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3 CATEGORICAL DATA ANALYSIS

Maximum likelihood estimation procedures for loglinear and logistic regression models are discussed in
this chapter.

3.1 LOGLINEAR ANALYSIS

3.1.1 The Model

Cousider a completely classified contingency table and arrange the observed frequencies into a vector

¥'=(y1.92,¥3,--.,¥p). The expected cell frequencies are given by pu'= (ul,uz,y3, ceey ,u,p). A Poisson
sampling scheme is assumed.

For independent Poisson sampling the joint probability function of ¥;,i=1,2,...,p is

P BXP_‘u“ Ju".v,l
i=1 ;!
= exp[2yilogp; — 3 plexp -2 logul] (34)

which is a member of the exponential family since it has the form

p(y,0)=b(y)exply'® — x(6)]

fy (ylp)

with b(y) = exp[— > log v
8 a 4 x 1 vector of natural parameters with 8; = log u,, that is g, = exp (6;)

K(0) =3 p; = > exp ().

The expected value of ¥; is

E(Y) = 55x(0)
= b
#y
and the covariance of Y3, Y] is
52
Cov(V.Y;) = 575 (0)

[ e ifi=j
- 0 otherwise.
Thus E{Y) = 2 and Cov(Y} =Diag(p).

In the case of a 2 x 2 contingency table with two categorical variables A and B, the model to be fitted,
written as a loglinear model is

logs, = a+ X1 +27 + 27
logu, = a+Af =A=MY
logus = =A% +A7 =AY
logpy = a— A — A + A
The generalized linear model is
log 1 = X.

The three components of the GLM are:

1. The random component Y.
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2. The systematic component

1 1 1 1 a
1 1 -1 -1 At
n=X8= B
1 -1 1 -1 be:
1 -1 -1 1 B

where X is the design matrix and 3'= (a, MLAB AP ) the vector with model parameters.
3. The link function is also a canonical link and is given by

N =) = log i, = 8; = 3 B;z5- (33)
J

3.1.2 Newton-Raphson algorithm for ML estimation

From equation (34) the log-likelihood function for independent Poisson sampling is

Lply) =X yilogp; — 30 p; — 2 logyil. (36)

In equation (35) log p; was written as log u; = 3. ;2. By substituting p; = exp (E; B, :cg-j) intc the

log-likelihood function in (36), the log-likelihood can be written as a function of the elements of 3. That
is

L{Bly) =2 v 3 Bjzi; — 2 exp (Z ﬁjI'iJ") — > logyil. (387)
g 7 T 7 i
The value of B that maximizes L (3ly) can be found iteratively with the Newton-Raphson algorithm
B+ _ gl _ (H(r))'l e (38)

where ,B(r) is the rth approximation of B, r=0,1,2,... and '} and H") are q and H evaluated at
,B(T). From Section 2.1, q is the vector with elements the first order partial derivatives

kaaL B _ _ Yxiwexp | 287 | + X viwin
/e 5 7 i

and H is the matrix of second order partial derivatives having elements

L (B)
hre = Bﬁhaﬁk = — inhxik exp %:,Bjmij = - Zz: TihTikjly-

2

Hence,
qm =X’ (y - u(”) (39)

H — _X'diag (p(f)) X (40)

with (7 = exp (Xﬁ(’")) the rth approximation of fi, {(r =0,1,2,...).
Substituting equations (39} and (40) into equation (38} gives

gl — g [X’diag (,u,(’")) X]_l x! (y _ “(r)) . (41)

The algorithm requires an initial guess, 8, for the values that maximizes the function L (8]y). The
ML estimates of the parameters in the saturated model are used as the initial estimates and are given by

B = (X’XY1 X'logy.
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The asymptotic covariance matrix of ,@ is
= 7 - ~ —~1 Tr—1
Cov (ﬁ) = [X'diag () X] " = -H™".

A canonical link function was used in the GLM in which case the observed and expected second derivative
matrices are identical. Hence, the Fisher scoring and Newton-Raphson algorithms are identical.

3.1.3 Maximum likelihood estimation under constraints

This procedure is also discussed by Crowther and Matthews (1995).
The saturated loglinear model can be written as

logpu =X3 (42)

where p'= (,ul,,uz,,u3, e ,pip) is the vector with expected cell frequencies for the model, X : p x p is
the design matrix and 3 : p x 1 is the vector of parameters for the saturated loglinear model. The ML
estimate of 3 for the saturated model is

B=(X'X)"" X'logy.

For a lower order model certain elements of 8 will be equal to zero.
Let C be a matrix specifying the elements of 3 which are set equal to zero. The hypothesis that certain
elements of 3 are zero, can be written as the constraint

gp) = CB (43)
= C(X'X)'X'logp

Al logp
0.

The ML estimate of ¢ subject to the constraint g {u) = Al log it = 0 is given by

o=y — (G V) (G, V,.GL) g (y) +o(lly — 1)

o
where G, = E‘ﬂ;g(‘u) = ALD;!and V, = D,
Thus
_ _ . -1
. = y—(AGD,'D,) (ALD,'DLDAc) g ly) +o(lly - ull)
_ -1
= y-Ac(ALDS'AG) () +olly —pl). (44)
The ML estimate for fi, is obtained by iterating over y and the asymptotic covariance matrix of fi, is

o~

-1
$.=Ds - Ac (A’CDEjAc) Al
The ML estimate for the vector of cell probabilities is

o~

Pc =

<@

where n is the number of observations.
The ML estimates for the parameters in the loglinear model are given by

B=(X'X)"" X' log fi,.
The covariance matrix B is

Cov (B) = (X'X) ™' X'Cov [log i) X (X'X) .
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The “delta method” is used to determine the asymptotic covariance matrix

- Blogﬁc)A (alogﬁc)'
est [Cov (logpu,)] = = b3 =
o (og )] = (752! o
o — 15 -1
= D BDg .

Hence, the estimated covariance matrix for 3 is

est [Cov (B)] —(X'X)'X [D;{clf.‘.cDE:] X (xX'x)".

EXAMPLE 3.1
Mazimum likelihood estimation for a loglinear model.

Pugh (1983) designed a study to examine the disposition of jurors to base their judgments of defendants
{“guilty” or “not guilty”) on the alleged behavior of a rape victim. Pugh’s study varied the degree to
which the juror could assign fault to the vietim (“low” or “high”) and the presentation of the victim as

someone with “high moral character”, “low moral character” or “neutral”. The data are given in Table
3.1.

TABLE 3.1: Data from Pugh (1983).

Moral (M)
Verdict (V) Fault (F) High Neutral Low
Guilty Low 42 79 32
High 23 65 17
Not Guilty Low 4 12 8
High 11 41 24
The saturated model, log (,uijk)=a+/\i\/"+)\;{+)\£+kf‘fv+/\ffF+/\ﬁF+)\ng}?,can be written as
loge = XB
1+ 0 1 1 1 0 1 0 1 1 0 @
AM
1 1 0 1 -1 1 0 -1 0 -1 -1 0 1
AM
1 1 0 -1 1 -1 0 1 0 -1 -1 0 2
1 1 0 -1 -1 -1 0 -1 0 1 1 0 A
1 0 1 1 1 o0 1 0 1 1 0 1 A7
1 0 1 1 -1 0 1 0 -1 -1 0 -1 pEiid
]t o0 1 -1 1 0 -1 0 1 -1 0 -1 AV
1 0 1 -1 -1 0 -1 0 -1 1 0 1 X;"{F
1 -1 -1 1 1 -1 -1 -1 -1 1 -1 -1 AYF
1 -1 -1 1 -1 -1 -1 1 1 -1 1 1 AVF
11
1 -1 -1 -1 1 1 1 -1 -1 -1 1 1 AMVF
111
1 -1 -1 -1 -1 1 1 1 1 1 -1 -1 AMVFE
211
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Consider in this example the reduced model log {1;;,) = e+ A +AY + X + A" 4+ 21" which contains
only the interaction terms between Verdict and Fault and between Verdict and Moral.

Results from the Proc Catmod procedure in SAS

The program and cutput obtained from the PROC CATMOD procedure in SAS are given in the Appendix.
The results are summarized in Table 3.2.

TABLE 3.2: Results from SAS: Proc Catmod.

Maximum Likelihcod Estimates

Variable Par Estimate Standard Error
Pl —0.4221 : 0.1062
prel 0.6067 0.0811
A 0.5520 0.0734
Y —0.1941 0.0666
AV 0.2512 0.1062
AV 0.0178 0.0811
AV 0.3823 0.0666
Model Fitting Information

Likelihood Ratio 2.81
Pearson Chi-Square 2.80

Obtaining the ML estimates by using the Newton-Raphson algorithm
The ML estimates are obtained iteratively with equation (41),

BUY = B+ [ X, ding (1) X “x, (v-ut)

where the matrix X, is a submatrix of the design matrix, X, of the saturated model and 3, is the
parameter vector of the reduced model. The model is

1 1 0 1 1 1 0 1 o
1 1 0 1 -1 1 0 -1 /\{w
1 1 0 -1 1 -1 0 -1
1 1 0 -1 1 -1 0 1 A
1 0 1 1 1 0 1 1 NG
log i — X3, = i1 0 1 1 -1 0 1 -1 ;
wu 1 0 1 -1 1 0 -1 -1 M
1 0 1 -1 -1 0 -1 1 MV
1 -1 -1 1 1 -1 -1 1 ot
i -1 -1 1 -1 -1 -1 —1 AV
1 -1 -1 -1 1 1 1 -1 p
1 -1 -1 -1 -1 1 1 1 ALl

The ML estimates of the parameters for the saturated model are used as an initial guess of Bu and are
given by

BY=(x! X,)" X/, logy.
The covariance matrix of Bu is
Cov (Bu) = [X/diag (B) Xu] .

The results obtained are the same as in Table 3.2. The program is given in the Appendix.

27



iy
% UNIVERSITEIT VAN PRETORIA

@, UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Obtaining the ML estimates under constraints
For the model log (15} = a+ A2 + A + AL + MMV + A7, the ML estimate of u subject to the constraint,

000000010000
000000001000

gw)=CB=1 430000000010 |30
00000000000 1

can be determined iteratively with equation (44),

—~ _ —1
B.=y—Ac(ALD'AG) gy) +olly —pl)

where A, = C(X'X)" ' X'.
Furthermore R
B=(X'X)"" X' log i,
and ~
est [Cov( ) = xx) X [Dglzcngl] X (X'X)"!

The Wald statistic is 2.79 and the other results obtained are the same as in Table 3.2. The program is
given in the Appendix.

3.2 LOGISTIC REGRESSION

3.2.1 The Model

Let ¥;,i=1,2,...,p be independent random variables with Y; ~ bi (n;,m;). The frequency distribution
for the p independent binomial distributions is given in Table 3.3.

TABLE 3.3: Frequency distribution of p independent binomial distributions.

Subgroups
1 2 e P
Successes 1 Y2 . Yp
Failures Ny—Yy1 Ma—Yr -0 Np—Up
Suppose that m covariates, Xy, Xa, ..., X,,, are observed and that at occaston 4, 3; = (zi1, T2, . ., Tim)
and y; is the number of successes in the n; trials, i = 1,2,...,p. Let ®' = (71, 72,...,7p) be the vector
with probabilities of a success within each subgroup and n'=(n1,n9,...,n,) the vector indicating the

number of trials within each subgroup.
The joint probability function of ¥7,Y¥5,...,¥, is

s
LU

flylm}y = (Yi =)

.
[
-

?1‘ (1 _ ,n.i)ni—yi

Il
[fem
Wt
w F
S’
=

=}
0%
e

= exp

(”*>+lognwy=+1og1‘[(1_w)”= yi]

i=1 i i=1

og (yu) + Z yilogm; + E (ni —y:}log (1 — m)]

i=1

log (n’) + Z y; log —— T

1

I
o

= exp

T

[T

= exp

+ Zmlog(l—ir )] (45)

r
-~
Il
—

!
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p(y.0) =b(y)exp[y'® — r(8)]

where

o= 115)

. 8
8 a p x 1 vector with natural parameters 0; = log L -, that is m; = ﬁ
» 7 1 ip
K{0) = — Y nilog(l —7) = — Y milog| —— ) = 3 mlog (1 +e).
i=1 im1 1+ e =
For the exponential class
d
EY) = e
) = 5r®)
— n; 692
14t
= T = py
and
32
YiY;) = 8
Cov (Y., Y;) 393-691%( }
B nm; (1—m) ifi=373
- { 0 otherwise. (46)

Thus, E{Y) = p and Cov(Y) =V, =diag[n;m; (1 —m;)].
The logistic regression model is written as £, = X3 with

T
1—71’,;

m
£, = log = Bo + Oyzar + Baaz + -+ Bptim = Y B;T5.
=0

The three components for the GLM are:

o The random component Y, the vector of successes.

e The systematic component which relates the linear predictor to a set of explanatory variables,

1 zy1 T2 -+ ZTim Bo

1 =3 T2 -+ Tom B34
n=X8= :

L zpy Zpz - Zpm B

e The link function which links p; = E(¥;) to 7;,

Ny

my .
m-:logl_‘,:log = log —X1— = ().

5 Ty — g7y Ny — Hy

The function & is a canonical link since h (i} = 8; = log

1
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3.2.2 Newton-Raphson algorithm for ML estimation

From equaticn (45) the log-likelihood function for the logistic regression model is

L Ny 4 ™5 P
L(WIY)=Elog( )JrEynslog1 + Y nlog (1 — ).
=1 L i i—1

1 i=1 A H

. mi m
SIIICE Iog (1—_-_;:) = Ej:() ,Bjxij,

and log (1 —m;) = —log [1 + exp (E;“:O ,Bjs':ij)]
the log-likelihood function in terms of & is given by

L(@) =3 log () 1y S By 3 mylog [1 texp (§ ﬁﬁm‘)] -
i=1 U i=1 =0 i=1 3=0

The value )@ of 3 that maximizes L (3) can be determined with the Newton-Raphson algerithm. At step
r+1{r=20,1,2,...) in the iterative process the approximation of 3 is given by

glr+1) _ gtr) _ (H(r})‘l e (47)
2
where q is the vector having elements L (’6), H is the matrix having elements oL (6), and g and
e 9P, 00s,
H™ are q and H evaluated at 8 = 37,
The elements of ") can be written as
= dL (8) ot
F 08, °=*
P P exp (Z;-n:o JBE,-T) xij)
= > yiTie + ) MiZik ——
i=1 i=1 1+exp (ijo B; xij)
P
()
= Tig (Y + 1y,
e (v tmenl?)
and the elements of H(") as
h(r) _ 8L (B) | -
n 08,08, 7P
: exp (T70 8571
= =2 TinTipn RMRERE
i=1 [1 + exp (23:0 ,Bj I'i_j)]
P
= - E xihmikniﬂ'f‘r) (1 — Wi(»r)) .
=1
Thus
q" =X’ (y - n’ﬁ(r)) (48)
and
H") = —X'Diag [nm,ﬁ” (1 - ﬂ’l(-r))] X. {49)
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Substituting (48) and (49) into (47) gives

Bt = gl 4 {X’Diag [nmg’") (1 - wl(-r))] X}_l X' (y - n'frm) (50)
where
oo (o 87215 | -
o (S0 8025)

The algorithm requires an initial guess for a, which is
BO = (XX X
Ui

n:

where £ is calculated from the observed data and has elements £; = log T

For r > 0 the iterative process proceeds by using equations (50) and (51).
The estimated asymptotic covariance matrix of 3 is a by-product of the Newton-Raphson algorithm,

Cov (B) — {X'Diag 7 (1 - 7)) X} ' = —H~! (52)
where 7; is the value of ’JTET) on convergence.

A canonical link function was used in the GLM in which case the observed and expected second derivative
matrices are identical. The Fisher scoring algorithm is identical to the Newton-Raphson algorithm.

3.2.3 Maximum likelihood estimation under constraints

Maximum likelihood estimation for the logistic regression model, using constraints is discussed by Crowther
and Matthews (1998).
The logistic regression model can be written as £,= X3 as discussed in section 3.2.1. The elements of

£, written as a function of y, is

Hsi
= ]
ogn‘_

el 234

i

Ty

&, = log 1 il

Let P =1 — X (X'X) X’ be the projection matrix of the error space. From this the constraint for a
logistic regression model as a function of g is

gip)=P,=PX3=0.

The ML estimate for p is found iteratively with

e -1
Be=y = (GuVyu) (GyVuGL) ™ g(y) +ol(lly — pl) (53)
where G, = o8 (1) = PV;! since Obsy = ! and V,, =diaglnym; (1 — m;)]. Furthermore,
op # Oy niw; {1 — ;)
Gy = 8%(”) lp=y = PV;1 and g (y) = P#, where £, has elements ¢; , = log i Substituting this
!
into (53) gives
- _ ] _ _ -1
B, = y—(PVS'V,) (PVJIV,VLIP) Pl +oflly — ull)

= y-P(PV,'P) 'Pl to(lly - pl).

Iteration takes place over y.
The asymptotic covariance matrix of fi_ is

~

$.=Vs —P (PVﬂ;jPY1 P.
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The M1 estimates for the parameters in the model are given by
B=X'X)"'Xt;.

where £ is the vector of logits at convergence.
The asymptotic covariance matrix of 3 is

cov (B) = (X'X)™! X'eov (6,85 )X (X'X) ™"

TR

From the “delta method”,

eofeor (6,.)] = (58) 2 (52)

= vilyn vt
. i,
and hence, the estimated covariance matrix for 3 is

est [cov (E)} - (X'X)"'x [V;jicvgj] X (X'X)™

EXAMPLE 3.2
Moaoximum likelihood estimation for a logistic regression model with a continuous covariate.

The data in Table 3.4, taken from Apresti (1990), was reported by Cornfield (1962) for a sample of
male residents of Framingham, Massachusetts, aged 40-59, classified into 8 subgroups according to blood
pressure . During a six-year follow-up period, they were classified according to whether they developed
coronary heart disease. This is the response variable. The explanatory variable in the model is the value,
x;, which represents the blood pressure in subgroup 7,7 =1,2,...,8.

TABLE 3.4: Cross-Classification of Framingham Men by Blood Pressure and Heart Disease,

Heart Disease
Blood Pressure  z;  Present (y;) Absent (n; —y;)

<117 111.5 3 153
117 ~ 126 121.5 17 235
127 — 136 131.5 12 272
137 — 146 141.5 16 255
147 -- 156 151.5 12 127
157 — 166 161.5 8 77
167 — 186 176.5 16 83
> 186 191.5 8 35
The model to be fitted is ¢; ,, = log . j‘ﬂ' = fig + 3, x; which can be written as
1 1115
1 121.5 3
pexan| L () o0
Do B
1 1915
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Results from the Proc Logistic and Proc Genmod procedures in SAS
The programs and output obtained from the PROC LOGISTIC and PROC GENMOD procedures in
SAS are given in the Appendix. The results are summarized in Table 3.5.

TABLE 3.5: Results from SAS: Proc Logistic and Proc Genmod.

Maximum Likelihood Estimates

Variable Parameter Estimate Standard Error

Intercept -6.0820 0.7243

Blood Pressure 0.0243 0.00484
Model Fitting Information

Pearson Chi-Square 6.2899

Deviance 5.9002

Obtaining the ML estimates by using the Newton-Raphson algorithm.

The ML estimate of 3 is found iteratively with equation (50) and the covariance matrix is given by
equation (52).

The same results as in Table 3.5 are obtained. The program is given in the Appendix.

Obtaining the MI. estimates under constraints
The ML estimate for g subject to the constraint g {p) = P{,= PX3 = 0 is found iteratively with the
equation

- gy ~1

fie=y P (PV'P)" Pty +o(lly — pll)

Yi
i — Ui

where £y = (£1y,80y,.. ., €py)s £iy = log fori=1,2,3.. pand P=1- X (X'X} X",

Iteration takes place only over y.
The maximum likelihood estimates for the parameters are given by

B=(XX)'Xt;,

where £; is the vector of logits at convergence.
The asymptotic covariance matrix of 3 is

Cov (B) = {X'Diag [0, (1~ %)} X} "

The same results as in Table 3.5 are obtained. The program is given in the Appendix.
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EXAMPLE 3.3
Mezimum likelihood estimation for a logistic regression model with o categorical covariate (logit model).

Pugh {1983) designed a study to examine the disposition of jurors to base their judgments of defendants
on the alleged behavior of a rape victim. Pugh’s study varied the degree to which the juror could assign
fault to the victim (“low” or “high”). It also varied the presentation of the victim as someone with
“high moral character”, “low moral character” or “neutral”. The response variable is the judgment of
the defendant as “guilty” or “not guilty” by the jurors. The data are given in Table 3.6.

TABLE 3.6: Data from Pugh (1983).

Moral (M)
Verdict (V} Fault (F) High Neutral Low
Guilty Low 42 79 32
High 23 65 17
Not Guilty Low 4 12 8
High 11 41 24
Uk

The model to be fitted is £; , = log 1
—

z;1 = 1 and x;2 = 0 if Moral = High,

z;1 = 0 and z;5 = 1 if Moral = Neutral,

z;1 = —1 and ;3 = —1 if Moral = Low,

z;3 = 1 if Fault = Low,

x;3 = —1 if Fault = High.
This model assumes no interaction between moral and fault but it can be extended to include the
interaction.

=+ Ailwmﬂ + /\f;zwil'ig + Afmig where

The model can be written as the logit model

1 1 0 1
1 0 1 1 &
1 -1 -1 1 A
a=XB=1 0 0 X
1 0 1 -1 A
1 -1 -1 -1

Programs similar to those in Example 3.2 are given in the Appendix and the results are summarized in
Table 3.7.

TABLE 3.7. Results for Example 3.3.

Maximum Likelihood Estimates

Variable Parameter Estimate Standard Error

Intercept 1.0783 0.1469

Moral High .4553 0.2226

Moral Neutral 0.1210 0.1717

Fault Low 0.7739 0.1355
Model Fitting Information

Pearson Chi-Square 0.2552

Deviance 0.2554
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