoted by

B(E1)⊗B(E2)

is the smallest σ-field making the projections

πi : E1 × E2 → Ei

i = 1, 2 measurable. It is always true [Coh80, Proposition 8.1.5] that

B(E1)⊗B(E2) ⊂ B(E1 × E2)

The question of when

B(E)⊗B(E) = B(E × E) (1.3.1)

is of vital importance. For instance if (E, d) is a metric space then this is a sufficient condition

for the mapping ω → d(ω, ω) to be measurable. Property (1.3.1) is true if E is a Polish space.

In fact it is event true if E is a Souslin space.

Talagrand [Tal79] showed that if E is a normed space then (1.3.1) is true if and only if

addition, that is A : E × E → E where A : (ω1, ω2) → ω1 + ω2, is (B(E) ⊗ B(E),B(E))-

measurable.

It must be noted that there are non-separable spaces for which 1.3.1 hold. For instance,

Talagrand [Tal79] showed that

B(l∞)⊗B(l∞) = B(l∞ × l∞)

under the continuum hypothesis and Zermelo-Fraenkel.

1.4 Vector-valued Measurable Functions

The triple (Ω,Σ, µ) indicates a finite measure space. Let E be a topological space and let

B(E) denote the Borel sets of E. A function f : Ω → E is called (Σ,B(E))-measurable
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(Σ-measurable if the meaning is clear) if f−1(A) ∈ Σ for every Borel set A ∈ B(E). Hence

σ(f) := {f−1(A) : A ∈ B(E)} is a sub-σ-field of Σ. The function f is called a Σ-simple

function if there exists x1, x2, . . . , xn ∈ E and pairwise disjoint sets A1, A2, . . . , An ∈ Σ such

that f =
∑n

i=1 xiχAi where χAi(ω) = 1 if ω ∈ Ai and χAi(ω) = 0 if ω /∈ Ai. It is well-known

that Σ-simple functions are Σ-measurable.

Definition 1.5. Let E be a quasi-complete locally convex space. Let (Ω,Σ, µ) be a com-

plete finite measure space. (Following from the discussion in Chapter 1.3 the completeness

assumption can be dropped in certain cases). Consider a function f : Ω→ E:

(i) f is called µ-measurable (strongly measurable) if there exists a sequence (fn) of E-valued

Σ-simple functions such that

lim
n
p(f − fn) = 0 µ-a.e.

for all p ∈ PE;

(ii) f is measurable by seminorms if for every p ∈ PE there exists a family of simple functions

{fpn} such that

lim
n
p(fpn − f) = 0 µ-a.e.

(iii) f is called weakly µ-measurable (scalarly measurable) if for every x′ ∈ E′ the numerical

function x′f is µ-measurable i.e. for every x′ ∈ E′ there exists a sequence of scalar-

valued Σ-simple functions, (rn) such that

lim
n
|rn − 〈f, x′〉| = 0 µ-a.e.

Theorem 1.6. (The Pettis’s Measurability Theorem)(cf. [DU77, Theorem II.1.2]) (Ω,Σ, µ).

Let X be a Banach space. A function f : Ω → X is µ-measurable if and only if f is weakly-

µ-measurable and there exists a set N of measure zero such that f(Ω\N) is separable.
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The Pettis’s Measurability Theorem translates in the following way to locally convex space.

Lemma 1.7. (Ω,Σ, µ). Let E be a locally convex space. A function f : Ω→ E is measurable

by seminorms if and only if f is weakly µ-measurable and for p ∈ PE there exists a set Np of

measure zero such that f(Ω\Np) is separable with respect to p.

1.4.1 Integrability and Integrals

Let (Ω,Σ, µ) be a finite measure space.

Let E be a quasi-complete locally convex space. In general, we shall assume that (Ω,Σ, µ)

is complete. (Following from the discussion in Chapter 1.3 the completeness assumption can

be dropped in certain cases).

Definition 1.8. A function f : Ω → E is called Dunford integrable if 〈f, x′〉 ∈ L1(µ) for all

x′ ∈ E′ and for each A ∈ Σ there exists an element x′′A ∈ E′′ such that

〈x′′A, x′〉 =
∫
A
〈f, x′〉dµ (1.4.1)

If for each A ∈ Σ, the values of x′′A are essentially contained in E then we say that f is a

Pettis integrable.

Let mf : Σ→ E′′ be defined by mf (A) = x′′A then mf is a finitely additive measure. If f

is Pettis integrable then it can be verified that mf is σ-additive.

The following definition are from [Mar07], it generalizes the concept of Bochner integra-

bility to locally convex spaces:

Definition 1.9. Let E be a locally convex space. A function f : Ω→ E is Bochner (strongly)

integrable if there exists a sequence of simple functions (fn) such that

(i) fn → f µ-a.e.;

(ii) for each p ∈ PE and every n ∈ N, p(fn − f) ∈ L1(µ) and limn→∞
∫

Ω p(fn − f)dµ = 0;
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(iii) there exists an xA ∈ E such that limn→∞ p(
∫
A fndµ− xA) = 0 for all A ∈ Σ.

Condition (iii) in Definition 1.9 and Definition 1.10 is superfluous if E is quasi-complete.

Definition 1.10. Let E be a locally convex space. A function f : Ω → E is integrable by

seminorm if for every p ∈ PE there exists a sequence of simple functions (fpn) and a set Np ∈ Σ

of measure zero such that, for all p ∈ PE,

(i) p(fpn − f)→ 0 on Ω\Np;

(ii) for each p ∈ PE and every n ∈ N, p(fpn − f) ∈ L1(µ) and limn→∞
∫

Ω p(fn − f)dµ = 0;

(iii) there exists an xA ∈ E such that limn→∞ p(
∫
A fndµ− xA) = 0 for all A ∈ Σ.

If E is a Banach space then the concepts of Bochner integrability and integrability by

seminorm are the same.

1.5 Nuclear maps and Nuclear spaces

The reader is referred to the definition and discussions on nuclear maps and nuclear spaces in

Schaefer [Sch71, p.97 to 99]. Here follows only the most essential definitions for the purposes

of this disseration:

The following definition is given in [Jar81, p.376] and is given as a characterization in

[Sch71, Theorem 7.1]:

Definition 1.11. A continuous linear map u : E → F between two arbitrary locally convex

spaces is nuclear if and only if it is of the form

u(x) = Σ∞n=1λn〈x, fn〉yn

where {λn} ⊂ `1, {fn} is an equicontinuous sequence in E′ and {yn} is a sequence which

converges to 0 in the space FB for some balanced, convex, bounded subset B of F for which

FB is complete.
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We continue with remarks in [Sch71]:

Remark 1.12. ([Sch71, Remark and Corollary, p. 99, 100]). The sequence {yn} converges to

0 in a suitable Banach space FB and we may assume that (λn) ⊂ l1 is such that
∑∞

n=1 |λn| ≤ 1.

Let

U = {x ∈ E : |〈x, fn〉| ≤ 1, n ∈ N} (1.5.1)

The set U is convex, balanced and a 0-neighbourhood in E. The set u(U) is contained in

the closed, convex, balanced hull C of {yn} in FB; since {yn} is relatively compact in FB and

FB is complete, C is compact in FB and thus also compact in F , since FB ↪→ F is continuous.

The nuclear map u can be factorized as follows (this is the definition of a nuclear map in

[Sch71, Remark and Corollary, p. 98]):

Let EU indicate the quotient space of E with respect to the gauge pU on U and ẼU its

closure with respect to pU . If φ ∈ L(E, ẼU ) is the quotient map and ψ ∈ L(FB, F ) the

embedding map, then

u = ψ ◦ u0 ◦ φ (1.5.2)

where u0 ∈ L(ẼU , FB) is a nuclear map.
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Chapter 2

Liapounoff Convexity-type

Theorems

A. Liapounoff [Lia40] showed that if m is a σ-additive measure defined on a σ-field, Σ, taking

values in a finite dimensional vector space, E1, we say m ∈ ca(Σ, E1), then the range of m

denoted byRm is compact and if m is non-atomic thenRm is convex, see also J. Lindenstrauss

[Lin66].

Various well-known related theorems for infinite dimensional vector spaces exists. Some

of these theorems are listed below.

Let E be a quasi-complete locally convex space and m ∈ ca(Σ, E) a non-atomic measure:

• (I. Kluvánek [Klu73a, Theorem 1, Corollary 3.1]. The weak closure of Rm coincides

with the closure of co(Rm).

Let F be a Fréchet space and m ∈ ca(Σ, F ) a non-atomic measure:

• (S. Ohba [Ohb78] see also I. Kluvánek and G. Knowles [KK76, Theorem IV.6.1] and

[SS03]). If Rm is relatively compact then the closure of Rm is convex.

• (J.J. Uhl [Uhl69] generalized by S. Ohba [Ohb78]). If F has the Radon-Nikodým prop-
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erty and if m is also of bounded variation then the closure of Rm is compact and

convex.

In this chapter, these theorems are investigated for the case of finitely additive, bounded

finitely additive and strongly additive vector measures defined on fields (of sets) and fields of

sets with the interpolation property (I) of G.L Seever [See68].

In Section 2.1, we show that none of the above mentioned theorems may hold if the σ-field

is replaced by a field. Here a property stronger than non-atomicity must be considered.

A. Sobczyk and P.C. Hammer [SH44] utilized the concept of “continuous” set function.

To avoid confusion, we call this concept strongly continuous as done in [BRBR83]. In Section

2.2, we investigate the relationship between non-atomicity, strong continuity and Darboux

properties for the case of non-negative finite measures defined on a fields of sets and fields of

sets with property (I). The strong continuity property is introduced for the case of Fréchet

space-valued measures in Section 2.3. Finally in Section 2.4 we give the mentioned Liapounoff

theorems and discuss conditions under which bounded finitely additive measures are strongly

additive.

2.1 Counterexample

The following example is la raison d’être for the structures studied in this chapter. This

example shows that the classical Liapounoff Convexity theorem and the mentioned theorems

by I. Kluvánek , J.J. Uhl and S. Ohba can’t be extended to the case of a non-atomic vector

measure on a field. In fact these theorems can’t even be extended to a non-atomic σ-additive

vector measure of bounded variation on a field.

Let Ω = [0, 1] and let F be the field generated by all sets of the form [a, b) where a < b

and are rational numbers in Ω. Let α be any number in Ω. It is important to note that,

since a σ-field isn’t under consideration, {α} /∈ F. Let µ be the ”indicator” measure on F

18

 
 
 



for the point α i.e. for any set A ∈ F if α ∈ A then µ(A) = 1 otherwise µ(A) = 0. Clearly,

µ is an atomic measure. Let λ be the restriction of the Lebesgue measure on Ω to F. The

non-negative measure λ is non-atomic, since for every set A ∈ F such that λ(A) > 0 there

exists a subset B of A in F such that 0 < λ(B) < λ(A). The vector measure m : F → R2

defined by

m =

 λ

µ


is σ-additive since λ and µ are both σ-additive measures on F. For any π ∈ P(Ω,F), only

one set in π, say set A, can contain the point α. Under the sup-norm of R2

∑
D∈π
‖m(D)‖∞ = ‖m(A)‖∞ +

∑
D∈π,D 6=A

‖m(D)‖∞ < 2

Hence, the measure m is of bounded variation and thus also strongly additive, see [DU77,

Proposition I.1.9].

Now, since λ is non-atomic, m is also non-atomic. It is obvious that Rm is neither

compact, nor convex. Since the rational numbers are dense in the real numbers the closure of

Rm denoted by R̃m is compact but non-convex.

Let m̃ denote the extension of m to σ(F). Since Rm is dense in Rm̃, it’s worth studying

the relationship between m and m̃, specifically the non-atomicity relationship. Although m

on F is non-atomic, m̃ on σ(F) is atomic, since

m̃({α}) =

 0

1

 6= 0

but {α} does not contain any non-empty subset. We call {α} an imbedded atom of F in terms

of m. That is, an imbedded atom of a field F in terms of a vector measure m is a set in σ(F)

which is an atom of m̃, the extension of m to σ(F).
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2.2 Non-negative Scalar Measures

We consider the relationships between the following properties of scalar measures:

Definition 2.1. Let F be a field of subset of a set Ω and µ ∈ ba+(F), then

(i) µ is non-atomic if for any A ∈ F such that µ(A) 6= 0, there exists a B ⊂ A in F such

that µ(B) 6= 0 and µ(B) 6= µ(A);

(ii) µ is strongly continuous if for every ε > 0 there exists a π ∈ P(Ω,F) such that µ(D) < ε

for every D ∈ π i.e.

inf
π

max
D∈π

µ(D) = 0

where the infimum is taken over all π ∈ P(Ω,F);

(iii) µ has the Darboux property if for any A ∈ F and β ∈ (0, µ(A)) there exist a set B ⊂ A

in F such that µ(B) = β.

If µ is non-negative then it is trivial to show that (iii)⇒ (ii)⇒ (i).

For a full treatment of these concepts in the setting of non-zero scalar measures, see

[BRBR83].

Lemma 2.2. (Sobczyk-Hammer Decomposition, [SH44]). Let F be a field of subsets of a set

Ω and µ ∈ ba+(F). Then the following decomposition of µ is unique

µ = µ0 +
∞∑
n=1

µn

where µ0 ∈ ba+(F) is a strongly continuous and (µn) ⊂ ba+(F), is a sequence of distinct,

two-valued measures.

N. Dinculeanu [Din67, p.26] showed that if a σ-additive non-negative measure on a δ-ring

is non-atomic, then it has the Darboux property. Here we use a construction from this proof

to show the same result for the case of a field with the interpolation property (I).
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Theorem 2.3. Let F be a field of subsets of a set Ω and µ ∈ ca+(σ(F)). Then the following

statements are equivalent:

(i) µ has the Darboux property on σ(F);

(ii) µ is strongly continuous on σ(F);

(iii) µ is non-atomic on σ(F);

(iv) µ|F is strongly continuous on F;

If F has property (I) these results are also equivalent to

(v) µ|F has the Darboux property on F;

(vi) µ|F is non-atomic on F.

Proof. The following are easy to show: (i)⇒ (ii)⇒ (iii); (v)⇒ (iv); (iv)⇒ (vi). (ii)⇔ (iv)

is from [BRBR83, Proposition 5.3.7].

We now prove that (vi) ⇒ (v) and since a σ-field has the interpolation property it also

follows that (iii)⇒ (i).

Let D ∈ F be of positive measure and α ∈ (0, µ(D)). Dinculeanu [Din67, Theorem I.2.7]

constructed sequences (An) and (Bm) in F with the following properties: (Note that this

construction only depends on the non-atomicity and finite additivity of µ).

(a) A0 ⊂ A1 ⊂ A2 ⊂ .. ⊂ B2 ⊂ B1 ⊂ D

(b) If we put

an = sup{µ(A) : An−1 ⊂ A ⊂ Bn−1, µ(A) ≤ α}

and

bn = sup{µ(B) : An ⊂ B ⊂ Bn−1, µ(B) ≥ α}

then the sequence (an) is monotone decreasing and (bn) is monotone increasing and we

have an ≤ α ≤ bn for all n ∈ N.
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(c) There exist sequences (kn) and (ln) which tend to zero such that

an − kn < µ(An) ≤ an

and

bn ≤ µ(Bn) < bn + ln

Taking the limits of sequences (an) and (bn) to a and b respectively, we have

lim
n→∞

µ(An) = a ≤ α ≤ b = lim
n→∞

µ(Bn)

From property (I) of F there exists a set C ∈ F such that

A0 ⊂ A1 ⊂ A2 ⊂ .. ⊂ C ⊂ .. ⊂ B2 ⊂ B1

and a ≤ µ(C) ≤ b. If µ(C) ≤ α from Conditions (b) and (c) we deduce that

an − kn ≤ µ(C) ≤ an+1

for every n. Consequently, µ(C) = a. We can show in a similar manner that µ(C) = b. Hence

µ(C) = α. The converse is trivial.

2.3 Vector measures

Definition 2.4. Let F be a field of subsets of a set Ω, E a quasi-complete locally convex space

topologized, E′ the dual space of E and m : F → E an E-valued measure. Then

(i) m is non-atomic, if for every A ∈ F such that m(A) 6= 0 there exists a B ⊂ A in F such

that m(B) 6= 0 and m(A−B) 6= 0;

(ii) m is strongly continuous if there exists a sequence {πn}n∈N in P(Ω,F) such that for

every ε > 0 and every p ∈ PE there exists Np ∈ N such that p(m)(D) < ε for every

D ∈ πn and n ≥ Np i.e.

lim
n→∞

max
D∈πn

p(m)(D) = 0
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(ii′) m is strongly continuous if there exists a sequence {πn}n∈N in P(Ω) such that for every

ε > 0 and every p ∈ PE there exists Np ∈ N such that sup{p(x) : x ∈ R(D)} < ε for

every D ∈ πn and n ≥ Np;

(iii) m is p-strongly continuous if for every p ∈ PE there exists a sequence {πn}n∈N in P(Ω,F)

such that for every ε > 0 there exists N ∈ N such that p(m)(D) < ε for every D ∈ πn

and n ≥ Np;

(iv) m is w-strongly continuous if 〈m,x′〉 is strongly continuous for all x′ ∈ E′.

Condition (ii′) is an alternative, but equivalent, version of Condition (ii) since for each

p ∈ PE

sup{p(x) : x ∈ (Rm)(A)} ≤ p(m)(A) ≤ 4 sup{p(x) : x ∈ (Rm)(A)}

for all A ∈ F, see [KK76, Chapter II.1].

It is obvious that Condition (ii) implies Condition (iii).

Example 2.5. U.K. Bandyopadhyay [Ban74] studied a Darboux-type property of Banach space

valued measures, that is, a Banach space valued measure m on a ring R has this property if

for any set A ∈ R and α ∈ (0, 1) there exist a set B ⊂ A in R such m(B) = αm(A). This

property implies the non-atomicity of m in fact it implies that the range of m over R is convex.

However, unlike the scalar case, a non-atomic σ-additive Banach space valued measure

defined on a σ-field need not have this Darboux property. See [Uhl69] for an example of

a non-atomic Banach space valued measure on a σ-field with a non-convex range, thus not

possessing this Darboux property.

It is obvious that if a quasi-complete locally convex space-valued measure m : F → E is

strongly continuous then |〈m,x′〉| is strongly continuous for all x′ ∈ E′. That is, the strong

continuity of m, implies its w-strong continuity.
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A Fréchet space F has the Rybokov property if for every F -valued, σ-additive measure m

there exists an x′ ∈ F ′ such that m is |〈m,x′〉|-continuous.

A Fréchet space F has the Rybakov property if and only if F does not contain a linear

homeomorphic copy of CN, see [FN97] and [Ric98]. A list of conditions implying the Rybakov

property for real Fréchet spaces is stated in [KK76, Theorem VI.3.1]. All Banach spaces have

the Rybakov property, see [DU77, Chapter IX.2].

Lemma 2.6. Let F be a field of subsets of a set Ω and E a quasi-complete locally convex

space. If E has the Rybakov property then the strong continuity property and the w-strong

continuity property are equivalent for all strongly additive E-valued measures.

Proof. We only need to show that w-strong continuity implies strong continuity.

Let F be a field and m ∈ sa(F, E). Let [Ω1, σ(F1),m1] be the Stone Representation of

(Ω,F,m). There exists an x′ ∈ E′ such that m1 is |〈m1, x
′〉|-continuous. This still holds if

we restrict the domain of m1 to F1. Since m1(iA) = m(A) for all A ∈ F it follows that m is

|〈m,x′〉|-continuous.

Let i indicate the Boolean isomorphism from F onto F1. Let x′ ∈ E′ be such that m is

|〈m,x′〉|-continuous. For every ε > 0 there exists a π ∈ P(Ω,F) such that |〈m,x′〉|(A) < ε for

every A ∈ π. The strong continuity of m follows since m is |〈m,x′〉|-continuous.

Lemma 2.7. Let F be a field of subsets of a set Ω and E a quasi-complete locally convex

space space. Let µ ∈ ba+(F) and m ∈ sa(F, E). Then

(i) m is non-atomic if m is µ-null and µ is non-atomic;

(ii) µ is non-atomic if µ is m-null and m is non-atomic;

(iii) m is strongly continuous if m is µ-continuous and µ is strongly continuous;

(iv) µ is strongly continuous if µ is m-continuous and m is strongly continuous.
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Lemma 2.8 and Theorem 2.9 is a consequence of Lemma 2.7 and Theorem 2.3.

Lemma 2.8. (Ω,Σ). Let E be a quasi-complete locally convex space and m ∈ ca(σ(F), E). If

m is non-atomic then m is p-strongly continuous.

Proof. For every seminorm p ∈ PE , there exists a µp ∈ ba+(Σ) such that µ(A) ≤ p(m)(A) for

every A ∈ Σ and such that µp(A)→ 0 implies that p(m)(A)→ 0, see Chapter 1.2.4.

If m is non-atomic then µp is also non-atomic and hence strongly continuous for every

p ∈ PE . It follows that m is p-strongly continuous.

Theorem 2.9. Let F be a field of subsets of a set Ω, E a quasi-complete locally convex space

and m ∈ ca(σ(F), E). Consider the following:

(i) m is strongly continuous on σ(F);

(ii) m is non-atomic on σ(F);

(iii) m|F is strongly continuous on F;

(iv) m|F is non-atomic on F;

(v) m0 ∈ sa(F0, F ) is strongly continuous on a field F0 of subsets of a set Ω0, this is if

[Ω, σ(F),m] is the Stone Representation of (Ω0,F0,m0).

Then (i)⇒ (ii), (iii)⇒ (iv), (iii)⇔ (v) and (i)⇔ (iii). If m ∈ caµ(σ(F), E) then (ii)⇒ (i)

and (iv)⇒ (iii). If F has property (I) then (iii)⇒ (iv).

Proof. For every seminorm p ∈ PE , there exists a µp ∈ ba+(σ(F)) such that µ(A) ≤ p(m)(A)

for every A ∈ σ(F) and such that µp(A)→ 0 implies that p(m)(A)→ 0, see Chapter 1.2.4.

The fact that (i)⇔ (iii) follows immediately from Theorem 2.3.

(i)⇒ (ii). If m is strongly continuous then µp is also strongly continuous for every p ∈ PE .

Since µp is defined on a σ-field, it follows from Theorem 2.3 that µp is non-atomic. Hence, if
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A ∈ σ(F) such that m(A) 6= 0 then there exists a seminorm p ∈ PE such that p(m(A)) 6= 0

and therefor p(m)(A) 6= 0. Since p(m)(A) 6= 0, it follows that µp(A) 6= 0. There exists

a subset B ∈ σ(F) of A such that µp(B) 6= 0 and µp(Ω\B) 6= 0 hence p(m)(B) 6= 0 and

p(m)(Ω\B) 6= 0. We can find two sets B1 ⊂ B and B2 ⊂ Ω\B of Σ such that p(m(B1)) 6= 0

and p(m(B2)) 6= 0. Hence m(B1) 6= 0 and m(B2) 6= 0 it follows that m is non-atomic. The

fact that (iii)⇒ (iv) follows directly.

(iii)⇔ (v). For every ε > 0 there exists a partition π ∈ P(Ω0,F0) such that p(m|F)(iA) =

p(m0)(A) < ε for every A ∈ F0. It is trivial to verify that iπ := {iA : A ∈ π} is a finite

partition of Ω consisting of elements of F. The converse is proved in the same way.

(ii) ⇒ (i). If m ∈ caµ(σ(F), E) then there exists a µ ∈ ca(σ(F)) equivalent to m. Hence

if m is non-atomic, so is µ. Theorem 2.3 implies that µ is strongly continuous which in turns

implies that m is strongly continuous. The fact that (iv)⇒ (iii) follows directly.

Corollary 2.10 is in the Fréchet space setting. Its proof is much simpler because there

exists a µ ∈ ca+(σ(F)) equivalent to m.

Corollary 2.10. Let F be a field of subsets of a set Ω, F a Fréchet space and m ∈ ca(σ(F), F ).

The following statements are equivalent:

(i) m is strongly continuous on σ(F);

(ii) m is non-atomic on σ(F);

(iii) m|F is strongly continuous on F;

(iv) m|F is non-atomic on F if F has property (I);

(v) any of the statements in Theorem 2.3 for any µ ∈ ca+(σ(F)) equivalent to m;

(vi) m0 ∈ sa(F0, F ) is strongly continuous on a field F0 of subsets of a set Ω0, this is if

[Ω, σ(F),m] is the Stone Representation of (Ω0,F0,m0).
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Lemma 2.11. Let F be a field, E a quasi-complete locally convex space and mµ ∈ sa(F, E).

Let [Ω1,F1,m1] be the Stone Representation of (Ω,F,m). Then the closures in E of the sets

Rm and Rm1 are equal i.e. R̃m = R̃m1.

Proof. From its definition, Rm = Rm1|F1 andRm1|F1 ⊆ Rm1 are obvious. If i is the Boolean

isomorphism then µ1(·) := µ(i(·)) ∈ ba+(F1) is equivalent to m1.

For every set A ∈ σ(F1) there exists a sequence {Dk}∞k=1 in F1 such that µ1(Dk∆A)→ 0,

with ∆ the symmetric difference. This is from [DK67] or classical scalar valued measure

theory [Din67, Proposition I.5.13]. Thus m1(Dk∆A) → 0. Since {Dk}∞k=1 is in F1, it follows

that m1|F1(Dk)→ m1(A), thus Rm1 ⊂ R̃m1|F1 .

2.4 Liapounoff Convexity-type Theorems

Lemma 2.12. Let F be a field of subsets of a set Ω. Let E be a quasi-complete locally convex

space. If m : F → E is of bounded variation or R̃m is compact then m is strongly continuous.

This result must be well-known. For each p ∈ PE let mp := Πp ◦m. If Rm is precompact,

then Rmp is also precompact since Πp is a continuous map or if m is of bounded variation

then it is easy to verify that mp is also of bounded variation. In both cases it follows from

the Banach space-valued case that mp is strongly continuous for all p ∈ PE and hence m is

strongly continuous.

Theorem 2.13. Let F be a field of subsets of a set Ω, E a quasi-complete locally convex space

and m ∈ saµ(F, E). Then the weak closure of Rm coincides with its closed convex hull and

is weakly compact.

If F has the interpolation property (I) then the strong continuity condition can be replaced

by non-atomicity.

Proof. Let [Ω1, σ(F1),m1] be the Stone Representation of (Ω,F,m). From the definition of
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Stone Representation, m1 is σ-additive on σ(F1). Also, m1 is non-atomic since m is strongly

continuous or alternatively if F has property (I) and m is non-atomic, see Corollary 2.10.

From Lemma 2.11 we know that R̃m = R̃m1. Since the weak closure and closed convex hulls

of Rm and Rm1 are equal. An appeal to [Klu73b] completes the proof.

Theorem 2.14. Let F be a field of subsets of a set Ω, F a Fréchet space and m ∈ fa(F, F )

strongly continuous. Then

(i) if m ∈ sa(F, F ) then the weak closure of Rm coincides with its closed convex hull and

is weakly compact;

(ii) if R̃m is compact then R̃m is convex;

(iii) if F has the Radon-Nikodým property and m is of bounded variation then the closure of

Rm is compact and convex.

If F has the interpolation property (I) then the strong continuity condition can be replaced by

non-atomicity.

Proof. The proof of (i) follows from above since the existence of a measure µ ∈ ba+(F) is

guaranteed, since F is a Fréchet space.

If m has a precompact range or is of bounded variation then m is strongly continuous,

see Lemma 2.12. Let [Ω1, σ(F1),m1] be the Stone Representation of [Ω,F,m]. From the

definition of Stone Representation, m1 is σ-additive on σ(F1). Also, m1 is non-atomic since

m is strongly continuous or alternatively if F has property (I) and m is non-atomic, see

Corollary 2.10. From Lemma 2.11 we know that R̃m = R̃m1. To complete each proof:

(ii) the proof follows immediately from [Klu73b] since R̃m = R̃m1;

(iii) since m is of bounded variation, m1 is also of bounded variation. An appeal to [Ohb78]

completes the proof.
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We now consider a case where the strong additivity assumption in Theorem 2.14(i) can

be relaxed.

Definition 2.15. A field F of subsets of a set Ω has the Vitali-Hahn-Saks property, if every

sequence {µn} ⊂ ba+(F), where {µn(A)} converges for every A ⊂ F, is uniformly strongly

additive.

Lemma 2.16. Let X be a Banach space and let F be a field of subsets of a set Ω and let

m ∈ ba(F, F ). If m takes values in a finite dimensional subspace of X then m is of bounded

variation and hence strongly additive.

The proof of this lemma follows easily from the case of signed measures.

Lemma 2.17. The space C(−∞,∞), of all continuous functions on the reals equipped with

the topology of uniform convergence on compact sets is a Fréchet space with a Schauder basis.

Proof. C(−∞,∞) equipped with the topology of uniform convergence on compact sets is a

Fréchet space, see [Rud91, Example 1.44]. C(−∞,∞) is isomorphic to C([0, 1])N , a countable

product of copies of C([0, 1]), this follows easily from [Val82, Theorem 3.3.6.2, p 496]. It is

well-known that C([0, 1]) has a Schauder basis [Woj91, II.B.12], hence C([0, 1])N and thus

C(−∞,∞) also have Schauder bases.

The following theorem contains some ideas in [Die73] applied to a Fréchet space setting.

Theorem 2.18. Let F be a separable Fréchet space generated by an increasing family of

seminorms denoted by PF and let F be a field of subsets of a set Ω with the Vitali-Hahn-Saks

property. Let m ∈ ba(F, F ) then m is strongly additive.
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Proof. Every separable Fréchet space is linearly homeomorphic to a subspace of C(−∞,∞)

equipped with the topology of uniform convergence on compact sets, see [MO53, p. 144].

Denote the Schauder basis of C(−∞,∞) by (en) and let (fn) denote the associated se-

quence of coefficient functionals. Each fn ∈ F ′ and each x ∈ F can be uniquely represented

in the form x = Σnfn(x)en, hence m(A) = Σnfn(m(A))en. The vector measure

mk(A) := Σk
n=1fn(m(A))en

takes its values in a finite dimensional subspace of C(−∞,∞).

Let p ∈ PF and (F̃p, ‖ · ‖p) be the Banach space defined in terms of the quotient map

Πp : F → F/p−1(0). Since m is bounded, mk is also bounded and it follows that Πp ◦ mk

is a bounded finitely additive measure; hence Πp ◦ mk is strongly additive. There exists

a measure µk ∈ ba+(F) such that mk is µk-continuous, see [DU77, Corollary I.5.3]. Hence

‖Πp ◦mk‖p(D)→ 0 as µk(D)→ 0 where ‖Πp ◦mk‖p(D) indicates the semivariation of Πp ◦mk

over a set D ∈ F, see [DU77, p.2].

Since F has the Vitali-Hahn-Saks property, µ̂p := sup{µk : k ∈ N} is strongly additive,

hence bounded. If µ̂p(A) → 0 then ‖Πp ◦mk‖p(A) → 0 for each k ∈ N which implies that

p(m(A)) = ‖Πp ◦m(A)‖ → 0, see [DU77, Corollary I.5.4].

We can construct a single measure µ̂ ∈ ba+(F) from the set {µ̂p}p∈PF as done in [KK76,

Corollary II.2.2], with the property that µ̂(A) → 0 implies that µ̂p(A) → 0 for all p ∈ PF .

If {Am} ⊂ F is a mutually disjoint sequence of sets then µ̂(Am) → 0 which implies that

p(m(Am)) = ‖Πp ◦m(Am)‖p → 0 for each p ∈ PF .
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Chapter 3

Barrelled spaces

In this chapter we investigate the existence of weak (Dunford, Gel’fand, Pettis) integrals in

locally convex space. In general, the existence of the Dunford (and Gel’fand) integral depends

on whether the closed graph theorem for the dual of the space under consideration holds.

Since barrelled spaces can be characterized in terms of the validity of the closed graph

theorem, we consider locally convex spaces whose duals are barrelled spaces.

3.1 Existence of the Dunford Integral

All of the proof of the existence of the Dunford integral relies on the closed graph theorem.

We consider barrelled spaces because of the following theorem:

Theorem 3.1. (Closed Graph Theorem). Let (E, τ) be a barrelled space, X a Banach space

and f : E → X a linear mapping with closed graph in E ×X. Then f is continuous.

This is not the most general version of the closed graph theorem. But will suffice for

our purposes. For a more complete discussion on the closed graph theorem, see [PCB87],

specifically Chapters 4 and 7.

Theorem 3.2. Let X be a Banach space and E a locally convex space. If the fact that a
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linear mapping u : E → X with closed graph in E ×X implies that u is continuous then E is

a barrelled space.

Lemma 3.3. (cf. [Sch71]) Fréchet spaces (and hence Banach spaces) are barrelled spaces.

We now prove the existence of the Dunford integral.

Theorem 3.4. Let (E, τ) be a locally convex space and suppose that E′, equipped with the

β(E′, E)-topology, is a barrelled space and f : Ω → E is a weakly µ-measurable function and

〈f(·), x′〉 ∈ L1(µ) for all x′ ∈ E′. Then for each A ∈ Σ there exists an x′′A ∈ E′′ satisfying

〈x′′A, x′〉 =
∫
A
〈f(·), x′〉dµ

Proof. We first prove that the integration operation is a continuous linear map.

Let A ∈ Σ and define TA : E′ → L1(µ) by TA(x′) = 〈fχA, x′〉.

Let {x′α} be a net in E′ which converges to x′ in the β(E′, E)-topology of E′, hence also

in the σ(E,E′)-topology, and suppose that TA(x′α) = 〈fχA, x′α〉 converges to a function g in

the norm topology of L1(µ).

Then {〈fχA, x′α〉} has (a subsequence which also converges to g, which has) a subsequence

{〈fχA, x′αj 〉} which converges µ-a.e. to g, but

lim
j→∞
〈fχA, x′αj 〉 = 〈fχA, x′〉

everywhere. Hence 〈fχA, x′〉 = g µ-a.e. This means that the mapping TA has a closed graph,

hence TA is continuous by the closed graph theorem. Now,

|
∫
A
〈f, x′〉dµ| ≤ ‖〈fχA, x′〉‖1

= ‖TA(x′)‖1
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Thus, the mapping x′ →
∫
A〈f, x

′〉dµ defines a continuous linear functional x′′A on E′ for

each A ∈ Σ.

The existence of the Gel’fand integral is an immediate consequence of the same duality

argument.

Let mf : Σ→ E′′ be defined by mf (A) := x′′A. It is easy to see that m ∈ fa(Σ, E′′).

Corollary 3.5. Let E be a locally convex space and suppose that E′ is a barrelled space. Let

f : Ω→ E be a Dunford integrable function. Then Rmf is bounded in the σ(E′′, E′)-topology

of E′′.

Proof. Let x′ ∈ E′. For every A ∈ Σ,

|〈mf (A), x′〉| = |
∫
A
〈f, x′〉dµ|

≤
∫
A
|〈f, x′〉|dµ

≤ ‖TΩ(x′)‖1

Corollary 3.6. Let E be a locally convex space and suppose that E′ is a barrelled space. Let

f : Ω→ E be a Dunford integrable function. Then the Dunford integral of f is σ-additive in

the σ(E′′, E′)-topology of E′′.

Proof. If we consider a set A = ∪∞i=1Ai in Σ where {Ai} is a collection of pairwise disjoint

sets of Σ then the series Σjmf (Aj) converges in the σ(E′′, E′) because for any k ∈ N and for

all x′ ∈ E′,

Σk
j=1|〈mf (Aj), x′〉| ≤ Σk

j=1

∫
Aj

|〈f, x′〉|dµ

=
∫
∪kj=1Aj

|〈f, x′〉|dµ

≤ ‖TΩ(x′)‖1
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From which it follows that

〈Σjmf (Aj), x′〉 = Σj

∫
Aj

〈f(·), x′〉dµ

=
∫
A
〈f(·), x′〉dµ

= 〈mf (A), x′〉

for all x′ ∈ E′. Hence the Dunford integral is σ-additive in the σ(E′′, E′)-topology.

We now turn to the existence of Pettis integrable functions. First consider the following

result due to A. Grothendieck in the locally convex space setting.

Theorem 3.7. ([Gro53]). Let (E, τ) be a locally convex space then a finitely additive measure

m : Σ→ E is weakly σ-additive, that is, σ-additive in the σ(E,E′)-topology of E if and only

if m is σ-additive.

Corollary 3.8. Let E be a locally convex space and suppose that E′ is a barrelled space. Let

f : Ω → E be a Dunford integrable function. Then f is Pettis integrable if and only if the

Dunford integral of f is σ-additive (strongly additive).
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Chapter 4

Nuclear spaces and Nuclear maps

In this chapter we find that measures and measurable functions of nuclear spaces have ”im-

proved” properties, above those of general locally convex spaces and Banach spaces. For

example the range of a bounded nuclear space-valued measure is precompact, from which a

Liapounoff convexity result follows. Also weakly-µ-measurable functions are measurable by

seminorm.

J. Diestel [Die72] discovered that the composition of an absolutely summing map (between

two Banach spaces) with a Pettis integrable function has ”improved” integrability properties,

compared to that of the integrable function considered on its own. This naturally leads to

the investigation of the composition of nuclear maps (between two locally convex spaces) with

weakly measurable functions in locally convex spaces.

A reminder of some of the notation which is used in this chapter: For a locally convex

(Hausdorff topological vector) space E, a family of seminorms which topologizes E will be

denoted by PE . Throughout this chapter we will use the notation Πp for the extension of the

quotient map between E and its quotient space, the normed space Ep := E\p−1(0), to the

completion Ẽp of Ep.
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4.1 Measures

Theorem 4.1. Let F be a field of subsets of a set Ω. Let E and F be locally convex spaces.

Let u : E → F be a nuclear map. If m ∈ ba(F, E), then u ◦m is of bounded q-variation for

every q ∈ PF .

Proof. We first show that u ◦m is of bounded q-semivariation.

Let q ∈ PF . Then Πq ◦ u is a nuclear map and mq := Πq ◦ u ◦m ∈ ba(F, F̃p). Since Rm is

bounded it follows that Rmq = (Πq◦u)(Rm) is relatively compact in F̃q, see [Sch71, Corollary

III.7.1]. From this it immediately follows that mq ∈ sa(F, F̃q), see [DU77, Corollary I.5.3].

The q-semivariation of m on any set A ∈ F equals the semivariation in the quotient space

‖mq‖q, see [Pan08, Proposition 1.2.15], that is

q(m)(A) = ‖mq‖q (A)

Since a strongly additivity, Banach spaces-valued measure is of bounded semivariation, the

fact that mq ∈ sa(F, Fq) implies that

q(m)(A) ≤ q(m)(Ω) <∞

for all A ∈ F.

Now to show that u ◦m is of bounded q-variation.

For each q ∈ PF , we consider the factorization of the nuclear map (Πq ◦ u), therefore

(Πq ◦ u)(x) = Σ∞n=1λn〈x, fn〉yn

where {λn} ⊂ `1, {fn} is an equicontinuous sequence in E′ and {yn} is a sequence which

converges to 0 in the space FB for some balanced, convex, bounded subset B of F for which

FB is complete.

Since {fn} is equicontinuous and hence uniformly bounded, there exist a finite number

M1 > 0 such that

|〈x, f〉| < M1
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for every x ∈ Uq and f ∈ {fn}, hence {fn/M1} ⊂ U0
q .

For any finite set π ∈ P(Ω,F), where P(Ω,F) consists of the elements of F which forms a

pairwise disjoint partitions of Ω, we have

∑
A∈π
‖Πp ◦ u ◦m(A)‖q ≤

∑
A∈π

∞∑
n=1

‖λn〈m(A), fn〉yn‖q

=
∞∑
n=1

∑
A∈π
|〈m(A), fn〉|‖λnyn‖q

= M1

∞∑
n=1

‖λnyn‖q
∑
A∈π
|〈m(A), fn/M1〉|.

Now
∞∑
n=1

‖λnyn‖q ≤M2

∞∑
n=1

|λn| ≤M2

where ‖yn‖q ≤M2 for all n since {yn} is contained in a bounded set and the summation can

be taken as
∑∞

n=1 |λn| ≤ 1. Also,

∑
A∈π
|〈m(A), fn/M1〉| ≤ q(m)(Ω) <∞

because m is of bounded q-semivariation.

In conclusion, u ◦m is of bounded q-variation because

∑
A∈π
‖Πq ◦ u ◦m(A)‖q ≤M1M2q(m)(Ω)

is bounded for all elements of P(Ω,F).

Corollary 4.2. Let F be a field of subsets of a set Ω. Let E and F be locally convex spaces.

Let u : E → F be a nuclear map. If m ∈ ba(F, E), then

(i) R(u ◦m) is a precompact set;

(ii) there exists a measure µ ∈ ba+(F) such that u ◦m is µ-continuous;

(iii) the closure of R(u◦m) is a convex set if the closure is contained in F and m is strongly

continuous (or non-atomic and F has property (I)).
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Proof. We use the factorization of u as described in (1.5.2).

(i). Since m ∈ ba(F, E), the set Rm is bounded. Thus the set φ(Rm) = R(φ ◦ m) is

bounded and (u0◦φ)(Rm) = R(u0◦φ◦m) is relatively compact in FB. Hence ψ(R(u0◦φ◦m)) =

R(u ◦m) is precompact in F , by the continuity of ψ.

(ii). Since R(u0 ◦ φ ◦ m) is relatively compact in FB, it follows from [DU77, Corollary

I.5.3] that u0 ◦ φ ◦m ∈ sa(F, ẼU ) and there exists a control measure µ ∈ ba(F) equivalent to

u0 ◦ φ ◦m. Hence u ◦m is µ-continuous.

(iii). If m is strongly continuous then it follows directly from, for instance the proof of

Theorem 2.9, that u0 ◦ φ ◦m is also strongly continuous in FB because of the continuity of

u0 ◦ φ. In addition it follows from Theorem 2.14 that the closure of R(u0 ◦ φ ◦m) is convex

because the closure of R(u0 ◦ φ ◦m) is compact. From the continuity of ψ it follow that the

closure of ψ(R(u0 ◦ φ ◦m)) is also convex if it is contained in F .

The same proof will hold if ”strong continuity” is replaced by ”non-atomic” and if in

adddition F has property (I).

Corollary 4.3. Let F be a field of subsets of a set Ω. Let E be a nuclear space. If m ∈ ba(F, E)

then m is of bounded p-variation for every p ∈ PE, that is, the variation with respect to the

quotient space induced by every p is bounded.

Proof. Let p ∈ PE . Since Πp : E → Ẽp is a continuous linear map from a nuclear space to a

Banach space, it is also nuclear. The result follows from Corollary 4.2.

Corollary 4.4. Let F be a field of subsets of a set Ω. Let E be a nuclear space and X a

Banach space. Let u : E → X be a continuous linear map. If m ∈ ba(F, E) then u ◦m is of

bounded variation.

Theorem 4.5. (cf. [Sch71, Corollary III.7.2.1]). Every bounded subset of a nuclear space is

precompact.
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The following Liapounoff-type results for nuclear spaces follow:

Theorem 4.6. Let F be a field of subsets of a set Ω. Let E be a nuclear space. If m ∈ ba(F, E)

then Rm is precompact.

If in addition, if E is quasi-complete and m is strongly continuous (or non-atomic and F

has property (I)), then the closure of Rm is a compact, convex set.

Proof. If m ∈ ba(F, E) then Rm is a bounded subset which is precompact.

Let m be strongly continuous. If τ is a neighbourhood base of 0 in E consisting of convex,

balanced sets, then there exists an isomorphism, v, on E to a subspace of ΠB∈τ ẼB defined by

v : x→ {φB(x) : B ∈ τ}

see [Sch71, Theorem II.5.4 and Corollary II.5.4.2].

Let B ∈ τ . Since the quotient map φB : E → ẼB is continuous, the measure φB ◦m is

strongly continuous (and relatively compact). Then according to Theorem 2.14, the closure

of the range of φB ◦m is convex.

For any A and A0 in F and scalar r ∈ (0, 1),

v(rm(A) + (1− r)m(A0))

= {rφB(m(A)) + (1− r)φB(m(A0)) : B ∈ τ}

∈ { ˜φB(Rm) : B ∈ τ} = ṽ(Rm)

where ˜φB(Rm) indicates the closure of φB(Rm), etc. For the last equality, see [Eng68,

Theorem 2, p. 74].

This means that the closure of measure v ◦ m is convex. Since v is an isomorphism it

follows

R̃m ⊆ v−1( ˜v(Rm)) ⊆ ˜v−1(v(Rm)) = R̃m
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hence

rm(A) + (1− r)m(A0) ∈ R̃m

This means that the closure of measure m is also convex.

4.2 Measurability and Integrability

In this section, unless stated differently, we consider the triple (Ω,Σ, µ) which indicates a

complete finite measure space.

The following lemma holds true for Banach spaces, see [Pie72, Proposition p. 52]. In

general, this results follows from the factorization of the nuclear map.

Lemma 4.7. Each nuclear mapping between two locally convex space has a separable range.

Theorem 4.8. Let E be a nuclear space and f : Ω → E a weakly µ-measurable function.

Then f is measurable by seminorms.

Proof. Let p ∈ PE , notice that Πp is a nuclear map. Now, the range of Πp is separable hence

Πp ◦f(Ω) is a separable set. The mapping Πp ◦f is also weakly µ-measurable since e◦Πp ∈ E′

for every e ∈ Ẽ′p. Hence, by Pettis’s measurability theorem, Πp ◦ f , is µ-measurable.

It means that there exists a sequence {gk} of Ẽp-valued simple functions such that

‖Πp ◦ f − gk‖p → 0

on Ω\N for some N ∈ Σ where µ(N) = 0. Since Πp is linear and surjective, we can

construct a sequence of E-valued simple functions, {g′k} such that Πp ◦ g′k = gk. Hence

p(f − g′k) = ‖Πp ◦ f − gk‖p → 0

on Ω\N . This means that f is measurable by seminorms.
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For a discussion on the integrability properties of functions measurable by seminorm, see

[Mar07] authored by V. Marraffa.

Corollary 4.9. Let E be a nuclear space and X a Banach Space. Let u : E → X be a

continuous linear map. If f : Ω → E is a weakly µ-measurable function then u ◦ f is µ-

measurable.

Theorem 4.10. Let E be a locally convex space, F a quasi-complete locally convex space and

u : E → F a nuclear map. If f : Ω → E is a weakly µ-measurable function then u ◦ f is a

µ-measurable function.

Proof. Since u0 ◦φ is a nuclear map, (u0 ◦φ)(E) is a separable subset of FB. Hence u0 ◦φ ◦ f

takes its values µ-essentially in a separable set.

Since f is weakly-µ-measurable and y′ ◦u0 ◦φ ∈ E′ for all y′ ∈ F ′B, there exists a sequence

of scalar-valued simple functions (rn) such that

rn → 〈f, y′ ◦ u0 ◦ φ〉 = 〈u0 ◦ φ ◦ f, y′〉

Hence u0 ◦ φ ◦ f is weakly-µ-measurable. It follows from Pettis’ measurability theorem that

u0◦φ◦f is µ-measurable. It follows that there exists a sequence of FB-valued simple functions

(gn) that tends to u0 ◦ φ ◦ f , µ-a.e. on a set Ω\N where µ(N) = 0. Hence Ψ ◦ gn tends to

u ◦ f , µ-a.e. on Ω\N . The theorem is proved.

Lemma 4.11. (cf. [Sch71, Lemma 1, p. 169]). Let E and F be locally convex spaces,

u : E → F a continuous linear map which maps a suitable 0-neighbourhood of E into a weakly

compact subset of F . Then u′′, the second adjoint of u, maps the bidual E′′ into F ⊂ F ′′.

Theorem 4.12. Let E be a locally convex space, F a quasi-complete locally convex space,

u : E → F a continuous linear map which maps a suitable 0-neighbourhood of E into a weakly

compact subset of F . If f : Ω → E is a Dunford integrable function then u ◦ f is a Pettis

integrable function.
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Proof. Since f is a Dunford integrable, there exists a finitely additive measure mf : Σ→ E′′

where

〈mf (A), x′〉 =
∫
A
〈f, x′〉dµ

for some A ∈ Σ. Then u ◦ f is Pettis integrable because

∫
A
〈u ◦ f, y′〉dµ =

∫
A
〈f, u′ ◦ y′〉dµ

= 〈mf (A), u′ ◦ y′〉

= 〈u′′ ◦mf (A), y′〉

where u′ and u′′ are the adjoint and second adjoint, respectively, of u. It follows from Theorem

4.11 that, u′′ ◦mf takes its values in F , hence u ◦ f is Pettis integrable.

It is of course important to note that this means that

mu◦f := u′′ ◦mf : Σ→ F

is a bounded σ-additive measure.

Theorem 4.13. ([Rod06]). Let u : X → Y be an absolutely summing mapping between two

Banach spaces and f : Ω → X a Dunford integrable function. Let g : Ω → Y be scalarly

equivalent to u ◦ f . Then g is Bochner integrable if and only if g is µ-measurable.

Theorem 4.14. Let E be a locally convex space, F a quasi-complete locally convex space,

u : E → F a nuclear map and f : Ω → E a Dunford integrable function. Then u ◦ f is

Bochner integrable.

Proof. We verify that u ◦ f satisfies Definition 1.9.
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It follows from Theorem 4.10 that the function u ◦ f is µ-measurable. According to the

same theorem, it also follows that u0 ◦ φ ◦ f is µ-measurable since u is a nuclear map if and

only if u0 is nuclear.

It is trivial to show that since f is weakly µ-measurable, so is φ ◦ f . Hence u0 ◦ φ ◦ f is

Bochner integrable, since it is µ-measurable and scalarly equivalent to itself.

Hence, there exists a sequence of (defining) Σ-simple functions (hn) taking values in FB

such that ∫
Ω
‖hn − u0 ◦ φ ◦ f‖FBdµ→ 0

Let p ∈ PF and let Φp : F → Fp denote a quotient map.

The map

Φp ◦Ψ : FB → Fp

is a continuous linear functional between two Banach spaces which means that Φp ◦ Ψ is a

bounded linear functional. Hence there exists a finite scalar Mp > 0 such that for every

h ∈ FB,

‖Φp ◦Ψ(h)‖p ≤Mp‖h‖FB

from which it follows that

p(u ◦ f) = ‖Φp ◦ u ◦ f‖p ≤Mp‖u0 ◦ φ ◦ f‖FB

hence ∫
Ω
p(u ◦ f)dµ =

∫
Ω
‖Φp ◦ u ◦ f‖pdµ

≤Mp

∫
Ω
‖u0 ◦ φ ◦ f‖FBdµ <∞

and further ∫
Ω
p(Ψ ◦ hn − u ◦ f)dµ =

∫
Ω
‖Φp ◦Ψ ◦ (hn − u0 ◦ φ ◦ f)‖FBdµ

≤Mp

∫
Ω
‖hn − u0 ◦ φ ◦ f‖FBdµ
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Notice that (Ψ ◦ hn) is a sequence of Y -valued Σ-simple functions.

This inequality implies that p(Ψ ◦hn−u ◦ f) ∈ L1(µ) since hn−u0 ◦φ ◦ f ∈ L1(µ,X) and

since
∫

Ω ‖hn − u0 ◦ φ ◦ f‖FBdµ→ 0 it follows that
∫

Ω p(Ψ ◦ hn − u ◦ f)dµ→ 0. Hence u ◦ f is

Bochner integrable.
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Chapter 5

Factorization of Measurable

Functions

In this chapter we derive results concerning the factorization of vector-valued, set-valued

and operator-valued measurable functions. Of special interest is the existence of an operator

between two L1-spaces.

In this chapter, to correspond with the main related reference material, we shall refer to

mappings as operators.

We utilize a generalization of a celebrated result in classical stochastic processes, sometimes

called Doob-Dynkin’s Lemma, which we refer to as the Factorization Theorem.

Theorem 5.1. (cf. [Rao84, Proposition 3, p. 7]). If (Ωi,Σi), i = α, β are two measure spaces,

f : Ωα → Ωβ is a (Σα,Σβ)-measurable function and g : Ωα → R is a (Σα,B(R))-measurable

function, where B(R) indicates the Borel sets on R, then there exists a (Σβ,B(R))-measurable

function h : Ωβ → R such that g = h ◦ f if and only if g is measurable with respect to the

smallest σ-field generated by f .

In Chapter 5.1 we generalize the Factorization Theorem to the case where g takes its
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values in a Polish space and more generally in a standard measurable space. We then give a

similar result for the case where g is a µ-measurable Fréchet space-valued function.

We find an application of the Factorization Theorem in the theory of multifunctions pre-

sented in Chapter 5.2.1 and in the theory of operator-valued measures which is presented

in Chapter 5.2.2. A well-known application of the Factorization Theorem is found in the

theory of conditional expectations. In Chapter 5.2.3 we show a similar result for conditional

expectation with respect to µ-measurable functions. Finally we consider the factorization of

operators on L1(µ) in Chapter 5.2.4.

5.1 Core Results

Here we give a complete proof of the Factorization Theorem for the case, referring back to

the introduction, where the function g and hence h take their values in a Polish space. From

there we can extend this result further to where g and h take values in a standard measure

space and to the case where g is µ-measurable.

Throughout this section, unless mentioned otherwise, P is a Polish space, Ωα a set and

(Ωβ,Σβ) a measurable spaces. Let

f : Ωα → Ωβ

be a function with σ(f) the smallest σ-field on Ωα making f measurable.

Lemma 5.2. Let P be an uncountable Polish space, Ωα a set and let (Ωβ,Σβ) be a measurable

spaces. A function g : Ωα → P is σ(f)-measurable i.e. σ(g) ⊆ σ(f) if and only if there exists

a Σβ-measurable function h : Ωβ → P with the property that g = h ◦ f .

Proof. There exists a Borel isomorphism i : P → R, i.e. a bijection i which is (B(P ),B(R))-

measurable and i−1 is (B(R),B(P ))-measurable, see [Coh80, Theorem 8.3.6]. It follows that

i◦g is a (Σα,B(R))-measurable function. According to the original Factorization Theorem, cf.
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[Rao84, Proposition 3, p. 7], there exists a (Σβ,B(R))-measurable function h̃ : Ωβ → R such

that i ◦ g = h̃ ◦ f , hence h := i−1 ◦ h̃ is a (Σβ,B(P ))-measurable function and g = h ◦ f .

It is known that for every Polish space P , the measurable space (P,B(P )) is isomorphic

to one of the following Polish spaces: (R,B(R)), (N,P(N)) and (Nf ,P(Nf )) where P indicates

power sets and Nf is any finite subset of N.

We now proceed to give a proof that is valid for all three cases. The proof is along the

lines of the original case, again see [Rao84, Proposition 3, p. 7].

We know that if A1, A2 ∈ σ(f) are disjoint then it is not guaranteed that B1, B2 ∈ Σβ,

where f−1(B1) = A1 and f−1(B2) = A2, are disjoint.

Proposition 5.3. If (Ai) ⊂ P(Ωα, σ(f)) is a sequence of pairwise disjoint sets and for each

Ai there exists a set Bi ∈ Σβ such that Ai = f−1(Bi), then it can be assumed that the elements

of the collection (Bi) are pairwise disjoint.

Proof. We prove the theorem for the case of two sets A1, A2 ∈ σ(f). Let B1, B2 ∈ Σβ be any

two sets such that A1 = f−1(B1) and A2 = f−1(B2). Let C = B2 −B1 then C ∩B1 = ∅ and

f−1(C) = f−1(B2 − B1) = f−1(B2) ∩ [f−1(B1)]c = A2 ∩ Ac1 = A2. The full result follows by

induction.

The Factorization Theorem for the case where P is a finite Polish space is contained in the

following lemma. This is because measurable functions on finite Polish spaces are essentially

simple functions.

Lemma 5.4. Let g : Ωα → P be a Σ-simple function where Σ ⊆ σ(f) is a σ-field then there

exists a Σβ-simple function h : Ωβ → P such that g = h ◦ f .

Proof. There exists a finite set (si) ⊂ P and a set (Ai) ⊂ P(Ω1,Σ) such that g =
∑n

i=1 siχAi .

From Proposition 5.3 we can construct a sequence of pairwise disjoint sets (Bi) ⊂ Σβ. Let

h =
n∑
i=1

siχBi
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then h is a simple function on (Ωβ,Σβ). Next,

h(f(ω)) =
n∑
i=1

siχBi(f(ω))

=
n∑
i=1

siχf−1(Bi)(ω)

= g(ω)

Theorem 5.5. Let P be a Polish space, Ωα a set and let (Ωβ,Σβ) be a measurable space.

A function g : Ωα → P is σ(f)-measurable i.e. σ(g) ⊆ σ(f) if and only if there exists a

Σβ-measurable function h : Ωβ → P with the property that g = h ◦ f .

Proof. Since g is a measurable function, there exists a sequence (gk) of σ(g)-simple functions

such that gk(ω)→ g(ω) for all ω ∈ Ωα.

Let (hk) be a sequence of Σβ-simple functions where hk : Ωβ → P is defined in terms of

gk as in Lemma 5.4. Now, we know from the proof of Theorem 5.7 that

L = {ω ∈ Ωβ : (hk(ω)) is Cauchy} ∈ Σβ

and

h(ω) := lim
k→∞

hk(ω)χL(ω)

is Σβ-measurable. Since (hk ◦ f)(ω) = gk(ω)→ g(ω) for all ω ∈ Ωα, it follows that f(ω) ∈ L

for all ω ∈ Ωα, hence (h ◦ f)(ω) = g(ω) for all ω ∈ Ωα.
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For the converse, let A be any set in σ(g) then there exists a set B ∈ B(P ) such that

A = {ω ∈ Ωα : g(ω) ∈ B}

= {ω ∈ Ωα : h(f(ω)) ∈ B}

= {ω ∈ Ωα : f(ω) ∈ h−1(B)}

= f−1(h−1(B)) ∈ σ(f)

since h−1(B) ∈ Σβ.

Corollary 5.6. Let (S,Σ) be a standard measurable space and let (Ωβ,Σβ) be a measurable

space. A function g : Ωα → S is σ(f)-measurable i.e. σ(g) ⊆ σ(f) if and only if there exists

a Σβ-measurable function h : Ωβ → S with the property that g = h ◦ f .

Proof. Let i be the isomorphism that associates S with a Polish space P . Since i ◦ g : Ω→ P

it follows that {(i ◦ g)−1(A) : A ∈ B(P )} = {g−1(A) : A ∈ Σ} thus σ(i ◦ g) = σ(g).

If σ(g) ⊆ σ(f) then there exists a (Σβ,B(P ))-measurable function h̃ : Ωβ → P such that

i ◦ g = h̃ ◦ f . Let h := i−1 ◦ h̃ then g = h ◦ f . The converse is trivial.

We now consider the link between Borel-type measurability and µ-measurability.

Theorem 5.7. (Ω,Σ, µ). Let F be a Fréchet space and k : Ω→ F a µ-measurable function,

then

(i) there exists a complete, separable, (Polish) subspace S of F and a (Σ, B(S))-measurable

function k̃ : Ω→ S such that k = k̃ µ-a.e.;

(ii) k̃ is µ-a.e. unique, that is, if S1 is another Polish spaces and k̃1 : Ω→ S1 a Σ-measurable

function where k = k̃1 µ-a.e. then k̃ = k̃1 µ-a.e.;

(iii) if (Ω,Σ, µ) is complete then k is a (Σ,B(S))-measurable function.
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Proof. (i). Since k is µ-measurable, there exists a sequence (kn) of Σ-simple functions which

converges strongly to k on a set E ∈ Σ where µ(Ec) = 0. The set

T := ∪∞n=1{kn(ω) : ω ∈ Ω}

is denumerable hence S := s̃p T is a separable closed subspace of F , that is, a Polish space.

Thus (kn) takes its values in S. Since (kn) is a sequence of Σ-simple functions, its elements

are (Σ,B(S))-measurable. Therefore

L = {ω ∈ Ω : (kn(ω)) is Cauchy}

= ∩∞i=1 ∪∞n=1 ∩∞l=1 ∩∞j=1 {ω ∈ Ω : d(kl+n(ω), kj+n(ω)) <
1
2i
} ∈ Σ,

since ω → d(kl+n(ω), kj+n(ω)) is continuous hence (Σ,B(S))-measurable and S is Polish, see

[Coh80, Proposition 8.1.9]. Then µ(Ec ∩ Lc) = 0 and k̃ := kχL = k µ-a.e.. Since (knχL) and

k̃ take their values in S, it follows that k̃ is Σ-measurable.

(ii). There exist sets E and E1 in Σ such that µ(Ec) = 0 = µ(Ec1) and k(ω) = k̃(ω) for all

ω ∈ E and k(ω) = k̃1(ω) for all ω ∈ E1. Thus k̃(ω) = k̃1(ω) for all ω ∈ E ∩ E1 and

µ((E ∩ E1)c) = µ(Ec ∪ Ec1) ≤ µ(Ec) + µ(Ec1) = 0

(iii). If A ∈ B(F ) then k−1(A) = k−1(A ∩ S) ∪ k−1(A\S). Now, k−1(A\S) ⊂ Ec and

µ(Ec) = 0 thus k−1(A\S) ∈ Σ. Since k−1(A ∩ S) = k̃−1(A ∩ S) ∈ Σ, it follows that k is

Σ-measurable.

Corollary 5.8. Let µα : σ(f) → R be a finite σ-additive measure, F a Fréchet space and

g : Ωα → F a µα-measurable function. There exist a complete separable (Polish) subspace

S of F and a (Σβ,B(S))-measurable function h : Ωβ → S ⊆ X, with the property that

g = h ◦ f µα-a.e. if and only if σ(g̃) ⊆ σ(f) where g̃ = g µα-a.e. and g̃ : Ωα → S is a

(Σα,B(S))-measurable function.
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Proof. According to Theorem 5.7 there exist a complete separable subspace S of F and a

measurable function g̃ : Ω1 → S such that g̃ = g µα-a.e. Theorem 5.5 gives the existence of a

Σβ-measurable function h : Ωβ → S such that g̃ = h ◦ f then g = h ◦ f µα-a.e.

For i = α, β, let (Ω,Σi, µi) be a finite measure space and ri : Ω → F µi-measurable.

According to Lemma 5.7 there exists a Σi-measurable function r̃i : Ω → Si such that r̃i =

ri µi-a.e. where Si is some complete separable (Polish) subspace of F .

A natural question is, if Σβ is a sub-σ-field of Σα, is Sβ a subset of Sα and is σ(rβ) a

sub-σ-field of σ(rα)? The following example shows that this is not the case, not even if σ(rα)

and σ(rβ) are closely related.

Example 5.9. Let X = R3, Ωα = [0, 1] = Ωβ, Σα the Borel sets on Ωα and let µα be the

Lebesgue measure on Ωα. Let Σβ a sub-σ-field of Σα on Ωβ and µβ the restriction of µα to

Σβ. Let rβ := xχA + yχB with A,B non-empty subset of Σβ and hence of Σα and x and

y linearly independent vectors in X and let rα := xχA. Clearly, ri is a Σi-simple function

and hence µi-measurable, for i = α, β. R3 is of course a Polish space, but we can construct

smaller Polish spaces as done in Lemma 5.7 as follows: Sα = sp{x} and Sβ = sp{x, y}, so Sα

is a line contained in the plain Sβ. Hence, r̃i : Ωi → Si is measurable functions and r̃i = ri

for i = α, β. It is then obvious that {r̃α(ω) : ω ∈ Ωα} = {0, x} ⊂ {0, x, y} = {r̃β(ω) : ω ∈ Ωβ}

and thus that σ(rα) ⊂ σ(rβ).

5.2 Applications

5.2.1 Set-valued Operators

In this section we investigate the factorization of set-valued operators (multifunctions). Let

(Ω,Σ) be a measurable space and let CX (OX) indicate all the closed (open) subsets of a

topological space X. A multifunction M : Ω→ CX is a mapping of subsets from Ω to closed
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subsets of a topological space X. The multifunction M is Σ-measurable if

M−(A) := {ω ∈ Ω : M(ω) ∩A 6= ∅} ∈ Σ

whenever A ∈ OX .

Theorem 5.10. ([Iof79, Theorem 1]). Let X be a Polish space (compact metrizable space).

There exists a Polish space (compact metrizable space) Z such that for any Σ-measurable

multifunction M : Ω → CX with Σ := σ(M), that is the σ-field on Ω generated by all sets of

the form M−(A) where A ∈ OX , there exists a mapping f : Ω× Z → X such that

(i) f(ω, ·) is continuous for all ω ∈ Ω and f(·, z) is Σ-measurable for all z ∈ Z;

(ii) for all ω ∈ dom(M) := {ω ∈ Ω : M(ω) 6= ∅}, one has M(ω) = f(ω,Z) := {f(ω, z) : z ∈

Z}.

We say that (Z, f) represents M .

It is important to note that the construction of the Polish space Z only depends on the

Polish space X and is independent of M .

Theorem 5.11. Let X be a Polish space and let Mi : Ω → CX be a Σ-multifunction with

i = α, β. Let (Z, fi) indicate a representation of Mi which is a consequence of Theorem 5.10.

Then (i)↔ (ii) and (ii)→ (iii)→ (iv) where

(i) σ(fβ) ⊆ σ(fα);

(ii) there exists a (B(X),B(X))-measurable function h : X → X such that fβ = h ◦ fα;

(iii) there exists a (B(X),B(X))-measurable function h : X → X such that Mβ(ω) =

h(Mα(ω)) for all ω ∈ Ω;

(iv) σ(Mβ) ⊆ σ(Mα).
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Proof. (i) ⇔ (ii) is as a consequence of Theorem 5.5 and (ii) ⇒ (iii) follows from Theorem

5.10(ii).

(iii)⇒ (iv): We first show that

σ({f(·, z) : z ∈ Z}) = σ(M)

Let M : Ω → CX be a Σ-multifunction represented by (Z, f). Since f(·, z) is σ(M)-

measurable for every z ∈ Z it immediately follows that σ({f(·, z) : z ∈ Z}) ⊆ σ(M). Now,

M−(A) = {ω ∈ Ω : M(ω) ∩A 6= ∅}

= {ω ∈ Ω : f(ω, z) ∈ A for some z ∈ Z}

∈ σ({f(·, z) : z ∈ Z})

for every A ∈ OX . Since σ(M) is generated by sets of the for M−(A) for all A ∈ OX , it

follows that,

σ({f(·, z) : z ∈ Z}) = σ(M) (5.2.1)

Since σ(Mβ) is generated by sets of the form M−β (A) for all A ∈ OX , it follows that,

M−β (A) = {ω ∈ Ω : h ◦Mα(ω) ∩A 6= ∅}

= {ω ∈ Ω : h ◦ fα(ω, z) ∈ A for some z ∈ Z}

∈ σ({f1(·, z) : z ∈ Z}) = σ(Mα)

hence σ(Mβ) ⊆ σ(Mα)

It is obvious that (iii) need not imply (ii) because each multifunction can be represented

by different (point-valued) functions. The following example illustrates that (iv) need not

imply (i).
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Example 5.12. (Ω,Σ). Let Z = [0, 1], X = [0, 2] where fα(ω, z) := χA(ω) for a set A ∈ Σ

and fβ(ω, z) := z then it follows from (5.2.1) that

σ(Mβ) = σ({fβ(·, z) : z ∈ Z}) ⊂ σ({fα(·, z) : z ∈ Z}) = σ(Mα)

but

σ({fα(ω, ·) : ω ∈ Ω}) ⊂ σ({fβ(ω, ·) : ω ∈ Ω})

Hence σ(fα) and σ(fβ) are not comparable.

5.2.2 Operator-valued Measurable Functions

Let L(E,F ) indicate the space of all continuous linear operators between Fréchet spaces E

and F . Let LC(E,F ) indicate the space L(E,F ) equipped with the topology of uniform

convergence on the compact subsets of E, the space LC(E,F ) is a Lusin space, see [Sch73,

Theorem 7, p.112]. It follows that all Hausdorff topologies on L(E,F ) weaker than LC(E,F )

are also Lusin. These topologies are discussed in [BJY95, p.1818]. They include the topology

of simple convergence on L(E,F ) which we shall denote by LS(E,F ). Let (Ω,Σ, µ) indicate

a finite measure space and L(E) indicate the space of all continuous linear operators on E.

An operator-valued function A : Ω → L(E) is strong operator measurable if and only if

A(·)x : Ω→ E is µ-measurable for all x ∈ E. If (Ω,Σ, µ) is a complete measure space and E

a separable Banach space then strong operator measurability is equivalent to (Σ,B(LS(E)))-

measurability, see [Joh93].

Theorem 5.13. Let E,F and G be three separable Fréchet spaces and let (Ω,Σ) be a mea-

surable space. Further let

A : Ω→ L(E,F )

be (Σ,B(LC(E,F )))-measurable and let

B : Ω→ L(E,G)
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be (Σ,B(LC(E,G)))-measurable. Then there exists a function

T : L(E,F )→ L(E,G)

which is

(B(LC(E,F )),B(LC(E,G)))-measurable

such that B = T ◦A if and only if σ(B) ⊆ σ(A).

The existence of T follows immediately from Corollary 5.6. The same statement holds if

the topology of uniform convergence is replaced by a weaker Hausdorff topology. T does have

some linearity properties. Let u, v ∈ E and α ∈ F then T ◦(αA(u)+A(v)) = T ◦A((αu+v)) =

B(αu+ v) = αB(u) +B(v) = αT ◦A(u) + T ◦A(v).

Corollary 5.14. Let (Ω,Σ, µ) be a complete measure space and E a separable Banach space.

If operators A,B : Ω→ L(E) are both strong operator measurable, then there exists a function

T : L(E)→ L(E)

which is

(B(LS(E)),B(LS(E))-measurable

such that B = T ◦A if and only if σ(B) ⊆ σ(A).

Theorem 5.15. Let (Ω,Σ, µ) be a finite measure space and E be a Banach space. Let

A,B : Ω → L(E) be two strong operator measurable functions then AB is a strong opera-

tor measurable function.

Proof. A is strong operator measurable i.e. A(·)(x) : Ω → E is µ-measurable for every

x ∈ E, then there exists a (Σ,B(P ))-measurable (resp. (Σ,B(P1))-measurable) function

Ã(·)(x) : Ω → P (B̃(·)(x) : Ω → P1) for some separable complete (Polish) subspace P (resp.

P1) of E such that Ã(·)(x) = A(·)(x) µ-a.e. (resp. B̃(·)(x) = B(·)(x) µ-a.e.) for all x ∈ E.

Fix x ∈ E. Since A(·)(x) only takes its values in P , we can restrict the domain of B to P

thus B̃|P (y) : Ω→ P1 for all y ∈ P .
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5.2.3 Conditional Expectation

Definition 5.16. Let (Ω,Σ, µ) be a finite measure space, F a sub-σ-field of Σ and let d ∈

L1(µ,X) where X is a Banach space. An element g ∈ L1(µ,X) is called the conditional

expectation of d relative to F if g is µF-measurable and

∫
E
gdµF =

∫
E
ddµF for all E ∈ F (5.2.2)

In this case g is denoted by E(d|F).

The integral above is a Bochner integral, see [DU77, Chapter II and V].

Some ideas of Conditional Expectation is contained in the following lemma.

Lemma 5.17. Let (Ωα,Σα, µα) be a finite measure space, (Ωβ,Σβ) a measurable space and

f : Ωα → Ωβ a measurable function, that is, σ(f) is a sub-σ-field of Σα. Let d : Ωα → X be a

µ-measurable function and g : Ωα → X a µσ(f)-measurable function such that g = d µσ(f)-a.e.

Then there exists a Polish subspace S of X and Σβ-measurable function h : Ωβ → S such that

g = h ◦ f µσ(f)-a.e.

It should be noted that h depends on more than just the σ-field σ(f). Even if two

measurable functions f1, f2 : Ωα → Ωβ, have the same range and generate the same σ-field

it still doesn’t mean that there exists a single Σβ-measurable function h : Ωβ → X such that

g = h ◦ f1 µσ(f1)-a.e. and g = h ◦ f2 µσ(f2)-a.e..

Example 5.18. In the notation above, let Ωβ and X equal R. Let f1 : Ωα → R where f1 :=

χA+−χA− for any pairwise disjoint sets A+, A− ∈ Σα of non-zero µα-measure. Let f2 := −f1.

Then it is clear that f1 and f2 are both µα-measurable and measurable i.e. σ(f1) and σ(f1)

are both σ-fields on Ωα. The range of f1 equals {0,−1, 1} which equals the range of f2 and

σ(f1) = σ(f2). Choose C+, C− ∈ B(R) such that they are pairwise disjoint and C+ contains

1 but neither −1 nor 0 and C− contains −1 but neither 0 nor 1. Then χ−1
A+

(C+) = A+ and
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(−χA−)−1(C−) = A− and also χ−1
A−

(C+) = A− and (−χA+)−1(C−) = A+. Let h = χC+−χC−

then

h(f1(ω)) = χC+(f1(ω))− χC−(f1(ω))

= χC+(χA+(ω))− χC−(−χA−(ω))

= χA+(ω)− χA−(ω)

:= g(ω)

but

h(f2(ω)) = χC+(f2(ω))− χC−(f2(ω))

= χC+(χA−(ω))− χC−(−χA+(ω))

= χA−(ω)− χA+(ω)

:= −g(ω)

Theorem 5.19. (cf. [DU77, Theorem V.I.4]). Let (Ω,Σ, µ) be a finite measure space and let

F be a sub-σ-field of Σ. Then E(d|F) exists for every d ∈ L1(µ,X).

We continue with the notation of Lemma 5.17

Corollary 5.20. Let d ∈ L1(µ,X) then E(d|σ(f)) := h ◦ f µσ(f)-a.e., that is, conditional

expectation is µσ(f)-a.e. equal to a Σβ-measurable function on Ωβ which takes values in a

Polish subspace of X.

5.2.4 Operators on L1(µ) and L1(µ,X)

Definition 5.21. A Banach space valued bounded linear operator T : L1(µ) → X is Riesz

representable (or simply representable) if there exists a g ∈ L∞(µ,X) such that

Tf =
∫

Ω
fgdµ

for all f ∈ L1(µ).
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For a complete discussion on representable operators, see [DU77, Chapter III].

Theorem 5.22. (Factorization Operator). Let (Ωi,Σi, µi) be finite measure spaces, for i =

α, β and let f : Ωα → Ωβ. Let (X, ‖ · ‖) be a Banach space and let ‖ · ‖1,i indicate the norm on

L1(µi, X) where i = α, β. There exists a bounded linear operator F : L1(µα, X)→ L1(µβ, X)

with the property that

F (g) ◦ f = g µα-a.e.

for all g ∈ L1(µα, X) if and only if Σα := {f−1(A) : A ∈ Σβ}.

This proof is along the lines of [DU77, Lemma III.2.1].

Proof. Let Fπβ : L1(µα, X)→ L1(µβ, X) be defined by

Fπβ (s) := ΣB∈πβ

∫
f−1(B) sdµα

µβ(B)
χB (5.2.3)

(observing the convention that 0/0=0) for all s ∈ L1(µα, X) where πβ ∈ P(Ωβ,Σβ).

Let s ∈ L1(µα, X), then

‖Fπβ (s)‖1,β = ‖ΣB∈πβ

∫
f−1(B) sdµα

µβ(B)
χB‖1,β

= ΣB∈πβ‖
∫
f−1(B)

sdµα‖

≤
∫

Ωα

‖s‖dµα = ‖s‖1,α

hence ‖Fπβ‖ ≤ 1. We first consider the dense linear subspace, M, of L1(µα, X) consisting of

all simple functions. A quick calculation shows that if s ∈ M , say, s = ΣA∈πsAχA then the

net (Fπβ (s))πβ is eventually constant. Let π′ ∈ P(Ωβ,Σβ) be such a partition, then,

Fπ′(s) = ΣB∈π′sAχB
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where A = f−1(B), hence

(Fπ′(s))(f(α)) = ΣB∈π′sAχB(f(α))

= ΣB∈π′sAχA(α) = s(α)

for all α ∈ Ωα.

Since the pointwise limit of bounded linear operators is again a bounded linear operator,

the necessity is proved.

The converse is proven in the same way as Corollary 5.8.

Let K∞(µi, X) indicate the subspace of L∞(µi, X) consisting of all members of L∞(µi, X)

whose ranges are essentially relatively compact.

Corollary 5.23. (Factorization Operator). There exists a bounded linear operator

F : K∞(µα, X)→ K∞(µβ, X)

with

F (g) ◦ f = g µα-a.e.

for all g ∈ K∞(µα, X).

Operators constructed in this way will be called factorization operators.

Lemma 5.24. Fπβ (Xα) is isometrically isomorphic to `∞p , where n = dim(Fπβ (Xα))

Theorem 5.25. Let X be a Banach space and G : L1(µα) → X a representable operator.

Then there exists a bounded linear operator F : L1(µα)→ L1(µβ) and a representable operator

H : L1(µβ)→ X such that G = HF .
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Proof. Since G is representable, there exists a g ∈ L∞(µα, X) such that if s ∈ L1(µα) then

G(s) =
∫

Ωα

sgdµα

=
∫

Ωα

(F (s) ◦ f)(h ◦ f)dµα

=
∫

Ωβ

F (s)hdµβ

= (HF )(s)

where F : L1(µα)→ L1(µβ) is a factorization operator and h : Ωβ → X is a µβ-measurable

function with g = h ◦ f . From the above lemma, it follows that g ∈ L∞(µβ). The operator

H(s) :=
∫

Ωβ
shdµβ for all s ∈ L1(Ωβ, µβ).

Example 5.26. If α = β, that is µα = µβ and L1(µα) = L1(µβ) then F is the identity

operator.

Corollary 5.27. Let X be a Banach space and G : L1(µα)→ X be a compact linear operator.

Then there exists a bounded linear operator F : L1(µα) → L1(µβ) and a compact linear

operator H : L1(µβ)→ X such that G = HF .

Proof. There exists a sequence of conditional expectation operators, Gπ := L1(µα)→ L1(µα)

defined by

Gπα(s) := ΣA∈πα

∫
A∈πα sdµα

µα(A)
χA (5.2.4)

such that GGπα is a finite rank operator and limπα ‖GGπα − G‖ = 0, see [DU77, Corollary

III.2.3]. From [DU77, Theorem III.2.2] we know that there exist a gπα ∈ K∞(µα, X), defined

by
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gπα = ΣA∈πα
G(χA)
µα(A)

χA

such that if s ∈ L1(µα) then

GGπα(s) =
∫

Ωα

sgπαdµα

=
∫

Ωα

(F (s) ◦ f)(F̂ (gπα) ◦ f)dµα

=
∫

Ωβ

F (s)F̂ (gπα)dµβ

= (HπβF )(s)

where F : L1(µα)→ L1(µβ) and F̂ : K∞(µα, X)→ K∞(µβ, X) are factorization operators.

Since F̂ (gπα) is a simple function it follows that Hπβ : L1(µβ) → X defined by Hπβ (t) :=∫
Ωβ
tF̂ (gπα)dµβ for all t ∈ L1(µβ), is a finite rank operator. Since we assume that (πβ) is

directed by refinement it follows that the operator H : L1(µβ) → X is a compact linear

operator. A quick computation reveals that G = HF .
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