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ABSTRACT 

Maximum likelihood estimation 
procedures for categorical data 

by 

Rene Ehlers 

Supervisor : Professor N.A.S . Crowther 
Department of Statistics 
University of Pretoria 

There are a large number of maximum likelihood estimation procedures for categorical data available 
for scientific a pplication. In this dissertation the most commonly used methods, namely the Newton­
Raphson, Fisher scoring and EM algorithms are compared with a maximum likelihood estimation proce­
dure under constraints. An exposition of the theory and application of the methods are given. 

Chapter 1 gives a brief overview of the exponential family, the generalized linear model and measures of 
goodness of fit. 

In Chapter 2 the theory of the Newton-Raphson, Fisher scoring and EM algorithms and the method of 
maximum likelihood estimation under constraints is discussed. 
The Newton-Raphson algorithm is an iterative procedure which is employed for solving non-linear equa­
tions. It makes use of the vector of first order partial derivatives and matrix of second order partial 
derivatives of the function to be maximized. The Fisher scoring algorithm is similar to the Newton­
Raphson algorithm) the distinction being that Fisher scoring uses the expected value of t he matrix of 
second order partial derivatives with respect to the parameters in the model. 
In t he broad class of models referred to as generalized linear models the observations come from an 
exponential family and a function of their expectation is ,vritten as a linear model using a link function. 
Agresti (1990) shows that when a canonical link function is used the Newton-Raphson and Fisher scoring 
algorithms are identical. 
The EM algorithm is a very general iterative algorithm for ML estimation in incomplete data problems 
and is described in detail by Dempster , Laird and Rubin (1977). The algorithm makes use of the 
interdependence between the missing data and the parameters to be estimated. The missing data are 
filled in based on an initial estimate of the parameters (the E-step). The parameters are then re-estimated 
based on the observed data and the filled in data (the M-step). The process iterates between the two 
steps until the estimates converge. 
Matthews (1995) presents a maximum likelihood estimation procedure for the mean of the exponential 
family subject to the constraint g (J-L ) = 0, where g is a vector valued function of J-L. If Y is a random 
vector with probability function belonging to the exponential family with E (Y ) = f.L, then the ML 
estimate of f.L subject to the constraint g (f.L) = 0 , is given by 

lie = y - (G~ V )' (Gy VG~)- l 9 (y ) + o(lly - f.L 11) 

\vhere g (J-L ) is a continuous vector valued function of J-L for which the first order partial derivatives exist, 

G M = a~~) , G y = a~~) I M ~y and V is the covariance matrix which could be known or could be some 

function of J-L, say V 1-" This result implies that the ML estimate must be obtained iteratively. 
Comparative examples of all t he above procedures are given in Chapter 2. 

In Chapter 3 ML estimation of parameters for loglinear and logistic regression models is discussed. The 
results obtained by using the method under constraints are the same as those obtained by using the 
Newton-Raphson algorithm. 
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In Chapter 4 different patterns of symmetry in squared contingency tables are discussed and illustrated 
with an example from Agresti (1990) . Results obtained are the same as the special cases considered in 
literature. 

In Chapter 5 the method of ML estimation under constraints is used to determine rvIL estimates of cell 
probabilities in an incomplete contingency table for any loglinear model. It is assumed that the data are 
missing at random (MAR) and that the missing data mechanism is ignorable. It is shown that results are 
asymptotically the same as those obtained \vith the E:r..1 algorithm, the advantage being that the method 
under constraints is computationally less intensive. 
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1 INTRODUCTION 

There are a large number of ma."'(imum likelihood estimation prOCedlll"eS for categorical data avai lable for 
scientific application. In this dissertation the most commonly used methods are compared with a maxi­
mum likelihood estimation prOCedUl"e under constraints and an €>"l)osition of the theory and application 
of the methods are given. 

The more generally used methods of ma.ximuIll likelihood estimation for categorical data includes the 
Newton-Raphson and Fisher scoring algorithms for complete data and the EM algorithm for incomplete 
data. The Newton-Raphson algorithm is an iterative procedure which is employed for solving non-linear 
equations. It makes use of the vector of fi.rst order partial derivatives and matrix of second order partial 
derivatives of the function to be ma..ximized. The Fisher scoring algorithm is similar to the Ne",-ton­
Raphson algorithm) the distinction being that Fisher scoring uses the expected value of the second 
derivative with respect to the parameters in the model. 
In the broad class of models referred to as generalized linear models the observations come from an 
e)..,,])onential family and a function of their expectation is written as a linear model using a link function. 
Agresti (1990) shmvs that when a canonical Link function is used the Newton-Raphson and Fisher scoring 
algorithms are identical. 

The EM algorithm can be used for maximwn likelihood estimation in incomplete contingency tables. 
The algorithm makes lise of the interdependence between the missing data and the parameters to be 
estimated . The missing data are filled in based on an ini tial estimate of the parameters (the E-step) . The 
parameters are t hen re-estimated based on t he observed data and the filled in data (the M-step). The 
process iterates between the two steps until the est imates converge. The E:r..1 algorithm is specifically 
applied to the exponentia l family to determine ML estimates in incomplete contingency tables when the 
missing data mechanism is ignorable. Little and Rubin (1987) describes and uses the EM algorithm to 
determine the ML estimates of cell probabilities for loglinear models. 

Matthews (1995) presents a maximum likelihood estimation procedrne for the mean of the exponential 
family subject to t he constraint g (1-') = 0 , where g is a vector valued function of 1-'. 
For the loglinear model and logistic regression the results obtained from this method are the same as 
those obtained from the Newton-Raphson algorithm. 
The analysis of patterns of symmetry in squared contingency tables are considered by using :r..1L estimation 
under contraints and a program is given which can be used for any squared contingency table. Results 
obtained are the same as the special cases considered in literature. 
The method is also further developed to determine maximum likelihood estimates for loglinear mod­
els ,vhen the contingency table is incomplete and the missing data mechanism is ignorable. This also 
illustrates the elegance with which the method of ML estimation under contraints can be applied. 
The method under constraints is conceptually comprehensive, logically clear and at the same time com­
putationally less intensive than the EM and other algorithms. 
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1.1 THE EXPONENTIAL FAMILY 

Let Y be a p x 1 random vector and 0 a p x 1 vector of parameters. Barndorff-Nielsen (1978) defines the 
exponential family by 

p(y,O) = b(y)exply'O-K(O)], y E !RP , 0 E N (1) 

where K (8) is referred to as the cumulant generating function and N is the natural parameter space for 
the canonical parameter (J. 

The moment generating function of the exponential family is given by 

My (t) E [et'y] 
r·) b(y)exply'(O+t) -K(O)]dy 

exp I-K (0)] J ... J b (y)exp Iy' (0 +t)] dy 

exp I-K (0)] exp IK(O+t)] J ... J b(y) exp Iy' (0 +t) - K(O +t)]dy 

exp I-K (0)] exp II< (0 + t)]. 

From this the cumulant generating function can be derived. 

log My (t) I< (0 + t) - I< (0) 

1«0) + [:01«0)], t+~t' [8fJ~o'I«O)l t+r(t) - 1«0) 

[:OK(O)], t+~t' [80~0'K(0)l t+r(t). 

The mean vector and covariance matrix of Yare given by 

EXAMPLE 1.1 
The Poisson distribution as a member of the exponential family. 

Let Yi, i = 1,2, ... ,p be independent Poisson random variables with E (Yi) = I'i' The joint probability 
function of Y' = (Y1 , Y2, ... , Yp) is 

which is a member of the exponential family since it has the form 

p (y, 0) = b (y) exp ly'O - I< (0)] 

with b (y) = exp 1- I:tog Yi!] 
(J a p x 1 vector with (Ji = lOgJ.Lil that is f-Li = eOi 

K(O) = L;l'i = L;exp(e i ). 

The mean vector of Y is given by 

E(Y) 
8 

80 I< (0) 
BK(9) 
80, 

8«0) 
()O'l 

BK(O) 
80p 

1'. 

2 

C" 1 
eO' 

e OP 



The covariance matrix of Y is 

Cov (Y) 
EP 

8080' K (0) 
a2/'\:(9) a2/'\:(9) a2",(9) 

eO. ao 1a0 1 aOlao~ aolaol) 0 0 

a2",(9) a2/'\:(9) a~K(9) 0 eO:.! 0 
a02M l a02a02 ao2aop 

a~K(9) a2K(9) a2/'\:(9) 0 0 eOp 

a0l'ae 1 ael'ao2 aepae p 

Diag (1-') . 

1.2 COMPONENTS OF A GENERALIZED LINEAR MODEL 

Suppose that Y : p x 1 is a random vector and that the joint probability function is a member of the 
natural exponential family with E (Y) = 1-'. Let 0 be a p x 1 vector of natural parameters. 
A generalized linear model (GLM) consists of the following three components: 

1. The random component. 
The random component, Y'= (Y1 , Y2 , ... , Yp ), refers to the vector with response variables from a 
distribution in the natural exponential family. That is, the joint probability function is of the form 
given in (1). 

2. The systematic component. 
The systematic component relates parameters {'T]i} to the explanatory variables using a linear 
predictor 

In matrix form 

'T]i = L (3j X ij i = 1,2, ... ,p. 
j 

7/ = X{3 

where 1] : p x 1, f3 : m x 1 are model parameters, and X : p x m is the design matrix consisting of 
the values of the explanatory variables for the p observations. 

3. The link between the random and systematic components. 
The link function h, connects the expected values of the random component, f-Li' to the linear 
predictor by 

where h is a monotonic differentiable function. 
A GLM links I'i to the explanatory variables through the equation 

h (I'i) = 'fJi = 'L f3jXij i = 1,2, ... ,po 
j 

The link function that transforms Mil to the natural parameter Oil is called the canonical link, for 
which 

h(l'i) = 'fJi = Oi = 'Lf3,Xi,. 
j 
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EXAMPLE 1.2 
The components of a GLM for a loglinear model. 

Suppose the elements of Y : 3 x 1 are independent Poisson random variables with parameter vector p.. 
The model to be fitted is J1i = Q:,i-l OI, as a loglinear model 

log/li = loga + (i -1) log")'. 

The generalized linear model is 
log I-' = X{3. 

The three components of the GLM are: 

1. The random component Y. 
In Example 1.1 it was shown that the joint probability function of Y is a member of the natural 
exponential family. 

2. The systematic component 

ry = X{3 = u n ( ~~ ) 
with (3'= (/3,,/32) where /3, = log a and /32 = log")'. 

3. The link function) which is also a canonical link for this example, is given by 

'Ii = h(/li) = log/li =8i = 'Z,/3j X ij. 
j 

1.3 MEASURES OF GOODNESS OF FIT 

Suppose that {Ii,} are the estimated frequencies for the contingency table on fitting an appropriate model 
to the data The following statistics can be used to test the goodness of fit of a model: 

• The Pearson Chi-squared Statistic 

• The Deviance 
A saturated GLM has as many parameters as observations, giving a perfect fit. In a saturated 
model all variation is consigned to the systematic component. For a given unsaturated model the 
ratio 

21 ( maximum likelihood under model ) 
- og maximum likelihood under saturated model 

describes lack of fit. 
The deviance, as defined by Neider and Wedderburn (1972), is given by 

D = 2 [L (iJ" y) - L (y, y)] 

where L (iJ" y) is the log-likelihood maximized over some vector of parameters and L (y, y) is the 
maximum likelihood achievable in the saturated model. 
As an example consider the form of the deviance for the Poisson distribution. 
Let Y

" 
Y2 , .. . , Yn be n independent Poisson random variables with E (Yi) = /li. The log-likelihood 

function is 
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The deviance for a model with fitted values iii is 

D 2[LYilogl'i - Ll'i - LlogYi! - {LYilogYi - LYi - LlogYi!)] 

2 [L Yi log ~; + L (Yi - I'i)] . 

• The Wald Statistic 
If the model under consideration is formulated in terms of the constraints g (I") ~ 0 and G ~ 

a~~) II'~Y then the Wald statistic is 
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2 MAXIMUM LIKELIHOOD ESTIMATION PROCEDURES 

This chapter outlines the theory of the Newton-Raphson, Fisher-Scoring and EM algorithms as procedures 
for maximum likelihood estimation. The EM algorithm is specifically applied to the exponential family to 
determine 11L estimates for incomplete data when the missing data mechanism is ignorable. A maximum 
likelihood estimation procedure for the mean of the exponential family, subject to the constraint 
g (IL) = 0, is also discussed. 

2.1 THE NEWTON-RAPHSON ALGORITHM 

The Newton-Raphson method is an iterative procedure to determine the value 73 of j3 that maximizes a 
function g (13). 
Let 13(r) be the rth approximation of 13 where r = 0, 1, 2, .... As described in Agresti (1990), the method 
requires an initial guess, (3(O) , for the value that maximizes the function. At step r in the iterative process 
the function g (13) is approximated by the terms up to the second order in the Taylor series expansion of 
g (13) around 13(r), that is 

Q(r) (13) = g (13(r)) + q(r), (13 - 13(r)) + ~ (13 - 13(r)), H(r) (13 - 13(r)) + 0 (1113 - 13(r) II) (2) 

where H is the matrix having elements :;~~~, q is the vector having elements &~;::), and H(r) and 

q(r) are Hand q evaluated at 13 = 13(r). 
The next approximation of j3 is in the location of the maximum value of (2). 

Solving &Q~~ (13) = q(r) + H(r) (13 - 13(r)) = 0 for 13 yields the next approximation of 13, 

assuming H(r) is nonsingular. 
Iteration continues until convergence is attained. 

EXAMPLE 2.1 
Determining ML estimates using the Newton-Raphson algorithm. 

The number of accidents per thousand per age group in a certain factory is given in Table 2.1. 

TABLE 2.1: Accidents per 1000 per age group. 

Age group I II III 
Number of accidents 80 15 5 

(3) 

Suppose the elements of Y : 3 x 1, the number of accidents for each category, are independent Poisson 
random variables with parameter vector IL The observed vector is y' = (80,15,5). The model under 
consideration is I-ti = (X'Y i - 1 for i = 1, 2, 3. The likelihood function is given by 

~, 

exp (- I: 1';) [11';' 
[1 y;! 

exp (-a) (1 +, + ,2) a(Y' +y,+y,),(y,+2y,) 

[1 y;! 

The value, 13 = (ii, 9), that maximizes I will also maximize the log-likelihood function 
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and is determined iteratively with the expression 

(4) 

where (3(r) is the rth approximation of 13, and q(r) and H(r) are q and H evaluated at {3 = (3(r) with 

q = 
8L ({3) _ ( a~r:) ) _ ( - (1+ /' + /,2) + y, +y;+y, ) 

(5) 8{3 - aL({3) - -Ct (1 + 2/,) + y,+2y, 
80 0 

(~ ~) ( ~YI+Y2+Y:ll -(1+2/') ) H 
82 L ({3) an' 8cx8"{ Q' (6) 
8{38{3' - 8' £({3) 8' L({3) - -(1+2/,) -2Ct - {Y2+ 2Y31 

8"{8o ar 0' 

From the model to be fitted 0: = 11-1 and 'Y = 11-2 = 11-2. If the observed data is used as an initial estimate 
a 1'1 

of I-' the first approximation of 13 is 

(0) _ ( a(O) ) _ ( 80 ) 
(3 - /,(0) - 0.1875 

and is used to determine q(O) and H(O). Substituting (3(O), q(O) and H(O) into (4) gives 

(3(1) = (3(0) _ (H(O)) -1 q(O) 

This is used to determine q(l) and H(l). 

The process continues until convergence is attained. Table 2.2 shows (3(r) at different steps of the 
algorithm. 

TABLE 2.2: Values of (3(r) at different steps of the Newton-Raphson algorithm. 

r air) /,Ir) 

0 80 0.1875 
1 79.294919 0.2153986 
2 78.829748 0.2200938 
3 78.821827 0.2201973 
4 78.821823 0.2201973 

The value 13 that maximizes the log-likelihood function is 

13 = ( Ci ) = ( 78.821823 ) 
'Y 0.2201973' 

Substituting this into the model to be fitted, I'i = a/,i-1, gives 

( 
Ci) (78.821823) Ci'Y 17.356354. 

Ci'Y2 3.8218228 

The program is given in the Appendix. 

EXAMPLE 2.2 
Determining ML estimates for a loglinear model using the Newton-Raphson algorithm. 

Consider the model in Example 1.2 and Example 2.1. The log-likelihood function is 

(7) 

In Example 1.2 the model l1-i = O:'Yi - 1 was VlIitten as the generalized linear model 
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with f3 , = log a and f32 = log 1', and X the design matrix. 

Using the fact that log I'i = L::J f3JXij and I'i = exp (L:: j f3jXij) the log-likelihood function in (7) can be 

written as a function of the elements of (3. That is 

L(,I3ly) = L::YiL::f3JXij - L::exp (L::f3jXij) - L::logYi L 
I J 1 J t 

(8) 

The value of j3 that maximizes L (,I3IY) can be found iteratively with 

(9) 

where q is the vector with elements the first order partial derivatives 

and H is the matrix of second order partial derivatives having elements 

From this 
q(r) = X' (y _ I-'(r)) (10) 

H(r) = -X'diag (I-'(r)) X (11) 

with I-'(r) = exp (X,I3(r)) the rth approximation of Ii, (r = 0, 1,2, ... ). 

Substituting (10) and (11) into (9) gives 

,I3(r+1) = ,I3(r) + [X'diag (I-'(r)) Xr ' X' (y - I-'(r)). (12) 

From the model to be fitted a = 1'1 and I' = 1'2 = 1'2. Using the observed data as an initial estimate of 
~ a 1'1 

/L, the approximation of ,13 at r = 0 is 

,13(0) = ( log a(O) ) = ( 
log 1'(0) 

1.90309 ) 
-0.72700 . 

This is used to determine 1-'(0) = exp (X,I3(O)). Substituting ,13(0) and /L(O) in (12) gives the next approx­

imation for /3, 
,13(1) = ,13(0) + [X'diag (/L(O)) Xr' X' (Y - /L(O)) 

which is used to determine 1-'(1). 
The process continues until convergence is attained and the value fj that maximizes the log-likelihood 
function in (8) is 

j3 = ( ~, ) = ( log ~ ) = ( 4.3671899 ) 
f3 2 log I' -1.513231' 

Substituting this into the model, J-.li = Q'')'i-l, gives 

This is the same result as obtained in Example 2.l. 
The program is given in the Appendix. 
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2.2 THE FISHER SCORING ALGORITHM 

The Fisher scoring algorithm is similar to the Newton-Raphson algorithm, the distinction being that 
Fisher scoring uses the information matrix. The information matrix is the negative expected value of the 
second order derivitave matrix of the function to be maximized. The Newton-Raphson algorithm uses 
the observed value of the second order derivitave matrix. The formula for Fisher scoring is 

where Inf(r) is the Tth approximation for the estimated information matrix. The information matrix, 
Inf, is the negative expected value of the matrix of second order partial derivatives of the log-likelihood 

(
8

2 
L ((3)) 

and has elements Infhk = -E 8!3
h

8!3
k 

• 

EXAMPLE 2.3 
Determining ML estimates using the Fisher scoring algorithm. 

Suppose the elements of Y : 3 x 1 are independent Poisson random variables with parameter vector 
I-' and observed vector y' = (80,15,5). The model to be fitted is J1i = "l'i-1. In Example 2.1 the 
Newton-Raphson algorithm was used to find the ML estimates. 
The equation used in the iterative procedure is 

where Inf(r) is 

( (~) Inf=_E[82L((3)]= -E an' 
8(38(3' -E (a'L(~») 

8"{8a 

evaluated at (3(r) 
Table 2.3 gives the values of (3(r) at different steps of the Fisher scoring algorithm. 

TABLE 2.3: Values of (3(r) at different steps of the Fisher scoring algorithm. 

r ",r) I'(r) 

0 80 0.1875 
1 79.294919 0.2153986 
2 78.820871 0.2201953 
3 78.821823 0.2201973 

This is the same result as obtained in Example 2.1 with the Newton-Raphson algorithm. 
The program is given in the Appendix. 

EXAMPLE 2.4 
Determining ML estimates for a loglinear model using the Fisher scoring algorithm. 

This example uses the model and data in Example 2.2 where the ML estimates for the GLM were found 
iteratively with the Newton-Raphson algorithm given by the equation 

Since 
H(r) = -X'diag (I-'(r») X 

is not a function of the observed data y, the observed and expected second derivative matrices are the 
same. Thus 

Inf = -H. 

This happens for all GLMs that use a canonical link function. The Newton-Raphson and Fisher scoring 
algorithms are identical in such cases. 
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2.3 IGNORABLE MISSING DATA MECHANISM 

The EM algorithm can be used to determine maximum likelihood estimates for incomplete data. Before 
presenting the theory of the EM algorithm, it is necessary to define an ignorable missing data mechanism. 

Suppose the data of interest is denoted by Y = (Y,,) : n x p matrix of n observations measured for p 
variables. The data is assumed to be generated by a model with probability function f (yIO) where 0 
is the vector of unknown parameters. In the case of incomplete data let Y' = (Y~bSl y:nis) where Yobs 

represents the observed part of Y and Y mis denotes the missing values. The joint probability function 
ofYob, and Y mi, is given by f(YIO) = f(Yob"Ymi,IO). 
An indicator random variable is included in the model which indicates whether each component of Y is 
observed or missing. Define a response indicator R = (Rij) such that 

Yij observed, 
Yij missing. 

The joint probability function of Rand Y can be written as 

f(y,rIO,,p) = f(yIO)!(rly,,p) (13) 

where f(rly,,p) is the distribution of the missing data mechanism. This mechanism depends on Y and 
some unknown vector of parameters 1/;. In the case where the distribution of the missing data mechanism 
does not depend on the missing values Y mis, the data is said to be missing at random (MAR) and 

(14) 

MAR requires only that the missing values behave like a random sample within subclasses defined by the 
observed data. If the missing data values are a random sample of all data values the data is said to be 
missing completely at random (MCAR). 
The observed data consist of the values of the variables (Yob, , R) and its probability function is obtained 
by integrating out the missing data Y mis: 

(15) 

The likelihood of 0 and ,p is proportional to (15), that is 

(16) 

If the data is missing at random, that is if (14) holds, the probability function of the observed data, given 
in (15), can be written as 

J f (Yob" Ymi, 10)! (rIYob",p) dYmi' 

f(rIYob",p) x J f(Yob"Ymi,IO)dYmi' 

f (rIYob",p) f (Yob, 10) . (17) 

The likelihood of the observed data under MAR can thus be factored into two pieces, one pertaining 
to the parameter of interest 0, and the other to,p. The parameters 0 and ,p are distinct if the joint 
parameter space of 0 and ,p is the product of the parameter space of 0 and the parameter space of ,p. If 
both MAR and distinctness hold, the missing data mechanism is said to be ignorable (Little and Rubin, 
1987) and likelihood based inferences about 0 will be unaffected by ,p or f (rIYob" ,pl. 
From equation (17) it follows that 

and thus 
1(0, ,pIYob,' r) <X I (OIYob,) 
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which means that all relevant statistical information about the parameters is contained in the observed 
data likelihood, I (O!Yob,). 

EXAMPLE 2.5 
Incomplete univariate data with an ignorable missing data mechanism. 

Let Y : n x 1 denote a vector of n independent identically distributed random variables. Let yl = 

(Y~bs' y~iS) with y~bs = (Yb Y2, ... , Ym) and y~is = (Ym+b Ym,+2,···, Yn). That is, m units are 
observed and n - m are missing. Let RI = (Rl' R2 , ... ,Rn) denote the response indicators, where Ri = 1 
if Yi is observed and Ri = 0 if Yi is missing. Suppose that each unit is observed with probability 1jJ. The 
missing data mechanism is 

n 
f (r!y,1jJ) = II 1jJr, (l_1jJ)'-r, = 1jJm (1 _1jJ)"-m 

i=l 

and since it does not depend on Y mis the data is MAR. If f) and 1jJ are distinct, inferences about (J can 
be based on the observed data likelihood 

J f(Yob"Ymi,!O)dYmi' 

J ... J iD, f (yilO) ijt, f (Yi!O) dYm+' ... dYn-

m 

II f(Yi!O) 
i=l 

which is a complete data likelihood based on the reduced sample (Y" Y2,··· ,Ym)'. 

EXAMPLE 2.6 
Bivariate data with one variable subject to non response if the missing data mechanism is ignorable. 

Consider a dataset with variables Y1 and Y2 where Y1 is observed for units 1,2, ... ,n and Y2 is observed 
only for units 1,2, ... ,m < n. The missing data will be MAR if the probability that Y2 is missing does 
not depend on Y2, although it may possibly depend on Y,. Let Yi, and Yi2 denote the values of Y, and 
Y2 , respectively, for unit i. Since 

the observed data likelihood can be written as 

J f(Yob"Ymi,!O)dYmi' 

J f(Yob,!O)f(Ymi'!Yob"O)dYmi' 

J iD, f(Yil, Yi2!0) ijt, f (Yil!O) ijt, f (Yi2!Yil, 0) dy mi' 

iD, f (Yil, Yi2! 0) ijt, f (Yil!O) J i)1+, f(Yi2!Yil , 0) dy mi' 

m n 

II f (Yil, Yi2!0) II f (Yi'!O). 
i=l i=m,+l 

This is the product of the joint likelihood for Y, and Y2 where Y, and Y2 are both observed, and the 
likelihood of Y, where only Y, is observed. 
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2.4 THE EM ALGORITHM 

2.4.1 Theory of the EM Algorithm 

Assuming that the ignorability assumption is correct, all relevant statistical information about the para­
meters is contained in the observed data likelihood, I (Oly ob.,)' The EM algorithm uses the interdependence 
that exists between the missing data Y mis and the parameters 8. An initial estimate of 8 is obtained 
from the observed data Y ob,' The missing data is filled in based on this initial estimate of 0 and 0 is then 
Ie-estimated based on Y obs and the filled in Y mis' The process iterates until the estimates converge. 
Suppose the density function of the complete data Y is given by f (yIO) where 0 is the unknown parameter. 
Let Y'= (Y~bS' Y~tiS) where Yobs represents the observed part ofY and Y mis denotes the missing values. 
The distribution of the complete data can be factored as 

(18) 

The objective is to maximize the likelihood function for the observed data, that is maximize 

with respect to 8 OI, alternatively, to maximize the log-likelihood 

The log-likelihood that corresponds to (18) is 

and can be written as 
(19) 

where L (Oly ob,) is the observed log-likelihood to be maximized, L (OIYob,' Y mi,) is the complete data 
log-likelihood and log If (Ymi' Iy ob" 0)] is the missing part of the complete data log-likelihood. 
The expectation of both sides of (19) over the distribution of the missing data Y mi" given Yob, and a 
current estimate of 0, say o(r) is 

(20) 

where 

(21 ) 

and 

H (OIO(r)) = J {log If (Ymi, Iy ob,' OJ]) f (Ymi, IYob,' o(r)) dYmi,' 

From Jensen's inequality (Rao 1972) 

(22) 

(23) 

and therefore maximization of L (Oly ob,) is equivalent to maximization of Q (OIO(r)) with respect to O. 

Each step of the EM algorithm consists of an E-step (expectation step) and an M-step (maximization 
step ): 

• In the E-step the function Q (OIO(r)) is calculated by averaging the complete data log-likelihood 

L(OIY) over f(Ymi,IYob"o(r)) . 

• In the M-step 0(r+1) is found by maximizing Q (OIO(r)). That is Q (0(r+1) 10(r)) ::: Q (OIO(r)) for 

all O. 
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2.4.2 The EM AlgorithIll for exponential families 

Little and Rubin (1987) presents a simple characterization of the EM algorithm when f (yIO) has the 
form for the regular exponential family defined by 

f(yIO) = b(y)exp(s(y)'O)ja(O) (24) 

where fJ is the parameter vector and s (Y) is the vector of complete data sufficient statistics. For regular 
exponential families the complete data MLE can be found as a solution to the likelihood equations 

E (s (Y) 10) = s (25) 

where s is the realized value of the vector s (Y). 
Suppose o(r) denotes the current value f) after r cycles of the algorithm. The next cycle can be described 
in two steps, as follows: 

• E-step: Estimate the complete data sufficient statistics s (Y) by finding 

(26) 

• M-step: The M-step determines the new estimate 9(r+l) of (J as the solution of the equations 

E (s (Y) 10) = S(T) (27) 

which are the likelihood equations for the complete data with s (Y) replaced by S(T) as obtained in 
the E-step in (26). 

EXAMPLE 2.7 
Incomplete univariate normal data. EM algorithm for the regular exponential family. 

Suppose Yi, i = 1,2, ... 1 n are independent identically distributed random variables from a N (,u, (7"2) 
distribution. Let 0' = (Il, 0"2). The log-likelihood function for the complete data is 

L (Oly) 
n 1 n 2 

--log<r2 - -2 L (Yi -Il) 
2 2(1 i=l 

n 2 1 [n 2 n 2] - -2 log 0" - -2 2 L Yi - 21l L Yi + nil 
(T l=l l=l 

which is linear in the sufficient statistics s (Y) = (81 (Y) , 82 (Y)) = C~ Y;, i~ Y?) . 
With no missing data the ML estimates of,u and (T2 are 

1 n 
- LYi 
n i=l 

Suppose now that only the first m components of the data vector Yare observed and that the data are 
missing at random (MAR). 
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The E-step of the EM algorithm calculates 

sIc) E (81 (Y) IYob" O(C)) ~ E C; lilYob" o(r)) ~ ;~ Y; + (n - m) ,,(c) 

s~r) E (82 (Y) IYob"o(r)) ~ ;~ Y7 + (n - m) [(,,(r)f + o-2(C)] 

for current estimates o(r) = (f.1(r) , u 2 (r)) of the parameters. In the M-step the expectations of the sufficient 
statistics calculated in the E-step are substituted in the expressions for the 1\1L estimates giving 

and 

0-2(r+1) 

Numerical Example 

,,(r+1) ~E C; liIYob"o(r)) 

~ [;~ Yi + (n - m) ,,(C)] 

~E C; li2IYob"0(C)) - (,,(r+1)f 

~ [;~, Y7 + (n - m) [(,,(r))2 + o-2(r)]]_ (,,(c+1)f. 

Suppose li, i ~ 1,2, ... ,10 are independent identically distributed random variables from a N (12,9) 
distribution and that Yi are observed for i = 1,2, ... ,6 and missing for i = 7, ... ,10. The 6 observed 
values are 12.893, 7.012, 12.165, 12.274, 14.657 and 8.644. 
The initial values of ,,(0) ~ 10 and 0-2(0) ~ 10 were chosen arbitrarily. Table 2.4 displays the results at 
different steps of the algorithm until convergence. The results are the same as the mean and variance for 
the six observed data points, that is 

1 6 

" - 2:: Y; 
6 i=l 

-2 
J 

2::6 
2 i-I Yi 

6 
-2 -" 

TABLE 2.4: Iterations of the EM algorithm for incomplete univariate 
normal data, n = 10 and m = 6. 

M-Step E-Step 

,,(c) (72(1') '( n (r)) E (.f:. l'?IYob"o(r)) r E 2::liIYob"O 
,-1 ,-1 

0 10 10 107.645 1243.582 
1 10.765 8.4884 110.703 1301.015 
2 11.070 7.550 111.926 1323.988 
3 11.193 7.124 112.415 1333.178 
4 11.242 6.945 112.611 1336.853 
5 11.261 6.873 112.689 1338.324 
6 11.269 6.843 112.721 1338.912 
7 11.272 6.831 112.733 1339.147 
8 11.273 6.827 112.738 1339.241 
9 11.274 6.825 112.740 1339.279 
10 11.274 6.824 112.741 1339.294 
11 11.274 6.824 112.741 1339.300 
00 11.274 6.824 112.741 1339.300 
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EXAMPLE 2.8 
EM algorithm for data from a multinomial distribution. 

This example. discussed by Dempster, Laird and Rubin (1977) gives the data in which 197 animals are 
distributed multinomially into five categories. The complete data, Y' = (Y1 , Y2, Y3) Y4, Ys ), are the counts 
for each category and the cell probabilities in this model are given as 

7r' = (~, ~P, ~ (1 - p), ~ (1 - p), ~p) for some 0 ~ p ~ 1 

For the complete data the density function is 

f ( I ) = (Y1 + Y2 + Y3 + Y4 + Y5)! (1)Y' (1 )Y' (1 _ 1 )Y' (1 _ 1 )Y' (1 )Ye. 
Y p , , , " 2 4 P 4 4 P 4 4 P 4 P 

Y1·Y2·Y3·Y4·Y5· 

The ML estimate of p for the complete data is given by 

~ Y2 + Y5 
p= 

Y2 + Y3 + Y4 + Y5 

The kernel of the complete data log-likelihood is 

and the counts are the sufficient statistics. 

(28) 

The observed data is Y~b' = (Y1 + Y2, Y3, Y4, Y5) = (125,18,20,34). Only the total of Y, and Y2 is observed. 
In the E-step the conditional expectations of the sufficient statistics, Yi, i = 2,3,4,5, given the observed 
values and a current estimate of p, are calculated. At step r (r = 0, 1, 2, ... ) 

E(Y3 IYob" p(r)) 

E(Y4 IYob" p(r)) 

E(Y5 IYob" p(r)) 

1p(r) 
125 1 4 1 () 

"2 +"4P T 

18 

20 

34. 

In the M-step the conditional expectations of Yi as calculated in the E-step are substituted in expression 
(28) giving the next estimate of fi in the iterative process 

E(Y2 IYob" p(r)) + 18 + 20 + 34 

" p (r) 
125 1 4 1 (r) + 34 

'2 +:jP 
1p(r) 

125 , 4
, (r) +18+20+34 

'2 + 4P 

The process iterates between the E-step and the M-step until convergence is attained. 
Table 2.5 shows that, starting from p(O) = 0.5, the EM algorithm converges after seven steps. 

TABLE 2.5: Iterations of the EM algorithm. 

M-step E-step 
r p(r) 1C(J72 11{ob,,)J(r)) 

0 0.5 25 
1 0.608247 29.15020 
2 0.624321 29.73727 
3 0.626489 29.82589 
4 0.626777 29.82634 
5 0.626816 29.82773 
6 0.626821 29.82792 
7 0.626821 29.82794 

00 0.626821 29.82794 
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2.5 A MAXIMUM LIKELIHOOD ESTIMATION PROCEDURE WHEN 
MODELLING IN TERMS OF CONSTRAINTS 

Proposition 1 
Suppose Y is a random vector with probability function belonging to the exponential family and with 
E (Y) = 1-'. Matthews (1995) derives a ML estimate of I-' subject to the constraints g (1-') = 0, as 

Ii, = y - (G~ V)' (Gy VG~)-l g(y) + o(lly - 1-'11) (29) 

where g (J..L) is a continuous vector valued function of J..L for which the first order partial derivatives exist, 

G~ = D~~), G y = D~~) l~~y and V is the covariance matrix which could be known or could be some 

function of j..t, say V ~. This result implies that the ML estimate must be obtained iteratively. 

Matthews (1995) gives the following proof of this result. 

Proof: 
Let, be a vector of Lagrange multipliers. To find the ML estimate of I-' subject to the constraints 
g (I-') = 0, we maximize 

:1-' W (y; (J;,) = In b (y) + y'(J -" ((J) + ,'g (I-' ((J)). 

Hence we find 

D D [D(J] DI-'W (y; (J;,) = D(JW (y; (J;,) DI-' . 

Since we set :1-' W (y; (J; ,) = 0 for a maximum, and since [~:] is invertible for a regular exponential 

family, we need further only consider :(JW (y; (J; ,). 

Thus 

Setting :(JW (y; (J;,) = 0, we get 

[
DI-'] , G' I-' = Y + D(J ~-y. 

Using the linear Taylor expansion of g (1-') about y, we get 

g(l-') = g(Y+[~~rG~,) 
g(y)+Gy (y+ [~~r G~,-y) +o(lIY-I-'II) 

g(y)+Gy [~~r G~,+o(lIY-I-'II)· 
Setting g (I-') = 0 and solving for" gives 

,= - (G y [~~r G~) -1 g(y)+o(IIY-I-'II). 
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Substituting I in (30) we get 

Now 

Hence 

and 

Therefore 

which is the required result. 

The iterative procedure 
The process is a double iteration over y and 1-'. Let I-'(i,i) denote the (i,j)th approximation obtained for 
the ML estimate fie of J.L, where i (i = 0, I, 2, ... ) refers to iteration over p, and j (j = 0, 1,2, ... ) refers 
to iteration over y. Note that j = 0 at the start of every iteration over y. 
The initial value for JL is J.L(O,O) = y, the vector of observed values. Iteration then takes place over y and 
the value of I-' in G" and V" is kept constant at 1-'(0,0) = y. The first approximation of /i., is given by 

/.1(0,1) = y _ (GIl-(O,O) V 11-(0,0»)' (Gy V p.(O,O) G~(O'O)) -1 g (y). 

If convergence over y is not attained at this step, y is replaced by p,(O,l) to obtain the next approximation 
of ilCl whilst the estimated value for J.L in Gp. and V p. is kept constant at 1-'(0,0) = y. Thus, 

(0,2) _ (0,1) , , (0,1) ( )-, ( ) J.L - J.L - (Gp,(O,O)Vp.{O,O)) GI1-(O,l)Vp.(O,O)GIl-(O,O) g p, . 

This is repeated until convergence over y is attained, say at j = k. 
The value at convergence, p,(O,k) , is used as the next estimate for p, in Gil- and V jJ.' The procedure again 
iterates over y, starting with the vector of observed values, y, and keeping the estimated value for p, in 
G" and V" constant at I-'(O,k). That is 

1-'(1,1) = y _ (G"(O,,, V "(0,,,)' ( G y V "(0,,, G~(O''') -1 g (y) . 

If convergence over y is not obtained at this step, the next approximation of iLc is 

p,{1,2) = p,(1,1) _ (GjJ.(O,k) V jJ.(O,k)), ( GjJ.(l, I) V jJ.(0,1<) G~(O'k)) -1 g (p,(1,1») . 

At convergence the iteration over y yields the next estimate for p, in Gil- and V jJ.' The process continues 
until convergence over J.L is attained. 
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In certain cases the iterative procedure simplifies to an iteration only over y or only over J.t . 

• If g is a linear function of 1-', say g (1-') = AI-' then G" = A = G y and 

For the iteration over y convergence is immediately attained since substitution of J.t(O,l) into y in 
equation (31) gives 

,,(0,1) _ (AV )' (AV' A,)-I A,,(O,I) r IL (0,0) IL (0,0) r 

y - (AV ",0,0»)' (AV ",o,o)A') -I Ay-

(AV",o,o»)' (AV~,o,o)A'rl A [Y- (AV",om)' (AV",o,oJA'f ' Ay] 

y - (AV",o.o))' (AV"co.o)A,)-1 Ay 

1-'(0,1) 

The process simplifies to iteration only over J.t with y remaining constant. 
At step i + 1 (i = 0,1,2, ... ) the approximation of /ie is given by 

with J.t(O) = y. The process converges to the ML estimate Jic' 

• Let DIL be a diagonal matrix with the elements of p,'= (I-LI1J121'" ll-Lp ) on the principal diagonal 
and V = D", Suppose g (1-') = A log (1-'). Then 

and 

o _ 
OI-'Alog(l-') = AD" I 

AD- I 
y 

/ie y - (G" V,,)' (Gy V" G~) -I A log (y) + 0 lilY - 1-'11) 

y - (AD~ID,,)' (AD;ID"D~IATI A log (y) + o(lly -1-'11) 

y - A' (AD;I A'r
l 

A log (y) + 0 (Ily - 1-'11). 

Iteration is only over y. At step j + 1 (j = 0, 1, 2, ... ) the approximation of /ie is given by 

with 1-'(0) = y. The process converges to the ML estimate /ie' 

Proposition 2 
The asymptotic covariance matrix of Jic is given by 

~e = V" - (G" V,,)' (G" V" G~) -I G" V", 

with the MLE obtained by replacing I-' with /ie' 
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EXAMPLE 2.9 
Determining ML estimates under constraints with iteration over y and p,. 

The number of accidents per thousand per age gTOUp in a certain factory is given in Table 2.6. 

TABLE 2.6: Accidents per 1000 per age group. 

Age group I II III 
Number of accidents 80 15 5 

The model under consideration is fJi 

assumed. 
1,2,3, and independent Poisson sampling is 

This model implies the constraint 

In this case 
V~ =D~ 

G~ = (1'3, -2IL2, ILl) 

G y = (Y3, -2Y2, Y1) 

G~D~ = (IL1IL3, -2IL~, IL1IL3) 

GyD~G~ = (Y1 + Y3) IL1IL3 + 4Y2IL~· 

g (/1-) = IL1IL3 - IL~ = O. 

The ML estimate of /1- is found iteratively from 

Iteration is over y and /1-. The process converges after eight steps. 

(32) 

Table 2.7 gives the approximation of Me at different steps of the iterative procedure.These are the same 
results as obtained by the Newton-Raphson and Fisher scoring algorithms (see Examples 2.1, 2.2 and 
2.3). 

TABLE 2.7: Approximation of /1, at different steps of the iterative procedure. 

i IL\i,] ) IL~i,j) ILji,j) j IL\i,j) IL~i,j ) ILji,j) 

0 80 15 5 0 80 15 5 
1 78.526316 16.657895 3.5263158 
2 78.531142 16.652465 3.5311418 

1 78.531142 78.531142 3.5311418 0 80 15 5 
1 78.793103 17.413793 3.7931034 
2 78.821807 17.356387 3.8218065 
3 78.821823 17.356354 3.8218228 

2 78.821823 17.356354 3.8218228 0 80 15 5 
1 78.793103 17.413793 3.7931034 
2 78.821807 17.356387 3.8218065 
3 78.821823 17.356354 3.8218228 

Description of the procedure: 

• Both y and /1- in equation (32) are initially estimated by the observed data, that is y = /1-(0.0). The 
first approximation of Pc is given by 

The process iterates over y until convergence is attained at (i,j) = (0,2) . At this stage the approx· 
imation of lie is 

( 

78.531142 ) 
/1-(0.2) = 16.652465 

3.5311418 

This becomes the next estimate of JL in GJ-t and D It . 
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• The process again iterates over y with the initial value of y ~ ( ~J ) , the vector of observed 

data. 
For (i,j) ~ (1,0) 

and for (i,j) ~ (1,1) 

p,(l,l) = J..L(l,O) _ (Gj.l(O,2) V Jl(U,2»)' (Gp.(I,U) V Il(O'2)G~«()'2») -1 g (tL(I,O») . 

Convergence is attained at (i,j) ~ (1,3). The vector 1-'(1,3) becomes the next estimate of I-' in G" 
and Dw 

• The process again iterates over y with the initial value ofy the vector of observed data. This iteration 
over y converges at (i,j) ~ (2,3) and at this stage 

Since J.t(2,3) = p.(1,3) convergence over J.L is also attained at this step and the process stops. 

The program is given in the Appendix. 
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EXAMPLE 2.10 
Determining ML estimates under constraints with iteration over y. 

Consider the same data as in Example 2.9 but using the constraint 

In this case 
V=D~ 

Gj! = ( ~1' ", ' ::1 ) 
G y = ( :1) ;~ , :1) 
G~D~ = (1, -2, 1) 
G D G' = l + -"- + l. 

Y J! Ii. Yl Y'J. Y3 

The :rvlL estimate of 11. is found iteratively from 

/Lc = 

log(YIY3)-2Iog(Y2) (II _ II) 
1 4 1 +0 Y '" . -+-+-

Yl Y2 Y.1 

Iteration is only over y. 

Table 2.8 gives the estimates of Pc at different steps of the iterative procedure. 

TABLE 2.8: Approximation of Ii, at different steps of the iterative procedure. 

Approximation of Ii, by ",\T) 

r fliT) flr) flr' 
0 80 15 5 
1 78.79924 17.40152 3.79924 
2 78.821801 17.356397 38218013 
3 78.821823 17.356354 3.8218228 

Alternatively, the constraint can also be set up in terms of the GLM given in Example 1.2. The model is 

log", = X{3 

with {3' = (/31' /32) where /31 = log a and /32 = log 'Y, and X the design matrix given in Example 1.2. 
Let P = I - X (X'X) X'. The model can be written in terms of the implied constraints as 

g ("') = [I - X (X'X) X'llog '" = P log", = O. 

The ML estimate for", subject to the constraint g ("') = 0 is found iteratively from 

with V~ = D~ 

G~ = PD~1 

G y = PD;;1 

G~V=P 

G y VG~ = PD;;lp. 

Hence, the estimation procedure is 

Ii, = y - P (PD;; lpf' Plogy + 0Uly -",II)· 

Iteration is only over y. The estimates of jic at different steps of the iterative procedure is exactly the 
same as given in Table 2.8. The programs with these two restrictions are given in the Appendix. 
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EXAMPLE 2.11 
Determination of maximum likelihood estimates under constraints. An example fOT incomplete data. 

Example 2.8 gives data in which 197 animals are distributed multinomially into five categories. 
The complete data, Y' = (Y11 Y2, Y3, Y4) Ys ), are the counts for each category and the cell probabilities 
in this model are given as 

The random vector of complete data is Y'=(Y1 , Y21 Y31 Y41 Ys) and the random vector of observed data 
is Y~bs = (Y1 + Y2, Y3, Y4, Ys) where only the sum of Y1 and Y2 is observed. The observed data is 
y~b' = (125,18,20,34). 
The distributions of Y and Y obs are both multinomial and can be written as 

y ~ Mult(n,-rr) 

with 

-;r' (1fl,1f2,7r3,7r4,7rS) 

(~, :tP, i (1 - p)':t (1- p), :tp) for some 0 S pSI 

and 

with 

(IT} +7rZ,1T3,1T4,7rS) 

(~+ ip, i (1 - p), i (1- p), ip) for some 0 S p S 1. (33) 

The ML estimate of p must be obtained from the observed data, Yobso For the multinomial distribution 

From the cell probabilities given in (33) the constraint g (/Lob,) = 0 can be written as 

where /-L' is the vector of expected cell counts. 

-1 
1 

-1 
-1 

-3 ) o /-Lobs 

The ML estimate, fiobs,c, of the expected cell counts /-Lobs are obtained by solving 

where V Il-obs =Diag(Yobs) - ~YobsY~bs 
GIl-Ob .• = X = G yobs 

g (Yob,) = XYob,· 
Since g (/-Lobs) is a linear function of /-Lobs iteration is only over /-Lobs' 

The ML estimate of p is then determined from fLob"c by 

~ 4/lobs ,4 p= --. 
n 

( 

129.37096) 
~ 18.379041 

The process converges after 4 steps and /Lob,.c = 18.379041 

30.870959 

result as obtained with the EM algorithm in Example 2.8. 
The program is given in the Appendix. 
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3 CATEGORICAL DATA ANALYSIS 

Maximum likelihood estimation procedures for loglinear and logistic regression models are discussed in 
this chapter. 

3.1 LOG LINEAR ANALYSIS 

3.1.1 The Model 

Consider a completely classified contingency table and arrange the observed frequencies into a vector 
y' = (Yll Y2, Y3, ... , Yp)· The expected cell frequencies are given by JL' = (ILl' J-i2, J-13, ... 1 IIp). A Poisson 
sampling scheme is assumed. 
For independent Poisson sampling the joint probability function of Yi, i = 1,2, ... ,p IS 

IT exp-P,I'Y' 

i=l Yi! 

exp [I: y;log 1'; - I: I'd exp [- I: log y; 1] 

which is a member of the exponential family since it has the form 

p (y, 0) = b (y) exp [y'O - K (0)] 

with b(y) = exp[- I: logy;!] 
o a 4 x 1 yector of natural parameters with 8; = log 1';, that is 1'; = exp (8;) 
K(O) = I: 1'; = I:exp(8;). 

The expected value of Yi is 

E(Y;) 

and the covariance of Yi) Yj is 

COY (y;, Yj) 

Thus E (Y) = J1. and COylY) =Diag(J1.). 

1'; 

82 

88;88
j 

K (0) 

{ 
ee, if i = j 
o otherwise. 

(34) 

In the case of a 2 x 2 contingency table with two categorical variables A and B, the model to be fitted, 
written as a loglinear model is 

The generalized linear model is 

log 1'1 

log 1'2 

log 1'3 

log 1'4 

The three components of the GLM are: 

1. The random component Y. 

,A ,B ,AB " + "1 + "1 + "11 
,A ,B ,AB 

a + /\1 - A} - All 

" _ ,A + AB _ AAB 
A1 1 11 
,A ,B ,AB 

Q: - 1\1 - /\1 + /\11 

log J1. = Xj3. 

23 



2. The systematic component 

1 1 1 1 a 

1 1 -1 -1 .\A 
1 

1)=X(3= 
.\B 1 -1 1 -1 1 

1 -1 -1 1 .\AB 
11 

where X is the design matrix and f3' = ((X,)..1,)..f, )..11B) the vector with model parameters. 

3. The link function is also a canonical link and is given by 

'1i = h(!'i) = log"i = Bi = Lf3,Xi,. 
j 

3.1.2 Newton-Raphson algorithm for ML estimation 

From equation (34) the log-likelihood function for independent Poisson sampling is 

(35) 

(36) 

In equation (35) log!'i was written as log!'i = Lj f3jXij. By substituting!'i = exp (L, f3,Xi j ) into the 

log-likelihood function in (36), the log-likelihood can be written as a function of the elements of (3. That 
is 

(37) 

The value of /3 that maximizes L ((3ly) can be found iteratively with the Newton-Raphson algorithm 

(38) 

where (3(r) is the rth approximation of /3, r = 0,1,2, ... and q(r) and H(r) are q and H evaluated at 
f3(r). From Section 2.1, q is the vector with elements the first order partial derivatives 

and H is the matrix of second order partial derivatives having elements 

Hence, 
q(r) = X' (y -I-'(r)) 

H(r) = -X'diag (I-'(r)) X 

with I-'(r) = exp (X(3(r)) the rth approximation of Ii, (r = 0, 1,2, ... ). 

Substituting equations (39) and (40) into equation (38) gives 

(3(r+1) = (3(r) + [X'diag (I-'(r)) xr 1 
X' (Y -I-'(r)). 

(39) 

(40) 

( 41) 

The algorithm requires an initial guess, (3(0), for the values that maximizes the function L ((3IY). The 
ML estimates of the parameters in the saturated model are used as the initial estimates and are given by 
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The asymptotic covariance matrix of fj is 

Cov (13) = [X'diag(p)Xr' = _A-I 

A canonical link function was used in the GLM in which case the observed and expected second derivative 
matrices are identical. Hence, the Fisher scoring and Newton-Raphson algorithms are identical. 

3.1.3 Maximum likelihood estimation under constraints 

This procedure is also discussed by Crowther and Matthews (1995). 
The saturated loglinear model can be written as 

loglL = X(3 (42) 

where /1-'= (,ul, ,u2, ,u3'· .. ,,up) is the vector with expected cell frequencies for the model, X : p x p is 
the design matrix and {3 : p x 1 is the vector of parameters for the saturated loglinear model. The ML 
estimate of (3 for the saturated model is 

~ 1 
(3= (X'X) - X' log y. 

For a lower order model certain elements of {3 will be equal to zero. 
Let C be a matrix specifying the elements of (3 which are set equal to zero. The hypothesis that certain 
elements of {3 are zero, can be written as the constraint 

C(3 

C (X'X) -1 X' log IL 

AcloglL 

O. 

The ML estimate of IL subject to the constraint g (IL) = Ac log IL = 0 is given by 

where G~ = :IL g (IL) = ACD ;;' and V" = Dw 

Thus 

y- (ACD;;ID,,)' (AcD;ID~D;;1 Ac) -1 g (y) + 0 (Ily - ILII) 

y - Ac (AcD;' Ac) -1 g (y) + 0 (lly - ILII) . 

(43) 

(44) 

The ML estimate for fie is obtained by iterating over y and the asymptotic covariance matrix of Me is 

~e = D~, - Ac (AcD;;: Ac ) -1 Ac. 

The ML estimate for the vector of cell probabilities is 

where n is the number of observations. 

--- Me Pe= -
n 

The ML estimates for the parameters in the loglinear model are given by 

The covariance matrix fj is 

Cov (13) = (X'X)-' X'Cov [log Pel X (X'X)-' . 
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The "delta method" is used to determine the asymptotic covariance matrix 

est [COy (log /L,)l 

Hence, the estimated covariance matrix for fj is 

EXAMPLE 3.1 
Maximum likelihood estimation for a loglinear model. 

Pugh (1983) designed a study to examine the disposition of jurors to base their judgments of defendants 
("guilty" or "not guilty") on the alleged behavior of a rape victim. Pugh's study varied the degree to 
which the juror could assign fault to the victim ("low" or "high") and the presentation of the victim as 
someone with "high moral character", ('low moral character" or "neutral". The data are given in Table 
3.1. 

TABLE 3.1: Data from Pugh (1983). 

Moral (M) 
Verdict (V) Fault (F) High Neutral Low 

Guilty Low 42 79 32 
High 23 65 17 

Not Guilty Low 4 12 8 
High 11 41 24 

Th d (),M V F ),MV MF ),VF ),MVF b . e saturate model, log J-lijk = Q: + i + Aj + Ak + ij + Aik + jk + ijk ,can e wntten as 

log I-' = X{3 

1 1 0 1 1 1 0 1 0 1 1 0 " 
1 1 0 1 -1 1 0 -1 0 -1 -1 0 

),M 
1 

1 1 0 -1 1 -1 0 1 0 -1 -1 0 
),M 

2 

1 1 0 -1 -1 -1 0 -1 0 1 1 0 ),V 
1 

1 0 1 1 1 0 1 0 1 1 0 1 ),F 
1 

1 0 1 1 -1 0 1 0 -1 -1 0 -1 ),MV 
11 

1 0 1 -1 1 0 -1 0 1 -1 0 -1 AMV 
21 

1 0 1 -1 -1 0 -1 0 -1 1 0 1 ),MF 
11 

1 -1 -1 1 1 -1 -1 -1 -1 1 -1 -1 ,\MF 
21 

1 -1 -1 1 -1 -1 -1 1 1 -1 1 1 ),VF 
11 

1 -1 -1 -1 1 1 1 -1 -1 -1 1 1 ),MVF 
111 

1 -1 -1 -1 -1 1 1 1 1 1 -1 -1 ..\.MVF 
211 
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Consider in this example the reduced model log (I-Lijk) = a + A!;1 + Aj + At' + A~v + Art which contains 
only the interaction terms between Verdict and Fault and between Verdict and MoraL 

Results from the Proc Catmod procedure in SAS 
The program and output obtained from the PROC CATMOD procedure in SAS are given in the Appendix. 
The results are summarized in Table 3.2. 

TABLE 3.2: Results from SAS: Proc Catmod. 

Maximum Likelihood Estimates 
Variable Par Estimate Standard Error 
X'" 1 -0.4221 0.1062 
AM 

2 0.6067 0.0811 
AV 

1 0.5520 0.0734 

Ai -0.1941 0.0666 
AMV 

11 0.2512 0.1062 
AMV 

21 0.0178 0.0811 
AVF 

11 0.3823 0.0666 

Model Fitting Information 
Likelihood Ratio 2.81 
Pearson Chi-Square 2.80 

Obtaining the ML estimates by using the Newton-Raphson algorithm 
The ML estimates are obtained iteratively with equation (41), 

where the matrix Xu is a submatrix of the design matrix, X, of the saturated model and (3u is the 
parameter vector of the reduced model. The model is 

1 1 0 1 1 1 0 1 " 
1 1 0 1 -1 1 0 -1 AM 
1 1 0 -1 1 -1 0 -1 1 

1 1 0 -1 -1 -1 0 1 AM 
2 

1 0 1 1 1 0 1 1 
AV 

1 0 1 1 -1 0 1 -1 1 

log JL = Xu/3u = 1 0 1 -1 1 0 -1 -1 AF 
1 

1 0 1 -1 -1 0 -1 1 
AMV 

1 -1 -1 1 1 -1 -1 1 11 

1 -1 -1 1 -1 -1 -1 -1 AMV 
21 

1 -1 -1 -1 1 1 1 -1 
AVF 

1 -1 -1 -1 -1 1 1 1 11 

The ML estimates of the parameters for the saturated model are used as an initial guess of f3u and are 
given by 

/3~O)= (X~Xu)-l X~ logy. 

The covariance matrix of !3u is 

Cov (.au) = [X~diag(il)Xul-l. 

The results obtained are the same as in Table 3.2. The program is given in the Appendix. 
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Obtaining the ML estimates under constraints 
For the model log (I'i;') = et+Af" + Aj + A[ + AtJv + Aj/, the ML estimate of J.L subject to the constraint 

(

0000 0 
o 000 0 

g (J.L) = C(3 = 0 0 0 0 0 

00000 

can be determined iteratively with equation (44), 

lie = y - Ac (ACD;;' Ac) -1 g (y) + 0 (Ily - J.LID 

where Ac = C (X'X)-' X'. 

Furthermore 

and 

73= (X'X) -1 X' log lie 

est [Cov (73) 1 = (X'X)-l X' [D~~j5eD~~l X (X'X)-' . 

The Wald statistic is 2.79 and the other results obtained are the same as in Table 3.2. The program is 
given in the Appendix. 

3.2 LOGISTIC REGRESSION 

3.2.1 The Model 

Let Yi, i = 1,2, ... ,p be independent random variables with Yi '" bi (ni,1fd. The frequency distribution 
for the p independent binomial distributions is given in Table 3.3. 

TABLE 3.3: Frequency distribution of p independent binomial distributions. 

Subgroups 
1 2 p 

Successes Y1 Y2 ... YP 
Failures n, - Y1 n2 -Y2 ... np - YP 

Suppose that m covariates, Xl, X 2 , .. . , X m ) are observed and that at occasion i, Xi = (XiI) Xi2,·· . ,Xim) 

and Yi is the number of successes in the ni trials, i = 1,2, ... ,po Let -rr' = (1fl) 1f2, ... , 1fp) be the vector 
with probabilities of a success within each subgroup and n' = (nl' n2, ... ) np) the vector indicating the 
number of trials within each subgroup. 
The joint probability function of Y

" 
Y2 , ... , Yp is 

p 

f (yin) = Il P (Yi = Yi) 
i=l 

(45) 
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which is a member of the natural exponential family since it has the form 

p (y, 0) = b (y) exp [y'O - J< (O)J 

where 

b (y) =TI (n,) 
1=1 Yz 

7r. eO; 
e a p x 1 vector with natural parameters (}i = log --' -, that is 7r i = --.-. 

V P (1 1)-7'\ l+e' 
,,(0) = - 2:: n;log (1 - 7f;) = - 2:: n; log --. = 2:: n; log (1 + eO,) . 

i=1 i=l 1 + e ' i=1 

For the exponential class 

E(Y;) 

and 

Cov (y;, Yj) 

a 
ae; J< (0) 

ee, 
n·--­

t 1 + eO, 

ni 7ri = fti 

a2 

aejae;" (0) 

{ 
n;7f; (1 - 7f;) 
o otherwise. 

if i = j 

Thus, E(Y) = I-' and Cov(Y) = V" =diag[n;7f; (1 - 7f;)J . 
The logistic regression model is written as i" = X(3 with 

The three components for the GLM are: 

• The random component Y, the vector of successes. 

• The systematic component which relates the linear predictor to a set of explanatory variables, 

"~X"{ 
Xu Xl2 Xlm 

X21 X22 X2m 

xvI Xp2 xpm 

• The link function which links /'; = E (Y;) to 1/;, 

7f' 
The function h is a canonical link since h (/';) = e; = log --'-. 

1 -7ri 
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3.2.2 Newton-Raphson algorithm for ML estimation 

From equation (45) the log-likelihood function for the logistic regression model is 

P (71) P 11" P L (11"Iy) = L log' + Ly;iog -'-. + L ni log (1 ~ 11"i). 
i=l YI i=l 1 - 1TI i=l 

Since log (~) = Lm~o {3jXij, 
1 - 7ri J 

and log (1 ~ 11"i) = ~ log [1 + exp (L;:O (3J XiJ) 1 
the log-likelihood function in terms of 13 is given by 

The value 73 of 13 that maximizes L (13) can be determined with the Newton-Raphson algorithm. At step 
r + 1 (r = 0, 1,2, ... ) in the iterative process the approximation of 73 is given by 

f3(r+1) = f3(T) ~ (H(r)) -1 q(r) (47) 

h . h h· I I)L (13) H· h . h· I t 1)2 L (13) d (T) d were q IS t e vector aVlug e ements~, IS t e matrIX avmg e emen s 8{3h
B

j3k' an q an 

H(T) are q and H evaluated at 13 = f3(T). 

The elements of q(r) can be written as 

and the elements of H(r) as 

Thus 
(48) 

and 
(49) 
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Substituting (48) and (49) into (47) gives 

/3(r+1) = /3(r) + { X'Diag [ni"t) (1 - "lr)) 1 X r' X' (y - n' 7I"(r)) 

where 

exp (I:;"~o (3)') Xij) 

1 + exp (I:;"~o (3)') Xij ) . 

The algorithm requires an initial guess for /3, which is 

/3(0) = (X'X) -1 X' C 

lli 
where £ is calculated from the observed data and has elements ii = log ~. 

1- = n, 
For T > a the iterative process proceeds by using equations (50) and (51). 

(50) 

(51) 

The estimated asymptotic covariance matrix of 73 is a by-product of the Newton-Raphson algorithm, 

Cov (13) = {X'Diag [ni1fi (1 -1fi)1 X} -1 = _H- 1 (52) 

where 1fi is the value of 1r~T) on convergence. 
A canonical link function was used in the GLM in which case the observed and expected second derivative 
matrices are identical. The Fisher scoring algorithm is identical to the Newton-Raphson algorithm. 

3.2.3 Maximum likelihood estimation under constraints 

Maximum likelihood estimation for the logistic regression model, using constraints is discussed by Crowther 
and Matthews (1998). 
The logistic regression model can be written as fJL= X{3 as discussed in section 3.2.1. The elements of 
£1£ written as a function of J-Li is 

Let P = I - X (X'X) X' be the projection matrix of the error space. From this the constraint for a 
logistic regression model as a function of J-L is 

g ({t) = PC,,= PX/3 = o. 

The ML estimate for {t is found iteratively with 

fi, = y - (G" V,,)' (Gy V"G~)-l g(y) + o(lly - {tIl) (53) 

h G ag ({t) -1· oC"" 1 . [ ( )1 were JL = -~-- = PV JL SInce ~ = ( ) and V JL =dIag n(lr i I - IT i . Furthermore, 
UJ-L UJ-Lt ntIT~ I-7f 1 

G ag ({t) I -1 ()" , Yi S I y = -n-- JL=Y = PV Y and g y = P{.y where {.y has elements {.i,y = log ---. ubstituting t lis 
~ ~-~ 

into (53) gives 

{t, Y - (pV~'V,,)' (pV;'V" V~'pr' PCy + o(lly - {tIl) 

y _ P (pV;'p) -1 PCy + 0 (lly - {tIl). 

Iteration takes place over y. 
The asymptotic covariance matrix of ilc is 

- (-1 )-' ~, = V ~ - P PV ~ P P. 
c "0 
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The ML estimates for the parameters in the model are given by 

where fjic is the vector of logits at convergence. 

The asymptotic covariance matrix of jj is 

From the "delta method" , 

and hence, the estimated covariance matrix for fj is 

EXAMPLE 3.2 

(~~JE,(~~J 
V::- 'EcV ::- ' IJ- c JJ.<e 

Maximum likelihood estimation for a logistic regression model with a continuous covariate. 

The data in Table 3.4, taken from Agresti (1990), was reported by Cornfield (1962) for a sample of 
male residents of Framingham, Massachusetts, aged 40-59, classified into 8 subgroups according to blood 
pressure. During a six-year follow-up period, they were classified according to whether they developed 
coronary heart disease. This is the response variable. The explanatory variable in the model is the value, 
Xi) which represents the blood pressure in subgroup i, i = 1,2, ... ,8. 

TABLE 3.4: Cross-Classification of Framingham Men by Blood Pressure and Heart Disease. 

Heart Disease 
Blood Pressure Xi Present (Yi) Absent (ni - Yi) 

< 117 111.5 3 153 
117 -126 121.5 17 235 
127 -136 131.5 12 272 
137-146 141.5 16 255 
147 - 156 151.5 12 127 
157 - 166 161.5 8 77 
167 - 186 176.5 16 83 

> 186 191.5 8 35 

IT' 
The model to be fitted is fi,~ = log --' - = {30 + {3, Xi which can be written as 

1 - 1ri 

( 

1 111.5] 1 121.5 
f~= X{3 = 

1 191.5 

( ~~ ). 
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Results from the Proc Logistic and Proc Genmod procedures in SAS 
The programs and output obtained from the PROC LOGISTIC and PROC GENMOD procedures in 
SAS are given in the Appendix. The results are summarized in Table 3.5. 

TABLE 3.5: Results from SAS: Proc Logistic and Proc Genmod. 

Maximum Likelihood Estimates 
Variable 
Intercept 
Blood Pressure 

Parameter Estimate 
-6.0820 
0.0243 

Model Fitting Information 
Pearson Chi-Square 6.2899 
Deviance 5.9092 

Standard Error 
0.7243 
0.00484 

Obtaining the ML estimates by using the Newton-Raphson algorithm. 
The ML estimate of f3 is found iteratively with equation (50) and the covariance matrix is given by 
equation (52). 
The same results as in Table 3.5 are obtained. The program is given in the Appendix. 

Obtaining the ML estimates under constraints 
The ML estimate for I-' subject to the constraint g (1-') = PC~= PXf3 = 0 is found iteratively with the 
equation 

Ii, = y - P (pV;'p) -1 PCy + a (lly - 1-'11) 

where Cy = (C
"

y, C2 ,y, . .. ,Cp,y), Ci,y = log _Y_i_ for i = 1,2,3 ... p and P = I - X (X'X) X'. 
ni - Yi 

Iteration takes place only over y. 
The maximum likelihood estimates for the parameters are given by 

where iji" is the vector of logits at convergence. 

The asymptotic covariance matrix of (3 is 

Cov (i3) = {X'Diag [niii'i (1 -ii';)l X} -1. 

The same results as in Table 3.5 are obtained. The program is given in the Appendix. 

33 



EXAMPLE 3.3 
Maximum likelihood estimation for a logistic regression model with a categorical covariate (logit model). 

Pugh (1983) designed a study to examine the disposition of jurors to base their judgments of defendants 
on the alleged behavior of a rape victim. Pugh's study varied the degree to which the juror could assign 
fault to the victim ("lown or "high"). It also varied the presentation of the victim as someone with 
"high moral character", "low moral character" or "neutral". The response variable is the judgment of 
the defendant as "guilty" or "not guilty" by the jurors. The data are given in Table 3.6. 

TABLE 3.6: Data from Pugh (1983). 

Moral (M) 
Verdict (V) Fault (F) High Neutral Low 

Guilty Low 42 79 32 

Not Guilty 

High 23 65 17 

Low 
High 

4 
11 

12 
41 

8 
24 

fi . C "i M ,M ,F h The model to be tted IS i,p. = log -- = a + Al xiI + "'2 Xi2 + Al Xi3 were 
1 -7ri 

XiI = 1 and Xi2 = 0 if Moral = High, 
XiI = 0 and Xi2 = 1 if Moral = Neutral, 
XiI = -1 and Xi2 = -1 if Moral = Low, 
Xi3 = 1 if Fault = Low, 
Xi3 = -1 if Fault = High. 

This model assumes no interaction between moral and fault but it can be extended to include the 
interaction. 

The model can be written as the logit model 

1 1 0 1 

1 0 1 1 ex 

1 -1 -1 1 
AM 

1 

c,,= X{3 = 
1 1 0 -1 AM 

2 

1 0 1 -1 AF 
1 

1 -1 -1 -1 

Programs similar to those in Example 3.2 are given in the Appendix and the results are summarized in 
Table 3.7. 

TABLE 3.7: Results for Example 3.3. 

Maximum Likelihood Estimates 
Variable 
Intercept 
Moral High 
Moral Neutral 
Fault Low 

Parameter Estimate 
1.0783 
0.4553 
0.1210 
0.7739 

Model Fitting Information 
Pearson Chi-Square 0.2552 
Deviance 0.2554 

Standard Error 
0.1469 
0.2226 
0.1717 
0.1355 
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4 SYMMETRY MODELS FOR SQUARE CONTINGENCY 
TABLES WITH ORDERED CATEGORIES 

Contingency tables are considered where the same variable with ordered categories is measured for both 
members of a matched pair. Responses are summarized in a two-way table in which both classifications 
have the same categories. One of the matters of interest in the analysis of square tables is the pattern 
of symmetry that may be exhibited by the cell probabilities in terms of their location relative to the 
main diagonal of the table. These models are discussed in more detail by Agresti (1984), Agresti (1990), 
Matthews (1995) and Tomizawa (1990). 

4.1 SYMMETRY MODEL (S) 

Consider an I x I contingency table with categorical variable C = {I, 2, ... 1 I}. A Poisson sampling 
procedure is assumed. Let Yij be the count in cell (i, j), Yij the observed value of Yij and n = L LYij 
the total counts. The counts can be arranged in a vector Y' = (Yll , Y12 ,··· , YJ/) with E (Y) = JL, the 
vector of expected counts. Let 'Trij denote the probability that an observation falls in cell (i,j). 
There is symmetry if 

Thus, if 
log (iLi,l iLji) = log iLij - log iLji = 0 for i < j. 

This can also be written as the constraint 

g(JL) = ClogJL= 0 

where, in the case of a 4 x 4 table the matrix C is given by 

iL11 iL12 iL13 iL14 iL21 iL22 iL23 iL24 iL31 iL32 iL33 iL34 iL41 iL42 iL43 iL44 
0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 (55) 
0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 

Furthermore 
a -1 

G~ = aJLg(JL) = CD~ . 

The ML estimate for the vector with expected frequencies is given by 

lie y - (G~ V~)' (Gy V~G~r1 g (y) + o(lly -ILII) 

y - C' (CD;;lC') C log (y) +o(lly - JLII). 

The degrees of freedom for the likelihood ratio statistic is I (I - 1) /2. 
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4.2 CONDITIONAL SYMMETRY (CS) 

The conditional symmetry model is defined as 

where 'l/Jij = 'l/Jji­

This is similar to 

or 

T?jJij 

,pij 

when 
when 

i < j 
i ?:. j, 

log (l"iJ /I"ji) = log T for i < j 

log l'iJ - log I"ji = log T for i < j. 

This model can be formulated as g (1") = O. Consider a 4 x 4 table with 

Then 
C log (I") = XlogT 

where C is the matrix given in (55) and X'= (1, 1, 1, 1, 1, 1) = 1~. 

Let P = I - X (X'X)-' X'. The constraint for the model is 

where K = PC. 
Furthermore 

a () -1 G~ = al"g I" = KD~ . 

The ML estimate for the vector with expected frequencies is obtained iteratively with 

I"c Y - (G~ V~)' (Gy V~G~r' g (y) + oUly - 1"11) 

y - K' (KD;'K') K log (y) +0 (Ily - 1"11). 

The ML estimate for T is obtained by 

T = exp [(X'X)-' X'Clog (iLclj. 

The degrees of freedom for the likelihood ratio statistic is (I + 1) (I - 2) /2. 

4.3 DIAGONALS-PARAMETER SYMMETRY (DPS) 

Goodman (1979) defines the diagonals-parameter symmetry model as 

where 'l/Jij = 'l/Jji-

Consider a 4 x 4 table. The model can be written as 

when i < j, 
when i?:. j, 

C log (I") = XlogJ 

where C is the matrix given in (55), 
1 0 0 
0 1 0 

X= 
0 0 1 
1 0 0 
0 1 0 
1 0 0 
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and 8'=(01,02,03). 
Let P = I - X (X'X)-1 X'. The constraint for the model is 

g (J-L) = PC log (J-L) = K log (J-L) = 0 

where K = PC. 
The ML estimates for the expected frequencies are obtained iteratively by 

ji, = y - K' (KD;;IK') Klog(y) +o(lly - J-LII). 

The ML estimate for 8 is obtained by 

The degrees of freedom for the likelihood ratio statistic is (I - 1) (I - 2) /2. 

4.4 LINEAR DIAGONALS-PARAMETER SYMMETRY (LDPS) 

The linear diagonals-parameter symmetry model is defined as 

{ 

f}-i1jJ. 
1T ij = 1) 

1jJij 

where 1/Jij = WjiO 

when i <], 
when i 2: j, 

Consider a 4 x 4 table. The model can be written as 

Clog(J-L) = Xlogp 

where C is the matrix given in (55) and X'= (1, 2, 3,1,2,1). 
Let P = I - X (X'X)-1 X'. The constraint for the model is 

g (J-L) = PC log (J-L) = Klog (J-L) = 0 

where K = PC. 
The ML estimates for the expected frequencies are obtained iteratively by 

ji, = y - K' (KD;;IK') Klog(y)+o(lly - J-LII). 

The ML estimate for p is obtained by 

The degrees of freedom for the likelihood ratio statistic is (I + 1) (I - 2) /2. 

4.5 ANOTHER LINEAR DIAGONALS-PARAMETER SYMMETRY 
MODEL (ALDPS) 

Another linear diagonals-parameter symmetry model (ALDPS) is defined by Tomizawa (1990) as 

11""- P lJ 
{ 

I-(j-i)1jJ. 

lJ - Wij 

where'l);ij = Wji· 

Consider a 4 x 4 table. The model can be written as 

when i <], 
when i 2:: j, 

Clog(J-L) = Xlogp 

where C is the matrix given in (55) and X'= (3, 2,1,3,2,3). 
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Let P = I - X(X'X)-' X'. The constraint for the model is 

g (1-') = PC log (1-') = K log (1-') = 0 

where K = PC. 
The ML estimates for the expected frequencies are obtained iteratively by 

ii, = y - K' (KD;'K') K log (y) +0 (Ily - 1-'11)· 

The ML estimate for p is obtained by 

The degrees of freedom for the likelihood ratio statistic is (I + 1) (I - 2) /2. 

4.6 2-RATIOS-PARAMETER SYMMETRY (2RPS) 

The 2-ratios-parameter symmetry model is defined by Tomizawa (1990) as 

where '1fJij = '1f;jiO 

when i < j, 
when i ;::::j, 

Consider a 4 x 4 table. The model can be written as 

Clog (I-') = X log <:" 

where C is the matrix given in (55), 

x= 

and (=(¢,e). 

1 0 
1 1 
1 2 
1 0 
1 1 
1 0 

Let P = I - X (X'X)-' X'. The constraint for the model is 

g (1-') = PC log (1-') = K log (1-') = 0 

where K= PC. 
The ML estimates for the expected frequencies are obtained iteratively by 

ii, = y - K' (KD;'K') K log (y) +0 (Ily - 1-'11)· 

The ML estimate for <:" is 

(= exp [(X'X)-' X'Clog(iic)]' 

The degrees of freedom for the likelihood ratio statistic is (P - I - 4) /2. 

38 



4.7 QUASI SYMMETRY (QS) 

Quasi symmetry is defined as 
for all i,j, 

where Wij = Vl ji · 

Consider a 4 x 4 table. The model can be written as 

Clog (J.L) = X log Ii 

where C is the matrix given in (55), 

1 -1 0 0 -1 1 0 0 
1 0 -1 0 -1 0 1 0 

X= 
1 0 0 -1 -1 0 0 1 
0 1 -1 0 0 -1 1 0 
0 1 0 -1 0 -1 0 1 
0 0 1 -1 0 0 -1 1 

and 9'= (0:1,0'2, Ct3, 0:4, cxsJ31 , /321 /33' i34 1 /3s)· 
Let P = I - X (X'X)-l X'. The constraint for the model is 

g (J.L) = PC log (J.L) = K log (J.L) = 0 

where K = PC. 
The ML estimates for the expected frequencies are obtained iteratively by 

/i, = y - K' (KD;IK') K log (y) +0 (lly - J.LII). 

The ML estimate for Ii is obtained by 

(j = exp [(X'X)-l X'Clog(/i,)]. 

The degrees of freedom for the likelihood ratio statistic is (I - 1) (I - 2) /2. 

4.8 EXAMPLE 

Table 4.1, taken from Agresti (1984) and also discussed by Tomizawa (1990) is the father's and son's 
occupational mobility data in Britain. The table relates father's and son's occupational status category_ 
The symmetry models discussed in this chapter were fitted to the data. Table 4.2 gives the expected 
cell frequencies for each model, Table 4.3 gives the goodness of fit statistics, and Table 4.4 gives the ML 
estimates for the model parameters. 

TABLE 4.1: Occupational Status for British Father-Son Pairs. 

Son's Status 
Father's Status 1 2 3 4 5 Total 

1 50 45 8 18 8 129 
2 28 174 84 154 55 495 
3 11 78 110 223 96 518 
4 14 150 185 714 447 1510 
5 3 42 72 320 411 848 

Total 106 489 459 1429 1017 
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TABLE 4.2: Occupational Status for British Father-Son Pairs. 

Son's Status 
Father's Status 1 2 3 4 5 Total 

50 45 8 18 8 
(36.5)" (9.5) (16.0) (5.5) 
(40.7)b (10.6) (17.8) (6.1) 

1 
(41.4)" (10.0) (18.1) (8.0) 

129 
(38.9)d (10.7) (19.1) (6.9) 
(41.1 )' (10.4) (17.0) (5.7) 

(41.0/ (10.5) (17.3) (5.8) 
( 42.2)g (10.7) (18.8) (7.3) 

28 174 84 154 55 
(36.5) (81.0) (152.0) (48.5) 
(32.3) (90.3) (169.5) (54.1 ) 

2 
(31.6) (91.8) (159.7) (54.9) 

495 
(34.1) (86.3) (172.0) (58.0) 
(31.9) (91.2) (166.4) (51.6) 
(32.0) (90.9) (167.6) (52.5) 
(30.8) (78.3) (155.2) (56.8) 

11 78 110 223 96 
(9.5) (81.0) (204.0) (84.0) 
(8.4) (71. 7) (227.5) (93.7) 

3 
(9.0) (70.2) (213.2) (88.3) 

518 
(8.3) (76.7) (217.5) (95.0) 
(8.6) (70.8) (229.7) (91.9) 
(8.5) (71.1) (229.0) (92.6) 
(8.3) (83.7) (215.0) (101.0) 

14 150 185 714 447 
(16.0) (152.0) (204.0) (383.5) 
(14.2) (134.5) (180.5) (427.7) 

4 
(13.9) (144.3) (176.8) (434.6) 

1510 
(12.9) (132.0) (190.5) (408.9) 
(15.0) (137.6) (178.3) (431.8) 
(14.7) (136.4) (179.0) ( 430.6) 
(13.2) (148.8) (193.0) ( 441.0) 

3 42 72 320 411 
(5.5) (48.5) (84.0) (383.5) 
(4.9) (42.9) (74.3) (339.3) 

5 
(3.0) ( 42.1) (79.7) (332.4) 

848 
(4.1) (39.0) (73.0) (358.2) 
(5.3) ( 45.4) (76.1) (335.2) 
(5.2) (44.5) (75.4) (336.4) 
(3.7) (40.2) (67.0) (326.0) 

Total 106 489 459 1429 1017 

aEstimated expected frequencies for symmetry model (S). 
bEstimated expected frequencies for conditional symmetry model (CS). 
CEstimated expected frequencies for diagonals-parameter symmetry model (DPS). 
dEstimated expected frequencies for linear diagonals-parameter symmetry model (LDPS). 
eEstimated expected frequencies for another linear diagonals-parameter symmetry model (ALDPS). 
fEstimated expected frequencies for 2-ratio-parameter symmetry model (2RPS). 
gEstimated expected frequencies for quasi symmetry model (QS). 
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TABLE 4.3: Goodness of Fit statistics. 

Model df X
2 C2 AlC+ 

S 10 37.22 37.46 17.46 
CS 9 10.30 10.35 -7.65 
OPS 6 6.44 6.44 -5.56 
LOPS 9 17.09 17.13 -0.87 
ALOPS 9 10.05 10.13 -7.87 
2RPS 8 9.96 10.02 -5.98 
QS 6 4.67 4.66 -7.34 

TABLE 4.4: ML Estimates of model parameters. 

Model Parameters 
S 
CS T 

OPS fJ'=(Oj,02,03,64 ) 

LOPS p 
ALOPS p 
2RPS C,'=(¢,B) 

QS 

Discussion of results 

ML Estimates 

T = 1.26 

61 = 1.31, 62 = 1.11, 63 = 1.30, 64 = 2.67 
P = 1.14 
P = 1.07 
¢ = 1.28, B = 0.96 

al = 1.17, 
as = 0.84 

~4 = 1.02 

a2 = 1.00 a3 = 1.03 a4 = 0.98 

~1 = 0.85 ~2 = 1.00 ~3 = 0.97 
~5 = 1.19 

Tomizawa (1990) selected the best model by using the modified AlC defined as 

AIC+ = C2 -2(df). 

The best fitting model is the one with the smallest AlC+, which in this example is the ALOPS and CS 
models. 
For the ALOPS model p = 1.065. Thus, the proportion of father-son pairs for which the son had a k 
grades higher status category than the father, for k = 1,2,3,4, is estimated to be (1.065)5-k times higher 
than the proportion in which the father had the k grades higher status category. 
For the CS model T = 1.26 which means that for each pair of categories, (i,j) and (j, i), the proportion 
of father-son pairs for which the son had the higher status is estimated to be 1.26 times higher than the 
proportion in which the father had the higher status. 
The program for this example is given in the appendix and can be used for any square contingency table 
with ordered categories. 
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5 INCOMPLETE CONTINGENCY TABLES 

An incomplete contingency table is a contingency table where information on one or more of the cate­
gorical variables is missing. It is assumed that the data are MAR and the missing data mechanism is 
ignorable. This chapter discusses rvIL estimation of cell probabilities in an incomplete contingency table 
by using all the observed data - including data where information on one or more of the categorical 
variables is missing. Lipsitz, Parzen and Molenberghs (1998) uses the Poisson generalized linear model 
to obtain ML estimates of cell probabilities for the saturated loglinear model whilst Little and Rubin 
(1987) describes and uses the EM algorithm to determine the ML estimates of cell probabilities for any 
loglinear model. Maximum likelihood estimation under constraints is also discussed in this chapter as a 
method to determine the ML estimates of cell probabilities. The advantage of this method is that it is 
less computational intensive compared to the more generally used EM algorithm. It also illustrates the 
elegance with which the method of ML estimation under constraints can be applied. 

5.1 ML ESTIMATION IN INCOMPLETE CONTINGENCY TABLES 

Consider an I x J contingency table with categorical variables C, = {I, 2, ... , I} and C2 = {l, 2, ... , J}. 
A multinomial sampling procedure is assumed. Let Yij be the count in cell (i)j), Yij the observed value 
of Yij and n = L: L: Yij the total counts. The counts in each cell can be arranged to form the complete 
data vector Y' = (Yl1, Y12 , ... , Y/ J) with E (Y) = 1-', the vector of expected counts. 
If information on one or both of the categories is missing the contingency table is said to be incomplete. 
The data to be classified in the contingency table can be split into two parts namely: 

- the fully classified cases where information on all the categories is available and, 
- the partially classified cases where information on some of the categories is missing. 

It is assumed that the data are MAR and the missing data mechanism is ignorable. 
In this section the saturated model is considered and the EM algorithm and ML estimation under con­
straints are described and illustrated as methods which uses both the fully and partially classified cases 
to determine the ML estimates of the cell probabilities. 

5.1.1 The EM Algorithm 

Multinomial Sampling 
If the probability that an observation falls in cell (i, j) is 7f ij, where 7f ij 2: 0 and ~ ~ 7f i] = 1 then the 
complete data Y have a multinomial distribution, 

with probability function 

(56) 

where 7r' = (7rll)7r12) ... ,7rIJ). 

The kernel of the complete data log-likelihood is 

The cell counts) Yij, are the sufficient statistics and the MLE of 7rij IS 
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Product Multinomial Sampling 
Let Yi+ = L:j Yij be the total counts in row i and ITi+ = L

J 
7rij the probability that an element falls 

rr 
in row i. If the Yi+ elements of row i arc independent, each having a probability distribution --.:!.L, 

7ri+ 

j = 1,2, ... ) J, then, given the row total Yi+ and the vector of cell probabilities 7r, the elements of row i 
have a multinomial distribution 

Yi , Yi2 ... Y:·JIYi+ .". ~ Mult y.+. - - ... 
( 

7ril 1Ti2 
1 , 1, ,1 1, 1", 

Jri+ 7rH 
(57) 

( 
rri) ) and E (Yij IYi+ = YH) = YH - . 
7fH 

When samples from different rows are independent, the joint probability function for the entire data set 
is the product of I multinomial probability functions, 

Similarly, if the column totals are fixed then the elements of column j will have a multinomial distribution 

(58) 

EM algorithm to determine the ML estimates of the cell probabilities in an incomplete I x J 
contingency table: data missing on both categories 
If missing values occur on both C1 and C2 ) the observed data can be partitioned into three parts denoted 
by A, Band C respectively, where A includes units having both C, and C2 observed, B includes those 
having only C1 observed and C includes those where only C2 was observed. In part A observations are 
fully classified and in Band C only partially. The three parts of the sample are displayed in Table 5.l. 
The objective is to determine the ML estimates of cell probabilities in the I x J table by using the fully 
and partially classified data. 

TABLE 5.1 (a), (b) and (c): Classification of sample units in an incomplete I x J contingency table. 

Sample part A 

(a) Both variables observed 

C, = 1 yf, 
C, = 2 ytl 

C, = I A Yll 
Y+l 

Sample part B 

(b) C2 missing 

C, = 1 
C, = 2 

C, = I yf' 

A 
YI2 

C2 = J 
yfJ A 

Yl+ 
A A 

Y2J Y2+ 

A 
YIJ 

A 
YI+ 

Y~ +J 

Sample part C 

(c) C, missing 
C2 - 1 C2 - 2 C2 - J 
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Assume that the data are MAR and the missing data mechanism is ignorable. Let Y Al = (Yl1 , Yl1, ... 1 y/; )) 
y 81 = (Yl~) Yl~- 1 ••• 1 y/t) and yOl = (Y~) y";;) ... 1 YfJ) be the random vectors with counts for sample 
parts A, Band C respectively. Since C2 is missing in sample part B 1 the counts observed are totals across 
C2 . Hence, compared to sample part A, row totals are observed in sample part B and column totals in 
sample part C. The observed data are 

Let Y~bs = (yA',yB"YC,) be the observed data vector, Y' = (Yl1,Y12, ... ,YIJ) the complete data 
vector and -rr' = (1r111 7T12, ... 1 7r I J) the vector of cell probabilities for which the 11L estimates must be 
determined. 
Each complete data cQunt, Yij, can be expressed as the sum of contributions from each of the three 
sample parts, that is Yij = Yi1 + fir + fiC;· For sample part B totals across C2 are observed, that is Yi~' 
whilst the individual cell counts, Y;f, are missing. It follows from (57) that the predictive distribution of 
the missing data in part B given Y obs and 7r is a product multinomial, 

(59) 

. (B I B B ) B (Jr ij ) wIth E Yi j fi+ = Yi+, 7r = Yi+ -- . 
7rH 

For part C only the totals across C) are observed, that is Y~. From (58) the predictive distribution of 
the missing data in sample part C given Y obs and 7r is a product multinomial given by 

(60) 

. hE(yclYc _ C ) _ C (Jri j ) WIt ij +j - Y+j' 7r - Y+j -- . 
7r +j 

Thus, E (Y;j IYob" 11") = E (Y;1 + Y;f + y;]' IYob" 11") = yj + Y~ (:;:) 

The distribution of the complete data belong to the regular exponential family with sufficient statistics 
the cell counts, Y;J. In the E-step of the EM algorithm E (Y;j IYob" 1I"(r)) is calculated where 1I"(r), 

r = 0, 1,2, ... , is the rth estimate of Jr. From (59) and (60) 

E (lit + lif + fi1IYobS,7r(r)) 

yj + E (Y;f IV ob" 1I"(r)) + E (Y;]'IYob" 1I"(r)) 

(61) 

In the M-step 1I"(r+1) is calculated by substituting the results from the E-step into the expression of the 
MLE of 11" for the complete data. That is, 

(62) 

The process iterates between (61) and (62) until convergence is attained. 
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5.1.2 ML Estimation under constraints 

The data from parts A, Band C in Table 5.1 can be considered as three independent multinomial samples. 
Let n A = I:I:yj, n B I:yf'r and n C = I:y~j be the total counts in sample parts A, Band C 
respectively. 
All 1 

Let p = A yA, pB = B yB and pC = c yC be the proportions 111 each sample part and 
n n n 

P ' = (pA' pB' pC') with E (p' ) = 7r' = (1TAI IrE! Tre ,) 
obs" obs obs ". 

For the saturated model the maximum likelihood estimates of 7r obs can be determined under the con­
straints 

7r~+ - nf+ = 0 for i = 1,2, ... 1 I 

and 
for j = 1,2, ... ,J. 

Hence, the constraint can be written as A 1[" obs = 0 where 

A : (I + J) x (I J + I + J) = ( 

and where 1~ and 1~ indicates 1 x J and 1 x I row vectors respectively with all values equal to 1. 
The ML estimate of the vector of cell probabilities, under the constraint A 7r obs = 0 is given by 

where 

( COY (1fA) 0 0 ) V1l'Ob8 0 Cov(1fB ) 0 
0 0 COY (1fC) 

( 1 (D A _ 1fA1fA') 0 0 ) "" ~ 0 ...L (D H _ 1fB.,..B') 0 nB 7r 

0 0 --;!c (D1I'c - 7rc 7rc ,) 

Since the constraint, A7robs= 0, is linear in 7Tabs iteration is only over 7Tabs-

The ML estimates of cell probabilities in the I x J table are given by the elements of 7r A in 7r Db, c. 
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EXAMPLE 5.1 
Determining the ML estimates of cell probabilities in an incomplete contingency table by using the EM 
algorithm. 

Consider the data in Table 5.2 from Schafer (1997) obtained through the National Crime Survey conducted 
by the U.S. Bureau of the Census. Housing unit occupants were interviewed to determine whether they 
had been victimized by crime in the preceding six-month period. Six months later the units were visited 
again to determine whether the occupants had been victimized in the intervening months. 

TABLE 5.2: Victimization status from the National Crime Survey. 

Second Visit 
First Visit Crime-free Victims rvIissing 
Crime-free 392 55 33 
Victims 76 38 9 

Missing 31 7 

Following the notation in 5.1.1, 
Y~b8 = (yAI, yB!, yel) where 
yA' = {Yij: i,j = 1,2} = (392,55,76,38) 
yB' = {yp+: i = 1,2} = (33,9) 
yC' = {Y';'j : j = 1, 2} = (31,7). 
The fully classified data, yA, were used to determine a starting value for the algorithm, 
".(0), = 5i, (392,55,76,38) '" (0.70,0.10,0.13,0.07). From (62) the first estimate of 7r11 is 

(1) 
"11 

1 A B 'lT ll C 'lT ll [ ( 
(0)) ( (0))] 

:;;: Yl1 + Y1+ ,,\~ + Y+j ,,~l 

1 [2 (0.70) (0.70)] 641 39 + 33 0.80 + 31 0.83 

0.6974. 

Similarly, the first estimates of 7r12, 7r21 and 7r22 are 

(1) _1_ [55 33 (0.10) 7 (0.10)] = 0.0987 
"12 641 + 0.80 + 0.17 

(1) 1 [ (0.13) (0.13)] 
"21 641 76 + 9 0.20 + 31 0.83 = 0.1353 

,,~~ 6~1 [38 + 9 (~~~) + 7 G~;)] = 0.0687 

This gives ".(1)' = (0.6974,0.0987,0.1353,0.0687) which is used to calculate the second estimate for fr. 
The process continues until convergence is attained. Table 5.3 shows the values at different steps of the 
algorithm. 

TABLE 5.3: Iterations of the EM algorithm. 

r (r) 
"11 

(r) 
" 12 

(r) 
"21 

( r) 
"22 

° 0.7000 01000 0.1300 0.0700 
1 0.6974 0.0987 0.1353 0.0687 
2 0.6972 0.0986 0.1357 0.0685 
3 0.6971 0.0986 0.1358 0.0685 
00 0.6971 0.0986 0.1358 0.0685 
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EXAMPLE 5.2 
Determining the ML estimates of cell probabilities in an incomplete contingency table under constraints. 

Consider the data in Example 5.1. 
Y~bs = (yAI, yEt, yC') where 

1 
yA' = {Yij: i,j = 1,2} = (392,55,76,38) and pA = 561 yA 

1 
yB' = {Y~: i = 1,2} = (33,9) and pB = 42 yB 

1 
yC' = {Y'.'j : i = 1, 2} = (31,7) and pC = 38 yo. 

Let P~b8= (pA',pE',pC,) with E(Pobs) = '1r obs. 
For the saturated model the constraint A7robs= 0 must hold, where the elements of A are 

1I"tl nt2 71"2\ 7r~2 B 
7fH 

B 
7f2+ 

C 
7f +1 

C 
7f +2 

1 1 0 0 -1 0 0 0 
A: 0 0 1 1 0 -1 0 0 

1 0 1 0 0 0 -1 0 
0 1 0 1 0 0 0 -1 

The ML estimate of 7r abs under the constraint A1Tobs= 0 is obtained with 

where 

~ (~AI ~B! ~C')' I I -1 
7r obs,c= 7rc , 1Tc , 7rc =Pobs-(AV1l"ObJ (AV1l"Ob"A) APobs 

o 
-l2 (D7rH _7rB 1rB ,) 

o 

o 
o 

1 (D C C') 38 11"{7 - 7r 7r 
) 

(67) 

The ML estimates of the cell probabilities in the 2 x 2 table are given by the elements of ii~ in ii Db,.,. 
This procedure gives the same values for the ML estimates as obtained with the EM algorithm in Example 
5.1. Results obtained under constraints and from the Genmod procedure in SAS are shown in Table 5.4. 
The programs are given in the Appendix. 

TABLE 5.4: ML estimates and standard errors. 

Estimate Std Err 
7fll 0.6971 0.0187 
7f12 0.0986 0.0124 
7f21 0.1358 0.0141 
7f22 0.0685 0.0104 
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EXAMPLE 5.3 
Determining the ML estimates of cell probabilities in an incomplete contingency table under constraints. 

Consider the data in Table 5.5 (from Lipsitz, Parzen, Molenberghs (1998)) which contains the data 
from the Six Cities Study, a study conducted to assess the health effects of air polution. The columns 
corresponds to the wheezing status (no wheeze, wheeze with cold, wheeze apart from cold) of a child 
at age 10. The rows represent the smoking status of the child's mother (none, medium, heavy) during 
that time. For some individuals the maternal smoking variable is missing, while for others the child's 
wheezing status is missing. The objective is to estimate the probabilities of the joint distribution of 
maternal smoking and respiratory illness. 

TABLE 5.5: Six Cities Data: Maternal Smoking Cross-Classified by Child's Wheeze Status. 

Maternal 
Smoking 
None 
Moderate 
Heavy 

Missing 

No Wheeze 

287 
18 
91 

59 

Similar as in Example 5.2: 

Child's wheeze status 
Wheeze with Cold Wheeze apart from cold Missing 

39 38 279 
6 4 27 
22 23 201 

18 26 

y~b' = (yA', yB', yC') = (287,39,38,18,6,4,91,22,23,279,27,201,59,18,26). For the constraint An ob,= 0 
the elements of A are given by 

1l"fl 1l"f2 7rt3 A 
71"21 

A 
71"22 

A 
71"23 

A 
71"31 

A 
71"32 7rt3 B 

71"1+ 
B 

71"2+ 
B 

71"3+ 
C 

71"+1 
C 

71"+2 
C 

1i'+3 

1 1 1 0 0 0 0 0 0 -1 0 0 0 0 0 
0 0 0 1 1 1 0 0 0 0 -1 0 0 0 0 

A: 0 0 0 0 0 0 1 1 1 0 0 -1 0 0 0 
1 0 0 1 0 0 1 0 0 0 0 0 -1 0 0 
0 1 0 0 1 0 0 1 0 0 0 0 0 -1 0 
0 0 1 0 0 1 0 0 1 0 0 0 0 0 -1 

The ML estimate of 7r~bs = (7T
A1

, 1r
B1

, 1r
C1

) is obtained iteratively with 

The ML estimates of the cell probabilities, given in Table 5.6, are the same as those obtained by Lipsitz, 
PaIzen and Molenberghs (1998). Procedures give asymptotically equivalent results. Slight differences in 
the standard errors are indicated. 
Table 5.6 also gives the ML estimates of cell probabilities when using only the 528 fully classified cases. 

TABLE 5.6. ML estimates and standaId errors. 

Fully Classified Cases Fully and Partially Classified Cases 
n = 528 n = 528 + 610 

Estimate Std Err Estimate Std Err( Genmod) 
71"11 0.5436 0.0217 0.4747 0.0179 (0.0174) 
71"12 0.0739 0.0114 0.0701 0.0105 (0.0102) 
71"13 0.0720 0.0112 0.0742 0.0108 (0.0107) 
71"21 0.0341 0.0079 0.0327 0.0065 (0.0064) 
71"22 0.0114 0.0046 0.0120 0.0044 (0.0045) 
71"23 0.0076 0.0038 0.0087 0.0039 (0.0041) 
71"31 0.1723 0.0164 0.2060 0.0149 (0.0158) 
71"32 0.0417 0.0087 0.0558 0.0094 (0.0106) 
71"33 0.0436 0.0089 0.0658 0.0100 (0.0116) 
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5.2 LOG LINEAR MODELS FOR INCOMPLETE CONTINGENCY 
TABLES 

In this section the EM algorithm and ML estimation under constraints are discussed as methods to 
determine the lvIL estimates of the cell probabilities in the complete table for any loglinear model where 
both the fully and partially classified cases are used. 
It is assumed that the data are MAR and the missing data mechanism is ignorable. 

5.2.1 The EM algorithm 

The starting values used in the ElvI algorithm are the lvIL estimates of cell probabilities obtained by 
using only the data in the fully classified table. The process then iterates between the E-step and the 
lvi-step. In the E-step the counts in the partially classified table are distributed into the full table by 
using the lvIL estimates of the cell probabilities obtained in the lvi-step. In the lvi-step lvIL estimates of 
the cell probabilities for the filled in table are obtained and used in the E-step as the next approximation 
of the lvIL estimates of the cell probabilities in the complete table. The lvIL estimation procedure under 
constraints for loglinear models (Section 3.1) can be used in the lvi-step of the algorithm. 

5.2.2 ML Estimation under constraints 

Consider an I x J x K contingency table with CI, C2 and C3 the three categorical variables where 
C, = {I, 2, ... , I} , C2 = {I, 2, ... , J} and C3 = {I, 2, ... , K}. Suppose that for n A cases, information 
for GIl C2 and C3 is known and for n B cases C1 is missing. The n A cases are classified in an I x J x K 
table and the n B cases in a J x K table. The objective is to determine the lvIL estimates of the cell 
probabilities in the I x J x K contingency table, for a specific loglinear model, by using both the n A fully 
classified cases and the n B partially classified cases. A specific loglinear model is assumed. 

Suppose I = J = K = 2. Let yAI = (Yl11'Y112'Y111,Y112'Y211'Y212'Y211'Y212) be the IJK x 1 vector 
of cell counts for the fully classified table with E (yA) = JLA and let yB' = (Y-t"r" Y-t"r2' Y~" Y-f22) 
the J K x 1 vector of cell counts for the partially classified table with E (yB) = JLB Furthermore let 

Y' = (yA' yB') ,,' = ("A' "B') and Tr' = (-"-"A' -"-"B') = (TrA' TrB'). obs , , t-"'obs t-"',t-"' obs nAt-"" nRt-"' , 

Two sets of constraints are imposed; the first pertains to the specific loglinear model that is fitted and 
the second is used to constrain the marginal probabilities in the fully and partially classified tables. 

Constraint 1 
The saturated loglinear model for the fully classified data is 

(68) 

where JL A is the vector with expected cell frequencies, X : I J K x I J K is the design matrix and f3 : I J K x 1 
is the parameter vector for the saturated model. 
The unsaturated model can be written as 

where Xu is a submatrix of X given in (68) and f3u is the parameter vector of the model. 
Let P = I - Xu (X~Xu)-1 X~. The constraint for the model in (69) is 

Constraint 2 

(69) 

(70) 

The sum of the expected cell probabilities in the I x J x K fully classified table over category C
" 

gives 
the expected marginal cell probabilities, 

I 

7r~jk = L 7rjk) for j = 1,2, ... , J and k = 1,2, ... ,K. 
i=l 
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The constraint which must hold between the fully and partially classified tables is 

7r~jk = 7f~jk1 for all j, k. 

Hence, the second constraint can be written as 

(71) 

Combining (70) and (71) gives 

The ML estimate of I-'ob, subject to g (I-'ob,) = 0 is determined iteratively with 

G = 8g (I-'ob,) I _ and 
Yo/:>" a" JLob .• -Yobs 

robs 

V -D _ 1 , 
J.l- o/)., - J1- o/>.. nA + nBJ..LobsJ-Lobs· 

The ML estimates of the cell probabilities in the I x J x K table is 
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EXAMPLE 5.4 
Determining the maximum likelihood estimates of cell probabilities in an incomplete contingency table for 
any loglinear model. 

In Table 5.7, from Little and Rubin (1987), the survival of infants are related according to the amount of 
prenatal care received by the mothers and the clinic they attended. For data in Table 5. 7( a) information 
on survival, prenatal care and clinic attended were recorded but in Table 5. 7(b) information of the clinic 
attended is missing. 

TABLE 5.7. A 23 contingency table with partially classified observations. 

Survival (S) 
Clinic (C) Prenatal Care (P) Died Survived 

(a) FUlly Classified Cases 

A Less 3 176 

B 

More 4 293 

Less 
More 

17 
2 

197 
23 

(b) Partially Classified Cases (Clinic missing) 

Less 10 150 
More 5 90 

715 cases 

255 cases 

The ML estimates of cell probabilities for different loglinear models are given in Table 5.8. The cell 
probabilities are given in the form 100iTcps where 

C = 1 if Clinic = "A" and C = 2 if Clinic = "B"; 
P = 1 if Care = "Less" and P = 2 if Care = "More"; 
S = 1 if Survival = "Died" and S = 2 if Survival = "Survived". 

The saturated model {CPS} was fitted to the incomplete data as explained in section 5.1.2 and the 
models iPS, CS, CP}, {CS, CP} and iPS, CS} were fitted by using the EM algorithm and the ML 
procedure under constraints. 

TABLE 5.8: ML estimates of cell probabilities for different loglinear models. 

{CPS} {PS,CS,CP} {PS,CS} {CS,CP} 
100iT111 0.4639 0.4350 0.8327 0.4963 
100iT112 25.4410 25.4680 36.7015 25.4203 
100iT ,2, 0.7560 0.7913 0.3053 0.7579 
100iT'22 38.8092 38.7845 28.4910 38.8208 
100iT211 2.6289 2.6578 2.2601 2.6787 
100iT212 28.4765 28.4495 17.2160 28.4150 
100iT221 0.3780 0.3427 0.8287 0.2939 
100iT222 3.0465 3.0712 13.3647 3.1172 

Only the {CS, CP} loglinear model is discussed in more detail. The programs are given in the Appendix. 
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The EM algorithm 
The observed frequency vector for the 715 fully classified cases is yA'= (3, 176,4,293,17,197,2,23) and 
for the 255 partially classified cases yB' = (10,150,5,90). 
The EM algorithm is used to determine ji, and if, the ML estimates of the cell frequencies and cell 
probabilities in the 23 table. 
The steps for the EM algorithm are as follows: 

Step 1: Starting value for the EM algorithm 
The starting value of the EM algorithm are the ML estimates obtained by using only the data in the 
fully classified table. 
From section 3.1.3, J.L(O), the first approximation of il, is determined iteratively with 

1"(0) = yA_AC (A~D;lAc) -1 g (yA) + 0 (llyA - I"IIl 

1"(0) 
and from this, 7r(O) = 715 

Step 2: E-Step 

(73) 

In the E-step 7I"(r), r = 0,1, ... is used to distribute the 255 partially classified counts into the full table. 
The filled in frequency vector at the rth step of the EM algorithm is 

where the division and multiplication indicated with "#" in the last term is elementwise. 

Step 3: M-Step 
In the M-step y(r) is used to obtain the next approximation of the ML estimate of J.L, 

l"(r+1) 
The next approximation of 1r is 7r(r+l) = ----gro-' r = 0,1,2, .... 

The EM algorithm iterates between Step 2 and Step 3 until covergence is attained. 
Table 5.9 gives values at different steps of the algorithm. 

TABLE 5.9: Values at different steps of the EM algorithm for the {CS, CF} model. 

r-O r-l r-2 r - 10 
M-Step E-Step M-Step E-Step M-Step E-Step M-Step E-Step 

Cell yA 10071"(0) y(O) 10071"(1) y(1) 10071"(2) y(2) 10071"(10) y(10) 

111 3 0.3682 4.3400 0.4802 4.5030 0.4919 4.5468 0.4963 4.5632 
112 176 24.6668 246.8579 25.4165 246.8436 25.4201 246.8343 25.4203 246.8280 
121 4 0.6109 7.4363 0.7338 7.5561 0.7513 7.5894 0.7579 7.6031 
122 293 40.9276 376.4384 38.8409 376.3140 38.8230 376.3048 38.8208 376.3106 
211 17 2.3794 25.6600 2.7148 25.4970 2.6883 25.4532 2.6787 25.4368 
212 197 27.5507 276.1421 28.3988 276.1564 28.4099 276.1657 28.4150 276.1720 
221 2 0.2780 3.5637 0.2980 3.4439 0.2953 3.4106 0.2939 3.3969 
222 23 3.2185 29.5616 3.1170 29.6860 3.1202 29.6952 3.1171 29.6894 
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Maximum likelihood estimation under constraints 
Let yA' = (3, 176, 4, 293,17,197,2,23) and yB' = (10,150,5,90) be the observed frequency vectors for 
the 715 fully and 255 partially classified cases respectively with E (yA) = p,A and E (yB) = p,B 
Furthermore Y~bs= (yAI, yBI) and /-L~bs= (/-LAI, /-L BI ) . Assume a multinomial sampling scheme. 

From Section 5.2.2 the ML estimate of /-L~bs= (/-LAI, /-LEI) subject to g (/-Lobs) = 0 is determined iteratively 
with 

'iiob."c = Yob, - (G~oo. V ~"oJ' ( Gyo,'v ~"". G~",. r' g (Yob,) + a (1IYob, - P,ob, II) (74) 

OSx4 ) 
1 , 

--14 
255 

V - D __ 1_" ,,' 
~ob" - ~obs 970r-obsr-obs' 

~A 

The ML estimates of the cell probabilities in the incomplete contingency table are the elements of p,~ 
n 

and are the same as those obtained with the EM algorithm. 

Table 5.10 gives the ML estimates of cell probabilities obtained under constraints when using only the 
715 fully classified cases and when using all 970 counts. The standard errors are also given. 

TABLE 5.10: ML estimates obtained under constraints for the {CS, CP} model. 

n -715 n - 970 
Estimate Std Error Estimate Std Error 

7rlll 0.0037 0.0014 0.0050 0.0014 
7r112 0.2467 0.0160 0.2542 0.0153 
7r121 0.0061 0.0023 0.0076 0.0022 
7r122 0.4093 0.0183 0.3882 0.0159 
7r211 0.0238 0.0054 0.0268 0.0050 
7r2l2 0.2755 0.0166 0.2842 0.0158 
7r221 0.0028 0.0008 0.0029 0.0008 
7r222 0.0322 0.0064 0.0312 0.0063 
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5.3 CONCLUSION 

This dissertation ha.'3 illustrated maximum likelihood estimation procedures for a number of generalized 
linear models for categorical data. The results obtained with the method under constraints are the same 
as those obtained with the more generally used Newton-Raphson, Fisher scoring and El\.1 algorithms. 
The advantage of the method under constraints is that it is computationally less intensive and also more 
flexible to incorporate different models. 

In this chapter the method was further developed to determine maximum likelihood estimates for loglinear 
models when the contingency table is incomplete and the missing data mechanism is ignorable. This 
illustrates the elegance with which the method under constraints can be applied. 

This opens up new opportunities for the study of maximum likelihood estimation. This includes models for 
incomplete data when the missing data mechanism is ignorable, such as logistic regression and analysis 
of variance. Furthermore the same models for incomlete data can be studied when the missing data 
mechanism is not ignorable. 
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7 APPENDIX 

The IlIIL programs for examples are gi,-en in the Appendix and appear under the appropriate chapter 
heading and example nwnber. 
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CHAPTER 2 

EXAMPLE 2.1 
proc iml; reset nolog; 
y= { BO, 15, 5} i 
b={80,O.1875) ; 
diff=l i 
j=O; 
do while (diff>O.OOOOOl)j j=j+li 

q=j (2,'.1); 
ql1 )=. (1+bI2)+bI2)'bI2) )+YI+) /bI1); 
qI2)= . bI1)·(1+2·bI2))+(YI2)+2'YI3)) / bI2); 
H=j (2,2,1); 

H(1,1)= · yl+) / (bI1)'bI11); HI1,2)=·(1+2"bI2)); 
HI2,1)=HI1,21; HI2,2)=-2"bI1)-(YI2)+2"YI3)) / (bI2)'bI2)); 
bl=b·inv(H)*q; 
diff=(b·b1) · '(b -b1); 
b=bl; 

end; 
m=j (3.1,0) j 

mI1)=bI11; mI2)=bll)"bI2); mI3)=bll)'bI2)"bI2); 
print j b mj 

EXAMPLE 2.2 
proc 1ml; reset nol09: 
y={BO, 15, 5} i 

x={1 0, 1 " 12}j 
b=glnv(x ' ·x)*x'·y; 
b={80,O.1875) ; 
dHf=l ; 
j=Oj 
do while (diff>O.OOOOOl); j=j+l; 

m=exp(x*b) j 

bl=b+glnv(x'*dlag(m)*x)*x ' *(y-m); 
diff=sqrt«b-bl) · "(b·bl)); 
b=blj 

end; 
m=exp(x*h); print b mj 

EXAMPLE 2.3 
proc i.l; reset no10g; 
y={80, 15, 5}j ybegin=Yi 
b={BO,O.1875}; 
diff=l; 
j=Oj 

do while (diff>O . OOOOOl)j j=j+ lj 

q=j(2,l,1); 
qll)=·(1+bI2)+bI2)"bI21)+ybeginl+)/bll); 
qI2)=·bll)'(1+2"bI2))+(ybeginI2)+2"ybeginI31)/b(21; 
Inf=j(2,2,l)j 

Inf(1,1)=YI+)/(blll"bll)); Infll,2)=(1+2"bI2)); 
Inf12,1 )=Infll ,2); InfI2,21=2'bll )+(YI2)+2'yI3)) /(bI2)'bI2)); 
bl=b+inv(Inf)'q; 
diff=sqrt«b-bl)·"(b·bl)); 
b=blj 

Yll)=bll); YI2)=bll)'bI2); yI31=bll)"bI2)"bI2); 
end; 
m=j{3,1,O); mll)=bll); oI2)=bll)"bI2J; mI3)=bI1)'bI2)"bI2); 
print j b mj 
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EXA IP LE 2.9 
proc 1ml; reset nolog; 
Grn=j (l,3,O) j Gy=j (1,3,0) j 

y={BO,15,S}j ybegin=Yi m=Yi muhat=Yi 
1=0; j=O; 
diffl=lj diff2=1; 
do while (diffl>O.OOOOOl)j 
1=1+1; j=O: 
diff2=1; 
Dm=diag (m) i 
Gm(1(=m(3); Gm[2)=·2'.(2); Gm[3)=m[ 1); 
y=ybegin; 

do while (diff2>O.OOOOOl); 
j=j+l i 
g=y(1)'y)3)·y[2)'y(2); 
Gy(l )=y(3); Gy(2)=·2'y[2); Gy[3)=y(1); 
muhat=y -( Gm*Dm) ' *ginv (Gy· Om*Gm')*gj 
diff2=sqrt[(muhat·y) · '(muhat·y)); 
y=muhat; 
end; 

diffl=sqrt({muhat-m) ' ~(muhat - m»j 

m=muhat; 
endj 

print i j mj 

EXAMPLE 2.10 
proc 1ml; reset nol09; 
Gy=j (1,3,0); 
y={80,15,S} j 
j=O; 
diffl=l; 
do while (diffl>O.OOOOOl)j 

j=j+l; 
Gy(l)=l / y[l); Gy(2)= ·2/y [2); Gy[3)=1 /y[3 ); 
GmOm={l -2 l}j 

g=10g(y[1)'y(3) / (y[2)'y[2))) ; 
muhat=y-GmDm ' *ginv(Gy*GmDm ' )*gj 
diffl=sqrt((muhat·y) · '(muhat.y)); 
Y=lIuhat; 

end: 
print j Yi 

or 

proc 1ml; reset nolog; 
y={80, 15, 5}j m=Yi 
x={ 1 0, 1 1. 1 2} i 
p=1(3)-x*glnv(x ' ·x)*x · i 
dHf=l i 
j=O; 
do while (diff>O . OOOOOl)j j=j+l; 

idy=inv(diag(y)); 
muhat=y·p'ginv(p'idy'p)'p'log(y); 
diff=sqrt((muhat·y) · '(muhat·y)); 
y=muhatj 

endj 
print j muhatj 
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EXAM PLE 2.11 
proc ill1j 

reset nolog; 
yobs={125.18,20,34}; mu=yobsj 
x={l · 1 -, -3, 

o 1 ·1 O} ; 
diff=l; r=Oj 
do while (diff>le-l0); 
r=r+l; 
v=diag( mu ) - (1 / 197)lImu*mu ' j 

mul=yobs-(x*v) ' *ginv(x*v*x ' )*x·yobsj 
diff=(mu-mul) ' *(mu- rnul ); 
mu=mul j 

end; 
print r mUj 
pi=mu(4) / 197*4; print pi; 
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CHAPTER3 

EXAM PLE 3.1 : Proc C.tmod for reduced Logl ine.r model 
data verdict; 
input m v f n @@j 

cards; 
42 

1 2 4 1 
2 79 2 
2 2 12 2 
3 1 32 3 
3 2 8 3 

proc catmod; 
weight nj 

2 23 
2 2 11 

1 2 65 
2 2 41 

2 17 
2 2 24 

model m*v*f=_response_/ ml nogls noprofile pred=freqj 
10g11n m v f m*v v*fj 
run; 

Iteration 

0 
1 
2 
3 
4 
5 

CATMOD PROCEDURE 

Response: M*V*F Response Levels (R): 
Weight Variable: N Populations (S): 
Data Set: VERDICT Total Frequency (N): 
Frequency Missing: 0 Observations (Obs): 

MAXIMUM· LIKELIHOOD ANALYSIS 

0 
·0.3296 
·0 . 4090 
·0 . 4219 
·0.4221 
·0.4221 

Iteration 

0 

2 
3 
4 
5 

Sub 
Iteration 

0 
0 
0 
0 
0 
0 

-2 Log 

Likelihood 

1779.1932 

1621 .7743 
1590.2147 
1590.0846 
1590.0846 
1590.0846 

Convergence 
Criterion 

1 . 0000 
0 . 0885 
0.0195 

0.0000819 
1.2263E·8 
4.29E·16 

Parameter Estimates 
2 3 4 5 

0 0 0 0 
0.6508 0 . 4413 ·0.0112 ·0.0223 
0.6050 0 . 5376 -0 . 1947 0.2463 
0 . 6068 0.5518 -0.1941 0.2509 
0.6067 0.5520 ·0.1941 0.2512 
0.6067 0.5520 ·0.1941 0.2512 

MAXIMUM· LIKELIHOOD ANALYSIS·OF · VARIANCE TA8LE 
Source OF Chi -Square Prob 

M 2 55 . 92 0.0000 
V 56.51 0.0000 
F 8.50 0.0036 
M"V 2 8.60 0.0135 
V"F 32.99 0 . 0000 

LIKELIHOOD RATIO 4 2.81 0.5898 
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12 

358 
12 

6 

0 
0.3212 

0.007680 
0.0178 
0 . 0178 
0.0178 

7 

o 
0.2793 
0.3846 
0.3823 
0.3823 
0 . 3823 



ANALYSIS OF MAXIMUM-LIKELIHOOD ESTIMATES 
Standard Chi-

Effect Parameter Estimate Error Square Prob 

M -0.4221 0.1062 15 . 81 0.0001 
2 0.6067 0.0811 55.92 0.0000 

V 3 0.5520 0.0734 56 . 51 0.0000 
F 4 -0.1941 0.0666 8.50 0.0036 
M'V 5 0.2512 0.1062 5.60 0.0180 

6 0.0178 0 . 0811 0.05 0.8266 
V'F 7 0.3823 0.0666 32.99 0.0000 

MAXIMUM-LIKELIHOOD PREDICTED VALUES FOR RESPONSE FUNCTIONS AND FREQUENCIES 
- - - - -·-Observed------- -------Predicted------

Function Standard Standard 
Sample M V F Number Function Error Function Error Residual 
- - - -- - -". - -." - - - - - - -- - - - - - - - - - -- - - - - - - - - - - - - - - - -- - -- - _. ---- - -- ---- --- - - - -- - --.' -- - - - --

1 0.55961579 0 . 25588316 0.46056655 0.22902508 0.09904924 
2 -0 . 0425596 0.29179604 0.08408898 0.23545775 -0.1266486 
3 -1. 7917595 0.54006172 - 1.9103652 0.3908212 0.11860574 
4 -0.7801586 0.36410954 ·0.7576857 0.31291637 -0 . 0224729 
5 1.19139402 0.23307701 1 .25599258 0 . 20979113 -0.0645986 
6 0.99633344 0 . 2388541 0.87951501 0.21679525 0.11681843 
7 ·0.6931472 0 . 35355339 -0.6481235 0.32394827 -0.0450237 
8 0.53551824 0.25701539 0.50455601 0.22387033 0.03096223 
9 0.28768207 0.27003086 0.17799958 0.2397416 0.10968249 

10 -0 . 3448405 0.31700189 -0 . 198478 0 . 24589408 -0.1463625 
11 -1.0986123 0.40824829 -1 .1526795 0.23414645 0 . 05406722 

Fl 42 6.0887294 38.5465116 4.76034564 3.45348837 
2 F2 23 4.63921829 26.4534884 3.57260801 -3.4534884 

2 F3 4 1.98879543 3.6 1.11274377 0.4 
1 2 2 F4 11 3.26527352 11.4 2.95150493 - 0.4 

2 F5 79 7.84646666 85.3953488 7.04763999 ·6.3953488 
2 2 F6 65 7.29371812 58.6046512 5.80126523 6 . 39534884 
2 2 F7 12 3 . 4055492 12.72 2.77929216 -0.72 
2 2 2 F8 41 6 . 02531902 40.28 5.58608559 0.72 
3 1 F9 32 5.39811678 29.0581395 4.13758176 2 . 94186047 

3 1 2 FlO 17 4.02402006 19.9418605 3.04155594 ·2 . 9418605 
3 2 F11 8 2.79664604 7.68 1.88314117 0 . 32 
3 2 2 F12 24 4.73191943 24.32 4 . 32421628 -0.32 
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EXAM PL E 3.1 : M L Estimation with the Newton-Raphson algorithm 
proc 1mlj 
reset no10g; 
y={ 42, 23, 4 , 11 , 79, 65, 
x={1 1 0 1 

1 0 

0 ·1 

1 0 -I 
0 

0 

0 - 1 

0 1 - 1 
- I - 1 

- I - 1 

- 1 -1 - 1 
- 1 -I - I 

m=Yi 
b=ginv(x··x)·x' *loQ(m); 
m=exp(x"b)j 
diff=l; 1=0 ; 

12, 41 , 

1 

· 1 

1 

- 1 

-1 

- 1 

1 

- 1 

1 
- 1 

do while (diff>le- 15)j 1=1+1; 
bl=b+ginv {x'''diag(m)·x)*x · *(y-m )j 
diff= (b- bl )'O( b- b1 1; 
b=blj 
m=exp(x"b) ; 
end; 

32, 17 , 

1 

·1 

- 1 

0 

0 

0 

0 

-1 

- 1 

sebhat=sqrt(vecdiag(ginv(x ' *diag(m)"xl)l; 
print i b sebhatj 

8, 24); 

0 I, 
0 ·1 , 

0 -I, 

0 I, 
I , 

-I, 
- I - I, 
- I 1 , 

- 1 1 , 

- 1 - 1 , 

- 1 , 

1} j 
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EXAM PL E 3.1 : M L Estimation under constraints 
proc iml; 
reset nolog; 
y={42, 23, 4, 11 , 79, 65, 12, 41, 32, 
m=y; 
x={ 1 a 

a -1 

a -1 
a - 1 -1 

a 1 
a - 1 
a -1 1 
a -1 -1 

-1 · 1 
-1 -1 - 1 

- 1 -1 -1 
-1 · 1 -1 - 1 

c={o a a a a a a 1 a a a 0, 
a a a a a a a a 1 o 0 0, 
a a a a a a a a a a 1 0, 
a a a a a a a a a a a 1 } j 

acp=c*ginv(x '·x) *x · j ac=acp ; 
gy=ac '*!og(y); 
wald=gy'*ginv(ac'*diag(l/y)*ac)*gYi 
dHf=l j i=O j 

· 1 
·1 
a 
a 
a 
a 

-1 

- 1 

17, 

do while (diff> l e- l 0); 
yl=y-ac*ginv(ac'*diag(l/y)*ac)*ac'* l og(y) ; 
diff= (y1-y)" (y1 - y) ; 

y=yl; 
end; 
bhat=ginv(x ·· x)*x ' *log(y); 
print bhat; 

v=diag(y)·y·y· / y ( + ( ; 

v=diag(y) i 
covy=v-ac*glnv(ac'*dlag(l/y}*ac)*ac' j 

sey=sqrt(vecdiag(covy)) ; 
print y sey; 

estl=diag(l / Y)*CQvy*diag(l /y); 
cov_bhat=ginv(x'·x)*x'*estl*x*ginv(x'·x) ; 
se_bhat=sqrt(vecdiag(cOv_hhat»; 
print bhat se_bhat; 

chi2=sum((ybegin-y)#(ybegin·y) /y) ; 
dev=2#ybegin ' *log(ybegin /y) ; print dey ; 
print chi2 dey wa l dj 

8, 24}j ybegin=y; 

a 
a -1 

a 1 
a -1 

a 
a 

- 1 a 
-1 a 
-1 - 1 

·1 1 

· 1 
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a - 1 - 1 0, 
a -1 - 1 0, 
a 1 0, 
1 a 1 , 

-1 - 1 a - 1 , 
-1 a - 1 , 

- 1 a 1 , 
-1 - 1 -1, 

1 - 1 1, 
- 1 -1 1 , 

·1 + 1 } j 



EXAM PLE 3.2 : Proc Logistic and Proc Gonmod 
data blood; 
input pressure ypres yabsj 
events=ypres j 
trials=ypres+yabsj 
cards; 
111. 5 3 153 
121 .5 17 235 
131 . 5 12 272 
141.5 16 255 
151 . 5 12 127 
161 . 5 8 77 

176.5 16 83 
191.5 8 35 

proc logistic j 
model events/trials=pressure; 
run; 

proc genmod; 
model events/trials=pressure/link=logit dist=bin; 
run; 

The LOGISTIC Procedure 
Data Set: WORK. BLOOD 
Response Variable (Events): EVENTS 
Response Variable (Trials) : TRIALS 
Number of Observations: 8 
Link Function : Logit 

Response Profile 
Ordered Binary 

Value Outcome Count 
1 EVENT 92 
2 NO EVENT 1237 

Model Fitting Information and Testing Global Null Hypothesis BETA=Q 
Intercept 

Intercept and 
Criterion Only Covariates Chi-Square for Covariates 
AIC 670.831 648.718 
SC 676.024 659.102 
·2 LOG L 668.831 644 . 718 24.113 with OF (p=O.OOOl) 
Score 26.556 with OF (p=O.OOOl) 

Analysis of Maximum Likelihood Estimates 
Parameter Standard Wald Pr > Standardized Odds 

Variable OF Estimate Error Chi-Square Chi-Square Estimate Ratio 
INTERCPT ·6.0820 0.7243 70.5098 0.0001 
PRESSURE 0.0243 0 . 00484 25.2523 0.0001 0.269349 1.025 
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Association of Predicted Probabilities and Observed Responses 
Concordant 56.8% Somers ' 0 0.273 
Discordant = 29.5% 
Tied = 13.7% 
(113804 pairs) 

Gamma 
Tau·a 
c 

0 . 316 
0.035 
0.636 

The GENMOO Procedure 

Model Information 
Description 
Data Set 
Distribution 
Link Function 
Dependent Variable 
Dependent Var iable 
Observations Used 
Number Of Events 
NUlllber Of Trials 

Value 
WORK.8LOOO 
BINOMIAL 
LOGIT 
EVENTS 
TRIALS 
8 
92 
1329 

Criteria For Assessing Goodness Of Fit 
Criterion OF Value Value / OF 
Deviance 6 5.9092 0.9849 
Scaled Deviance 6 5.9092 0.9849 
Pearson Chi ·Square 6 6.2899 1.0483 
Scaled Pearson X2 6 6.2899 1 . 0483 
Log Likelihood ·322 . 3590 

Analysis Of Parameter Estimates 
Parameter OF Estimate Std Err ChiSquare Pr>Chi 
INTERCEPT ·6.0820 0.7243 70.5076 0 . 0001 
PRESSURE 0.0243 0.0048 25.2513 0 . 0001 

Analysis Of Parameter Estimates 
Parameter OF Estimate Std Err ChiSquare Pr>Chi 
SCALE 0 1.0000 0.0000 

NOTE: The scale parameter was held fixed. 
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EXAMPLE 3.2: ML Estimation using the Newton-Raphson algorithm 
proc imlj 
reset nolog; 
x={l 111.5, 1 121.5, 131.5, 141.5, 1 151.5, 161.5, 176.5, 191.5}j 

y={3 153, 

xr=nrow(x) ; 
17 235, 12 272, 16 255, 12 127, 8 77, 1683, 835}j 

yi=y( ,1]; yiO=yi; 
ni=y(,l J+YI ,2]; 
pi=yi / ni; 
e=j(xr,l,l)j 

logit=log(pi /(e· pi) ); 
bhat=ginv(x '·x)*x'* logit; 

diff=l; i=O; 
do while (diff>le·l0); i=i+l; 

pi=exp(x*bhat) / (e+exp(x*bhat»; 
var=ni#pi#(e-pi)j v=diag(var)j ivar=l /va r; 
yi l=niHpi; 
bhatl=bhat+ginv(x '·v*x)*x' *(yi-Yil)j 
diff=(bhat-bhatl) '*(bhat-bhatl)j 
bhat=bhatl; 

end; 

sebhat=sqrt(vecdiag(ginv(x ' *v*x»); 
print i bhat sebhat; 
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EXAM PL E 3.2: ML Estimation under constraints 
proc iml; 
reset nolog; 
x={l 111.5, 1 121 . 5, 1 131.5, 1 141.5, 151.5, 1 161.5, 1 

y={3153, 17235, 12272, 16255, 12127, 877, 1683, 

xr=nrow( x) ; 
p=i(xr)-x-ginv(x ' ·x)·x · ; 

yi=y[ Ill; yiO=yi; 
ni=y(,l)+y[,2)i 
e=j (x r,l,l ) ; 

diff=l j i=O; 
do while (diff>le-l0); 1=i+1; 

pi=yi / ni; 
logit=log(pi /( e-pi»; 
var=ni#pi#(e-pi)j v=diag(var); ivar=l /var; 
g=p*diag(ivar)j 
yil=yi-p*ginv(p·diag(ivar)*p)~p·logitj 

diff= (yil·yi) ·· (yil-yi) ; 
yi=yil; 

end; 

bhat=ginv(x ' ·x)*x ' *logit; 
sebhat=sqrt(vecdiag(ginv(x'·v·x»); 
print i yiO yil i 
print bhat sebhatj 

pi=yi / ni; 
var=ni#pi#(e-pi); v=diag(var)j iv=diag ( l /var)j 
covy=v-p*ginv{p*iv*p)*pj 
se_y=sqrt(vecdiag(covY»j 

estl=iv*covy*iVj 
cov_bhat=ginv(x ' *x)*x'*estl*x*ginv(x '*x) j 
se_bhat=sqrt(vecdiag(cov_bhat))j 
print bhat se_ bhatj 

chi2=sum((yiO-yi)#(yiO-yi)/yi)+sum((yi·yiO)#(yi-yiO)/(ni-yi)); 
dev=2#yiO ·· log(yiO / yi)+2#(ni-yiO) · ·log((ni-yiO)/(ni-yi)); 

print chi2 devj 
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EXA MPL E 3.3: Proc Catmod, Proc Logistic and Proc Genmod 
data verdict; 
input III v f n €'@j 

cards; 
1 42 

2 4 
2 1 79 2 

2 2 12 2 
3 1 32 3 
3 2 8 3 

proc catmod; 
weight nj 

1 2 
2 2 

2 
2 2 
1 2 

2 2 

23 
11 
65 

41 
17 

24 

model v=m f /m1 nogls noprofile; 
run; 

data verdict; 
input m1 m2 f1 guilty "_Quilty @@j 

events=guiltYi 
trials=gul1ty+n_9 ui1tYi 
cards; 

1 0 42 4 

0 79 12 
· 1 · 1 32 8 

1 0 ·1 23 11 

0 · 1 65 41 

- 1 - 1 -1 17 24 

proc logistic i 
model events / trials=ml m211; 
run; 

proc genmodj 
model events / trials=rnl m2 fl / 1ink=logit dist=binj 
run; 

The CAlMOD Procedure 

Data Summary 

Response v Response Levels 
Weight Variable n Populations 
Data Set VERDICT Total Frequency 
Frequency Missing 0 Observations 

Maximum Likelihood Analysis 

2 
6 

358 
12 

Sub 
Iteration 

-2 Log Convergence Parameter Estimates 
Iteration Likelihood Criterion 2 3 

0 0 496.29338 1.0000 0 0 0 

0 382.97715 0 . 2283 0 . 8530 0 . 3128 0.1136 

2 0 378.42388 0.0119 1.0465 0.4339 0.1224 

3 0 378.34289 0.000214 1.0776 0.4548 0.1211 

4 0 378.34285 1 .0572E·7 , . 0783 0.4553 0.1210 

5 0 378 . 34285 2 . 749E·14 1.0783 0.4553 0.1210 

Maximull likelihood computations converged. 
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0.5613 
0.7443 
0.7732 

0.7739 
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Maximum Likelihood Analysis of Variance 
Source OF Chi -Square Pr > ChiSq 

Intercept 53.91 < .0001 

m 2 8.38 0.0152 
f 32 . 61 < . 0001 

Likelihood Ratio 2 0 . 26 0.8801 

Analysis of Maximum Likelihood Estimates 
Standard Chi-

Parameter Estimate Error Square 

Intercept 1 .0783 0.1469 53 . 91 
m 0 .4553 0.2226 4.18 

2 0 . 1210 0.1717 0.50 
f 0 . 7739 0.1355 32.61 

The LOGISTIC Procedure 
Data Set: WORK,VERDICT 
Response Variable (Events): EVENTS 
Response Variable (Trials) : TRIALS 
Number of Observations: 6 
Link Function: Logit 

Response Profile 
Ordered Binary 

Value Outcome 
1 EVENT 
2 NO EVENT 

Count 
258 
100 

Pr > ChiSq 

< .0001 

0.0408 
0.4809 
< _ 0001 

Model Fitting Information and Testing Global Null Hypothesis BETA=O 
Intercept 

Intercept and 
Criterion Only Covariates Chi-Square for Covariates 
AlC 426.100 386.343 
SC 429.981 401 . 865 
·2 lOG l 424.100 378 . 343 45 . 758 with 3 OF (p=O . OOOl) 
Score 43.571 with 3 OF (p=O.OOOl) 

Analysis of Maximum Likelihood Estimates 
Parameter Standard Wald Pr > Standardized 

Variable OF Estimate Error Chi -Square Chi-Square Estimate 
lNTERCPT 1.0783 0 . 1469 53.9107 0.0001 
Ml 0.4553 0 . 2226 4 . 1840 0.0408 0.168558 
M2 0.1210 0.1717 0.4968 0.4809 0 . 054754 
Fl 0.7739 0.1355 32.6053 0.0001 0.427234 
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Odds 
Ratio 

1 . 577 
1.129 
2.168 



NOTE: 

Association of Predicted Probabilities and Observed Responses 

The scale 

Concordant 62.6% Somers' D 0.434 
Discordant = 19.2% 
Tied = 18 . 2% 
(25800 pairs) 

Gamma 
Tau·a 
c 

0.531 
0.175 
0.717 

The GENMOD Procedure 

Model Information 
Description 
Data Set 
Distribution 
Link Function 
Dependent Variable 
Dependent Variable 
Observations Used 
Number Of Events 
Number Of Trial s 

Criteria For Assessing 
Criterion OF 
Deviance 2 
Scaled Deviance 2 
Pearson Chi·Square 2 
Scaled Pearson X2 2 
Log Likelihood 

Value 
WORK . VERDICT 
BINOMIAL 
LOGIT 
EVENTS 
TRIALS 
6 

258 
358 

Goodness Of 
Value 

0.2554 
0.2554 
0.2552 
0.2552 

-189 . 1714 

Fit 
Value / OF 

0 . 1277 
0.1277 
0.1276 
0.1276 

Analysis Of Parameter Estimates 
Parameter OF Estimate Std Err ChiSquare Pr>Chi 
I NTERCEPT 1 . 0783 0.1469 53.9106 0.0001 
Ml 0 . 4553 0.2226 4.1840 0.0408 
M2 0.1210 0.1717 0.4968 0.4809 
Fl 1 0 . 7739 0.1355 32.6053 0.0001 
SCALE 0 1 . 0000 0 . 0000 

parameter was held fixed. 
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EXAM PLE 3.3 : M L Estimation under constraints and using the Newton-RapllSon algorithm 
proc 1ml j 
reset 
x={l 

1 

nolog; 
1 0 1. 

o " 
- 1 - 1 1 , 

o - 1. 

o -, • 
- , - , -l}j 

y={42 4, 79 12, 328, 2311, 6541 , 1724}j 
xr=nrow(x); 

yi=y[ ,1}; yiO=yi; 
ni=y(,l J+YI ,2] j 

pi=yi lni ; piO=pi; 
e=j(xr,',l) ; 

print 'ML ESTIMATION SUBJECT TO CONSTRAINTS' j 

p=i(xr)-x*ginv(x '*x)*x' ; 
diff=l; i=O; 

do while (diff> le - l 0); i=1+1; 
pi=yi / ni; 
logit=log(pi /(e-pi»; 
var=ni#pi#(e-pi)j v=diag(var); ivar=l /varj 
g=p*diag (ivar) i 
yil =yi-p*ginv(p*diag(ivar)* p)*p*logitj 
diff=(yil-Yi) ' *(Yil-Yi)j 
yi=yil; 

end ; 

bhat=glnv(x '·x)*x'* logltj 
sebhat=sqrt(vecdiag(ginv(x'·v*x»)j 
print i yiO yi l j print bhat sebhatj 

pi=yi / ni; var=ni#pi#(e-pi); v=diag{var); iv=diag(l/var); 
covy=v-p*ginv(p* i v*p)*pj se_y=sqrt(vecdiag(covy»; 

est l =iv*covy*iv ; 
cov_bhat=ginv(x'*x)*x'*est1*x*ginv(x'*x}; se_bhat=sqrt(vecdiag(cov_bhat»j 
print bhat se_bhat j 

chi2=sum((yiO-yi)#(yiO·yi)/yi)+sum((yi -yiO)#(yi·yiO)/(ni·yi)); 
dev=2#yiO '* log{yiO /yi) +2#{ni -yiO) ' *log({n i -yiO)/(ni-yi»j 
print chi2 devj 

print ' NEWTON -RAPHSON ALGORITHM' ; 
logit=log(piO/{e-piO»j bhat=ginv(x'*x)*x'*logitj 

diff=lj i=O; 
do while (dif f >l e- l 0)j i=i+ lj 

pi=exp(x*bhat) /(e+exp(x*bhat»; 
var=ni#pi#(e- pi ) ; v=diag(var) ; ivar=l jvar; 
yi l=ni#pi; 
bhatl=bhat+ginv(x '*v*x)*x' *(yi-yil); 
diff=(bhat-bhatl) '*(bhat-bhat l )j 
bhat=bhatl; 

end; 

sebhat=sqrt(vecdiag(ginv(x'*v*x»); 
print i bhat sebhat; 
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CHAPTER 4 

EXAMPLE 4.1 

proc 1ml; reset nolog; 
/ .****.* ••• *************************************.********** / 

/ * Give the observed values of y from the square table * / 

y={50 45 8 18 8 

28 174 84 154 55 
11 78 110 223 96 

14 150 185 714 447 
3 42 72 320 411}j 

' " y={11607 100 366 12487 13677 515 302 172 225 17819 270 63 176286 10192}; " ' 
' " y={1520 266 124 66 234 1512432 78 117 362 1772205 36 82 179 492}; " ' 

y=y ' j ybeg=y j 

/ * Create C matrix for the test under constraints "' / ********************************************************** / 

n=sqrt(nrow(y))j nn=n#(n-1) / 2; 
C=j (nn,n*n,O) j 

r=O; 
do j=l to (n-1); 
klbegin=(j - l)*(n+l)+2; klend=n*j; 
1c=0; 

do kl=klbegin to klend; 
1c=1c+1; 
r=r+l; k2=kl+(n-l)*lc; 
C(r,kl]=l j C(r,k2)=-1 j 

end; 
end; 

J* 1 Test for CS model under constraints 

print 'Model CS ' j 
x=j(nn,l,l); 
P=I(nn)-x*glnv(x ' ·x)*x ' j 
K=P*C; 
diff=l; 
1=0; 

do while (diff>le-10)j 1=1+1; 
Dy=diag(y) ; 
Di=inv(Oy) j 

yl=y-K'*ginv(K*Oi*K ' )*K*log(y); 
diff=(y1·y) · "(y1·y); 
y=ylj 
endj 

chi2=(ybeg·y) · "((1,y)#(ybeg·y)); 
g2=2*ybeg ' *log(ybeg/y)j 
delta=exp(ginv(x'*x)*x ' *C*log(Y))j 
print delta chi2 g2; 
print ybeg Yj 

" , 
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/ * 2 Test for S model under constraints 

print 'Model 
y=ybeg; 
diff=l ; 
i=O; 

s · . , 

do while (diff>le- l 0)j 
i=i+1 ; 
Oy=diag (y); 
Oi=inv (Oy) ; 
yl=y-C ' *glnv(C*Di*C ' )*C*log(Y)j 
diff=(y1.y) " (y1-y); 
y=yl; 
end; 

ch12=(ybeg·Y)·'«1/y)#(ybeg·y»; 
g2=2'ybeg " log(ybeg/y); 
print chi2 g2i 
print ybeg Yi 

/* 3 Test for CPS model under constraints 

' I 

' I 
/ ************************************************* / 
print 'Model OPS' i 
y=ybeg; 

X=I(n -1); 
do h=2 to n - 1 j 

YY=l(n·h) II j (n·h,h-1 ,0); 
X=X I/ VV; 
free YYj 
endj print Xi 

P=I(nn)-X*ginv(X ' *X)*X ' j 

K=P*C; 

dHf=l ; 
i=O; 

do while (diff>le-l0)j 
i=1+1; 
Oy=diag(y) ; 
Oi=inv(Oy) ; 
yl=y-K ' *ginv(K*Oi*K ' )*K*log(y); 
diff=(y1 -y) · '(y1·y); 
y=y1 ; 
end; 

chi2=(ybeg-y)·'«1/y)#(ybeg·y»; 
g2=2'ybeg " log(ybeg/y); 
delta=exp(ginv(X ' *X)*X ' *C*log(y»; 
print delta chi2 92; 
print ybeg Yi 
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1************************************************* 1 

1* 4 Test for LOPS model under constraints * / 
/ ************************************************* / 
print ' Model LOPS ' j 

y=ybeg; 

X1 =l(n -1); 
do h=2 to n- l; 
YY=lln -h)lllln-h,h-1,0); 
Xl=Xl II YYj 

free YY; 
end; 
L=l ; 
do h=2 to n-l; 
L=L ll h; 
end; 
X=Xl*L; print X; 

P=I(nn)-X*ginv(X ' *X)*X ' ; 
K=P*Cj 

diff=l; 
i=O; 

do while (diff>le - l0); 
i=i+l; 
Oy=diag(y) ; 
Oi=inv(Oy) ; 
y1=y-K ' *ginv(K*Oi*K ' )*K*log(y); 
diff=ly1-y) " ly1-y); 
y=yl ; 
end; 

chi2= lybeg-y) - '111 / y)#lybeg-y)); 
g2=2*ybeg ' *log(ybeg / y); 
delta=exp(ginv(X ' *X)*X ' *C*log(y))j 
print delta chi2 g2; 
print ybeg Yi 

1************************************************* 1 

1* 5 Test for ALOPS model under constraints * 1 

/ ************************************************* / 
print ' Model ALDPS ' ; 
y=ybeg; 

Xl=I (n-1); 
do h=2 to n - l; 
YY=lln -h)1 Illn -h,h -1 ,0); 
Xl=Xl IIYYj 

free YY j 
end; 
L=l ; 
do h=2 to n-l; 
L=L I/ h; 
end; 
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X=j(2*n,',n)-Xl*L; print X; 

P=I(nn)-X*ginv(X ' ·X)*X· j 

K=P·C i 

diff=l; 
1=0; 

do while (diff>le-l0); 
1=1+1; 
Dy=diag(y ); 
Di=inv(Oy) j 

yl=y.K ' ·glnv(K*Ol*K ' )*K*log(y); 
diff=(y1-y) "'(y1"y); 
y=yl; 
end; 

chi2=(ybeg-y) " '((1/y)#(ybeg-y)); 
g2=2'ybeg "'log(ybeg /y) ; 
delta=exp(ginv(X ··X)*X'·C* log(Y))j 
print delta chi2 92; 
print ybeg Vi 

/* 6 Test for 2RPS model under constraints */ 

print 'Model 2RP$' ; 
y=ybeg; 

X1=I(n-1); 
do h=2 to n-l; 
YY=I(n-h)llj(n-h,h-1,O); 
Xl=Xl/IYY; 
free YY; 
end; 
L=Oj 

do h=l to n-2; 
L=L //h ; 
end; 
X2=Xl*L; X3=j(n*2,1,1); X=X311X2j print Xj 

P=I(nn)-X*ginv(X '·X)*X· j 

K=P*C; 

diff=l; 1=0; 

do while (diff>le-l0)j 1=1+1; 
Oy=diag(y)j Di=inv(Oy); 
yl=y-K ' *glnv(K*Di*K')*K*log(y); 
diff=(y1-Y) "'(y1 -y) ; 
y=yl; 
end; 
chi2=(ybeg-y)"'((1/y)#(ybeg-y)l; 
g2=2*ybeg ' *log(ybeg/Y)j 
delta=exp(ginv(X ' ·X)*X'·C*log(y}); 
print delta chi2 g2j 
print ybeg Yi 
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/ * 7 Test for as model under constraints ' 1 
/ ************************************************* / 
print ' Model as ' j 
y=ybeg; 

free Xj 
plusi=I(n-l); mini= -plusi; 
een=j(n-'.'.l); mineen=-een; 
X=een II mini II mineen II plusij 

do k=l to n-2; 
nul=j (n-k-l,k,O) i 
plusi=I(n - k-l)j mini=-plusi; 
een=j(n-k-',',')j mineen=- een; 
YY=nullleenllminillnulllmineenllplusij 
X=X I/ YY; 
free YY; 
end; 

P=I(nn)-X*ginv(X ' *X)*X ' i 
K=P*C i 

diff=' i 
i=O; 

do while (diff>le-l0); 
i=i+l j 
Oy=diag(y) ; 
Di=inv(Dy) j 

yl=y -K' *ginv(K*Di*K ' )*K*log(y); 
diff=(y1 -y) " (y1 -y); 
y=ylj 
end; 

chi2=(ybeg - Y) " ((1 / y)#(ybeg -y) ) ; 
g2=2'ybeg " log(ybeg / y); 
delta=exp(ginv(X ' *X)*X ' *C*log(y))j 
print delta chi2 g2; 
print ybeg y; 
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CHAPTERS 

EXAMPLE 5.2 and EXAMPLE 5.3 

1* ML estimation of cell probabilities for incomplete *1 
1* IxJ contingency tables if data is missing on either *1 
1* categories and the missing data mecahnism is * / 
1* ignorable *1 

proc imlj reset nologj 

" 
ENTER FREQUENCY VECTORS A, Band C: 

" 
A: both row and column categories observed 

" 
enter rowwise 

" 
B: row category observed and column category 

" 
C: column category observed and 

1* Example 5.2 *1 

A={392,55,76,38}j 
B={33,9}j 
C={31 ,7); 

/ * Example 5.3 *1 

A={287,39,38,18,6,4,91,22,23}; 
B={279,27,201); 

C={59, 18,26} j 

i=nrow(B ) j 
j=nrow(C) j 
na=nrow(A)j nb=i; nc=j; 

y=A " B" C; 
sy=y(+Jj 

row category 
missing 
missing 

ya=y[l :na, Jj yb=y(na+l :na+nb,); yc=y[na+nb+l:na+nb+nc,); 
som_ya=ya[+J; som_yb=ybl+J; som_yc=yc[+]j 
pa=ya/ya(+)i pb=yb/yb(+); pc=yc/yc[+] j 
p=pa ll pb ll pCj tot=P[+)i 
pD=Pi pbegin=Pi 

ei=J(l,i,l); 
i_i=I(j); 

ij=i+jj 
ej=J(l,j,l)j 
i_i=I(i)j 
i_ij= -I(ij)j 
c_row=i_ii'ejj 
c_col=eiEH_j j 
gl=c_rowllc_col; 
G=g11Ii_ii; 
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diff=lj t=Oj 

do while (diff>le-20)j t=t+lj 

pa=p[l :na,] j pb=p[na+l :na+nb,l j pc=p[na+nh+l:na+nb+nc.ji 
cova=diag(pa)/som_ya-pa*pa'/som_ya; 
covb=diag(pb)/som_yb-pb*pb'/som_ybj 
covc=diag(pcl /som_yc-pc·pc · /som_ycj 
V=block{cova,covb,covc)j 

p=pbegin; 
print gj print Pi 

gp=G*p; 
pt=p-(G*V) '* ginv{G*V*G ') *9Pi 
diff=(pt · pO) '· (pt·pO); 
pO=ptj 
p=ptj 

end; 

stderr=sqrt{vecdiag(v-(g*v) ' *ginv(g*v*g ' )*g*v))j 
print pt stderrj 
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EXAMPLE 5.2: GENMOD 
data onej 
input count p11 p12 p21 off; 
cards; 
392 561 0 0 0 

55 0 561 0 0 
76 0 0 561 0 
38 · 561 · 561 · 561 561 
33 42 42 0 0 

9 · 42 ·42 0 42 
31 38 0 38 0 

7 ·38 0 ·38 38 

proc genmod data=one; 
model count=p11 p12 p21 / dist=poi link=id offset=off noint; 
run; 

The GENMDO Procedure 
Model Information 

Description 
Data Set 
Distribution 
Link Function 
Oependent Variable 
Offset Variable 
Observations Used 

Criteria For Assessing Goodness 

Value 
WORK . ONE 
POISSON 
IOENTlTY 
COUNT 
OFF 
8 

Of Fit 
Criterion OF Value Value / OF 
Deviance 5 O. 1125 0.0225 
Scaled Deviance 5 0.1125 0 . 0225 
Pearson Chi-Square 5 0.1149 0 . 0230 
Scaled Pearson X2 5 0 . 1149 0.0230 
Log Likelihood 2642 . 6805 

Analysis Of Parameter Estimates 
Parameter OF Estimate Std Err ChiSquare Pr>Chi 
INTERCEPT 0 0.0000 0.0000 
P11 0.6971 0.0187 1389.0323 0.0001 
P12 0.0986 0.0124 63.5830 0.0001 
P21 0.1358 0.0141 92 . 2715 0.0001 
SCALE 0 1.0000 0.0000 

NOTE: The scale parameter was held fixed. 

Lagrange Multiplier Statistics 
Parameter ChiSquare Pr>Chi 
Intercept 0 . 0309 0 . 8605 
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EXANIPLE 5.3: GENMO[) 
data onej 
input count pll p12 p13 p21 p22 p23 p31 p32 offj 
cardsj 
287 528 0 0 0 0 0 0 0 0 

39 0 528 0 0 0 0 0 0 0 

38 0 0 528 0 0 0 0 0 0 

18 0 0 0 528 0 0 0 0 0 

6 0 0 0 0 528 0 0 0 0 

4 0 0 0 0 0 528 0 0 0 

91 0 0 0 0 0 0 528 0 0 

22 0 0 0 0 0 0 0 528 0 

23 ·528 ·528 ·528 ·528 ·528 ·528 ·528 ·528 528 

279 507 507 507 0 0 0 0 0 0 

27 0 0 0 507 507 507 0 0 0 

201 ·507 ·507 ·507 ·507 ·507 ·507 0 0 507 

59 103 0 0 103 0 0 103 0 0 

18 0 103 0 0 103 0 0 103 0 

26 ·103 ·103 0 ·103 ·103 0 ·103 ·103 103 

proc genmod data=onej 
model count=pl1 p12 p13 p21 p22 p23 p31 p32 / dist=poi link=id offset=off nointj 
runj 

NOTE: The scale 

The GENMOD Procedure 
Model Information 

Description 
Data Set 
Distribution 
Link Function 
Dependent Variable 
Offset Variable 
Observations Used 

Value 
WORK.ONE 
POISSON 

IDENTITY 

COUNT 
OFF 
15 

Criteria For Assessing Goodness Of Fit 
Criterion DF Value Value / OF 
Deviance 7 36.0006 5.1429 

Scaled Deviance 7 36.0006 5.1429 
Pearson Chi-Square 7 36.8259 5.2608 
Scaled Pearson X2 7 36 . 8259 5.2608 

Log Likelihood 4471.6801 

Analysis Of Parameter Estimates 
Parameter DF Estimate Std Err ChiSquare Pr>Chi 
INTERCEPT 0 0.0000 0.0000 

Pll 0 . 4747 0.0174 748 . 0998 0.0001 

P12 0.0701 0.0102 47 . 1384 0.0001 

P13 0.0742 0 . 0107 47.7219 0.0001 

P21 0.0327 0 . 0064 25.9330 0.0001 

P22 0.0120 0 . 0045 6 . 9284 0.0085 

P23 0.0087 0 . 0041 4.4891 0.0341 

P31 0.2060 0.0158 169 . 1698 0.0001 

P32 0.0558 0.0106 28 . 0104 0.0001 

SCALE 0 1.0000 0.0000 
parameter was held fixed. 

Lagrange Multiplier Statistics 
Parameter ChiSquare Pr>Chi 
Intercept 0.0571 0.8111 
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EXAMPLE 5.3 (Fully Classified cases) 
data wheeze; 
input smoke status f @@; 

cards; 
1 1 287 2 39 3 38 
2 18 2 2 6 2 3 4 
3 91 3 2 22 3 3 23 

proc catmod data=wheezej 
weight f; 
model smoke*status= _response_ / ml noprofile pred=prob; 
loglin smoke status smoke*statusj 
run; 

CAT MOD PROCEDURE 
MAXIMUM-LIKELIHOOD PREDICTED VALUES FOR RESPONSE FUNCTIONS AND PROBABILITIES 

Sample SMOKE 

1 
2 
2 
2 
3 
3 
3 

Function 
STATUS Number 

1 
2 
3 
4 
5 
6 
7 
8 

1 P1 
2 P2 
3 P3 

P4 
2 P5 
3 P6 

P7 
2 P8 
3 P9 

- -- --- -Observed -- - - - - ­
Standard 

Function Error 

2 . 523988 0 . 21670852 
0.52806743 0.26290547 
0.50209194 0 . 26418564 
·0.2451225 0.31469639 
· 1.3437347 0.45841567 
·1.7491999 0.54173634 
1 . 37536529 0.23338224 
·0 . 0444518 0 . 29821604 

0.54356061 0.02167697 
0.07386364 0.01138245 

0.0719697 0.01124706 
0.03409091 0.00789715 

0 . 01136364 0.00461275 
0.00757576 0 . 0037735 
0.17234848 0.01643654 
0.04166667 0.00869632 
0.04356061 0.00888298 
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-------Predicted-----­
Standard 

Function Error 

2.523988 0.2167086 
0.52806743 0.26290557 
0 . 50209194 0 . 26418573 
·0.2451225 0.31469648 
·1.3437347 0 . 45840475 
· 1.7491999 0.5417358 
1 .37536529 0.23338233 
·0.0444518 0.29821615 

0.54356061 0.02167697 
0.07386364 0.01138246 

0.0719697 0.01124706 
0.03409091 0.00789715 
0.01136364 0.00461261 
0.00757576 0.0037735 
0.17234848 0.01643655 
0.04166667 0.00869633 
0.04356061 0.00888298 

Residual 

0 
0 
0 
0 

·1.8143E · 9 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 



EXAMPLE S.4: Model {SPC} 
proc 1ml; reset nolog; 
yc={3,176,4,293,17, 197,2,23} j 
ym={lO,150,5,90}; 
G={l 0 0 0 1 0 0 0 - 1 0 0 

01000100 
00100010 

som_yc=yc[+li pc=yc/som_ycj 
som_y.=ym(+]; pm=ym /som-ym; 

0, 

000 1 000 1 

y=ycllyflj 

o -, 0 O. 

o 0·' 0, 
000-1}; 

p=pc ll pm; pO=Pi pbegin=Pi 

diff=l; t=O j 

do while (diff>le-20); t=t+lj 
pc=p[l :8,J; pm=pI9:12,1; 
covc=diag(pc)/som-yc- pc·pc· /som_ycj 
covm=diag(p.}/som-ym-pm *pm'/sofl_ymj 
V=block(covc,covrn); 
p=pbegin; 
gp=G*p; 
pt=p-(G*V }··glnv{G*V*G ') *9Pi 
diff=(pt -pO)-'( pt-pO); 
pO=pt i p=pt i 

end; 
pc=lOO*pt[l :8 ,]; print pc ; 
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EXAMPLE 5.4: (ML estimation with EM algorithm: Model SC PC) 
proc iml; 
reset nologj 
I ********************~**************** I 

" 
design matrix: S P C SP SC PC SPC o f 

/ ********************* * *************** 1 

X={ 1 1 1 , 
- 1 -1 - 1 1 -1, 
1 -1 - 1 -1 -1 , 

-1 -1 - 1 -1 1 , 
1 - 1 -1 -1 - 1 , 

-1 -1 -1 1 -1 1, 
-1 -1 -1 - 1 1 1 , 

- 1 -1 - 1 1 - 1 } ; 

1** model:SP,SC,PC ** 1 ah=X(,8]j 
1 ** model:SP,SC ** 1 ah=X(J7:8]; 
1 ** model :SCJPC ** 1 ah=X[ J5111X( J8]; 
y={3,176 J4 J293,17,197,2,23,10,150,5,90}j 

ya=y(1:8,); na=ya(+Jj pa=ya / na j yabeg=yaj ya1=yaj 

diff2=1 i r=Oj 
do while (diff2>le - l0); 
diffl =1 j 

1 * First iteration: Starting values of EM algorithm */ 
1 * Higher iterations: M-Step of EM algorithm " 
/ ****************************************************** / 
do while (diff l >le -20)j 

yt=ya -ah*ginv(ah -*diag(l / ya)*ah)*ah -*log(ya)j 
diff1=(yt -ya) " (yt-ya); 
ya=yt; 

end; 

/ *********************************** / 
/ * E-Step of EM algorithm " 
/ *********************************** / 
r=r+1j 
pa=ya / ya[+]i 
pfill=j(2,2,1)@i(4)'pa; 
yb=j (2,1, 1 )@yI9:12, 1 j 
ya=yabeg+yb#pa / pfill; 
ya2=yaj 

diff2=(ya2 -ya1) " (ya2-ya1); 
yal=ya2; 
end; 
print r pa j 

sig=diag(ya) -ah*ginv(ah - *diag(l / ya)*ah)*ah - ; 
cov=ginv(X -*X)*X - *(diag(l / ya)*sig*d i ag(l / ya»*X*ginv(X - *X); 
var=diag(cov) j 

pa=100*paj 
/ *print pa varj* / 
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EXAM PLE 5.4: (ML estimation under constraints: Model CS C P) 
proc iml; reset nolog; 
y={3,176,4,293,17,197,2,23,10,150,5,90}; ybegin=Yi yO=y; n=Y[+}i muO=y; 
ya=y[l:B,li na=ya{+]; 
yb=y(9:12,); nb=yb(+]; 
1=2; j=2j k=2; jk=j*k; ijk=i"j*k; 
X={l 1 1 1 1 1 1 1 , 

-1 -1 - 1 - 1 , 
1 -1 -1 - 1 - 1 , 

- 1 - 1 - 1 - 1 1 , 
1 -1 -1 - 1 - 1 , 

-1 -1 -1 1 -1 1 , 
- 1 -1 -1 -1 1 , 

1 -1 -1 - 1 - 1 } j 

xu=x( ,1:4) I Ix l ,6:?); 
pl=i(8)-xu*ginv(xu ' *xU)·xu · j 

cr=(l/na)#j(l,i,l)~i(jk); 

diffl=1i j1=0; 
diff2=1 j j2=0; 

do while (diff l >le-l0); j1=j1+1 ; j2=0; diff2=1; 
ya=y(1:8,); yb=y(9:12,J; 
cQv=diag(y)- l /nHy·y· i 
gmu1= (pPdiag (l /ya)) II j (8,4,0); 

gmu2=crll « - l /nb)#i( j k)); 
g.u=gllulllgmu2; 
y=ybegin; 

do while (diff2>le-l0); j2=j2+1 j 

ya=y(1:B,1; yb=y[9 : 12,1; 
gl=pPlog(ya) ; 

g2=(crll «-l/nb)#i(jk)))'y; 
g=gl/1g2; 

gy1=(p1'diag(1/ya)) I Ij(ijk,jk,O); 
gy2=cr II « -l/nb)#i(j k)); 

gy=gy 1 "gy2; 

yt=y-(gmu*CQv)'*glnv(gy*cov*gmu')*g; 
diff2=(yt-yO) - '(yt-yO); 
yO=ytj 
y=yt; 

end; 

mut=yt; 
diffl=(mut-muD) ' *(mut-muO)j 
muO=mut; 
end; 

ya=y[1:8,1; 
pa=ya / na; pb=yb/nb; 
print i j pa pbj 
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cov=diag(y) - l / n#y*y ' ; 
gmul = (pl' diag ( 1/ ya) ) 1 1 j (ij k • j k. 0) ; 
gmu2=crll (( -l/nb)#i(jk)); 
gmu=gmul // gmu2j 

sig=sqrt( 1 / na#1 / na#vecdiag(cov -( gmu*cov) ' *ginv(gmu*cov*gmu ' )*gmu·cov)j 
sig=sig[l :8,] j 

p=p[ 1 :8 , I j 
print ybegin yt pa sigj 

I J PA PB 
2 2 0.0049631 0.0317501 

0.254203 0.538353 
0 . 0075794 0.010518 
0 . 3882079 0 . 4193789 

0.026787 
0.28415 

0.0029385 
0.0311711 

Y8EGIN YT PA SIG 
3 3.5486225 0.0049631 0.0015509 

176 181.75517 0.254203 0.0155327 
4 5 . 4193025 0.0075794 0.002343 

293 277.56862 0.3882079 0.0158979 
17 19 . 152686 0 . 026787 0 . 0051063 

197 203.16723 0.28415 0.0160086 
2 2.1010385 0.0029385 0.0007932 

23 22.287327 0.0311711 0.0061783 
10 8 . 0962709 

150 137 . 28002 
5 2 . 6820797 

90 106.94163 
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