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ABSTRACT

Maximum likelihood estimation
procedures for categorical data

by
René Ehlers

Supervisor:  Professor N.A.S. Crowther
Department of Statistics
University of Pretoria

There are a large number of maximum likelihood estimation procedures for categorical data available
for scientific application. In this dissertation the most commonly used methods, namely the Newton-
Raphson, Fisher scoring and EM algorithms are compared with a maximum likelihood estimation proce-
dure under constraints. An exposition of the theory and application of the methods are given.

Chapter 1 gives a brief overview of the exponential family, the generalized linear model and measures of
goodness of fit.

In Chapter 2 the theory of the Newton-Raphson, Fisher scoring and EM algorithms and the method of
maximum likelihood estimation under constraints is discussed.

The Newton-Raphson algorithm is an iterative procedure which is employed for solving non-linear equa-
tions. It makes use of the vector of first order partial derivatives and matrix of second order partial
derivatives of the function to be maximized. The Fisher scoring algorithm is similar to the Newton-
Raphson algorithm, the distinction being that Fisher scoring uses the expected value of the matrix of
second order partial derivatives with respect to the parameters in the model.

In the broad class of models referred to as generalized linear models the observations come from an
exponential family and a function of their expectation is written as a linear model using a link function.
Agresti (1990) shows that when a canonical link function is used the Newton-Raphson and Fisher scoring
algorithms are identical.

The EM algorithm is a very general iterative algorithm for ML estimation in incomplete data problems
and is described in detail by Dempster, Laird and Rubin (1977). The algorithm makes use of the
interdependence between the missing data and the parameters to be estimated. The missing data are
filled in based on an initial estimate of the parameters (the E-step). The parameters are then re-estimated
hased on the ohserved data and the filled in data (the M-step). The process iterates between the two
steps until the estimates converge.

Matthews (1993) presents a maximum likelihood estimation procedure for the mean of the exponential
family subject to the constraint g (@) = 0, where g is a vector valued function of p. If Y is a random
vector with probability function belonging to the exponential family with F(Y) = u, then the ML
estimate of g subject to the constraint g () = 0, is given by

fi.=y— (G, V) (G, VGL) g (y) +o(lly — ull)

where g (@) is a continuous vector valued function of p for which the first order partial derivatives exist,
d d
G, - g(u): G, = g (1)

dp O
function of p, say V,,. This result implies that the ML estimate must be obtained iteratively.

Comparative examples of all the above procedures are given in Chapter 2.

|p=y and V is the covariance matrix which could be known or could be some

In Chapter 3 ML estimation of parameters for loglinear and logistic regression models is discussed. The
results obtained by using the method under constraints are the same as those obtained by using the
Newton-Raphson algorithm.
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In Chapter 4 different patterns of symmetry in squared contingency tables are discussed and illustrated
with an example from Agresti (1990). Results obtained are the same as the special cases considered in
literature.

In Chapter 5 the method of ML estimation under constraints is used to determine ML estimates of cell
probabilities in an incomplete contingency table for any loglinear model. It is assumed that the data are
missing at random (MAR) and that the missing data mechanism is ignorable. It is shown that results are
asymptotically the same as those obtained with the EM algorithm, the advantage being that the method
under constraints is computationally less intensive.
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1 INTRODUCTION

There are a large number of maximum likelihood estimation procedures for categorical data available for
scientific application. In this dissertation the most commonly used methods are compared with a maxi-
mum likelihood estimation procedure under constraints and an exposition of the theory and application
of the methods are given.

The more generally used methods of maximum likelihood estimation for categorical data includes the
Newton-Raphson and Fisher scoring algorithms for complete data and the EM algorithm for incomplete
data. The Newton-Raphson algorithm is an iterative procedure which is employed for solving non-linear
equations. It makes use of the vector of first order partial derivatives and matrix of second order partial
derivatives of the function to be maximized. The Fisher scoring algorithm is similar to the Newton-
Raphson algorithm, the distinction being that Fisher scoring uses the expected value of the second
derivative with respect to the parameters in the model.

In the broad class of models referred to as generalized linear models the observations come from an
exponential family and a function of their expectation is written as a linear model using a link function.
Agresti (1990) shows that when a canonical link function is used the Newton-Raphson and Fisher scoring
algorithms are identical.

The EM algorithm can be used for maximum likelihood estimation in incomplete contingency tables.
The algorithm makes use of the interdependence between the missing data and the parameters to be
estimated. The missing data are filled in based on an initial estimate of the parameters (the E-step). The
parameters are then re-estimated based on the observed data and the filled in data (the M-step). The
process iterates between the two steps until the estimates converge. The EM algorithm is specifically
applied to the exponential family to determine ML estimates in incomplete contingency tables when the
missing data mechanism is ignorable. Little and Rubin (1987) describes and uses the EM algorithm to
determine the ML estimates of cell probabilities for loglinear models.

Matthews (1995) presents a maximum likelihood estimation procedure for the mean of the exponential
family subject to the constraint g (p) = 0, where g is a vector valued function of .

For the loglinear model and logistic regression the results obtained from this method are the same as
those obtained from the Newton-Raphson algorithm.

The analysis of patterns of symmetry in squared contingency tables are considered by using ML estimation
under contraints and a program is given which can be used for any squared contingency table. Results
obtained are the same as the special cases considered in literature.

The method is also further developed to determine maximum likelihood estimates for loglinear mod-
els when the contingency table is incomplete and the missing data mechanism is ignorable. This also
illustrates the elegance with which the method of ML estimation under contraints can be applied.

The method under constraints is conceptually comprehensive, logically clear and at the same time com-
putationally less intensive than the EM and other algorithms.
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1 INTRODUCTION

There are a large number of maximum likelihood estimation procedures for categorical data available for
scientific application. In this dissertation the most commonly used methods are compared with a maxi-
mum likelihood estimation procedure under constraints and an exposition of the theory and application
of the methods are given.

The more generally used methods of maximum likelihood estimation for categorical data includes the
Newton-Raphson and Fisher scoring algorithms for complete data and the EM algorithm for incomplete
data. The Newton-Raphson algorithm is an iterative procedure which is employed for solving non-linear
equations. It makes use of the vector of first order partial derivatives and matrix of second order partial
derivatives of the function to be maximized. The Fisher scoring algorithm is similar to the Newton-
Raphson algorithm, the distinction being that Fisher scoring uses the expected value of the second
derivative with respect to the parameters in the model.

In the broad class of models referred to as generalized linear models the observations come from an
exponential family and a function of their expectation is written as a linear model using a link function.
Agresti (1990) shows that when a canonical link function is used the Newton-Raphson and Fisher scoring
algorithms are identical.

The EM algorithm can be used for maximum likelihood estimation in incomplete contingency tables.
The algorithm makes use of the interdependence between the missing data and the parameters to be
estimated. The missing data are filled in based on an initial estimate of the parameters (the E-step). The
parameters are then re-estimated based on the observed data and the filled in data (the M-step}. The
process iterates between the two steps until the estimates converge. The EM algorithm is specifically
applied to the exponential family to determine ML, estimates in incomplete contingency tables when the
missing data mechanism is ignorable. Little and Rubin {1987} describes and uses the EM algorithm to
determine the ML estimates of cell probabilities for loglinear models.

Matthews {1995) presents a maximum likelihood estimation procedure for the mean of the exponential
family subject to the constraint g (g) = 0, where g is a vector valued function of s

For the loglinear model and logistic regression the results obtained from this method are the same as
those obtained from the Newton-Raphson algorithm.

The analysis of patterns of symmetry in squared contingency tables are considered by using ML estimation
under contraints and a program is given which can be used for any squared contingency table. Results
obtained are the same as the special cases considered in literature.

The method is also further developed to determine maximum likelihood estimates for loglinear mod-
els when the contingency table is incomplete and the missing data mechanism is ignorable. This also
illustrates the elegance with which the method of ML estimation under contraints can be applied.

The method under constraints is conceptually comprehensive, logically clear and at the same time com-
putationally less intensive than the EM and other aigorithms.
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Let Y be a px 1 random vector and & a p x 1 vector of parameters. Barndorff-Nielsen (1978) defines the
exponential family by

ply,8) =b{y)exply'®0 - x(0)], ye®R’, 6eR (1)
where k (8} is referred to as the cumulant generating function and ¥ is the natural parameter space for
the canonical parameter 8.

The moment generating function of the exponential family is given by

My (t) = E [et"’]

:f f y)expy' (8 +t) — x(6)) dy

exp | H(B)]f f Jexp [y’ (6 +1t)]dy

= expl-x(8)]exp [n(&—i—t)]f---fb(y) exply’ (@ +t) — k(0 + 1)) dy
— exp[-k (0)] exp [ (8 + t)]
From this the cumulant generating function can be derived.

logMy (t) = &(@+t)—x(8)

= k(0)+ [%5(9)]’t+%t’ [89?99’”(9)] t-+r (t) — k()

[a%” (e)]'tht' [ aeig,n(e)] tir(y).

The mean vector and covariance matrix of Y are given by

3 &?
5‘9 k(@) =p and Cov(Y)= 5050

E(Y)= ok (0) =

EXAMPLE 1.1
The Poisson distribution as a member of the exponential family.

Let ¥;, ¢ = 1,2,...,p be independent Poisson random variables with £ (Y;) = p;. The joint probability
function of Y'=(¥1,Y2,...,Ys) s

e o) = TREZIDE o (5 pitog, — £ e s - S ogual

which is a member of the exponential family since it has the form
p(y.0)="b(ylexp[y'6 — x(0)]

with b(y) = exp[— > log u!]
8 a p x 1 vector with 6; = log yz;, that is p, = e¥i

= o= Yexp (8)).

The mean vector of Y is given by

E(Y) = —k(®

ax(0) ebp
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The covariance matrix of Y is

82
COV(Y) = mﬁ(a)

22 k(8)  B'k(8) 3%k{9)
36,90, 00,00, ' 08,00, e 0 .. 0
2%k(8)  B%k(8) 8%k (9) 0 62 0

_ 59,00, 06,06, 09:00, | _ €
a%;(e) a‘%;(e) 21(0) 0 0 - e
56,00, 90,90, 50, 50,

= Diag(p).

1.2 COMPONENTS OF A GENERALIZED LINEAR MODEL

Suppose that Y : p x 1 is a random vector and that the joint probability function is a member of the
natural exponential family with E (Y) = pu. Let 8 be a p x 1 vector of natural parameters.
A generalized linear model (GLM) consists of the following three components:

1. The random component.
The random component, Y'=(Y7,Ys,...,Y;), refers to the vector with response variables from a
distribution in the natural exponential family. That is, the joint probability function is of the form
given in (1).

2. The systematic component.
The systematic component relates parameters {7;} to the explanatory variables using a linear
predictor

7?132}331’” ’.',:]_,2,,}")
K

In matrix form
n=Xp3

where 17 : p x 1, B : m x 1 are model parameters, and X : p x m is the design matrix cousisting of
the values of the explanatory variables for the p observations.

3. The hink between the random and systematic components.
The link function %, connects the expected values of the random component, p;, to the linear
predictor by
hip)=m
where h is a monotonic differentiable function.
A GLM links p, to the explanatory variables through the equation

hp)=m =3Bz i=12,....p
E

The link function that transforms j;, to the natural parameter 8;, is called the canonical link, for
which

hp) =n;=0;= Eﬁjxﬁ-
i
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EXAMPLE 1.2
The components of a GLM for a loglinear model.

Suppose the elements of Y : 3 x 1 are independent Poisson random variables with parameter vector p.
The model to be fitted is g, = av*~! or, as a loglinear model

logp, =loga+ (i — 1} log-y.

The generalized linear model is
log e = X3.
The three components of the GLM are:

1. The random component Y.
In Example 1.1 it was shown that the joint probability function of Y is a member of the natural
exponential family.

2. The systematic component
1 0 3
n=X2=111 ( ! )
1 2 B
with @'=(3,, 3;) where 3, = loga and 3, = log~.
3. The link function, which is also a canonical link for this example, is given by

M= h(p) = logp =05 =3 B;x:;.
2

1.3 MEASURES OF GOODNESS OF FIT

Suppose that {fi,} are the estimated frequencies for the contingency table on fitting an appropriate model
to the data The following statistics can be used to test the goodness of fit of a model:

® The Pearson Chi-squared Statistic

o~

~ 2
S
XZ — E ( 1) )
i=1 i

¢ The Deviance
A saturated GLM has as many parameters as observations, giving a perfect fit. In a saturated
model all variation is consigned to the systematic component. For a given unsaturated model the
ratio

9o maximum likelihcod under model
5 maximum likelihood under saturated model

describes lack of fit.
The deviance, as defined by Nelder and Wedderburn (1972), is given by

D=2[L(@.y) - Ly, y)]

where L (fi,y) is the log-likelihood maximized over some vector of parameters and L (y,y) is the
maximum likelihood achievable in the saturated model.

As an example consider the form of the deviance for the Poisson distribution.

Let Y7,Y5,..., Y, be n independent Poisson random variables with F (Y;) = p,. The log-likelihood
function is

et
Lipy) = log [Hy—‘f]
Yoyiloghi; = 30 H; — 3 logyi!
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The deviance for a model with fitted values }i; is

D = 23 wilogh; — > fi; — > logy! — {2 wilogy; — 2w — > logyily]

i, o
= 2 Zyalog;JrZ(yrm) .

e The Wald Statistic
If the model under consideration is formulated in terms of the constraints g(©) = 0 and G =

98(M)| _ then the Wald statistic is
dp

W =g (y) (GyVyG,) ' g(y)-
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2 MAXIMUM LIKELIHOOD ESTIMATION PROCEDURES

This chapter outlines the theory of the Newton-Raphson, Fisher-Scoring and EM algorithms as procedures
for maximum likelihood estimation. The EM algorithm is specifically applied to the exponential family to
determine ML estimates for incomplete data when the missing data mechanism is ignorable. A maximum
likelihood estimation procedure for the mean of the exponential family, subject to the constraint

g{p) =0, is also discussed.

2.1 THE NEWTON-RAPHSON ALGORITHM

The Newton-Raphson method is an iterative procedure to determine the value B of 3 that maximizes a
function g (3).

Let ,@(T) be the rth approximation of B where r =0,1,2,.. .. As described in Agresti (1990}, the method
requires an initial guess, 6(0), for the value that maximizes the function. At step r in the iterative process
the function g (3) is approximated by the terms up to the second order in the Taylor series expansion of
g{B) around 8, that is

Q0 (@) =g (ﬁ(r)) + (ﬁ _ 5(r)) +1 (ﬁ _ ﬁ(r))’H{r) (5 _ ﬁ(r)) +o (||!3 _ "
%9 (8)

where H is the matrix having elements ———-, q is the vector having elements
03,00,
q'”) are H and q evaluated at 8= a8,
The next approximation of 3 is in the location of the maximum value of (2).
aQ'" (8)
o3

) @

99 (B)
ije

, and H(™ and

Solving =q") +H) (ﬁ — ﬁ(r)) =0 for B yields the next approximation of B,

-1
Bt — gt _ (H(r)) q'” (3)

assuming H(") is nonsingular.
Iteration continues until convergence is attained.

EXAMPLE 2.1
Determining ML estimaotes using the Newion-Raphson algorithm.

The number of accidents per thousand per age group in a certain factory is given in Table 2.1.

TABLE 2.1: Accidents per 1000 per age group.

Age group I 11 1III
Number of accidents 80 15 5

Suppose the elements of Y : 3 x 1, the number of accidents for each category, are independent Poisson
random variables with parameter vector g The observed vector is y' = (80,15,5). The model under
consideration is p; = ay'~! for i = 1,2,3. The likelihood function is given by

) = ST

exp (_a) (]_ + ¥ + "}12) a(yl+y2+y3}ﬂy(y2+2y3}

Hyi!

The value, B,: (&, %), that maximizes [ will also maximize the log-likelihood function

L(Bly)=(—a) (1 +v+7%) + (yr +y2 + ya)log (a) + (yo + 2y3) log (7) — 3 log (1:!)



P

% NIVERSITEIT VAN PRETORIA

u
@, UNIVERSITY OF PRETORIA
@’ YUNIBESITHI YA PRETORIA

and is determined iteratively with the expression
-1
B+ _ gn _ (Hm) q'” (4)

where ,B(’”) is the rth approximation of E, and q" and H™ are q and H evaluated at 3 = ,8(” with

oL@ _ ( %5 — {1y o) - i
N W_(%f—)):( —ar (14 29) 4 etk ) )
. aﬂL(ﬁ)_(%@ %@)_(—i@ C(1+2v) ) 6
8808’ %%? gé%@ ~(1+2y) —2a - lutis)

From the model to be fitted o = p; and v = B2 _ 2 {f the observed data is used as an initial estimate
a

of p the first approximation of E is

,6(0) - CI(O) — 80
(0 0.1875
and is used to determine q(® and H(®. Substituting 8%, q® and H® into (4) gives

3 _ g _ (Hw))‘l q@.

This is used to determine q‘¥) and H®),

The process continues until convergence is attained. Table 2.2 shows ﬁ(r) at different steps of the
algorithm.

TABLE 2.2: Values of [3(’") at different steps of the Newton-Raphson algorithm.
al™) +7)

80 0.1875
79.294919 | 0.2153986
78.829748 | 0.2200938
78.821827 | 0.2201973
4 | 78.821823 | 0.2201973

LW B =S

The value E} that maximizes the log-likelihood function is
3- & Yy [ T8.821823
U F /02201973 )

Substituting this into the model to be fitted, p, = avy'~!, gives

fiy a 78.821823
=7 = & | = 17356354 |.
s & 3.8218228

The program is given in the Appendix.

EXAMPLE 2.2
Determining ML estimates for a loglinear model using the Newton-Raphson algorithm.

Consider the model in Example 1.2 and Example 2.1. The log-likelihood function is
L{ply) = Zyi log p; — ZM,- - Elogyi!. (7)

In Example 1.2 the model y; = ay*~! was written as the generalized linear model

1 0 3
logp=X3=| 1 1 (61)
1 2 2
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with 3; = log @ and 3, = log v, and X the design matrix.
Using the fact that logu, = 3, 8;2;; and p; = exp (ZJ ﬁjmij) the log-likelithood function in (7} can be
written as a function of the elements of 3. That is

L(Bly) = Zyi Z Byi — ZEXP (Z 5j$ij) - ZIOE yil. (8)
i 2 t 2 i
The value of B that maximizes L {3y} can be found iteratively with
B+ gt _ (H(r))'lq(r) 9)
where q is the vector with elements the first order partial derivatives
oL
qr= (8) = -} Ty €XP Eﬁjfcz‘j + 3 yitix
e/e7 : 7 7
and H is the matrix of second order partial derivatives having elements
9?L
hpe = 813,,,8(2 = - ; TipTif €XP (ZJ: ﬁjq"ij) =- 21: TinTikfd;-
From this
o) =X (y - ™) (10)
H = _X'diag (,u,(’")) X (11)

with p(") = exp (XB(T)) the rth approximation of i, (r =0,1,2,...).
Substituting (10) and (11) into (9) gives

-1
gl = gl 4 [X'diag (,u.(’“)) X] X' (y - ,u,(r}) . (12)
From the model to be fitted o = g1, and v = % = % Using the observed data as an initial estimate of
I

4, the approximation of B at r =01is
(o) log a{®) 1.90309
A= ® }7\ - :
log ~ 0.72700
This is used to determine 1{% = exp (XB(U)). Substituting 8'” and £ in (12) gives the next approx-

imation for 3,
g — 3™ 4 [X’diag (”(0)) X] -1 X' (y B “(0))

which is used to determine ), N
The process continues until convergence is attained and the value B that maximizes the log-likelihood

function in (8) is
5= B\ _ [ legd \ _ [ 43671899
"\ A, /T \logd )T\ -1513231 /-

Substituting this into the model, y; = ay*~?, gives

R i 78.821823
i = exp (X,@) = | & | = 17.356354
fin 3.8218228

This is the same result as obtained in Example 2.1.
The program is given in the Appendix.



-
ﬂ UNIVERSITEIT VAN PRETORIA

@, UNIVERSITY OF PRETORIA
@’ YUNIBESITHI YA PRETORIA

2.2 THE FISHER SCORING ALGORITHM

The Fisher scoring algorithm is similar to the Newton-Raphson algorithm, the distinction being that
Fisher scoring uses the information matrix. The information matrix is the negative expected value of the
second order derivitave matrix of the function to be maximized. The Newton-Raphson algorithm uses
the observed value of the second order derivitave matrix. The formula for Fisher scoring is

-1
B+l _ gt | (Inf(r)) qt”

where Inf(") is the rth approximation for the estimated information matrix. The information matrix,
Inf, is the negative expected value of the matrix of second order partial derivatives of the log-likelihood

5L (ﬁ))
and has elements Inf,, = —F .
" (%haﬁk

EXAMPLE 2.3
Determining ML estimates using the Fisher scoring algorithm.

Suppose the elements of Y : 3 x 1 are independent Poisson random variables with parameter vector
p and observed vector y' = (80,15,5). The model to be fitted is u; = a+*~!. In Example 2.1 the
Newton-Raphson algorithm was used to find the ML estimates.

The equation used in the iterative procedure is

-1
g+ — gt 4 (Inf(r)) q"

where Inf(™ is

Inf = —E [521‘ (/3)] — o (%ﬁ) - (%%l) | E (W) —(1427)
0808 -B(5H8) -B(ZA) ~(1+2y) B (204wl

evaluated at 8™,
Table 2.3 gives the values of ﬁ(’"} at different steps of the Fisher scoring algorithm.

TABLE 2.3: Values of ﬂ(’") at different steps of the Fisher scoring algorithm.
Oi(r) ,},(T)

80 (.1875
79.294919 | 0.2153986
78.820871 | 0.2201953
3 | 78.821823 | 0.2201973

This is the same result as obtained in Example 2.1 with the Newton-Raphson algorithm.
The program is given in the Appendix.

[N e ] Ry

EXAMPLE 2.4
Determining ML estimates for a loglinear model using the Fisher scoring algorithm.

This example uses the model and data in Example 2.2 where the ML estimates for the GLM were found
iteratively with the Newton-Raphson algorithim given by the equation

Bt = gl 4 [X'diag (”(T)) X] - X’ (y - ”(T)) )

Since
H™ = _X'diag (p(f)) X

is not a function of the observed data y, the observed and expected second derivative matrices are the
same. Thus

Inf = —H.

This happens for all GLMs that use a canonical link function. The Newton-Raphson and Fisher scoring
algorithms are identical in such cases.
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2.3 IGNORABLE MISSIN\J LATA VIRCHANISM

The EM algorithm can be used to determine maximum likelihood estimates for incomplete data. Before
presenting the theory of the EM algorithm, it is necessary to define an ignorable missing data mechanism.

Suppose the data of interest is denoted by Y = (¥;;) : n x p matrix of n observations measured for p
variables. The data is assumed to be generated by a model with probability function f{y|8} where 8

is the vector of unknown parameters. In the case of incomplete data let Y’ = (Y, .Y, ..) where Y 5,

represents the observed part of Y and Y., denotes the missing values. The joint probability function
of Yous and Yois is given by f(¥]0) = f{¥obs) Ymis|€)}-

An indicator random variable is included in the model which indicates whether each component of Y is
observed or missing. Define a response indicator R = (R;;) such that

R — 1, yi; observed,
YL 0, yij missing.

The joint probability function of R and Y can be written as
Flyx|8,4) = f(y|8) f (rly, %) (13)

where f (r|ly, ) is the distribution of the missing data mechanism. This mechanism depends on Y and
some unknown vector of parameters ¢. In the case where the distribution of the missing data mechanism
does not depend on the missing values Yomis, the data is said to be missing at random (MAR) and

f (r|YDbs; ¥mis, Qp) =f (r‘YObs:"/’) . (14)

MAR, requires only that the missing values behave like a random sample within subclasses defined by the
observed data. If the missing data values are a random sample of all data values the data is said to be
missing completely at random (MCAR).

The observed data consist of the values of the variables (Y55, R) and its probability function is obtained
by integrating out the missing data Y, ,:

f (yObS1 I'|8, 'l/J) = /f (yobs;}’mis ‘9) f (rl}'obsa Ymis. 1}") de'is' (15)
The likelihood of & and % is proportional to (13), that is

l(9=¢|yobaal‘) x .f (yobs:r!B;d’) . (16)

If the data is missing at random, that is if (14) holds, the probability function of the observed data, given
in (15), can be written as

f(YUbs:rlga "I’)) = /f (y:;bs:Ymisw)f(r‘YObs:".[’) Y mmis

= f(ﬂycbsrﬁ)) X ff(yobs:ymisla) de'is
f(rlyobsy¢)f(yobslg)- (17)

The likelihood of the observed data under MAR can thus be factored into two pieces, one pertaining
to the parameter of interest 8, and the other to 75. The parameters 8 and 4 are distinct if the joint
parameter space of 8 and ) is the product of the parameter space of 8 and the parameter space of . If
both MAR. and distinctness hold, the missing data mechanism is said to be ignorable (Listle and Rubin,
1987) and likelihood based inferences about € will be unaffected by 4 or f (r|yops, ¥).

From equation (17) it follows that

f(yObS)r|31w) X f (Yabs]g)

and thus
l (97 ,‘J)lygbg‘l I‘) x l (GEyobg)

10
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which means that all relevant statistical information about the parameters is contained in the cbserved
data likelihood, [ (8ly ;. )-

EXAMPLE 2.5
Incomplete univariate data with an ignoreble missing data mechanism.

Let Y : n x 1 denote a vector of n independent identically distributed random variables. Let ¥’ =

(Yipe Yo} with Y/, = (¥1,Ya,...,Yn) and Y, ;. = (Yimg1,Yingo,...,¥a). That is, m units are

observed and n —m are missing. Let R’ = (R;, Rs, ..., R, ) dencte the response indicators, where R; = 1
if y; is observed and R; = 0 if ¥; is missing. Suppose that each unit is observed with probability . The
missing data mechanism is

Flly) = TIo7 (-9 =™ (L) ™

and since it does not depend on Y, the data is MAR. If @ and ¢ are distinct, inferences about 8 can
be hased on the observed data likelihood

LOYobs) = /f(y°b3’ymis|6) Ay s
N ./ /H f ylig}. H f(y1|9)dym+1 - Ay
= ,l;Ilf(yde)

which is a complete data likelihood based on the reduced sample (¥],Y5,..., Ym)l.

EXAMPLE 2.6
Bivariate date with one variable subject to nonresponse if the missing data mechanism is ignorable.

Consider a dataset with variables Y; and Y3 where Y7 is observed for units 1,2, ...,n and Y3 is observed
only for units 1,2,...,m < n. The missing data will be MAR if the probability that Y5 is missing does
not depend on Y3, although it may possibly depend on Y). Let y;1 and g2 denote the values of Y7 and
Y5, respectively, for unit i. Since

f (Yobs: Ymis|0) = f (Yobs|0) f (ymiaiyobsa )

the observed data likelihood can be written as

l(9|yobs) = /f(yobS:Ymistg) AYmis

] £ Fors18) F (Voo e 6) A mis

ki3

Hf(.%l:%z[e) I[I f(yai®) ﬁ f (yizlvin, @) dymis

i=1 i=m+1 i=m+1
= H f Wi, ui2l0) [T flyal®) H+1f(yi2|yi1a9)deis
1 i=m-+1 i=m

3111,%2“9) 1__[ f(yu|9)

i=m+1

Il
E:s i

This is the product of the joint likelihood for Y7 and Y5 where Y; and Y, are both observed, and the
likelihood of Y7 where only Y7 is abserved.

11
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2.4 THE EM ALGORITHM

2.4.1 Theory of the EM Algorithm

Assuming that the ignorability assumption is correct, all relevant statistical information about the para-
meters is contained in the observed data likelihood, [ (8|y ;.). The EM algorithm uses the interdependence
that exists between the missing data Y,;s and the parameters 8. An initial estimate of 8 is obtained
from the observed data Y. The missing data is filled in based on this initial estimate of & and 8 is then
re-estimated based on Y, and the filled in Y,,;,. The process iterates until the estimates converge.
Suppose the density function of the complete data y is given by f {¥|8) where 8 is the unknown parameter.
Let Y'=(Y/,,, Y,.;s) where Y, represents the observed part of Y and Y,,;, denotes the missing values.
The distribution of the complete data can be factored as

f (Yobs: Ymis|0) = F (Vobs10) f (Ymis|¥ s, 9) - {18)

The objective is to maximize the likelihood function for the observed data, that is maximize

01y o) [ ] (Ve Vsl 05
with respect to @ or, alternatively, to maximize the log-likelihood

L (Blyabs) = IOg [l (eiyabs)] .
The log-likelihood that corresponds to (18} is

L (myobssymis) =L (e‘yobs) + log {f (Ymis b’gbgw 9)}

and can be written as
L(81Y,55) = L(BlY pp51 Yimis) — 10&[f (¥mis|¥ s 0)] (19)

where L (fly_,.) is the observed log-likelihood to be maximized, L(8|y,,.,¥m;;) is the complete data
log-likelihood and log [f (¥mis|¥ .5, €)] 13 the missing part of the complete data log-likelihood.

The expectation of both sides of (19) over the distribution of the missing data Y, given Y, and a
current estimate of 8, say 6" is

L(Oly o) =@ (0167) - H (016"”) (20)
where
@ (6167) = [ 1L (Ot Fio ) S (Ve ¥opss 67) e (21)
and
#.(816) = [ {108 [F (i l¥ ot OV (Yol 0:67)) 9 (22)

From Jensen’s inequality {Rao 1972)
H (816 < 1 (8016) (23)

and therefore maximization of L (@]y_,.) is equivalent to maximization of Q) (919“)) with respect to 8.

Each step of the EM algorithm consists of an E-step (expectation step) and an M-step (maximization
step):

# In the E-step the function @ (GIB(T)) is calculated by averaging the complete data log-likelihood
L{01y) over £ (YmislY ops: 87).

o In the M-step 87+ is found by maximizing Q (9|9(‘")). That is Q (9(T+1>|9(”) >Q (0|9(’”)) for
all 6.

12
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2.4.2 The EM Algorithm for exponential families

Little and Rubin (1987) presents a simple characterization of the EM algorithm when f (y|@) has the
form for the regular exponential family defined by

Fyl8) =b(y)exp (s(y) 9) ja(®) (24)

where @ is the parameter vector and s{Y) is the vector of complete data sufficient statistics. For regular
exponential families the complete data MLE can be found as a solution to the likelihood equations

E(s(Y)|#)=s (25}

where s is the realized value of the vector s (Y).

Suppose 0" denotes the current value 8 after r cycles of the algorithm. The next cycle can be described
in two steps, as follows:

* E-step: Estimate the complete data sufficient statistics s (Y') by finding
s = E (s (Y) [Yobs, e(f)) . (26)

e M-step: The M-step determines the new estimate 61 of @ as the solution of the equations
E(s(Y)]6) =" (27)

which are the likelihood equations for the complete data with s (Y) replaced by s{") as obtained in
the E-step in (26).

EXAMPLE 2.7
Incomplete univariate normal data. EM algorithm for the regular exponential family.

Suppose Y;, i = 1,2,...,7n are independent identically distributed random variables from a N (,u,(rz)
distribution. Let 8" = (i, ?). The log-likelihood function for the complete data is

n 1 2
L8ly) = “510802—@;(%—#)2

P lego? . LT
5 loga® — 57— Lgm 2#Ey1+mu]

i=1

which is linear in the sufficient statistics s (Y) = (81 (¥), 82 (Y)) = (Z Y;, Z Yf)
1 =l

With no missing data the ML estimates of x and o are

~ 1 Z”:
Po= =w
i1
2
52 — Z?:lygi E?:lyi
T n

Suppoese now that only the first m components of the data vector Y are observed and that the data are
missing at random (MARJ}.

13
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The E-step of the EM algorithm calc S5e®, (UNIBESITHI YA PRETORIA
ng) = FE (31 (Y} kYobs, B(T)) (Z Y |Yob33 ) Z Yi + )Ju‘(r)
) = B (52(0)¥unr87) = 542 4 (0= m) [(w) +cr?“")]
i=1

for current estimates (") = (;L(’") ,o2(")) of the parameters. In the M-step the expectations of the sufficient
statistics calculated in the E-step are substituted in the expressions for the ML estimates giving

-

E (Z Y;'|Yohsag(r))

i=1

S
i=1

Bl 3=

and

JQ(T+ 1) E

=1

ly +(n—m) [( ('"))2+02(r)” - (‘u(r+1))2_

3 Y2|Y 0, 6 ’) (u("“))z

1
n
1

Msf\

7

-

i

Numerical Example

Suppose Y;, ¢ = 1,2,...,10 are independent identically distributed random variables from a N (12,9)
distribution and that Y; are observed for i = 1,2,...,6 and missing for ¢ = 7,...,10. The 6 observed
values are 12.893, 7.012, 12.165, 12.274, 14.657 and 8.644.

The initial values of p(® = 10 and ¢2(® = 10 were chosen arbitrarily. Table 2.4 displays the results at
different steps of the algorithm until convergence. The results are the same as the mean and variance for
the six ohserved data points, that is

=
Il

(= Y N

& e

2
32 E'L:Sl y'p. _ ‘aQ

TABLE 2.4: Iterations of the EM algorithm for incomplete univariate
normal data, n = 10 and m = 6.

M-Step E-Step
r ,u('") a2 | E (\i Yi| Yo, 9(1”)) E (i y{2|Y0b3, 9(’"))
i=1 i=1
0 10 10 107.645 1243.582
1 } 10.765 | 8.4884 110.703 1301.015
2 | 11.070 | 7.550 111.926 1323.988
J | 11.193 | 7.124 112.415 1333.178
4 | 11.242 | 6.945 112.611 1336.853
5 | 11.261 | 6.873 112.686 1338.324
6 | 11.269 | 6.843 112.721 1338.912
7 111.272 | 6.831 112.733 1339.147
8§ | 11.273 | 6.827 112.738 1339.241
9 | 11.274 | 6.825 112.740 1339.279
10| 11.274 ¢ 6.824 112.741 1339.294
11 | 11.274 | 6.824 112.741 1339.300
co | 11.274 | 6.824 112.741 1339.300

14
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EXAMPLE 2.8
EM algorithm for data from a multinomial distribution.

This example, discussed by Dempster, Laird and Rubin {1977) gives the data in which 197 animals are
distributed multinomially into five categories. The complete data, Y' = (Y7, Y5, Y5, Yy, ¥5), are the counts
for each category and the cell prohabilities in this model are given as

m=(L1p31(1-p),}(1-p),Ip) forsomed<p<1

Yor the complete data the density function is

(it tustvatys) w1 yw
yip 3 P
fvip) = y1lyelyslyslys! (2) (4 ) (
The ML estimate of p for the complete data is given by

- G- Gn”

= Y2t ¥s
2tystuyatus
The kernel of the complete data log-likelihood is

(28)

p)

it

Lply)=vilogl + (y2+ys)log ip+ (y3 +ya)log (L —

and the counts are the sufficient statistics.

The observed datais y/,, = (y1 + ¥2, ¥3, Y1, ¥s) = (125,18,20,34). Only the total of ¥; and Y53 is observed.
In the E-step the conditional expectations of the sufhicient statistics, Y;, i = 2, 3,4, 5, given the observed
values and a current estimate of p, are calculated. At stepr (r=0,1,2,...)

E(Y2|Yobs, p™) 125—21”’ v
2| Xobs, P = 1 _(r
3+ 1"
E(Y3|Yope, ™) = 18
E(Y4|Yops, ™) = 20

E(YsYous, ™) = 34.

In the M-step the conditional expectations of ¥; as calculated in the I-step are substituted in expression
(28) giving the next estimate of pin the iterative process

p(r_i_l) E(Y2|Yabs:p(r)) + 34
E(Ya| Y ops, P + 18 + 20 + 34
1..(7)
125_1__2,73,__ﬁ
3+ 30"
1 {r
I,

T
§+4p(

+ 34

+18+20+ 34

The process iterates between the E-step and the M-step until convergence is attained.
Table 2.5 shows that, starting from p(®) = (.5, the EM algorithm converges after seven steps.

TABLE 2.5: Iterations of the EM algorithm.

M-step E-step

r | P | E(Yal Yo, ™)
0 0.5 25

1 | 0.608247 29.15020
2 | 0.624321 29.73727
3 | 0.626489 29.82589
4 | 0.626777 20.82634
5 | 0.626816 29.82773
6 | 0.626821 29.82792
7 | 0.626821 29.82794
00

0.626821 29.82794
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2.5 A MAXIMUM LIKELTHOOD ESTIMATION PROCEDURE WHEN
MODELLING IN TERMS OF CONSTRAINTS

Proposition 1
Suppose Y is a random vector with probability function belonging to the exponential family and with
E(Y) = p. Matthews (1995) derives a ML estimate of g subject to the constraints g (p) = 0, as

fio =y — (G, VY (G, VG.) " g(y) +ollly — ll) (29)

where g (i) is a continuous vector valued function of g for which the first order partial derivatives exist,
e 7]
G, — ATDY G, — g (1)
dpe O
function of g, say V.. This result implies that the ML estimate must be obtained iteratively.

|g=y and V is the covariance matrix which could be known or could be some

Matthews (1995) gives the following proof of this result.

Proof:

Let v be a vector of Lagrange multipliers. To find the ML estimate of gt subject to the constraints
g (1) = 0, we maximize

o (3 0) = Wb y) =0~ (0) + 75 (4 0)).

Hence we find 5 8 26
. . 9
e i 6i) = gty | 52
. a . . a81 . . . .
Since we set aiw {(y;8;~) = 0 for a maximum, and since B; is invertible for a regular exponential
family, we need further only consider %w {v;:8;7v).
Thus

S (¥i87) = Y~ s (8) s 7' E (O]
yu+{a£g(u(9)) [%]}7

_ |
= y—p+ [89] G,

Setting %w (¥; 60;v) = 0, we get

9 ,
=y + [ag] GL7. {30)

Using the linear Taylor expansion of g (u) about y, we get

glp) = g(y+[ge] G, )
g() 1 G, (w 2] @ )+o(uy~un)

£) + Gy | 2] @+ oly - ul).

Setting g (¢} = 0 and solving for ~, gives
o]’ -
7= (Gy E G;,) 8()+ollly ~ ).

16
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i=v- (G [2]) (Gy [g%]’c;)_lg(y) +olly - ).

Now
Iy, __3_ Ik (6) _32."5(9)
99 - 905 00; - 893895'
Hence
o _ [om] _ #x(0)
88 90, - a90;00;
and ,
6_;,0 _ 825(0) _v
a0 | 06,;00; e
Therefore

fro =y = (Gu V) (GyVG,) g (y) +o(ly — ul)

which is the required result.

The iterative procedure

The process is a double iteration over y and p. Let ,u“*j ) denote the {4, J)th approximation obtained for
the ML estimate fi_ of g, where i (i =0,1,2,...} refers to iteration over g, and j (j =0,1,2,...) refers
to iteration over y. Note that 7 = 0 at the start of every iteration over y.

The initial value for p is p(®% =y, the vector of observed values. Iteration then takes place over y and
the value of p in G, and V, is kept constant at (%% = y. The first approximation of fi, is given by

—1
P'(O’l) =y - (G#(o,o) V#(D,q))f (GyV“((m) GL(D’D)) g (y) .

If convergence over y is not attained at this step, y is replaced by p(%?) to obtain the next approximation
of fi,, whilst the estimated value for g in G, and V,, is kept constant at p(®® = y. Thus,

1
“(0,2) — “(0:1) _ (G“(O,U)V“(o.u))’ (Gp(u.1)v#(u4u)G:‘(0‘o)) g (M(O,l)) .

This is repeated until convergence over y is attained, say at j = k.
The value at convergence, ;"% is used as the next estimate for g in G, and V. The procedure again

iterates over y, starting with the vector of observed values, y, and keeping the estimated value for p in
G, and V,, constant at (0% That is

-1

pY =y~ (Gom Von) (Gyvpm,k) G;Lm,k)) g{y).

If convergence over y is not obtained at this step, the next approximation of ji, is

-1
“{1,2} = ’_L(l’l) — (G#(D,k)v'u_(ﬂ,k))’ (G#(I,I)V#(D_k)GL(U,k)) B (“(1,1}) .

At convergence the iteration over y yields the next estimate for g in G, and V,. The process continues
until convergence over g is attained.

17
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In certain cases the iterative procedure simplifies to an iteration only over y or only over p.
o If g is a linear function of g, say g () = Ape then G, = A = Gy and
H(O,I) =Y — (Avp(o,o))f (A.V'U_(U,U)A,)_l Ay. (31)

For the iteration over y convergence is immediately attained since substitution of p{®!) into y in
equation (31) gives

-1
1O — (AV 00’ (AVL(O,O,A’) Apl®D

h (AV#(U,U))’ (Avu(u,u)A’) -t Ay—

-1 _
(AV“(n,n))’(AVL(o_O)A’) A[y—(AVM(u,o))f(AV#(o_n)A') 1Ay]

Y - (A.VH_(O,O))’ (A.VF_(U,U) A.I)_l Ay
pO0,

The process simplifies to iteration only over p with y remaining constant.
Atstepi+1 (:=0,1,2,...) the approximation of [i_ is given by

i —1
pi) =y — (AV,0) (AV,mAY) Ay

with ¢{® = y. The process converges to the ML estimate fi_.

e Let D, be a diagonal matrix with the elements of p'= (#1: J17 ,,up) on the principal diagonal
and V =D,,. Suppose g () = Alog(p). Then

d _
G, = 5Emog(”):ADMl
G, = AD}'
and
o~ -1
e = ¥~ (GuVa) (GyVLGL) ™ Alog(y) +o(lly ~ ul)

= y- (AD;'D,) (AD;'D.D,'A")”" Alog(y) +o(lly - )
— y—- A (AD;'A) 7 Alog(y) +o(lly — ).

Iteration is only over y. At step j+1 {5 =0,1,2,...) the approximation of i, is given by

“(j+1) =pul — A’ (AD;}J.)A’)_I Alog (p(j))

with 1£(® = y. The process converges to the ML estimate Ji_.

Proposition 2
The asymptotic covariance matrix of i, is given by
-1

L=V, - (Guv.u), (G#V#GL) GV,

with the MLE obtained by replacing pu with fi.

18
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EXAMPLE 2.9
Determining ML estimates under constraints with iteration over y and p.

The number of accidents per thousand per age group in a certain factory is given in Table 2.6.

TABLE 2.6: Accidents per 1000 per age group.

Age group I 1T MI
Number of accidents 80 15 5

The model under consideration is g, = ay~! for ¢ = 1,2,3, and independent Poisson sampling is
assumed.

This model implies the constraint
g (1) = ppg — 3 = 0.

In this case

V, =D,

G, = ( by, —2p, 4y )

Gy={(ws, —2ys, w1 )

G.D, = ( HyHsg, *2#% Hiks )

G,D.G), = (1 + ys) paptg + 4y2143.
The ML estimate of g is found iteratively from

fi. =y~ (GuDy) (GyDLGL) g (y) +ollly — uel). (32)

Iteration is over y and p. The process converges after eight steps.

Table 2.7 gives the approximation of ji, at different steps of the iterative procedure. These are the same
results as obtained by the Newton-Raphson and Fisher scoring algorithms (see Examples 2.1, 2.2 and
2.3).

TABLE 2.7: Approximation of fi, at different steps of the iterative procedure.

i H H
0 80 15 3

gi,j) :(;',j) ugi,j) ”g.j} ,ugi,j)

80 15 3
78.526316 16.657895 3.5263158
78.531142 16.6524656 3.5311418
30 15 5
78.793103 17.413793 3.7931034
78.821807 17.356387 3.8218065
78.821823 17.356354 3.8218228
80 15 5
T8.793103 17.413793 3.7931034
78.821807 17.356387 3.8218065

78.821823 17.356354 3.82138228

1 78.531142 7R.531142 3.5311418

2 78.821823 17.356354 3.8218228

Lo~ O N = DD - O

Description of the procedure:

e Both y and g in equation (32) are initially estimated by the observed data, that is y = u©9, The
first approximation of fi, is given by

-1
“(D,l) -y — (G#(o,n)D#(o,n))' (GYD”(D,B) GL(“'U’) g(y).
The process iterates over y until convergence is attained at (¢, 7) = (0,2) . At this stage the approx-
imation of fi, is
78.531142
p 2 = | 16.652465

3.5311418

This becomes the next estimate of g in G, and D,,.
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80

e The process again iterates over y with the initial value of y = 15 |, the vector of observed

5
data.
For (¢,7) = (1,0)

-1
'u,(l,O) =y - (G#(O,Z)VN,Z))' (Gyvu(n,z)GL(o,g)) 4 (y)

and for (¢,5) =(1,1)
-1
'u,{l’l) = ;1,(1‘0} - (G”(o‘z)vp(u,zy)l (GF(I,U)V’_‘LO“Z)GL(U'Q)) B (”(1,0)) .

Convergence is attained at (¢,7) = (1,3). The vector u**) becomes the next estimate of g in G,,
and D,,.

e The process again iterates over y with the initial value of y the vector of observed data.This iteration
over y converges at (¢,7) = (2,3) and at this stage

-1
#(2,3) — ”(2!2) — (G‘u(l.S)V‘u(l,a)), (G#(z.z)vy(l,a)GL“,s)) g (,U,(E’Q)) .

Since 23 = p(13) convergence over i is also attained at this step and the process stops.

The program is given in the Appendix.
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EXAMPLE 2.10

Determining ML estimates under constraints with iteration over y.

Consider the same data as in Example 2.9 but using the constraint

g () = log (st p13) — 2log{ip) =0

In this case

V=D,
1 -2 1
Gu=(5h = W)
1 -2 1
Gy:(a’ ! Z';)
G#D#:(la -2, 1)
GyD,G, =+ +4 41

The ML estimate of p is found iteratively from

-~

H

Y= (G.uD.u)f (GyD#GL)

‘y'_

1

o | log (y1ys) — 2log(y2)
- 1,4 .1

1 Y1 ¥z | Y3

gly)+o(ly — )

+o(lly —ul).

Iteration is only over y.

Table 2.8 gives the estimates of [i, at different steps of the iterative procedure.

TABLE 2.8: Approximation of fi, at different steps of the iterative procedure.

Approximation of ji, by p'"™
r ,ugr) 'ug") ”gr)
0180 15 5
11 78.79924 17.40152 3.79924
2 | 78.821801 | 17.356397 | 3.8218013
3 | 78.821823 | 17.356354 | 3.8218228

Alternatively, the constraint can also be set up in terms of the GLM given in Example 1.2, The model is

logpu = Xg3

with = (3, 8;) where 3, = log and 3, = logy, and X the design matrix given in Example 1.2.
Let P =1 - X (X'X)X’'. The model can be written in terms of the implied constraints as

g(p)=[I - X(X'X)X']logpr =Plogpp = 0.
The ML estimate for g subject to the constraint g (1) = 0 is found iteratively from
~ -1
He =Y — (G,uv.u)l (GquGL) gy} +olly —ull)

with V, =D,

G, = PD,'
G, =PD,!
G,.V=P

' -1
GyVG, =PD_'P.
Hence, the estimation procedure is
~ 1y 1
fi.=y—P(PDy'P) Plogy+o(lly —ul).

Iteration is only over y. The estimates of Ji, at different steps of the iterative procedure is exactly the
same as given in Table 2.8. The programs with these two restrictions are given in the Appendix.
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EXAMPLE 2.11

Determination of mazimum likelihood estimates under constraints. An example for incomplete data.

Example 2.8 gives data in which 197 animals are distributed multinomially into five categories.

The complete data, Y' = (¥, Y2, Y3, ¥y, ¥s), are the counts for each category and the cell probabilities
in this model are given as

ﬂ":(%,%p,%(l—p),%(l—p),%p) for some 0 < p < 1.

The random vector of complete data is Y'=(¥1, Y, Y3, ¥, Y5) and the random vector of observed data
is Y/,, = (Y1 +Y5,Y3,Y),Ys) where only the sum of ¥7 and Y3 is observed. The observed data is
¥i.s = (125,18,20,34).

The distributions of Y and Y.y, are both multinomial and can be written as

Y ~ Mult (n, )

with
ﬂJ - (ﬂ13ﬁ2>7r3r7r49ﬂ.5)
(3,451 —p), ;{1 —p),;p) forsome 0 <p<1
and
Yous ~ Mult (n, mops)
with
Tops = (M1 + T, 3,74, Ts5)
= (%+%p,%(l*p),i(l-p),i})) fOISOmQOSpSl. (33)

The ML estimate of p must be obtained from the ohserved data, Y. For the multinomial distribution

E (YObS} = NTobs = Hobs-

From the cell probabilities given in (33) the constraint g (pt.;,) = 0 can be written as

1 -1 -1 -3
g ("Lobs) = Xp’obs: ( 0 1 -1 0 ) Hobs

where g is the vector of expected cell counts.
The ML estimate, fi,,, ., of the expected cell counts y¢,;. are obtained by solving

I

—1
—~ !
“’obs,c = Yobs — (Gf"uba Vlu‘obs) (GYDIJ: V“Db:G”()bs) 24 (yObS) +o (”yﬂbs — Hobs “)

where 'V, . =Diag(¥obs) = 2 Vobs¥ops

G.uobs =X= Gy()hﬂ

& (Yobs) = X¥ops-
Since g (f4,.) is a linear function of p,, iteration is only over g, .
The ML estimate of p is then determined from g, . by

e~ 4 luobs,4
T

129.37096
15.379041
18.379041
30.870959

result as obtained with the EM algorithm in Example 2.8.
The program is given in the Appendix.

The process converges after 4 steps and fi ,, . = giving p = 0.6268215. This is the same
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3 CATEGORICAL DATA ANALYSIS

Maximum likelihood estimation procedures for loglinear and logistic regression models are discussed in
this chapter.

3.1 LOGLINEAR ANALYSIS

3.1.1 The Model

Cousider a completely classified contingency table and arrange the observed frequencies into a vector

¥'=(y1.92,¥3,--.,¥p). The expected cell frequencies are given by pu'= (ul,uz,y3, ceey ,u,p). A Poisson
sampling scheme is assumed.

For independent Poisson sampling the joint probability function of ¥;,i=1,2,...,p is

P BXP_‘u“ Ju".v,l
i=1 ;!
= exp[2yilogp; — 3 plexp -2 logul] (34)

which is a member of the exponential family since it has the form

p(y,0)=b(y)exply'® — x(6)]

fy (ylp)

with b(y) = exp[— > log v
8 a 4 x 1 vector of natural parameters with 8; = log u,, that is g, = exp (6;)

K(0) =3 p; = > exp ().

The expected value of ¥; is

E(Y) = 55x(0)
= b
#y
and the covariance of Y3, Y] is
52
Cov(V.Y;) = 575 (0)

[ e ifi=j
- 0 otherwise.
Thus E{Y) = 2 and Cov(Y} =Diag(p).

In the case of a 2 x 2 contingency table with two categorical variables A and B, the model to be fitted,
written as a loglinear model is

logs, = a+ X1 +27 + 27
logu, = a+Af =A=MY
logus = =A% +A7 =AY
logpy = a— A — A + A
The generalized linear model is
log 1 = X.

The three components of the GLM are:

1. The random component Y.
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2. The systematic component

1 1 1 1 a
1 1 -1 -1 At
n=X8= B
1 -1 1 -1 be:
1 -1 -1 1 B

where X is the design matrix and 3'= (a, MLAB AP ) the vector with model parameters.
3. The link function is also a canonical link and is given by

N =) = log i, = 8; = 3 B;z5- (33)
J

3.1.2 Newton-Raphson algorithm for ML estimation

From equation (34) the log-likelihood function for independent Poisson sampling is

Lply) =X yilogp; — 30 p; — 2 logyil. (36)

In equation (35) log p; was written as log u; = 3. ;2. By substituting p; = exp (E; B, :cg-j) intc the

log-likelihood function in (36), the log-likelihood can be written as a function of the elements of 3. That
is

L{Bly) =2 v 3 Bjzi; — 2 exp (Z ﬁjI'iJ") — > logyil. (387)
g 7 T 7 i
The value of B that maximizes L (3ly) can be found iteratively with the Newton-Raphson algorithm
B+ _ gl _ (H(r))'l e (38)

where ,B(r) is the rth approximation of B, r=0,1,2,... and '} and H") are q and H evaluated at
,B(T). From Section 2.1, q is the vector with elements the first order partial derivatives

kaaL B _ _ Yxiwexp | 287 | + X viwin
/e 5 7 i

and H is the matrix of second order partial derivatives having elements

L (B)
hre = Bﬁhaﬁk = — inhxik exp %:,Bjmij = - Zz: TihTikjly-

2

Hence,
qm =X’ (y - u(”) (39)

H — _X'diag (p(f)) X (40)

with (7 = exp (Xﬁ(’")) the rth approximation of fi, {(r =0,1,2,...).
Substituting equations (39} and (40) into equation (38} gives

gl — g [X’diag (,u,(’")) X]_l x! (y _ “(r)) . (41)

The algorithm requires an initial guess, 8, for the values that maximizes the function L (8]y). The
ML estimates of the parameters in the saturated model are used as the initial estimates and are given by

B = (X’XY1 X'logy.
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The asymptotic covariance matrix of ,@ is
= 7 - ~ —~1 Tr—1
Cov (ﬁ) = [X'diag () X] " = -H™".

A canonical link function was used in the GLM in which case the observed and expected second derivative
matrices are identical. Hence, the Fisher scoring and Newton-Raphson algorithms are identical.

3.1.3 Maximum likelihood estimation under constraints

This procedure is also discussed by Crowther and Matthews (1995).
The saturated loglinear model can be written as

logpu =X3 (42)

where p'= (,ul,,uz,,u3, e ,pip) is the vector with expected cell frequencies for the model, X : p x p is
the design matrix and 3 : p x 1 is the vector of parameters for the saturated loglinear model. The ML
estimate of 3 for the saturated model is

B=(X'X)"" X'logy.

For a lower order model certain elements of 8 will be equal to zero.
Let C be a matrix specifying the elements of 3 which are set equal to zero. The hypothesis that certain
elements of 3 are zero, can be written as the constraint

gp) = CB (43)
= C(X'X)'X'logp

Al logp
0.

The ML estimate of ¢ subject to the constraint g {u) = Al log it = 0 is given by

o=y — (G V) (G, V,.GL) g (y) +o(lly — 1)

o
where G, = E‘ﬂ;g(‘u) = ALD;!and V, = D,
Thus
_ _ . -1
. = y—(AGD,'D,) (ALD,'DLDAc) g ly) +o(lly - ull)
_ -1
= y-Ac(ALDS'AG) () +olly —pl). (44)
The ML estimate for fi, is obtained by iterating over y and the asymptotic covariance matrix of fi, is

o~

-1
$.=Ds - Ac (A’CDEjAc) Al
The ML estimate for the vector of cell probabilities is

o~

Pc =

<@

where n is the number of observations.
The ML estimates for the parameters in the loglinear model are given by

B=(X'X)"" X' log fi,.
The covariance matrix B is

Cov (B) = (X'X) ™' X'Cov [log i) X (X'X) .
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The “delta method” is used to determine the asymptotic covariance matrix

- Blogﬁc)A (alogﬁc)'
est [Cov (logpu,)] = = b3 =
o (og )] = (752! o
o — 15 -1
= D BDg .

Hence, the estimated covariance matrix for 3 is

est [Cov (B)] —(X'X)'X [D;{clf.‘.cDE:] X (xX'x)".

EXAMPLE 3.1
Mazimum likelihood estimation for a loglinear model.

Pugh (1983) designed a study to examine the disposition of jurors to base their judgments of defendants
{“guilty” or “not guilty”) on the alleged behavior of a rape victim. Pugh’s study varied the degree to
which the juror could assign fault to the vietim (“low” or “high”) and the presentation of the victim as

someone with “high moral character”, “low moral character” or “neutral”. The data are given in Table
3.1.

TABLE 3.1: Data from Pugh (1983).

Moral (M)
Verdict (V) Fault (F) High Neutral Low
Guilty Low 42 79 32
High 23 65 17
Not Guilty Low 4 12 8
High 11 41 24
The saturated model, log (,uijk)=a+/\i\/"+)\;{+)\£+kf‘fv+/\ffF+/\ﬁF+)\ng}?,can be written as
loge = XB
1+ 0 1 1 1 0 1 0 1 1 0 @
AM
1 1 0 1 -1 1 0 -1 0 -1 -1 0 1
AM
1 1 0 -1 1 -1 0 1 0 -1 -1 0 2
1 1 0 -1 -1 -1 0 -1 0 1 1 0 A
1 0 1 1 1 o0 1 0 1 1 0 1 A7
1 0 1 1 -1 0 1 0 -1 -1 0 -1 pEiid
]t o0 1 -1 1 0 -1 0 1 -1 0 -1 AV
1 0 1 -1 -1 0 -1 0 -1 1 0 1 X;"{F
1 -1 -1 1 1 -1 -1 -1 -1 1 -1 -1 AYF
1 -1 -1 1 -1 -1 -1 1 1 -1 1 1 AVF
11
1 -1 -1 -1 1 1 1 -1 -1 -1 1 1 AMVF
111
1 -1 -1 -1 -1 1 1 1 1 1 -1 -1 AMVFE
211
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Consider in this example the reduced model log {1;;,) = e+ A +AY + X + A" 4+ 21" which contains
only the interaction terms between Verdict and Fault and between Verdict and Moral.

Results from the Proc Catmod procedure in SAS

The program and cutput obtained from the PROC CATMOD procedure in SAS are given in the Appendix.
The results are summarized in Table 3.2.

TABLE 3.2: Results from SAS: Proc Catmod.

Maximum Likelihcod Estimates

Variable Par Estimate Standard Error
Pl —0.4221 : 0.1062
prel 0.6067 0.0811
A 0.5520 0.0734
Y —0.1941 0.0666
AV 0.2512 0.1062
AV 0.0178 0.0811
AV 0.3823 0.0666
Model Fitting Information

Likelihood Ratio 2.81
Pearson Chi-Square 2.80

Obtaining the ML estimates by using the Newton-Raphson algorithm
The ML estimates are obtained iteratively with equation (41),

BUY = B+ [ X, ding (1) X “x, (v-ut)

where the matrix X, is a submatrix of the design matrix, X, of the saturated model and 3, is the
parameter vector of the reduced model. The model is

1 1 0 1 1 1 0 1 o
1 1 0 1 -1 1 0 -1 /\{w
1 1 0 -1 1 -1 0 -1
1 1 0 -1 1 -1 0 1 A
1 0 1 1 1 0 1 1 NG
log i — X3, = i1 0 1 1 -1 0 1 -1 ;
wu 1 0 1 -1 1 0 -1 -1 M
1 0 1 -1 -1 0 -1 1 MV
1 -1 -1 1 1 -1 -1 1 ot
i -1 -1 1 -1 -1 -1 —1 AV
1 -1 -1 -1 1 1 1 -1 p
1 -1 -1 -1 -1 1 1 1 ALl

The ML estimates of the parameters for the saturated model are used as an initial guess of Bu and are
given by

BY=(x! X,)" X/, logy.
The covariance matrix of Bu is
Cov (Bu) = [X/diag (B) Xu] .

The results obtained are the same as in Table 3.2. The program is given in the Appendix.
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Obtaining the ML estimates under constraints
For the model log (15} = a+ A2 + A + AL + MMV + A7, the ML estimate of u subject to the constraint,

000000010000
000000001000

gw)=CB=1 430000000010 |30
00000000000 1

can be determined iteratively with equation (44),

—~ _ —1
B.=y—Ac(ALD'AG) gy) +olly —pl)

where A, = C(X'X)" ' X'.
Furthermore R
B=(X'X)"" X' log i,
and ~
est [Cov( ) = xx) X [Dglzcngl] X (X'X)"!

The Wald statistic is 2.79 and the other results obtained are the same as in Table 3.2. The program is
given in the Appendix.

3.2 LOGISTIC REGRESSION

3.2.1 The Model

Let ¥;,i=1,2,...,p be independent random variables with Y; ~ bi (n;,m;). The frequency distribution
for the p independent binomial distributions is given in Table 3.3.

TABLE 3.3: Frequency distribution of p independent binomial distributions.

Subgroups
1 2 e P
Successes 1 Y2 . Yp
Failures Ny—Yy1 Ma—Yr -0 Np—Up
Suppose that m covariates, Xy, Xa, ..., X,,, are observed and that at occaston 4, 3; = (zi1, T2, . ., Tim)
and y; is the number of successes in the n; trials, i = 1,2,...,p. Let ®' = (71, 72,...,7p) be the vector
with probabilities of a success within each subgroup and n'=(n1,n9,...,n,) the vector indicating the

number of trials within each subgroup.
The joint probability function of ¥7,Y¥5,...,¥, is

s
LU

flylm}y = (Yi =)

.
[
-

?1‘ (1 _ ,n.i)ni—yi

Il
[fem
Wt
w F
S’
=

=}
0%
e

= exp

(”*>+lognwy=+1og1‘[(1_w)”= yi]

i=1 i i=1

og (yu) + Z yilogm; + E (ni —y:}log (1 — m)]

i=1

log (n’) + Z y; log —— T

1

I
o

= exp

T

[T

= exp

+ Zmlog(l—ir )] (45)

r
-~
Il
—

!
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p(y.0) =b(y)exp[y'® — r(8)]

where

o= 115)

. 8
8 a p x 1 vector with natural parameters 0; = log L -, that is m; = ﬁ
» 7 1 ip
K{0) = — Y nilog(l —7) = — Y milog| —— ) = 3 mlog (1 +e).
i=1 im1 1+ e =
For the exponential class
d
EY) = e
) = 5r®)
— n; 692
14t
= T = py
and
32
YiY;) = 8
Cov (Y., Y;) 393-691%( }
B nm; (1—m) ifi=373
- { 0 otherwise. (46)

Thus, E{Y) = p and Cov(Y) =V, =diag[n;m; (1 —m;)].
The logistic regression model is written as £, = X3 with

T
1—71’,;

m
£, = log = Bo + Oyzar + Baaz + -+ Bptim = Y B;T5.
=0

The three components for the GLM are:

o The random component Y, the vector of successes.

e The systematic component which relates the linear predictor to a set of explanatory variables,

1 zy1 T2 -+ ZTim Bo

1 =3 T2 -+ Tom B34
n=X8= :

L zpy Zpz - Zpm B

e The link function which links p; = E(¥;) to 7;,

Ny

my .
m-:logl_‘,:log = log —X1— = ().

5 Ty — g7y Ny — Hy

The function & is a canonical link since h (i} = 8; = log

1
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3.2.2 Newton-Raphson algorithm for ML estimation

From equaticn (45) the log-likelihood function for the logistic regression model is

L Ny 4 ™5 P
L(WIY)=Elog( )JrEynslog1 + Y nlog (1 — ).
=1 L i i—1

1 i=1 A H

. mi m
SIIICE Iog (1—_-_;:) = Ej:() ,Bjxij,

and log (1 —m;) = —log [1 + exp (E;“:O ,Bjs':ij)]
the log-likelihood function in terms of & is given by

L(@) =3 log () 1y S By 3 mylog [1 texp (§ ﬁﬁm‘)] -
i=1 U i=1 =0 i=1 3=0

The value )@ of 3 that maximizes L (3) can be determined with the Newton-Raphson algerithm. At step
r+1{r=20,1,2,...) in the iterative process the approximation of 3 is given by

glr+1) _ gtr) _ (H(r})‘l e (47)
2
where q is the vector having elements L (’6), H is the matrix having elements oL (6), and g and
e 9P, 00s,
H™ are q and H evaluated at 8 = 37,
The elements of ") can be written as
= dL (8) ot
F 08, °=*
P P exp (Z;-n:o JBE,-T) xij)
= > yiTie + ) MiZik ——
i=1 i=1 1+exp (ijo B; xij)
P
()
= Tig (Y + 1y,
e (v tmenl?)
and the elements of H(") as
h(r) _ 8L (B) | -
n 08,08, 7P
: exp (T70 8571
= =2 TinTipn RMRERE
i=1 [1 + exp (23:0 ,Bj I'i_j)]
P
= - E xihmikniﬂ'f‘r) (1 — Wi(»r)) .
=1
Thus
q" =X’ (y - n’ﬁ(r)) (48)
and
H") = —X'Diag [nm,ﬁ” (1 - ﬂ’l(-r))] X. {49)
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Substituting (48) and (49) into (47) gives

Bt = gl 4 {X’Diag [nmg’") (1 - wl(-r))] X}_l X' (y - n'frm) (50)
where
oo (o 87215 | -
o (S0 8025)

The algorithm requires an initial guess for a, which is
BO = (XX X
Ui

n:

where £ is calculated from the observed data and has elements £; = log T

For r > 0 the iterative process proceeds by using equations (50) and (51).
The estimated asymptotic covariance matrix of 3 is a by-product of the Newton-Raphson algorithm,

Cov (B) — {X'Diag 7 (1 - 7)) X} ' = —H~! (52)
where 7; is the value of ’JTET) on convergence.

A canonical link function was used in the GLM in which case the observed and expected second derivative
matrices are identical. The Fisher scoring algorithm is identical to the Newton-Raphson algorithm.

3.2.3 Maximum likelihood estimation under constraints

Maximum likelihood estimation for the logistic regression model, using constraints is discussed by Crowther
and Matthews (1998).
The logistic regression model can be written as £,= X3 as discussed in section 3.2.1. The elements of

£, written as a function of y, is

Hsi
= ]
ogn‘_

el 234

i

Ty

&, = log 1 il

Let P =1 — X (X'X) X’ be the projection matrix of the error space. From this the constraint for a
logistic regression model as a function of g is

gip)=P,=PX3=0.

The ML estimate for p is found iteratively with

e -1
Be=y = (GuVyu) (GyVuGL) ™ g(y) +ol(lly — pl) (53)
where G, = o8 (1) = PV;! since Obsy = ! and V,, =diaglnym; (1 — m;)]. Furthermore,
op # Oy niw; {1 — ;)
Gy = 8%(”) lp=y = PV;1 and g (y) = P#, where £, has elements ¢; , = log i Substituting this
!
into (53) gives
- _ ] _ _ -1
B, = y—(PVS'V,) (PVJIV,VLIP) Pl +oflly — ull)

= y-P(PV,'P) 'Pl to(lly - pl).

Iteration takes place over y.
The asymptotic covariance matrix of fi_ is

~

$.=Vs —P (PVﬂ;jPY1 P.

31



&
W UNIVERSITEIT VAN PRETORIA

@, UNIVERSITY OF PRETORIA
@ YUNIBESITHI YA PRETORIA

The M1 estimates for the parameters in the model are given by
B=X'X)"'Xt;.

where £ is the vector of logits at convergence.
The asymptotic covariance matrix of 3 is

cov (B) = (X'X)™! X'eov (6,85 )X (X'X) ™"

TR

From the “delta method”,

eofeor (6,.)] = (58) 2 (52)

= vilyn vt
. i,
and hence, the estimated covariance matrix for 3 is

est [cov (E)} - (X'X)"'x [V;jicvgj] X (X'X)™

EXAMPLE 3.2
Moaoximum likelihood estimation for a logistic regression model with a continuous covariate.

The data in Table 3.4, taken from Apresti (1990), was reported by Cornfield (1962) for a sample of
male residents of Framingham, Massachusetts, aged 40-59, classified into 8 subgroups according to blood
pressure . During a six-year follow-up period, they were classified according to whether they developed
coronary heart disease. This is the response variable. The explanatory variable in the model is the value,
x;, which represents the blood pressure in subgroup 7,7 =1,2,...,8.

TABLE 3.4: Cross-Classification of Framingham Men by Blood Pressure and Heart Disease,

Heart Disease
Blood Pressure  z;  Present (y;) Absent (n; —y;)

<117 111.5 3 153
117 ~ 126 121.5 17 235
127 — 136 131.5 12 272
137 — 146 141.5 16 255
147 -- 156 151.5 12 127
157 — 166 161.5 8 77
167 — 186 176.5 16 83
> 186 191.5 8 35
The model to be fitted is ¢; ,, = log . j‘ﬂ' = fig + 3, x; which can be written as
1 1115
1 121.5 3
pexan| L () o0
Do B
1 1915
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Results from the Proc Logistic and Proc Genmod procedures in SAS
The programs and output obtained from the PROC LOGISTIC and PROC GENMOD procedures in
SAS are given in the Appendix. The results are summarized in Table 3.5.

TABLE 3.5: Results from SAS: Proc Logistic and Proc Genmod.

Maximum Likelihood Estimates

Variable Parameter Estimate Standard Error

Intercept -6.0820 0.7243

Blood Pressure 0.0243 0.00484
Model Fitting Information

Pearson Chi-Square 6.2899

Deviance 5.9002

Obtaining the ML estimates by using the Newton-Raphson algorithm.

The ML estimate of 3 is found iteratively with equation (50) and the covariance matrix is given by
equation (52).

The same results as in Table 3.5 are obtained. The program is given in the Appendix.

Obtaining the MI. estimates under constraints
The ML estimate for g subject to the constraint g {p) = P{,= PX3 = 0 is found iteratively with the
equation

- gy ~1

fie=y P (PV'P)" Pty +o(lly — pll)

Yi
i — Ui

where £y = (£1y,80y,.. ., €py)s £iy = log fori=1,2,3.. pand P=1- X (X'X} X",

Iteration takes place only over y.
The maximum likelihood estimates for the parameters are given by

B=(XX)'Xt;,

where £; is the vector of logits at convergence.
The asymptotic covariance matrix of 3 is

Cov (B) = {X'Diag [0, (1~ %)} X} "

The same results as in Table 3.5 are obtained. The program is given in the Appendix.
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EXAMPLE 3.3
Mezimum likelihood estimation for a logistic regression model with o categorical covariate (logit model).

Pugh {1983) designed a study to examine the disposition of jurors to base their judgments of defendants
on the alleged behavior of a rape victim. Pugh’s study varied the degree to which the juror could assign
fault to the victim (“low” or “high”). It also varied the presentation of the victim as someone with
“high moral character”, “low moral character” or “neutral”. The response variable is the judgment of
the defendant as “guilty” or “not guilty” by the jurors. The data are given in Table 3.6.

TABLE 3.6: Data from Pugh (1983).

Moral (M)
Verdict (V} Fault (F) High Neutral Low
Guilty Low 42 79 32
High 23 65 17
Not Guilty Low 4 12 8
High 11 41 24
Uk

The model to be fitted is £; , = log 1
—

z;1 = 1 and x;2 = 0 if Moral = High,

z;1 = 0 and z;5 = 1 if Moral = Neutral,

z;1 = —1 and ;3 = —1 if Moral = Low,

z;3 = 1 if Fault = Low,

x;3 = —1 if Fault = High.
This model assumes no interaction between moral and fault but it can be extended to include the
interaction.

=+ Ailwmﬂ + /\f;zwil'ig + Afmig where

The model can be written as the logit model

1 1 0 1
1 0 1 1 &
1 -1 -1 1 A
a=XB=1 0 0 X
1 0 1 -1 A
1 -1 -1 -1

Programs similar to those in Example 3.2 are given in the Appendix and the results are summarized in
Table 3.7.

TABLE 3.7. Results for Example 3.3.

Maximum Likelihood Estimates

Variable Parameter Estimate Standard Error

Intercept 1.0783 0.1469

Moral High .4553 0.2226

Moral Neutral 0.1210 0.1717

Fault Low 0.7739 0.1355
Model Fitting Information

Pearson Chi-Square 0.2552

Deviance 0.2554
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4 SYMMETRY MODELS FOR SQUARE CONTINGENCY
TABLES WITH ORDERED CATEGORIES

Contingency tables are considered where the same variable with ordered categories is measured for both
members of a matched pair. Responses are summarized in a two-way table in which both classifications
have the same categories. One of the matters of interest in the analysis of square tables is the pattern
of symmetry that may be exhibited by the cell probabilities in terms of their location relative to the
main diagonal of the table. These models are discussed in more detail by Agresti (1984), Agresti (1990},
Matthews (1995) and Tomizawa (1990).

41 SYMMETRY MODEL (S)

Consider an [ x I contingency table with categorical variable €' = {1,2,...,I}. A Poisson sampling
procedure is assumed. Let Y;; be the count in cell (¢, 7), y;; the observed value of ¥;; and n =33 w5
the total counts. The counts can be arranged in a vector Y' = (Y11, Y1a,...,Y7) with E(Y) = u, the
vector of expected counts. Let 7;; denote the probability that an observation falls in cell {4, j).

There is symmetry if

Ty = Wy for i # J.
Thus, if
log (15;/1t5;) = logpy; —logpy; =0 for 4<j.

This can also be written as the constraint

g{pu)=Clogp =10

where, in the case of a 4 x 4 table the matrix C is given by

H11 o iz Hiz Hia Moy HMee Moz fas M3 Maz Mgz Maa Mar Haz Bag Hag
0 1 0 ¢ -1 0o 0 0 0 0 0 0 0 0 0 0
0 ] 1 0 0 0 0 0 -1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 (55)
0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0
] 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0o -1 0
Furthermore 5
-1

The ML estimate for the vector with expected frequencies is given by

fi. = ¥y—{(GuV.) (GyV,.GL) " gly) +ollly — ull)
= y-C'(CD;'C) Clog (v) +o(|ly — pl)}-

The degrees of freedom for the likelihood ratio statistic is I (I —1) /2.
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<
4.2 CONDITIONAL SYMMETKY {Ud)

The conditional symmetry model is defined as
S T, when i< j
* 7 when > 7,

where ¢, = v,
This is similar to
log (13 /115;) =logr for i<j
or
log p;; —logp, =logr for i<j.
This model can be formulated as g () = 0. Consider a 4 x 4 table with

p'= (.“11:#12,#13,.‘11@ Hon, Moz Has Hag Hay, B3z Hag, Hag, Hats Haoy Ba3, #44) .

Then
Clog{p)=Xlogr

where C is the matrix given in (55) and X'=(1,1,1,1,1,1) = 1.
Let P=1— X (X'X)™ ! X’. The constraint for the model is
g(p) =PClog(p)=Klog(u}=0

where K = PC.
Furthermore

ad -
Gy = 8 (1) =KD"

The ML estimate for the vector with expected frequencies is obtained iteratively with

~ -1
Be = y—{(GuV,) (GyVuGL) g (y)+ollly — ul)
= y-K' (KD;'K')Klog (v) +o(fy — |}

The ML estimate for 7 is obtained by
7 = exp [(x’xrl X'Clog (ﬁc)} .

The degrees of freedom for the likelihood ratio statistic is (7 + 1) (7 — 2) /2.

4.3 DIAGONALS-PARAMETER SYMMETRY (DPS)

Goodman (1979} defines the diagonals-parameter symmetry model as

S 8y when i < j,
w Yy; when ¢ > j,

where ¢, = ;.
Consider a 4 x 4 table. The model can be written as

Clog{p) =Xlogd

where C is the matrix given in (55),

D e D O e
O OO e O
OO OO
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and 5’: (51 s 52, 63).
Let P =1 — X (X'X)™' X'. The constraint for the model is

g (p) = PClog(u) =Klog(p) =0

where K = PC.
The ML estimates for the expected frequencies are obtained iteratively by

b, =y - K (KD, 'K} Klog (v) +o(lly — pll).
The ML estimate for & is obtained by
8 =exp [(X’X)_l X'Clog (ji,)] .

The degrees of freedom for the likelihood ratio statistic is (I — 1) {I — 2) /2.

4.4 LINEAR DIAGONALS-PARAMETER SYMMETRY (LDPS)

The linear diagonals-parameter symmetry model is defined as

o Py when i< j,
” Vi when ¢ > 7,

where ¥;; = 1,;.
Consider a 4 x 4 table. The model can be written as

Clog (1) = Xlogp

where C is the matrix given in (55) and X'=(1,2,3,1,2,1).
Let P =1— X (X’'X) ' X’'. The constraint for the model is

g (1) = PClog (u) = Klog () =0

where K = PC.
The ML estimates for the expected frequencies are obtained iteratively by

B =y - K (KD, 'K') Klog(y)+o{lly — pll).
The ML estimate for p is obtained by
7= exp [(X'X)™ X'Clog (&)

The degrees of freedom for the likelihood ratio statistic is (7 + 1) (J —2) /2.

4.5 ANOTHER LINEAR DIAGONALS-PARAMETER SYMMETRY
MODEL (ALDPS)

Another linear diagonals-parameter symmetry model (ALDPS) is defined by Tomizawa (1990) as

S pI*U*i)wij when i< j,
7 Vi when ¢ > j,

where ¥, = 1;.
Consider a 4 % 4 table. The model can be written as

Clog{p) = Xlogp

where C is the matrix given in (55) and X’'=(3,2,1,3,2,3).
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g(p) =PClog(u) =Klog{u) =0

where K = PC.
The ML estimates for the expected frequencies are obtained iteratively by

B.=y - K (KD;'K') Klog (y) +o(lly -~ pl)}-

The ML estimate for p is obtained by
p=exp [(X'X)™ X'Clog (i2.)]

The degrees of freedom for the likelihood ratio statistic is (1 + 1) {I —2) /2.

4.6 2-RATIOS-PARAMETER SYMMETRY (2RPS)

The 2-ratios-parameter symmetry model is defined by Tomizawa (1990} as

o P07y when i<,
e Tj)’LJ Wheﬂ z Z j,

where ¥, = ..

Con&uder a 4 x 4 table. The model can be written as

Clog (p) = Xlog{

where C is the matrix given in (55),

e e N
O OO

and ¢'=(¢,8).
Let P =1 — X (X'X) ' X'. The constraint for the model is

g(p) =PClog(p) =Klog(u)=0

where K = PC.
The ML estimates for the expected frequencies are obtained iteratively by

b=y K (KD, 'K')Klog (y) +o (lly — pl}).

The ML estimate for ¢ is
¢ = exp [(X'X) " X'Clog (i,)] -

The degrees of freedom for the likelihood ratio statistic is (/% — I — 4) /2.
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4.7 QUASI SYMMETRY {ugn) "o rrerons

Quasi symmetry is defined as
Ty = By for all 4,7,
where ;. =9,

Consider a 4 x 4 table. The model can be written as

Clog (i) =Xlog8

where C is the matrix given in (55},

0 -1 0 -1
1 -t 0 0 -1

I -1 0 0 -1 1 0 0
1 10 -1 0 1 0
1 0 -1 -1 0 0 1
X=|y 10 0 -1 1 0
0 0 1
0 ]

= =

and 8'=(ay, ag, a3, e, a5, By, B, B3, B4, O5)-
Let P =1 - X (X’X)" X'. The constraint for the model is

g(p) =PClog(p) =Klog(p)=0
where K = PC.
The ML estimates for the expected frequencies are obtained iteratively by
i, =y — K (KD;'K') Klog (y) +o(|ly — pil) .
The ML estimate for @ is obtained by

-~

8 = exp {(X'X)_l X'Clog (ﬁc)] .

The degrees of freedom for the likelihood ratio statistic is (I — 1) (I — 2) /2.

4.8 EXAMPLE

Table 4.1, taken from Agresti (1984) and also discussed by Tomizawa {1990} is the father’s and son’s
occupational mobility data in Britain. The table relates father’s and son’s occupational status category.
The symmetry models discussed in this chapter were fitted to the data. Table 4.2 gives the expected
cell frequencies for each model, Table 4.3 gives the goodness of fit statistics, and Table 4.4 gives the ML
estimates for the model parameters.

TABLE 4.1: Occupational Status for British Father-Son Pairs.

Son’s Status

Father’s Status 1 2 3 4 5 Total
1 50 45 3 18 8 129
2 28 174 34 154 55 495
3 11 78 110 223 96 518
4 14 150 185 714 447 1510
5 3 42 72 320 411 848
Total 106 489 459 1429 1017
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TABLE 4.2: Occupational Status for Brmsn Father-Son Yairs.

0213;*-

Son’s Status

Father’s Status 1 2 3 4 5 Total
50 45 8 18 8
~ (36.5)" (9.5) (16.0) (5.5)
- (40.7)° (10.6) (17.8) (6.1)
. - (41.4)° (10.0) {(18.1) (8.0) 129
- (38.9)% (10.7) (19.1) (6.9)
- (41.1)" (10.4) (17.0) (5.7)
— (41.0) (10.5) (17.3) (5.8)
- (42.2)¢ (10.7) (18.8} (7.3)
28 174 84 154 55
(36.5) — (81.0) (152.0) (48.5)
(32.3) — (90.3) (169.5) (54.1)
5 (31.6) - (91.8) (159.7) (549) o
(34.1) - (86.3) (172.0) (58.0)
(31.9) - (91.2) (166.4) (51.6)
(32.0) — (90.9) (167.6) (52.5)
(30.8) - (78.3) (155.2) (56.8)
11 78 110 223 96
(9.5) (81.0) — (204.0) (84.0)
(8.4) (71.7) - (227.5) (93.7)
5 (9.0) (70.2) - (213 2) (88.3) 518
(8.3) (76.7) — (217.5) (95.0)
(8.6) (70.8) - (229.7) (91.9)
{8.5) (71.1) - (229.0) (92.6)
(8.3) (83.7) ~ (215.0)  (101.0)
14 150 185 714 447
(16.0} (152.0) (204.0) - (383.5)
(14.2} (134.5) (180.5) — (427.7)
A (13.9) (144.3) (176.8) - (434.6) .0
(12.9) (132.0) (190.5) - (408.9)
(15.0) (137.6) (178.3) - (431.8)
(14.7) (136.4) (179.0) - (430.6)
(13.2) (148.8) (193.0) — (441.0)
3 42 72 320 411
(5.5) (48.5) (84.0) (383.5) -
(4.9) (42.9) (74.3) (339.3) -
. (3.0) (42.1) (79.7) (332.4) - 848
(4.1) (39.0) (73.0) (358.2) —
(5.3) (45.4) (76.1) (335.2) —
(5.2) (44.5) (75.4) (336.4) -
(3.7) (40.2) (67.0) (326.0) —
Total 106 489 459 1429 1017

*Estimated expected frequencies for symmetry model (S).

*Estimated expected frequencies for conditional symmetry model (CS).

“Estimated expected frequencies for diagonals—parameter symmetry model (DPS).

4Estimated expected frequencies for linear diagonals-parameter symmetry model {LDPS).
*Estimated expected frequencies for another linear diagonals—parameter symmetry model (ALDPS).
fEstimated expected frequencies for 2-ratio—parameter symmetry model (2RPS).

9Estimated expected frequencies for quasi symmetry model (QS).
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TABLE 4.3: Goodness of Fit statistics.

Model df 2 G2 Arct

S 10 3722 3746 1746
CS 9 1030 1035 -—7.65
DPS 6 644 644 556
LDPS 9 17.09 1713 —-0.87
ALDPS 9 1005 10.13 -7.87
2RPS g 99 1002 -598
QS 6 4467 466 —7.34

TABLE 4.4: ML Estimates of model parameters.

Model Parameters ML Estimates

S - Z

Cs T 7T =126

DPS 8'=(61,62,85,64) §1=131, B3=111, &3 =130, 84 =267
LDPS p=114

ALDPS 7=107

2RPS  ('=(¢,6) $=128, #=0.96

QS 9f= (051,012,C.‘E3,O£4,ag,,81,,82,,83,,84,65) §5 =0.84 é] = (.85 ﬁE = 1.00 ﬁS =097
By=102 Bg=1.19

Discussion of results
Tomizawa (1990) selected the best model by using the modified AIC' defined as

AICY = G —2(df).

The best fitting model is the one with the smallest A7CY, which in this example is the ALDPS and CS
models.

For the ALDPS model g = 1.065. Thus, the proportion of father-son pairs for which the son had a k
grades higher status category than the father, for £ = 1,2, 3, 4, is estimated to be {1.065)5_k times higher
than the proportion in which the father had the k grades higher status category.

For the CS model ¥ = 1.26 which means that for each pair of categories, (i,7) and {J,¢), the proportion
of father-son pairs for which the son had the higher status is estimated to be 1.26 times higher than the
proporticn in which the father had the higher status.

The program for this example is given in the appendix and can be used for any square contingency table
with ordered categories.
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5 INCOMPLETE CONTINGENCY TABLES

An incomplete contingency table is a contingency table where information on one or more of the cate-
gorical variables is missing. It is assumed that the data are MAR and the missing data mechanism 1s
ignorable. This chapter discusses ML estimation of cell probabilities in an incomplete contingency table
by using all the observed data - including data where information on one or more of the categorical
variables is missing. Lipsitz, Parzen and Molenberghs (1998) uses the Poisson generalized linear model
to obtain ML estimates of cell probabilities for the saturated loglinear model whilst Little and Rubin
(1987) describes and uses the EM algorithm to determine the ML estimates of cell probabilities for any
loglinear model. Maximum likelihood estimation under constraints is also discussed in this chapter as a
method to determine the ML estimates of cell probabilities. The advantage of this method is that it is
less computational intensive compared to the more generally used EM algorithm. It also illustrates the
elegance with which the method of ML estimation under constraints can be applied.

5.1 ML ESTIMATION IN INCOMPLETE CONTINGENCY TABLES

Consider an I x J contingency table with categorical variables C) = {1,2,...,I} and ¢ = {1,2,...,J}.
A multinomial sampling procedure is assumed. Let Y;; be the count in cell {4, §), y;; the observed value
of ¥;; and n = 3_ 3" y; the total counts. The counts in each cell can be arranged to form the complete
data vector Y’ = (Y11, Y12, ..., Y1s) with E (Y) = g, the vector of expected counts.
If information on one or both of the categories is missing the contingency table is said to be incomplete.
The data to be classified in the contingency table can be split into two parts namely:

- the fully classified cases where information on all the categories is available and,

- the partially classified cases where information on some of the categories is missing.
It is assumed that the data are MAR and the missing data mechanism is ignorable.
In this section the saturated model is considered and the EM algorithm and ML estimation under con-
straints are described and illustrated as methods which uses both the fully and partially classified cases
to determine the ML estimates of the cell probabilities.

5.1.1 The EM Algorithm

Multinomial Sampling
If the probability that an observation falls in cell (4, §) is 7;;, where 7;; > 0 and 3> 7;; = 1 then the
complete data Y have a multinomial distribution,

Y ~ Mult(ﬂ;ﬂll,ﬂlz,...,ﬂjj)

with probability function

n! 1 12
flylm) = mﬁi iy emyy (56)

where = (ﬂ]],ﬂ'lg,...,‘fn_]).
The kernel of the complete data log-likelihood is

L(mjy) =y logmn +pzlogmiz + -+ yrslogmp.
The cell counts, Y;;, are the sufficient statistics and the MLE of m;; is

= Yij
Tij = —-
n
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Product Multinomial Sampling
Let Y;, = 5" Y:; be the total counts in row ¢ and 7y, = ;5 the probability that an element falls

+ 3 7 + 7 ¥ P

'Tl'.,;j
it '
j=1,2,...,J, then, given the row total ¥;, and the vector of cell probabilities m, the elements of row i
have a multinomial distribution

in row 7. If the Y;; elements of row i are independent, each having a probability distribution

i1 T2 Tid ) (57)

Y, Yi, - Yas|Yiy m ~ Mult (yf+;—,—,--- ;
Tiy Mit it

Tiqg
and E (Yi|Yie = pig) = yis [ —

it
When samples from different rows are independent, the joint probability function for the entire data set
is the product of I multinomial probability functions,

I 0 3 ¥il . Yiz . Yil
Yit: Til iz mir
Fylmas yor, o yrg) = H [_l—!_—I ( ) (.__,..) () :| .
i=1 L¥ir-Yi2l - - Yirs \Tig it Tit

Similarly, if the column totals are fixed then the elements of column 7 will have a multinomial distribution

17 T2y I -
Ylij2j:"' sYIJ‘YJrj)TrNM’U‘Et (y+j; 3 1T (08)
Tvj Wi Mt

with E(Yy1Yy; = v45) = vty (WU )

Tti
EM algorithm to determine the ML estimates of the cell probabilities in an incomplete I x.J
contingency table: data missing on both categories
If missing values occur on both € and Cs, the observed data can be partitioned into three parts denoted
by A, B and C respectively, where A includes units having both ; and C; observed, B includes those
having only C; observed and € includes those where only Cp was observed. In part A observations are
fully classified and in B and C only partially. The three parts of the sample are displayed in Table 5.1.
The objective is to determine the ML estimates of cell probabilities in the I x J table by using the fully
and partially classified data.

TABLE 5.1 (a}, (b) and (c): Classification of sample units in an incomplete I x J contingency table.

Sample part A
{a} Both variables observed

Co=1 Co=2 - (Cp=J
Ci=1 yi} yiz e yi.] yi}
Ci =2 un Y39 o Yy Yoy
' _ . A ) A i A ) A
Cy=1 y% y£12 e y{qJ Yy

Y Yz o Vi

Sample part B Sample part C
(b) ' missing (¢) ) missing
Co=1 Co=2 - Co=J

Cr=1 y§+ [ v5s ¥52 Sy |
C} =2 Y2y
Cy=1 y}B-q-
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Assume that the data are MAR and the$s#_ fUNIBESITHI YA PRETORIAjorable. Let YA = (Y]’j‘, Y, ..., Y4),
YZ = (YE YA, YA )and YV = (Y, Y, ... .Y} be the random vectors with counts for sample
parts A, B and C respectively. Since Cs is missing in sample part B, the counts observed are totals across
(3. Hence, compared to sample part A, row totals are observed in sample part B and column totals in
sample part C. The observed data are

(YA YEYEi=12,.. I, j=12..J}

Let Y, = (YA’,YB’,YC’) be the observed data vector, Y’ = (¥11,Y12,...,Ys) the complete data
vector and 7' = (111,712,...,717) the vector of cell probabilities for which the ML estimates must be
determined.

Each complete data count, Y;;, can be expressed as the sum of contributions from each of the three
sample parts, that is ¥i; = Y;# + Y/Z + ¥,$. For sample part B totals across C are observed, that is Y7,
whilst the individual cell counts, Y;f , are missing. It follows from (37) that the predictive distribution of

the missing data in part B given Y. and 7 is a product multinomial,

B B BB B, Tl Ti2 TiJ
}file‘i2="'sYi,]1Y£+1ﬁNMult yi-{-: : 1 1 T 1 (59)
Wi+ iy it

. e
with £ (V7Y = v, m) =vi} (ﬁ)
1

For part (' only the totals across (; are observed, that is ij. From (58) the predictive distribution of
the missing data in sample part C given Y, and 7 is a product multinomial given by

14 T4 Trs
YEYE, - YEIYE , m~ Mult €22 2% ... ~1 60
17+ 25 ’ Ijl +3 i y+_; Ty T T, ( )
. Mg
mthE(}ggqyfj:ygj,ﬂ):ygj( J).
Ttj
—_ .y
Thus, E(YijIYObS)ﬂ-) ZE(YiJA+Yi?+}/i}CIYOb3Jﬂ) Zyé +yi19+ (ﬂ,_w ) +y£'j (Trm') -
i+ +z7

The distribution of the complete data belong to the regular exponential family with sufficient statistics
the cell counts, Y;;. In the E-step of the EM algorithm E(YijlYobs,fr(’")) is calculated where w("),
r=0,1,2,..., is the rth estimate of #. From (59} and (60)

E (Yl Yoo, 7)) = B(Yg + YE + VS Yo, )

yf} +E (Yileobs, 1\'(’")) +E (YiﬂYobs, ‘rr(r))

PR L o {77
Yiz + iy (i) -+ Yyj (':") . (61)
7T,H_ T

+35

In the M-step 7("*?) is calculated by substituting the results from the E-step into the expression of the
MLE of 7 for the complete data. That is,

LD

ij E (Y,-,j Y ops, T m)

() (r)

A, B [T o [ Ty
yij + yi+ ( (i)) + y+j (i) (62)

ﬂ-i+ 71'+j

The process iterates between (61) and (62) until convergence is attained.
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5.1.2 ML Estimation under corsein, loa [ BESITHI YA PRETORIA

The data from parts A, B and € in Table 5.1 can be considered as three independent multinomial samples.
Let n4 = Zny}, nF =% yf and n¢ = zyfj be the tatal counts in sample parts A, B and
respectively.
1 1 . .
Let p* = — y* p” = —5 y¥ and p® = — ¥“ be the proportions in each sample part and
n n
p’ob.?: (PA!,PB’,PC’) with E(PL,,S) — ﬂ-gbs — (TFA',TTB',WC") )
For the saturated model the maximum likelihood estimates of 7, can be determined under the con-

straints
7?54+—7Tf|_:0 fori=1,2,...,1 (63)

and
ﬂ'ijfﬂ'g:’lzo forj:]_,z,.,.] (64}

Hence, the constraint can be written as Amg ;= 0 where
I;®1,
A(I+J)X(IJ+I+J): , —I]+J
11 By IJ

and where 1’; and 1% indicates 1 x J and 1 x I row vectors respectively with all values equal to 1.
The ML estimate of the vector of cell probabilities, under the constraint Am.s,= 0 is given by

I
Fopsic = (L 7R ) = Poss— (AVi,0) (AVr,, A) ' Apy, (65)
where
Cov (n#) 0 0
Ve, = 0 Cov (m?) 0
0 0 Cov (’ﬂ'c)
L (Dpn — wAmAY) 0 0
= 0 L (Dpw — wBmB) 0 . (66)
0 0 “e (D — wx@)

Since the constraint, Amg,.= 0, is linear in 7, iteration is only over 7.
The ML estimates of cell probabilities in the I x .J table are given by the elements of 74 in T obs,c-
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EXAMPLE 5.1

Determining the ML estimates of cell probabilities in an incomplete contingency table by using the EM

algorithm.

Consider the data in Table 5.2 from Schafer (1997) obtained through the National Crime Survey conducted
by the U.S. Bureau of the Census. Housing unit cccupants were interviewed to determine whether they
had been victimized by crime in the preceding six-month period. Six months later the units were visited

again to determine whether the occupants had been victimized in the intervening months.

TABLE 5.2: Victimization status from the National Crime Survey.

Second Visit

First Visit Crime-free Victims Missing
Crime-free 392 55 33
Victims 76 38 9
Missing 31 7

Following the notation in 5.1.1,
Vi = (yA’,yB’,yC’) where
vA = {yi; 11,5 = 1,2} = (392,55, 76,38)
B — {yﬂ_ 13 = 1,2} =(33,9)
@ ={y§,:5=12} =(3L7).
The fully classifted data, y#, were used to determine a starting value for the algorithm,
w0 = 1= (392,55, 76,38) =~ (0.70,0.10,0.13,0.07). From (62} the first estimate of 717 is

{1} 1] a B (0) g?
T o Yt T ¥y (0) ty +J (0)
Tt T

0.70 0.70
i [392+33 (0 80) +31 (W)]

= 0.6974.

Similarly, the first estimates of 7o, 72, and 74, are

o 1 0.10 0.10\] _

Mz T fal _55 3 (0 g0) T "\oar )| =007
o 1 0.13 013\]

el (0 20) * \oss )| 01
o 1 0.07 007\]

Tl (0 20) T \ox7 )| 00T

This gives {1 = (0.6974,0.0987,0.1353,0.0687) which is used to calculate the second estimate for 7.
The process continues until convergence is attained. Table 5.3 shows the values at different steps of the

algorithm.

TABLE 5.3: Tterations of the EM algorithm.

LR I )

r

0 07000 0.1000 0.1300 0.0700
1 06974 0.0987 0.1353 0.0687
2 06972 0.098 0.1357 0.0685
3
00

0.6971 0.0986 0.1358 0.0685
0.6971 0.0986 0.1358 0.0685
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EXAMPLE 5.2
Determining the ML estimates of cell probabilities in an incomplete contingency table under constraints.

Consider the data in Example 5.1.

yf)bs — (yA/’yB/:ny) where
1

yA = {yy 14,5 = 1,2} = (392,55,76,38) and p? = 0 v
1

y® = {yf 1i=1,2} = (33,9) and p = — y*
1

vy ={yg;:i=1,2} =(31,7) and p© = = yC.

Let pl,,= (p*,p%,p%") with E (Poss) = Taps.
For the saturated model the constraint Amop,= 0 must hold, where the elements of A are

A A A A B B c c
M1 M2 21 22 T4 T34 Tyxp Tie

1 1 0 0 -1 0 0 0
A g 9 1 1 0 -1 0 0
1 0 1 0 0 o0 =1 0
o 1 0 1 0 0 0 -1

The ML estimate of 7, under the constraint Aw,s.— 0 is obtained with

!
Ropeso = (R TR ) = Pote— (AVi,) (AVa,, A) 7 AP, (67)
where
567 (Dra — ) 0 | 0
Vi = 0 25 (Den — w87 8) 0
0 0 & (Dpe — w%x")

The ML estimates of the cell probabilities in the 2 x 2 table are given by the elements of 7’1“';4‘ in T ons e
This procedure gives the same values for the ML estimates as obtained with the EM algorithm in Example
5.1. Results obtained under constraints and from the Genmod procedure in SAS are shown in Table 5.4.
The programs are given in the Appendix.

TABLE 5.4: ML estimates and standard errors.

Estimate | Std Err
w11 | 0.6971 0.0187
iz | 0.0986 0.0124
woy | 0.1358 0.0141
Tag | 0.0685 0.0104
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EXAMPLE 5.3
Determining the ML estimates of cell probabilities in an incomplete contingency table under constraints.

Consider the data in Table 5.5 (from Lipsitz, Parzen, Molenberghs (1998)) which contains the data
from the Six Cities Study, a study conducted to assess the health effects of air polution. The columns
corresponds to the wheezing status (no wheeze, wheeze with cold, wheeze apart from cold) of a child
at age 10. The rows represent the smoking status of the child’s mother (none, medium, heavy) during
that time. For some individuals the maternal smoking variable is missing, while for others the child’s
wheezing status is missing. The objective is to estimate the probabilities of the joint distribution of
maternal smoking and respiratory illness.

TABLE 5.5: Six Cities Data: Maternal Smoking Cross-Classified by Child’s Wheeze Status.

Child’s wheeze status

Maternal No Wheeze Wheeze with Cold  Wheeze apart from cold Missing
smoking

None 287 39 38 279
Moderate 18 6 4 27
Heavy 91 22 23 201
Missing 59 18 26

Similar as in Example 5.2:
Yioe = (¥, ¥, ¥y%") = (287,39, 38,18,6,4,91,22,23,279, 27,201, 59, 18, 26). For the constraint Amgps= 0
the elements of A are given by

Wﬁ 7"‘142 "‘Tid‘s 7Tf§'1 W?z "‘Téd's Wédl 1 7{?2 W’fa WIB+ 7T2B+ W?+ ng WEQ ‘”Es
1 1 1 © © © o0 o O -1 o 0 0 0 ©°
o 0o © 1 1 1 o O 0O 0O -1 0 0 0 o0
A9 9 0o o o0 o 1 1 1 © 0 -1 0 0 0
1 ¢ 0o 1 0 OO 1 0 © 0O 0 0O -1 0 ©
o 1 o0 © 1 o ©0o 1 0o 0 © 0o 0 -1 0

o o 1 o0 o0 1 0 o 1 0 0 0 0 0 -1

The ML estimate of @', =

Lps = (A, w8 79" is obtained iteratively with

i.Fctbs,c Pobs— (Avn'nb,)l (Av‘rrohs A-l)_l Apobs .

The ML estimates of the cell probabilities, given in Table 5.6, are the same as those obtained by Lipsitz,
Parzen and Molenberghs (1998). Procedures give asymptotically equivalent results. Slight differences in
the standard errors are indicated.

Table 5.6 also gives the ML estimates of cell probabilities when using only the 528 fully classified cases.

TABLE 5.6. ML estimates and standard errors.

Fully Classified Cases Fully and Partially Classified Cases
n = 528 n = 528 4 610
Estimate Std Err Estimate Std Err{Genmod)

711 0.5436 0.0217 0.4747 0.0179 (0.0174)
19 0.0739 0.0114 0.0701 0.0105 (0.0102)
T13 (.0720 0.0112 0.0742 0.0108 (0.0107)
Tat 0.0341 0.0079 0.0327 0.0065 (0.0064)
Moo 0.0114 0.0046 0.0120 0.0044 {0.0043)
To3 0.0076 0.0038 0.0087 0.0039 (0.0041)
T31 0.1723 0.0164 0.2060 0.0149 (0.0158)
T3o 0.0417 0.0087 0.0558 0.0094 (0.0106)
T3 0.0436 0.0089 0.0658 0.0100 (0.0116)
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5.2 LOGLINEAR MODELS FOR INCOMPLETE CONTINGENCY
TABLES

In this section the EM algorithm and ML estimation under constraints are discussed as methods to
determine the ML estimates of the cell probabilities in the complete table for any loglinear model where
both the fully and partially classified cases are used.

It is assumed that the data are MAR and the missing data mechanism is ignorable.

5.2.1 The EM algorithm

The starting values used in the EM algorithm are the ML estimates of cell probabilities obtained by
using only the data in the fully classified table. The process then iterates between the E-step and the
M-step. In the E-step the counts in the partially classified table are distributed into the full table by
using the ML estimates of the cell probabilities obtained in the M-step. In the M-step ML estimates of
the cell probabilities for the filled in table are obtained and used in the E-step as the next approximation
of the ML estimates of the cell probabilities in the complete table. The ML estimation procedure under
constraints for loglinear models (Section 3.1) can be used in the M-step of the algorithm.

5.2.2 ML Estimation under constraints

Consider an I x J x K countingency table with (', C3 and 5 the three categorical variables where
Cy=1{12,....,1}, Co = {1,2,...,J} and C3 = {1,2,...,K}. Suppose that for n? cases, information
for C1, Ca and Cy is known and for n? cases () is missing. The n* cases are classified in an I x J x K
table and the n® cases in a J x K table. The objective is to determine the ML estimates of the cell
probabilities in the I x J x K contingency table, for a specific loglinear model, by using both the n? fully
classified cases and the n? partially classified cases. A specific loglinear model is assumed.

Suppose [ = J = K = 2. Let YV = (Yii1, Y{is, Y131, Yi%, Yai1, Yila, Ya3), Ylo) be the IJK x 1 vector
of cell counts for the fully classified table with E (Y4} = p# and let Y® = (Y8, Y7, Y5, Y 2)
the JK x 1 vector of cell counts for the partially classified table with E (Y®) = u”. Furthermore let

yi)bs: (yAr?yBr), ”.'Obs: (”AI’”Bf) and ngs: (%MAI’ 7_11}:“3’) _ (ﬂ.AI’ﬂ.Bf)'

Two sets of constraints are imposed; the first pertains to the specific loglinear model that is fitted and
the second is used to constrain the marginal probabilities in the fully and partially classified tables.

Constraint 1
The saturated loglinear model for the fully classified data is

logu® = X3 (68)

where pp? is the vector with expected cell frequencies, X : TJK x I JK is the design matrix and 8 : IJK x 1
15 the parameter vector for the saturated model.
The unsaturated model can be written as

log p* = X8, (69)

where X, is a submatrix of X given in (68) and 3, is the parameter vector of the model.
Let P =1— X, (X,X,) ™ X/. The constraint for the model in (69) is

g1 (#*) = Plogp® = PX,8,=0. (70)

Constraint 2

The sum of the expected cell probabilities in the I x J x K fully classified table over category C1, gives
the expected marginal cell probabilities,

I
=Y e fori=12.,Jand k=12, K.
i=1
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The constraint which must hold betw.& vunieesiTHI va preToriA ssified tables is

Wi‘jk = ijk, for all j, k.

Hence, the second constraint can be written as

1 1
82 (p‘obs) = ( n_Ali' & Lk _n_BIJK ) Hops— 0.

swar=( 207 )= (7)
- g2 (Hops) 0

The ML estimate of p, ;. subject to g (gt ,,) = 0 is determined iteratively with

Combining (70} and (71) gives

-1
—~ ’
Bobec = Yovs — (Gu,, Vi) (Gynb,.VmsGLobs) & (Yovs) + 0 (|[¥obs — £ops )

where ( A)
Og1 (p .
_ og (11.,,) | ek, | : PD, 4 OIJ{(XJK

Hovs 8“"01)3 Jg2 (I"‘obs) H_Al} QT r A.n—BIJK ’

al—’*obs
08 (Hobs )
Yobs T;g|u,,;,s:ym and
Visars = Do = a5 Hovs Hobs-

The ML estimates of the cell probabilities in the I x J x K table is
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EXAMPLE 5.4
Determining the mazimum likelihood estimates of cell probabilities in an incomplete contingency table for
any loglinear model.

In Table 5.7, from Little and Rubin (1987}, the survival of infants are related according to the amount of
prenatal care recelved by the mothers and the clinic they attended. For data in Table 5.7(a) information
on survival, prenatal care and clinic attended were recorded but in Table 5.7(b) information of the clinic
attended is missing.

TABLE 5.7. A 2% contingency table with partially classified observations.
Survival (5)

Clinic (') Prenatal Care (P} Died Survived
(a) Fully Classified Cases
A Less 3 176
More 4 293
B Less 17 197
More 2 23 715 cases

(b) Partially Classified Cases (Clinic missing)

Less 10 150
More 5 90 255 cases

The ML estimates of cell probabilities for different loglinear models are given in Table 5.8. The cell
probabilities are given in the form 1007~ ps where

C =1 if Clinic = “A” and C = 2 if Clinic = “B”;

P =11if Care = “Less” and P = 2 if Care = “More”;

S =1 if Survival = “Died” and 5 = 2 if Survival = “Survived”.
The saturated model {C'PS} was fitted to the incomplete data as explained in section 5.1.2 and the
models {P8,CS,CP}, {CS,CP} and {PS,CS5} were fitted by using the EM algorithm and the ML
procedure under constraints.

TABLE 5.8: ML estimates of cell probabilities for different loglinear models.

[CPST [ {P5.CS,CP) [{PS,CST [ {CS,ChT
100711, | 0.4630 0.4350 0.8327 0.4963
100712 | 25.4410 25.4680 36.7015 25.4203
1007121 | 0.7560 0.7913 0.3053 0.7579
100712 | 38.8002 |  38.7845 98.4910 | 38.8208
1007211 | 2.6280 2.6578 2.3601 36787
1007212 | 28.4765 28.4495 17.2160 28.4150
1007221 | 0.3780 0.3427 0.8287 | 0.2939
100739, | 3.0465 3.0712 13.3647 3.1172

Only the {C8, ¢ P} loglinear model is discussed in more detail. The programs are given in the Appendix.
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The observed frequency vector for the 715 fully classified cases is yA'= (3, 176,4,293,17,197,2,23) and
for the 255 partially classified cases y5' = (10, 150, 5, 90).
The EM algorithm is used to determine ji and 7, the ML estimates of the cell frequencies and cell
probabilities in the 2% table.

The steps for the EM algorithm are as follows:

Step 1: Starting value for the EM algorithm

The starting value of the EM algorithm are the ML estimates obtained by using only the data in the
fully classified table.

From section 3.1.3, u9), the first approximation of ji, is determined iteratively with

-1
@ = y4-ac (ALD;IAG) T g (rY) +o (v — al) (75)

(i}
and from this, 7% = ﬂ
715
Step 2: E-Step
In the E-step '), + = 0,1, ... is used to distribute the 235 partially classified counts into the full table.
The filled in frequency vector at the rth step of the EM algorithm is

ﬂ.(r)

(o )

11

yP=y'+

where the division and multiplication indicated with “4” in the last term is elementwise.

Step 3: M-Step
In the M-step y{) is used to obtain the next approximation of the ML estimate of g,

,U.(H'l) _ y(r)*AC (A’CD;(lr)Ac)_l g (y(f)) + o (”y(r) — }—L“) .

p(r+1)

The next approximation of 7 is w(™t1) = ,r=01,2,.. ..

The EM algorithm iterates between Step 2 and Step 3 until covergence is attained.
Table 5.9 gives values at different steps of the algorithm.

TABLE 5.9: Values at different steps of the EM algorithm for the {CS, C'P} model.

r=20 r=1 r=2 r=10
M-Step  E-Step | M-Step  E-Step | M-Step  E-Step M-Step E-Step
Cell T ¥ | 100= y(® 1007 (™) y{l} 10072 y@ 100710 y(10)

111 3 0.3682 4.3400 0.4802 4.5030 0.4919 4.5468 0.4963 4.5632
112 | 176 | 24.6668 | 246.8579 | 25.4165 | 246.8436 | 25.4201 246.8343 | 25.4203 246.8280
121 4 0.6109 7.4363 0.7338 7.5561 0.7513 7.5894 0.7579 7.6031
122 | 293 | 40.9276 | 376.4384 | 38.8409 | 376.3140 | 38.8230 376.3048 | 38.8208 376.3106
211 + 17 § 23794 | 25.6600 | 2.7148 | 254970 | 2.6883  25.4532 2.6737 25.4368
212 | 197 | 27.5507 | 276.1421 | 28.3988 | 276.1564 | 28.4009 276.1657 | 28.4150 276.1720
221 2 0.2780 3.5637 0.2980 3.4439 0.2953 3.4106 0.2939 3.3969
222 | 23 | 3.2185 | 20.5616 | 3.1170 | 29.6860 | 3.1202  29.6952 3.1171 29.6804
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Maximum likelihood estimation under constraints
Let y4'=(3,176,4,293,17,197,2,23) and y? = (10,150,5,90) be the observed frequency vectors for
the 715 fully and 255 partially classified cases respectively with E (YA) = p* and E (YB) = uf,

Furthermore y/,.= (y*,¥%') and p/,,= (p*', p®) . Assume a multinomial sampling scheme.

From Section 5.2.2 the ML estimate of g2/, = (u4', p®') subject to g (f1,,) = 0 is determined iteratively
with )

. ! -

Hobs,c = Yobs — (G#absvﬂ-obs) (GyﬂmvﬂgbﬂGLubﬂ) g (yobs) +o (Hyobs — Hobs El) (74)
where

1 (e Plog u#
g(ru’obs):(g(p’) ):( 1 o

1
m (111) ®I4P‘abs _'2-5—5'14}'.1.053 )

g2 (Kops)
dg1 (1) -1

_ ag (P‘obs) — alu'obs == 1 PDMA ?BX4

Hons E 982 (Hops ) =5 Lok - 2_5514 ,
alu'ob-‘l
2 (lu'obs)

— 2\ eas/ - and

Yoby Dthogs ium Yoby

1
Vﬂubs = Dﬂ'ab.q - %“Dbsiu"obs'

~A
The ML estimates of the cell probabilities in the incomplete contingency table are the elements of ”—;
n

and are the same as those obtained with the EM algorithm.

Table 3.10 gives the ML estimates of cell probabilities obtained under constraints when using only the
715 fully classified cases and when using all 970 counts. The standard errors are also given.

TABLE 5.10: ML estimates obtained under constraints for the {CS, CP} model.
n="715 n =970
Estimate 5td Error Estimate Std Error
w1 | 0.0037 0.0014 0.0050 0.0014
w11z | 0.2467 0.0160 0.2542 0.0153
w121 | 0.0061 0.0023 0.0076 0.0022
w122 | 0.4093 0.0183 0.3882 0.0159
w11 | 0.0238 0.0054 0.0268 0.0050
wa1e | 0.2755 0.0166 0.2842 0.0158
7oy | 0.0028 0.0008 0.0029 0.0008
mwooe | 0.0322 0.0064 0.0312 0.0063
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5.3 CONCLUSION

This dissertation has illustrated maximum likelihood estimation procedures for a number of generalized
linear models for categorical data. The results obtained with the method under constraints are the same
as those obtained with the more generally used Newton-Raphson, Fisher scoring and EM algorithms.
The advantage of the method under constraints is that it is computationally less intensive and also more
flexible to incorporate different models.

In this chapter the method was further developed to determine maximum likelihood estimates for loglinear
models when the contingency table is incomplete and the missing data mechanism is ignorable. This
illustrates the elegance with which the method under constraints can be applied.

This opens up new opportunities for the study of maximum likelihood estimation. This includes models for
incomplete data when the missing data mechanism is ignorable, such as logistic regression and analysis
of variance. Furthermore the same models for incomlete data can be studied when the missing data
mechanism is not ignorable.
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7 APPENDIX

The IML programs for examples are given in the Appendix and appear under the appropriate chapter
heading and example number.
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CHAPTER 2

EXAMPLE 2.1

proc iml; reset nolog;

y={80, 15, 5};

b={80,0.1875};

diff=1;

1=0;

do while (diff>0.000001); j=j+1;
q=j(2,1,1);
q[1]=-(1+b[2]+b[2]*b[2] )+y[+]/b[1];
q[2]=-b[1]*(1+2*b[2])+(y[2]+2*y[3])/b[2];
H=j(2,2,1);
H{1,1]=-y[+]/(b[1]*b[1]); H[1,2]=-(1+2*b[2]);
H[2,1]=H[1,2]; H[2,2]=-2*b[1]-(y[2]+2*y[3])/(b[2]*b[2]);
bi1=b-inv(H)*q;
diff=(b-b1) *(b-b1);
b=b1;

end;

m=j(3,1,0);

m{1]=b[1]; m[2]=b[1]*b[2]; m[3]=b[1]*b[2]*b[2];

print j b m;

EXAMPLE 2.2

proc iml; reset nolog;

y={80, 15, 5};

=01 0, 1 1, 12§

b=ginv(x *x)*x *y;

b={80,0.1875};

diff=1;

1=0;

do while (diff>0.000001); j=j+1;
m=exp(x*b);
bi=b+ginv(x *diag(m)*x)*x *(y-m);
diff=sqrt((b-b1) *(b-b1));
b=b1;

end;

m=exp(x*b); print j b m;

EXAMPLE 2.3
proc iml; reset nolog;
y={80, 15, 5}; ybegin=y;
b={80,0.1875};
diff=1;
j=0;
do while (diff>0.000001); j=j+1;
9=j(2,1,1);
q[1]=-(1+b[2]+b[2]*b[2] ) +ybegin[+]/b[1];
q[2]=-b[1]*(1+2*b[2])+(ybegin[2]+2*ybegin[3])/b[2];
Inf=j(2,2,1);
Inf[1,1]=y[+]/(b[1]*b[1]); Inf[1,2]=(1+2*b[2]);
Inf{2,1]=Inf[1,2]; Inf[2,2]=2"b[1]+(y[2]+2%y[3])/(b[2]*b[2]);
bi=b+inv(Inf)*q;
diff=sqrt((b-b1) *(b-b1));
b=b1;
y(1]=b[1]; y[2]=b[1]*b[2]; y[3]=b[1]*b[2]*b[2];
end;
m=j(3,1,0); m{1]=b[1]; m[2]=b[1]*b[2]; m[3]=b[1]*b[2]*b[2];
print j b m;
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EXAMPLE 2.9
proc iml; reset nolog;
Gm=j(1,3,0); Gy=j(1,3,0);
y={80,15,5}; ybegin=y; m=y; muhat=y;
i=0; j=0;
diffi1=1; diff2=1;
do while (diff1>0.000001);
i=i+1; j=0;
diff2=1;
Dm=diag(m);
Gm[1]=m[3]; Gm[2]=-2*m[2]; Gm[3]=m[1];
y=ybegin;
do while (diff2>0.000001);
i=j+1;
g=y[1]*y[3]-y[2]*y[2];
Gy[1]=y[3]; Gy[2]=-2*y[2]; Gy[3]=y[1];
muhat=y- (Gm*Dm) " *ginv(Gy*Dm*Gm ) *g;
diff2=sqrt((muhat-y) *(muhat-y));
y=muhat;
end;
diffi=sqrt((mubat-m) *(muhat-m));
m=muhat;
end;
print 1 j m;

EXAMPLE 2.10

proc iml; reset nolog;

Gy=j(1,3,0);

y={80,15,5};

i=0;

diffi=1;

do while (diff1>0.000001);
=i+
Gy[1]=1/y[1]; Gy[2]=-2/y[2]; Gy[3]=1/y[3];
GmDm={1 -2 1};
g=log(y[1]1*y[8]/(y[2]*y[2]));
muhat=y-GmDm' *ginv(Gy*GmDm" )*g;
diffi=sqrt((mubat-y) *(muhat-y));
y=muhat;

end;

print j y;

or

proc iml; reset nolog;

y={80, 15, 5}; m=y;

x={1 0, 11, 1 2};

p=i(3)-x*ginv(x *x)*x";

diff=1;

1=0;

do while (diff>0.,000001); j=j+1;
idy=inv(diag(y));
muhat=y-p*ginv(p*idy*p)*p*log(y);
diff=sqrt((muhat-y) *(muhat-y));
y=muhat;

end;

print j muhat;
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EXAMPLE 2.11
proc iml;
reset nolog;
yobs={125,18,20,34}; mu=yobs;
x={1 -1 -1 -3,

0 1 -1 0};
diff=1; r=0;
do while (diff>1e-10);
r=r+l;
v=diag(mu)-(1/197)#mu*mu’;
mui=yobs- (x*v) *ginv(x*v*x’)*x*yobs;
diff=(mu-mul) *(mu-mul);
mu=mu1 ;
end;
print r mu;
pi=mu([4]/197*4; print pi;
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CHAPTER 3

EXAMPLE 3.1 : Proc Catmod for reduced Loglinear model

data verdict;

input m v ¥ n @@;
cards;

1

W W NN ==
N = N =N

1 42
1 4
179
1 12
1 32
1 8

W WMNN ==

proc catmod;

weight n;

A, 2 29
22 11
12 85
2241
12 17
22 24

model m*v*f=_response_/ml nogls noprofile pred=freq;
loglin m v f m*v v*f;

run;
CATMOD PROCEDURE
Response: M*V*F Response Levels (R)= 12
Weight Variable: N Populations (S)= 1
Data Set: VERDICT Total Frequency (N)= 358
Frequency Missing: 0 Observations (Obs)= 12
MAXIMUM-LIKELIHOOD ANALYSIS
Sub -2 Log Convergence
Iteration Iteration Likelihood Criterion
0 0 1779.1932 1.0000
1 0 1621.7743 0.0885
2 0 1590.2147 0.0195
3 0 1590.0846 0.0000819
4 0 1590.0846 1.2263E-8
5 0 1590.0846 4.29E-16
Parameter Estimates
Iteration 1 2 3 4 5 6 ré
0 0 0 0 0 0 0 0
1 -0.3296 0.6508 0.4413 -0.0112 -0.0223 0.3212 0.2793
2 -0.4090 0.6050 0.5376 -0.1947 0.2463 0.007680 0.3846
3 -0.4219 0.6068 0.5518 -0.1941 0.2509 0.0178 0.3823
E -0.4221 0.6067 0.5520 -0.1941 0.2512 0.0178 0.3823
5 -0.4221 0.6067 0.5520 -0.1941 0.2512 0.0178 0.3823
MAXIMUM-LIKELIHOOD ANALYSIS-OF-VARIANCE TABLE
Source DF Chi-Square Prob
M 2 55.92 0.0000
v 1 56.51 0.0000
F 1 8.50 0.0036
M*V 2 8.60 0.0135
V*F 1 32.99 0.0000
LIKELIHOOD RATIO 4 2.81 0.5898
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ANALYSIS OF MAXIMUM-LIKELIHOOD ESTIMATES

Parameter

Estimate

Standard

Error S

Chi-
quare Prob

M*V

V*F

Function

Vv F  Number

MR = =t NN = = NN = =
N =N =N =N ===

- OO oOo~NOOOOE QN

k.

F1
F2
F3
F4
F5
F6
F7
F8
F9

F10

F11

F12

Function

0.55961579
-0.0425596
-1.7917595
-0.7801586
1.19139402
0.99633344
-0.6931472
0.53551824
0.28768207
-0.3448405
-1.0986123

42
23

4
11
79
65
12
a1
32
17

8
24

Standard
Error

0.25588316
0.29179604
0.54006172
0.36410954
0.23307701

0.2388541
0.35355339
0.25701539
0.27003086
0.31700189
0.40824829

6.0887294
4.63921829
1.98879543
3.26527352
7.84646666
7.29371812

3.4055492
6.02531902
5.39811678
4.02402006
2.79664604
4.73191943
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Function

0.46056655
0.08408898
-1.9103652
-0.7576857
1.25599258
0.87951501
-0.6481235
0.50455601
0.17799958

-0.198478
-1.1526795

38.5465116
26.4534884
3.6

11.4
85.3953488
58.6046512
12.72
40.28
29.05813985
19.9418605
7.68

24 .32

Standard
Error

0.22902508
0.23545775

0.3908212
0.31291637
0.20979113
0.21679525
0.32394827
0.22387033

0.2397416
0.24589408
0.23414645

.76034564
.57260801
. 11274377
.95150493
.04763999
.80126523
. 77929216
.58608559
.13758176
.04155594
.88314117
.32421628

b= WE NN N = WA

Residual

0.09904924
-0.1266486
0.11860574
-0.0224729
-0.0645986
0.11681843
-0.0450237
0.03096223
0.10968249
-0.1463625
0.05406722

3.45348837
-3.4534884
0.4

-0.4
-6.3953488
6.39534884
-0.72

0.72
2.94186047
-2.9418605
0.32

-0.32
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EXAMPLE 3.1 : ML Estimation with the Newton-Raphson algorithm
proc iml;

reset nolog;

y={42, 23, 4, 11, 79, 65, 12, 41, 32, 17, 8, 24};

x={1 1 0 1 1 1 0 1,
1 1 0 1 -1 1 0 Az
1 1 0 -1 1 -1 0 <3,
1 1 0 -1 -1 -1 0 1,
1 0 1 1 1 0 1 1,
1 0 1 1 -1 0 1 A,
1 0 1 -1 1 0 =% s
1 0 1 =4 -1 0 1 1l;
1 -4 -1 1 1 = -1 T,
1 -1 -1 1 -1 -1 -1 1
1 1 -1 =1 1 1 1 A,
1 = -1 & = 1 1 1};

m=y;

b=ginv(x *x)*x *log(m);
m=exp(x*b);
diff=1; i=0;

do while (diff>1e-15); i=i+1;
bi=b+ginv(x *diag(m)*x)*x *(y-m);
diff=(b-b1) *(b-b1);

b=b1;

m=exp(x*b);

end;

sebhat=sqrt(vecdiag(ginv(x"*diag(m)*x)));
print i b sebhat;

62



4

3

A~ 4

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NI

UN
UNIVE
YUNIBESITHI YA PRETORIA

EXAMPLE 3.1 : ML Estimation under constraints

proc iml;

reset nolog;

y={42, 23, 4, 11, 79, 65, 12, 41, 32, 17, 8, 24}; ybegin=y;
m=y;

x={1 1 0 1 1 1 0 1 0
1 1 0 1 =l 1 0 -1 0
1 1 0 -1 1 -1 0 1 0
1 1 0 - -1 -1 0 -1 0
1 0 1 1 1 0 1 0 1
1 0 1 1 -1 0 1 0 -1
1 0 1 =% 1 0 -1 0 1
1 0 1 =1 =1 0 =1 0 =1
1 -1 -1 1 1 =1 =1 =] |
1 -1 -1 1 -1 -1 -1 1 1
1 -3 =1 =1 1 it 1 -1 -1
1 -1 -1 -1 -1 1 3 1 1

c={0 00000010000,
0000O0O0QCO0OO0O1TO0O0O0,
D0OO0OD0DO0C0CO000O0O10,
000000000000 1};

acp=c*ginv(x *x)*x"; ac=acp’;

gy=ac’*log(y);
wald=gy *ginv(ac’ *diag(1/y)*ac)*gy;
diff=1; i=0;

do while (diff>1e-10);

yi=y-ac*ginv(ac *diag(1/y)*ac)*ac *log(y);
diff=(yt1-y) *(y1-y);

y=y1;

end;

bhat=ginv(x *x)*x *log(y);

print bhat;

v=diag(y)-y*y /y[+];

v=diag(y);

covy=v-ac*ginv(ac' *diag(1/y)*ac)*ac’;
se_y=sqrt(vecdiag(covy));

print y se_y;

esti=diag(1/y)*covy*diag(1/y);
cov_bhat=ginv(x" *x)*x *est1*x*ginv(x *x);
se_bhat=sqrt(vecdiag(cov_bhat));

print bhat se_bhat;

chi2=sum( (ybegin-y)#(ybegin-y)/y);

dev=2#ybegin’ *log(ybegin/y); print dev;
print chi2 dev wald;
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EXAMPLE 3.2 : Proc Logistic and Proc Genmod
data blood;

input pressure ypres yabs;
events=ypres;
trials=ypres+yabs;

cards;

111.5 3 153

121.5 17 235

131.5 12 272

141.5 16 255

151.5 12 127

161.5 8 77

176.5 16 83

191.5 8 35

i

proc logistic;

model events/trials=pressure;
run;

proc genmod;
model events/trials=pressure/link=logit dist=bin;
run;

The LOGISTIC Procedure
Data Set: WORK.BLOOD
Response Variable (Events): EVENTS
Response Variable (Trials): TRIALS
Number of Observations: 8
Link Function: Logit

Response Profile
Ordered Binary
Value Outcome Count
1 EVENT 92
2 NO EVENT 1237

Model Fitting Information and Testing Global Null Hypothesis BETA=0

Intercept
Intercept and
Criterion Only Covariates Chi-Square for Covariates
AIC 670.831 648.718 -
sC 676.024 659.102 .
-2 LOG L 668.831 644.718 24.113 with 1 DF (p=0.0001)
Score . < 26.556 with 1 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardized
Variable DF Estimate Error Chi-Square Chi-Square Estimate
INTERCPT 1 -6.0820 0.7243 70.5098 0.0001 .
PRESSURE 1 0.0243 0.00484 25,2523 0.0001 0.269349

Odds
Ratio

1.025
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Association of Predicted Probabilities and Observed Responses

Concordant = 56.8% Somers' D = 0.273
Discordant = 29.5% Gamma = 0.316
Tied = 13.7% Tau-a = 0.035
(113804 pairs) c = 0.636

The GENMOD Procedure

Model Information

Description Value

Data Set WORK . BLOOD
Distribution BINOMIAL
Link Function LOGIT
Dependent Variable EVENTS
Dependent Variable TRIALS
Observations Used 8

Number Of Events 92

Number Of Trials 1329

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF
Deviance 6 5.9092 0.9849
Scaled Deviance 6 5.9092 0.9849
Pearson Chi-Square 6 6.2899 1.0483
Scaled Pearson X2 6 6.2899 1.0483
Log Likelihood . -322.3590

Analysis Of Parameter Estimates

Parameter DF Estimate Std Err  ChiSquare Pr>Chi
INTERCEPT 1 -6.0820 0.7243 70.5076 0.0001
PRESSURE 1 0.0243 0.0048 25.2513 0.0001

Analysis Of Parameter Estimates
Parameter DF Estimate §td Err ChiSquare Pr>Chi
SCALE 0 1.0000 0.0000

NOTE: The scale parameter was held fixed.
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EXAMPLE 3.2 : ML Estimation using the Newton-Raphson algorithm

proc iml;

reset nolog;

x={1 111.5, 1 121.5, 1 131.5, 1 141.5, 1 151.5, 1 161.5, 1 176.5, 1 191.5};
y={3 188, 7 285; '92/202; 1A6Ness; |1 12 18T TR 77; 16 83, 8 35};
Xr=nrow(x);

yi=y[,1]; yi0=yi;
ni=y[,1]1+y[,2];
pi=yi/ni;
e=j(xr,1,1);

logit=log(pi/(e-pi));
bhat=ginv(x *x)*x *logit;

diff=1; i=0;

do while (diff>1e-10); i=i+1;
pi=exp(x*bhat)/(e+exp(x*bhat));
var=ni#pi#(e-pi); v=diag(var); ivar=1/var;
yil=ni#pi;
bhati=bhat+ginv(x *v*x)*x *(yi-yil);
diff=(bhat-bhat1) *(bhat-bhati);
bhat=bhat1;

end;

sebhat=sqrt(vecdiag(ginv(x *v*x)));
print i bhat sebhat;
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EXAMPLE 3.2 : ML Estimation under constraints

proc iml;

reset nolog;

=01 41105, 1 121.5, 1 4181.5, ¥ 141.5, 1 151.5, 1 161.5, 1 176.5, 1 191
y={3 153, 17 235, 12 272, 16 255, 12 127, 8 77, 16 83, 8 35};
XPr=nrow(x);

p=i(xr)-x*ginv(x *x)*x";

yi=y[,1]; yi0=yi;
ni=y[,1]+y[,2];
e=j(xr,1,1);

diff=1; i=0;

do while (diff>1e-10); i=i+1;
pi=yi/ni;
logit=log(pi/(e-pi));
var=ni#pi#(e-pi); v=diag(var); ivar=1/var;
g=p*diag(ivar);
yil=yi-p*ginv(p*diag(ivar)*p)*p*logit;
diff=(yit1-yi) *(yit-yi);
yi=yii;

end;

bhat=ginv(x *x)*x *logit;
sebhat=sqrt(vecdiag(ginv(x *v*x)));
print i yiO yi1;

print bhat sebhat;

pi=yi/ni;

var=ni#pi#(e-pi); v=diag(var); iv=diag(1/var);
covy=v-p*ginv(p*iv*p)*p;
se_y=sqrt(vecdiag(covy));

esti=iv*covy*iv;
cov_bhat=ginv(x *x)*x *est1*x*ginv(x *x);
se_bhat=sqrt(vecdiag(cov_bhat));

print bhat se_bhat;

chi2=sum((yiO-yi)#(yiO-yi)/yi)+sum((yi-yi0)#(yi-yi0)/(ni-yi));
dev=2#yi0’ *log(yiO/yi)+2#(ni-yi0) *log((ni-yi0)/(ni-yi));

print chi2 dev;
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EXAMPLE 3.3: Proc Catmod, Proc Logistic and Proc Genmod
data verdict;

input m v f n @@;

cards;

11142 1 %228
1271 4 1212 11
21178 212 62
221 12 2224
31132 31217
3291 8 32224
H

proc catmod;

weight n;

model v=m f/ml nogls noprofile;
run;

data verdict;

input m1 m2 f1 guilty n_guilty @€e;
events=guilty;
trials=guilty+n_guilty;

cards;
1 0 142 4
0o 1 179 12
-1 -1 1328
1 0 -1 23 11
0 1 -165 41
-1 -1 -1 .17 24

.

ki

proc logistic;

model events/trials=m1 m2 1;
run;

proc genmod;
model events/trials=m1 m2 f1/link=logit dist=bin;

run;
The CATMOD Procedure
Data Summary
Response v Response Levels 2
Weight Variable n Populations 6
Data Set VERDICT Total Frequency 358
Frequency Missing 0 Observations 12
Maximum Likelihood Analysis
Sub -2 Log Convergence Parameter Estimates
Iteration Iteration Likelihood Criterion 1 2 3 4
0 0 496.29338 1.0000 0 0 0 0
1 0 382.97715 0.2283 0.8530 0.3128 0.11386 0.5613
2 0 378.42388 0.0119 1.0465 0.4339 0.1224 0.7443
3 0 378.34289 0.000214 1.0776 0.4548 0.1211 0.7732
4 0 378.34285 1.0572E-7 1.0783 0.4553 0.1210 0.7739
5 0 378.34285 2.749E-14 1.0783 0.4553 0.1210 0.7739

Maximum likelihood computations converged.
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Maximum Likelihood Analysis of Variance

Source DF Chi-Square Pr > ChiSq
Intercept 1 53.91 <.0001
m 2 8.38 0.0152
f 1 32.61 <,0001
Likelihood Ratio 2 0.26 0.8801

Analysis of Maximum Likelihood Estimates

Standard Chi-
Parameter Estimate Error Square Pr > ChiSq
Intercept 1.0783 0.1469 53.91 <.0001
m 1 0.4553 0.2226 4.18 0.0408
2 0.1210 0.1717 0.50 0.4809
T 1 0.7739 0.1355 32.61 <.0001

The LOGISTIC Procedure
Data Set: WORK.VERDICT
Response Variable (Events): EVENTS
Response Variable (Trials): TRIALS
Number of Observations: 6
Link Function: Logit

Response Profile
Ordered Binary

Value Outcome Count
1 EVENT 258
2 NO EVENT 100

Model Fitting Information and Testing Global Null Hypothesis BETA=0

Intercept
Intercept and
Criterion Only Covariates Chi-Square for Covariates
AIC 426.100 386.343
sC 429,981 401.865 C
-2 LOG L 424.100 378.343 45.758 with 3 DF (p=0.0001)
Score . . 43.571 with 3 DF (p=0.0001)

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardized Odds
Variable DF Estimate Error Chi-Square Chi-Square Estimate Ratio
INTERCPT 1 1.0783 0.1469 53.9107 0.0001 . .
M1 1 0.4553 0.2226 4.1840 0.0408 0.168558 1.577
M2 1 0.1210 0.1717 0.4968 0.4809 0.054754 1.129
F1 1 0.7739 0.1355 32.6053 0.0001 0.427234 2.168
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Association of Predicted Probabilities and Observed Responses

Concordant = 62.6% Somers' D = 0.434
Discordant = 19.2% Gamma = 0.531
Tied = 18.2% Tau-a = 0.175
(25800 pairs) c = 0.717

The GENMOD Procedure

Model Information

Description Value

Data Set WORK.VERDICT
Distribution BINOMIAL
Link Function LOGIT
Dependent Variable EVENTS
Dependent Variable TRIALS
Observations Used 6

Number Of Events 258

Number Of Trials 358

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF
Deviance 2 0.2554 0.1277
Scaled Deviance 2 0.2554 0.1277
Pearson Chi-Square 2 0.2552 0.1276
Scaled Pearson X2 2 0.2552 0.1276
Log Likelihood ) -189.1714

Analysis Of Parameter Estimates

Parameter DF Estimate Std Err ChiSquare Pr>Chi
INTERCEPT 1 1.0783 0.1469 53.9106 0.0001
M1 1 0.4553 0.2226 4.1840 0.0408
M2 1 0.1210 0.1717 0.4968 0.4809
F1 1 0.7739 0.1355 32.6053 0.0001
SCALE 0 1.0000 0.0000 =

NOTE: The scale parameter was held fixed.
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EXAMPLE 3.3 : ML Estimation under constraints and using the Newton-Raphson algorithm
proc iml;

reset nolog;

x={1 1 0 1,

-
T
1 1 =1,
7 T I F
[P

y={42 4, 79 12, 32 8, 23 11, 65 41, 17 24};
XPr=nrow(x);

yi=y[,1]; yiO=yi;
ni=y[,1]1+y[,2];
pi=yi/ni; pi0=pi;
e=j(xr,1,1);

print 'ML ESTIMATION SUBJECT TO CONSTRAINTS';
p=i(xr)-x*ginv(x *x)*x’;
diff=1; i=0;
do while (diff>1e-10); i=i+1;
pi=yi/ni;
logit=log(pi/(e-pi));
var=ni#fpi#(e-pi); v=diag(var); ivar=1/var;
g=p*diag(ivar);
yit=yi-p*ginv(p*diag(ivar)*p)*p*logit;
diff=(yil-yi) *(yil-yi);
yi=yil;
end;

bhat=ginv(x *x)*x *logit;
sebhat=sqrt(vecdiag(ginv(x *v*x)));
print i yiO yil; print bhat sebhat;

pi=yi/ni; var=ni#pi#(e-pi); v=diag(var); iv=diag(1/var);
covy=v-p*ginv(p*iv*p)*p; se_y=sqrt(vecdiag(covy));

esti=iv*covy*iv;
cov_bhat=ginv(x *x)*x *est1*x*ginv(x *x); se_bhat=sqrt(vecdiag(cov_bhat));
print bhat se_bhat;

chi2=sum( (yiO-yi)#(yiO-yi)/yi)+sum( (yi-yi0)#(yi-yi0)/(ni-yi));
dev=2#yi0  *log(yi0/yi)+2#(ni-yi0) *log((ni-yi0)/(ni-yi));
print chi2 dev;

print 'NEWTON-RAPHSON ALGORITHM';
logit=log(pi0/(e-pi0)); bhat=ginv(x *x)*x *logit;

diff=1; i=0;

do while (diff>1e-10); i=i+1;
pi=exp(x*bhat)/(etexp(x*bhat));
var=ni#pi#(e-pi); v=diag(var); ivar=1/var;
yil=ni#pi;
bhati=bhat+ginv(x *v*x)*x *(yi-yil);
diff=(bhat-bhat1) *(bhat-bhatl);
bhat=bhat1;

end;

sebhat=sqrt(vecdiag(ginv(x *v*x)));
print i bhat sebhat;
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CHAPTER 4

EXAMPLE 4.1

proc iml; reset nolog;

/********#*************************kt*******k**************l

/* Give the observed values of y from the square table *f
/*t***i*ix*****t************tiﬁ*ﬁi**t*****t***********t*t*t/
y={50 45 8 18 8

28 174 84 154 55

11 78 110 223 96

14 150 185 714 447

3 42 72 320 411};
/* y={11607 100 366 124 87 13677 515 302 172 225 17819 270 63 176 286 10192}; */
/* y={1520 266 124 66 234 1512 432 78 117 362 1772 205 36 82 179 492}; */

y=y'; ybeg=y;

li*******t***********i**t**i************t#*****************!

/* Create C matrix for the test under constraints E
l************t****************ti***it*i***i'***wti*t**t****!
n=sqrt(nrow(y)); nn=n#(n-1)/2;
C=j(nn,n*n,0);
r=0;
do j=1 to (n-1);
k1begin=(j-1)*(n+1)+2; kilend=n*j;
1lc=0;
do ki=klbegin to kilend;
lc=lc+1;
r=r+1; k2=ki1+(n-1)*1lc;
Clr,k1]=1; C[r,k2]=-1;
end;
end;

]******************t**************i*******tiitt***/

/* 1 Test for CS model under constraints *if
l*k********************ﬁ*******t*t**tttittt**kt#*t/
print 'Model CS';

x=j(nn,1,1);

P=I(nn)-x*ginv(x *x)*x’;

K=P*C;

diff=1;

i=0;

do while (diff>1e-10); i=i+1;
Dy=diag(y);

Di=inv(Dy);

y1=y-K *ginv(K*Di*K ) *K*log(y);
diff=(y1-y) *(y1-y);

y=y1;

end;

chi2=(ybeg-y) " *((1/y)#(ybeg-y));
g2=2*ybeg’ *log(ybeg/y);
delta=exp(ginv(x *x)*x *C*log(y));
print delta chi2 g2;

print ybeg y;
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/ttitttt-ttt*tt*ttfﬁi’tt't*t*ttt*t**tl’*l**lﬂ**#i!tl

/* 2 Test for S model under constraints */
lttﬁt*ittii--lriti*i**!**ﬂtttitii.**iai*it&tinittlﬁtil
print 'Model S';

y=ybeg;

diff=1;

i=0;

do while (diff>1e-10);

i=i+;

Dy=diag(y);

Di=inv(Dy);

yi=y-C *ginv(C*Di*C" )*C*log(y);
diff=(yt1-y) *(y1-y);

y=y1;

end;

chi2=(ybeg-y) *((1/y)#(ybeg-y));
g2=2*ybeg *log(ybeg/y);

print chi2 g2;

print ybeg y;

I*Q".'.ittt***it***...ﬁIt‘Iﬁl!tﬂ'i!*!*lttiil!l‘tl‘!

/* 3 Test for DPS model under constraints 7 |
l'ttttit‘t*tt*t**tt*i*itﬂi*.t***tttfiﬁtt*ttli.iiiiI
print 'Model DPS';

y=ybeg;

X=I(n-1);

do h=2 to n-1;
YY=I(n-h)||j(n-h,h-1,0);
=X/IYY;

free YY;

end; print X;

P=I(nn)-X*ginv (X *X)*X";
K=P*C;

diff=1;
i=0;

do while (diff>1e-10);

i=1+1;

Dy=diag(y);

Di=inv(Dy);

y1=y-K *ginv(K*Di*K" )*K*log(y);
diff=(y1-y) *(y1-y);

y=y1;

end;

chi2=(ybeg-y) *((1/y)#(ybeg-y));
g2=2*ybeg *log(ybeg/y);
delta=exp(ginv (X *X)*X *C*log(y));
print delta chi2 g2;

print ybeg y;
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/* 4 Test for LDPS model under constraints "
!********R*****t**t*tt**tt*********t*************i/
print 'Model LDPS';

y=ybeg;

X1=I(n-1);

do h=2 to n-1;
YY=I(n-h)||i(n-h,h-1,0);
X1=X1//YY;

free YY;

end;

L=%3

do h=2 to n-1;
L=/ /h;

end;

X=X1*L; print X;

P=I(nn)-X*ginv (X' *X)*X’;
K=P*C;

diff=1;
i=0;

do while (diff>1e-10);

i=i+1;

Dy=diag(y);

Di=inv(Dy);

y1=y-K *ginv(K*Di*K ) *K*log(y);
diff=(y1-y) *(y1-y);

y=y1;

end;

chi2=(ybeg-y) *((1/y)#(ybeg-y));
g2=2*ybeg’ *log(ybeg/y);
delta=exp(ginv(X *X)*X *C*log(y));
print delta chi2 g2;

print ybeg y;

!***********ﬁ**ti**ti**i!t****t***tt**************/

/* 5 Test for ALDPS model under constraints *J
/*********************i***t**********tutt*******tt/
print 'Model ALDPS';

y=ybeg;

X1=I(n-1);

do h=2 to n-1;
YY=I(n-h)||j(n-h,h-1,0);
X1=X1//YY;

free YY;

end;

L=1;

do h=2 to n-1;

L=L//h;

end;
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X=j(2*n,1,n)-X1*L; print X;

P=I(nn)-X*ginv(X *X)*X";
K=P*C;

diff=1;
i=0;

do while (diff>1e-10);

i=i+1;

Dy=diag(y);

Di=inv(Dy);

y1=y-K *ginv(K*Di*K" ) *K*log(y);
diff=(y1-y) *(y1-y);

y=y1;

end;

chi2=(ybeg-y) *((1/y)#(ybeg-y));
g2=2*ybeg’ *log(ybeg/y);
delta=exp(ginv(X *X)*X *C*log(y));
print delta chi2 g2;

print ybeg vy;

!tttttiti!.'ﬁﬁt*t***t!t*ittt*‘ltii!Qtt*i*i**tit*it!

/* 6 Test for 2RPS model under constraints i
l*tttt-*liliit**t****tttitkt*ll'**tﬁtt*i****ttt*tti
print 'Model 2RPS';

y=ybeg;

X1=I(n-1);

do h=2 to n-1;
YY=I(n-h)||j(n-h,h-1,0);
X1=X1//YY;

free YY;

end;

L=0;

do h=1 to n-2;

L=L//h;

end;

X2=X1*L; X3=j(n*2,1,1); X=X3||X2; print X;

P=I(nn)-X*ginv(X *X)*X";
K=P*C;

diff=1; i=0;

do while (diff>1e-10); i=i+1;
Dy=diag(y); Di=inv(Dy);

y1=y-K *ginv(K*Di*K ) *K*log(y);
diff=(yl-y) " *(y1-y);

y=y1;

end;

chi2=(ybeg-y) *((1/y)#(ybeg-y));
g2=2*ybeg’ *log(ybeg/y);
delta=exp(ginv(X *X)*X *C*log(y));
print delta chi2 g2;

print ybeg y;
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/**t***t*****i*****l***************************t**j

/* 7 Test for QS model under constraints Xt
/********************k*****tt**ttttt**i&k*ﬂr****w*[
print 'Model QS';

y=ybeg;

free X;

plusi=I(n-1); mini=-plusi;
een=j(n-1,1,1); mineen=-een;
X=een| |mini| |[mineen| |plusi;

do k=1 to n-2;

nul=j(n-k-1,k,0);

plusi=I(n-k-1); mini=-plusi;
een=j(n-k-1,1,1); mineen=-een;
YY=nul||een||mini||nul||mineen||plusi;
X=XJINY S

free YY;

end;

P=I(nn)-X*ginv (X *X)*X";
K=P*C;

diff=1;
i=0;

do while (diff>1e-10);

imitl;

Dy=diag(y);

Di=inv(Dy);

y1=y-K *ginv(K*Di*K" )*K*log(y);
diff=(y1-y) *(y1-y);

y=y1;

end;

chi2=(ybeg-y) *((1/y)#(ybeg-y));
g2=2*ybeg’ *log(ybeg/y);
delta=exp(ginv (X *X)*X *C*log(y));
print delta chi2 g2;

print ybeg y;
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CHAPTERSS5

EXAMPLE 5.2 and EXAMPLE 5.3

lﬁitt-l!l*tl'ltltil*-*ttt*‘*i*it***f*t*******iﬂ*tﬁ***.i.Ql

/* ML estimation of cell probabilities for incomplete L
/* IxJ contingency tables if data is missing on either */
/* categories and the missing data mecahnism is o3|
/* ignorable *]

fﬂ*ltltnlttitiitiI*#tﬁ*ﬁii******t*t**t****ﬁt**tﬁ*ﬁ*******l

proc iml; reset nolog;

!t*******ii*iti***#t!*tﬁ*t*i**il!*ﬂ‘!*'l*tt!ti*iti*ﬂ**tt*’l

/* ENTER FREQUENCY VECTORS A, B and C: =]
/* A: both row and column categories observed L# |
Y enter rowwise *1

/* B: row category observed and column category missing */
/* C: column category observed and row category missing */

l‘t*ttititt*tttt'ii'kttt*tt'ttt****ﬁ**.****ﬁk*.'i‘.'ﬁ!.t.t’

I*******’i*t.***’

/* Example 5.2 */
Ittitttittt*ttt*’
A={392,55,76,38};
B={33,9};
C={31,7};

I*t*it******tt*tl

/* Example 5.3 */
[#t!tt!.*tttttit/
A={287,39,38,18,6,4,91,22,23};
B={279,27,201};

c={59,18,26};

i=nrow(B);
j=nrow(C);
na=nrow(A); nb=i; nc=j;

y=A/[B//C;

sy=yl[+];

ya=y[1:na,]; yb=y[na+i:pna+nb,]; yc=y[na+nb+1:na+nb+nc,];
som_ya=ya[+]; som_yb=yb[+]; som_yc=yc[+];

pa=ya/ya[+]; pb=yb/yb[+]; pc=yc/yc[+];

p=pa//pb//pc; tot=p[+];

p0=p; pbegin=p;

ij=i+f;

ej=d(1,3,1); ei=d(1,4,1);
1i=I1(i);  i§=I1(i);
i_ij=-1(ij);

c_row=i_i@ej;
c_col=ei@i_j;
gi=c_row//c_col;
G=g1]||i_ij;
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diff=1; t=0;
do while (diff>1e-20); t=t+1;

pa=p[1:na,]; pb=p[na+1:na+nb,]; pc=p[na+nb+1:na+nb+nc,];
cova=diag(pa)/som_ya-pa*pa’/som_ya;
covb=diag(pb)/som_yb-pb*pb’ /som_yb;
cove=diag(pc)/som_yc-pc*pc’ /som_yc;
V=block(cova,covb,covc);

p=pbegin;

print g; print p;
gp=G*p;
pt=p-(G*V) *ginv(G*V*G')*gp;
diff=(pt-p0) *(pt-p0);
pO=pt;
p=pt;

end;

stderr=sqrt(vecdiag(v-(g*v) *ginv(g*v*g )*g*v));
print pt stderr;
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EXAMPLE 5.2: GENMOD

data
input
cards
392
55
76
38 -
33

9
3

7
H
proc

model count=pi11 p12 p21/dist=poi link=id offset=off noint;

run;

NOTE:

one;
count pi11 pi12 p21 off;
561 0 0 o0

0 561 0 o0

0 0 561 0
561 -561 -561 561
42 42 g 0
-42  -42 0 42
38 0 38 0
-38 0 -38 38

genmod data=one;

Desc
Data
Dist
Link
Depe
Offs
Obse

The GENMOD Procedure
Model Information

ription

Set

ribution
Function
ndent Variable
et Variable
rvations Used

Value
WORK .ONE
POISSON
IDENTITY
COUNT
OFF

8

Criteria For Assessing Goodness Of Fit

Criterion
Deviance
Scaled Dev
Pearson Ch
Scaled Pea

DF

5

iance 5
i-Square 5
rson X2 5

Log Likelihood

Parameter
INTERCEPT
P11

P12

P21

SCALE

The scale parameter was

Value

Va

0.1125
0.1125
0.1149
0.1149
2642.6805

Analysis Of Parameter Estimates

DF Estimate

0 0.0000
1 0.6971
1 0.0986
1 0.1358
0 1.0000
held fixed.

Std Err
0.0000
0.0187
0.0124
0.0141
0.0000

ChiSqua

1389.03
63.58
92.27

Lagrange Multiplier Statistics

Parameter
Intercept

ChiSquare

79

Pr>Chi
0.0309 0.8605

lue/DF
0.0225
0.0225
0.0230
0.0230

re Pr>Chi

23 0.0001
30 0.0001
15 0.0001
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EXAMPLE 5.3: GENMOD
data one;
input count pi1 p12 pi13 p21 p22 p23 p31 p32 off;
cards;
287 528 0 0 0 0 0 0 0 0
39 0 528 0 0 0 0 0 0 0
38 0 0 528 0 0 0 0 0 0
18 0 0 0 528 0 0 0 0 0
6 0 0 0 0 528 0 0 0 0
4 0 0 0 0 0 528 0 0 0
91 0 0 0 0 L] 0 528 (4] 0
22 0 0 0 0 0 0 0 528 0
23 -528 -528 -528 -528 -528 -528 -528 -528 528
279 507 507 507 0 0 0 0 0 0
27 0 0 0 507 507 507 0 0 0
201 -507 -507 -507 -507 -507 -507 0 0 507
59 103 0 o} 103 0 0 103 0 0
18 0 103 0 0 103 0 0 103 0
26 -103 -103 0 -103 -103 0 -103 -103 103

]
proc genmod data=one;
model count=pi11 p12 p13 p21 p22 p23 p31 p32/dist=poi link=id offset=off noint;
run;
The GENMOD Procedure
Model Information

Description Value
Data Set WORK . ONE
Distribution POISSON
Link Function IDENTITY
Dependent Variable COUNT
Offset Variable OFF
Observations Used 15

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF
Deviance 7 36.0006 5.1429
Scaled Deviance 7 36.0006 5.1429
Pearson Chi-Square i 36.8259 5.2608
Scaled Pearson X2 74 36.8259 5.2608
Log Likelihood . 4471 .6801

Analysis Of Parameter Estimates

Parameter DF Estimate Std Err  ChiSquare Pr>Chi
INTERCEPT 0 0.0000 0.0000 ‘ .
P11 1 0.4747 0.0174 748.0998 0.0001
P12 1 0.0701 0.0102 47.1384 0.0001
P13 1 0.0742 0.0107 47.7219 0.0001
P21 1 0.0327 0.0064 25.9330 0.0001
p22 1 0.0120 0.0045 6.9284 0.0085
P23 1 0.0087 0.0041 4.4891 0.0341
P31 1 0.2060 0.0158 169.1698 0.0001
P32 1 0.0558 0.0108 28.0104 0.0001
SCALE 0 1.0000 0.0000

NOTE: The scale parameter was held fixed.
Lagrange Multiplier Statistics
Parameter ChiSquare Pr>Chi
Intercept 0.0571 0.8111

&0



EXAMPLE 5.3 (Fully Classified cases)

data wheeze;

input smoke status f @@;
cards;

112879 2'89 1 3 38
21 1822 623 4
31 9132223 3238

3

proc catmod data=wheeze;
weight f;

model smoke*status= _response_/ml noprofile pred=prob;

loglin smoke status smoke*status;

run;

Function
Sample SMOKE STATUS Number

CATMOD PROCEDURE
MAXIMUM-LIKELIHOOD PREDICTED VALUES FOR RESPONSE

FUNCTIONS AND PROBABILITIES

Function

Standard
Error

Residual

o ~NOOO s N =

P1
P2
P3
P4
P5
P6
P7
P8
P9

WL Mo N = ==
WN = W= =

------- Observed-------
Standard
Function Error
2.523988 0.21670852
0.52806743 0.26290547
0.50209194 0.26418564
-0.2451225 0.31469639
-1.3437347 0.45841567
-1.7491999 0.54173634
1.37536529 0.23338224
-0.0444518 0.29821604
0.54356061 0.02167697
0.07386364 0.01138245
0.0719697 0.01124706
0.03409091 0.00789715
0.01136364 0.00461275
0.00757576 0.0037735
0.17234848 0.01643654
0.04166667 0.00869632
0.04356061 0.00888298

81

2.523988
0.52806743
0.50209194
-0.2451225
-1.3437347
-1.7491999
1.37536529
-0.0444518

0.54356061
0.07386364
0.0719697
.03409091
.01136364
.00757576
.17234848
.04166667
.04356061

OO0 00 O0COQo

0.2167086
0.26290557
0.26418573
0.31469648
0.45840475
0.5417358
.23338233
.29821615

o o

.02167697
.01138246
.01124706
.00789715
.00461261
0.0037735
0.01643655
0.00869633
0.00888298

O 0 o0oo

-1.8143E-

00O ®woooo

000000000
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EXAMPLE 5.4: Model {SPC}

proc iml; reset nolog;
yc={3,176,4,293,17,197,2,23}; som_yc=yc[+]; pc=yc/som_ycC;

ym={10,150,5,90}; som_ym=ym[+]; pm=ym/som_ym;
G={10001000-1 0 0 O,

01000100 8@ -1 0O 05

00100010 @ Oi=i i

0001T0001T 0 O O =1};
y=yc//ym;

p=pc//pm; pO=p; pbegin=p;
diff=1; t=0;

do while (diff>1e-20); t=t+1;
pc=p[1:8,]; pm=p[9:12,];
covc=diag(pc)/som_yc-pc*pc’ /som_yc;
covm=diag(pm)/som_ym-pm*pm’ /som_ym;
V=block(covc,covm);

p=pbegin;

gp=G*p;

pt=p-(G*V) *ginv(G*V*G')*gp;
diff=(pt-p0) *(pt-p0);

pO=pt; p=pt;

end;
pc=100*pt[1:8,]; print pc;
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EXAMPLE 5.4: (ML estimation with EM algorithm: Model SC PC)
proc iml;
reset nolog;

I‘!ti**iiit**ttit*ﬁ*t*ii.*t*lll!ll*t*t!

/* design matrix: § P C SP SC PC SPC */
’ﬁ*.*ﬁ**id!tli-*ttitit*.it*ﬁt**f****i*l
2 (T T T (R (T
W=t 1 B =1 =i e
R I I B (e
Avsdl A =1 =t
IR (I TR, T TS [
T O TR TR R
T s s T TR
s T T

— ok b —d ok

/** model:SP,SC,PC **/ ah=X[,8];

/** model:SP,SC *%/ ah=X[,7:8];

/** model:SC,PC **/ ah=X[,5]]|]|X[,8];
y={8,176,4,293,17,197,2,23,10,150,5,90};

ya=y[1:8,]; na=ya[+]; pa=ya/na; yabeg=ya; yal=ya;

diff2=1; r=0;
do while (diff2>1e-10);
diffi1=1;

/Q***i*iiit*****t*******itt********ili*‘t‘*i*i*****t*kt/

/* First iteration: Starting values of EM algorithm */
/* Higher iterations: M-Step of EM algorithm )
litt**itt*tttttti'Qt*ltt#*IQQ*i*itiiit*tit**tt*tttt***ll
do while (diffi>1e-20);
yt=ya-ah*ginv(ah *diag(1/ya)*ah)*ah *log(ya);
diffi=(yt-ya) *(yt-ya);
ya=yt;
end;

’ttttititi*tt*ttt*ittt*ﬁt***t*i**itil
/* E-Step of EM algorithm *{
Ikttttiiﬁti'!*ﬁ!iit-litittiti*ittt*i!
r=r+1;

pa=ya/ya[+];

pfill=j(2,2,1)@i(4)*pa;
yb=j(2,1,1)@y[9:12,];
ya=yabeg+yb#pa/pfill;

ya2=ya;

diff2=(ya2-yal) *(ya2-yal);
yal=ya2;

end;

print r pa;

sig=diag(ya)-ah*ginv(ah’ *diag(1/ya)*ah)*ah’;
cov=ginv (X' *X)*X *(diag(1/ya)*sig*diag(1/ya))*X*ginv(X *X);

var=diag(cov);

pa=100*pa;
/[*print pa var;*/
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EXAMPLE 5.4: (ML estimation under constraints: Model CS CP)
proc iml; reset nolog;
y={8,176,4,293,17,197,2,23,10,150,5,90}; ybegin=y; yo=y; n=y[+]; muO=y;
ya=y[1:8,];
yb=y[9:12,]; nb=yb[+];
i=2; j=2; k=2; jk=j*k;

x={1 1
1 -1
e 3
1 -1
1 1
1 -1
1 1
1 -1

xu=x[,1:

e AR B
11 -1 -1
S o
11 1A
1 -1 1 -1
1 -1 -1 1
-1 -1 -1 -1
11011
411 1x[,6:71;

na=ya[+];

1jk=1i*j*k;
1,
.1.
-1'
1,
-1.
1,
1,
-1}

p1=1(8)-xu*ginv(xu'*xu)*xu’;
cr=(1/na)#j(1,i,1)@i(jk);

diff1=1; j1=0;
diff2=1; j2=0;

do while (diffi>1e-10); j1=j1+1; j2=0; diff2=1;
ya=y[1:8,]; yb=y[9:12,];
cov=diag(y)-1/n#y*y";
gmui=(pi*diag(1/ya))||j(8,4,0);
gmu2=cr||((-1/nb)#i(jk));
gmu=gmu1//gmu2;
y=ybegin;

do while (diff2>1e-10); j2=j2+1;
ya=y[1:8,]; yb=y[9:12,];

gl=pi*log(ya);

g2=(cr||((-1/nb)#i(jk)))*y;
g=g1//g2;
gyi=(p1*diag(1/ya))||i(ijk,ik,0);
gy2=cr||((-1/nb)#i(jk));

gy=gy1//gy2;

yt=y-(gmu*cov) *ginv(gy*cov*gmu’)*g;
diff2=(yt-y0) *(yt-y0);

yo=yt;

y=yt;
end;

mut=yt;
diffi=(mut-mu0) * (mut-mu0);

mu0=mut;

end;

ya=y[1:8,];
pa=ya/na; pb=yb/nb;
print i j pa pb;
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cov=diag(y)-1/n#y*y";
gmui=(pi*diag(1/ya))||i(ijk,ik,0);
gmu2=cr| | ((-1/nb)#i(jk));
gmu=gmul//gmu2;

sig=sqrt(1/na#1/na#vecdiag(cov- (gmu*cov) *ginv(gmu*cov*gmu’ )*gmu*cov));
sig=sig[1:8,];

p=p[1:8,];

print ybegin yt pa sig;

I J PA PB
2 0.0049631 0.0317501
0.254203 0.538353
0.0075794 0.010518
0.3882079 0.4193789
0.026787
0.28415
0.0029385
0.0311711

YBEGIN YT PA SIG
3 3.5486225 0.0049631 0.0015509
176 181.75517 0.254203 0.0155327
4 5.4193025 0.0075794 0.002343
293 277.56862 0.3882079 0.0158979
17 19.152686 0.026787 0.0051063
197 203.16723 0.28415 0.0160086
2 2.1010385 0.0029385 0.0007932
23 22.287327 0.0311711 0.0061783
10 8.0962709
150 137.28002
5 2.6820797
90 106.94163
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