
3 CATEGORICAL DATA ANALYSIS 

Maximum likelihood estimation procedures for loglinear and logistic regression models are discussed in 
this chapter. 

3.1 LOG LINEAR ANALYSIS 

3.1.1 The Model 

Consider a completely classified contingency table and arrange the observed frequencies into a vector 
y' = (Yll Y2, Y3, ... , Yp)· The expected cell frequencies are given by JL' = (ILl' J-i2, J-13, ... 1 IIp). A Poisson 
sampling scheme is assumed. 
For independent Poisson sampling the joint probability function of Yi, i = 1,2, ... ,p IS 

IT exp-P,I'Y' 

i=l Yi! 

exp [I: y;log 1'; - I: I'd exp [- I: log y; 1] 

which is a member of the exponential family since it has the form 

p (y, 0) = b (y) exp [y'O - K (0)] 

with b(y) = exp[- I: logy;!] 
o a 4 x 1 yector of natural parameters with 8; = log 1';, that is 1'; = exp (8;) 
K(O) = I: 1'; = I:exp(8;). 

The expected value of Yi is 

E(Y;) 

and the covariance of Yi) Yj is 

COY (y;, Yj) 

Thus E (Y) = J1. and COylY) =Diag(J1.). 

1'; 

82 

88;88
j 

K (0) 

{ 
ee, if i = j 
o otherwise. 

(34) 

In the case of a 2 x 2 contingency table with two categorical variables A and B, the model to be fitted, 
written as a loglinear model is 

The generalized linear model is 

log 1'1 

log 1'2 

log 1'3 

log 1'4 

The three components of the GLM are: 

1. The random component Y. 

,A ,B ,AB " + "1 + "1 + "11 
,A ,B ,AB 

a + /\1 - A} - All 

" _ ,A + AB _ AAB 
A1 1 11 
,A ,B ,AB 

Q: - 1\1 - /\1 + /\11 

log J1. = Xj3. 

23 



2. The systematic component 

1 1 1 1 a 

1 1 -1 -1 .\A 
1 

1)=X(3= 
.\B 1 -1 1 -1 1 

1 -1 -1 1 .\AB 
11 

where X is the design matrix and f3' = ((X,)..1,)..f, )..11B) the vector with model parameters. 

3. The link function is also a canonical link and is given by 

'1i = h(!'i) = log"i = Bi = Lf3,Xi,. 
j 

3.1.2 Newton-Raphson algorithm for ML estimation 

From equation (34) the log-likelihood function for independent Poisson sampling is 

(35) 

(36) 

In equation (35) log!'i was written as log!'i = Lj f3jXij. By substituting!'i = exp (L, f3,Xi j ) into the 

log-likelihood function in (36), the log-likelihood can be written as a function of the elements of (3. That 
is 

(37) 

The value of /3 that maximizes L ((3ly) can be found iteratively with the Newton-Raphson algorithm 

(38) 

where (3(r) is the rth approximation of /3, r = 0,1,2, ... and q(r) and H(r) are q and H evaluated at 
f3(r). From Section 2.1, q is the vector with elements the first order partial derivatives 

and H is the matrix of second order partial derivatives having elements 

Hence, 
q(r) = X' (y -I-'(r)) 

H(r) = -X'diag (I-'(r)) X 

with I-'(r) = exp (X(3(r)) the rth approximation of Ii, (r = 0, 1,2, ... ). 

Substituting equations (39) and (40) into equation (38) gives 

(3(r+1) = (3(r) + [X'diag (I-'(r)) xr 1 
X' (Y -I-'(r)). 

(39) 

(40) 

( 41) 

The algorithm requires an initial guess, (3(0), for the values that maximizes the function L ((3IY). The 
ML estimates of the parameters in the saturated model are used as the initial estimates and are given by 
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The asymptotic covariance matrix of fj is 

Cov (13) = [X'diag(p)Xr' = _A-I 

A canonical link function was used in the GLM in which case the observed and expected second derivative 
matrices are identical. Hence, the Fisher scoring and Newton-Raphson algorithms are identical. 

3.1.3 Maximum likelihood estimation under constraints 

This procedure is also discussed by Crowther and Matthews (1995). 
The saturated loglinear model can be written as 

loglL = X(3 (42) 

where /1-'= (,ul, ,u2, ,u3'· .. ,,up) is the vector with expected cell frequencies for the model, X : p x p is 
the design matrix and {3 : p x 1 is the vector of parameters for the saturated loglinear model. The ML 
estimate of (3 for the saturated model is 

~ 1 
(3= (X'X) - X' log y. 

For a lower order model certain elements of {3 will be equal to zero. 
Let C be a matrix specifying the elements of (3 which are set equal to zero. The hypothesis that certain 
elements of {3 are zero, can be written as the constraint 

C(3 

C (X'X) -1 X' log IL 

AcloglL 

O. 

The ML estimate of IL subject to the constraint g (IL) = Ac log IL = 0 is given by 

where G~ = :IL g (IL) = ACD ;;' and V" = Dw 

Thus 

y- (ACD;;ID,,)' (AcD;ID~D;;1 Ac) -1 g (y) + 0 (Ily - ILII) 

y - Ac (AcD;' Ac) -1 g (y) + 0 (lly - ILII) . 

(43) 

(44) 

The ML estimate for fie is obtained by iterating over y and the asymptotic covariance matrix of Me is 

~e = D~, - Ac (AcD;;: Ac ) -1 Ac. 

The ML estimate for the vector of cell probabilities is 

where n is the number of observations. 

--- Me Pe= -
n 

The ML estimates for the parameters in the loglinear model are given by 

The covariance matrix fj is 

Cov (13) = (X'X)-' X'Cov [log Pel X (X'X)-' . 
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The "delta method" is used to determine the asymptotic covariance matrix 

est [COy (log /L,)l 

Hence, the estimated covariance matrix for fj is 

EXAMPLE 3.1 
Maximum likelihood estimation for a loglinear model. 

Pugh (1983) designed a study to examine the disposition of jurors to base their judgments of defendants 
("guilty" or "not guilty") on the alleged behavior of a rape victim. Pugh's study varied the degree to 
which the juror could assign fault to the victim ("low" or "high") and the presentation of the victim as 
someone with "high moral character", ('low moral character" or "neutral". The data are given in Table 
3.1. 

TABLE 3.1: Data from Pugh (1983). 

Moral (M) 
Verdict (V) Fault (F) High Neutral Low 

Guilty Low 42 79 32 
High 23 65 17 

Not Guilty Low 4 12 8 
High 11 41 24 

Th d (),M V F ),MV MF ),VF ),MVF b . e saturate model, log J-lijk = Q: + i + Aj + Ak + ij + Aik + jk + ijk ,can e wntten as 

log I-' = X{3 

1 1 0 1 1 1 0 1 0 1 1 0 " 
1 1 0 1 -1 1 0 -1 0 -1 -1 0 

),M 
1 

1 1 0 -1 1 -1 0 1 0 -1 -1 0 
),M 

2 

1 1 0 -1 -1 -1 0 -1 0 1 1 0 ),V 
1 

1 0 1 1 1 0 1 0 1 1 0 1 ),F 
1 

1 0 1 1 -1 0 1 0 -1 -1 0 -1 ),MV 
11 

1 0 1 -1 1 0 -1 0 1 -1 0 -1 AMV 
21 

1 0 1 -1 -1 0 -1 0 -1 1 0 1 ),MF 
11 

1 -1 -1 1 1 -1 -1 -1 -1 1 -1 -1 ,\MF 
21 

1 -1 -1 1 -1 -1 -1 1 1 -1 1 1 ),VF 
11 

1 -1 -1 -1 1 1 1 -1 -1 -1 1 1 ),MVF 
111 

1 -1 -1 -1 -1 1 1 1 1 1 -1 -1 ..\.MVF 
211 
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Consider in this example the reduced model log (I-Lijk) = a + A!;1 + Aj + At' + A~v + Art which contains 
only the interaction terms between Verdict and Fault and between Verdict and MoraL 

Results from the Proc Catmod procedure in SAS 
The program and output obtained from the PROC CATMOD procedure in SAS are given in the Appendix. 
The results are summarized in Table 3.2. 

TABLE 3.2: Results from SAS: Proc Catmod. 

Maximum Likelihood Estimates 
Variable Par Estimate Standard Error 
X'" 1 -0.4221 0.1062 
AM 

2 0.6067 0.0811 
AV 

1 0.5520 0.0734 

Ai -0.1941 0.0666 
AMV 

11 0.2512 0.1062 
AMV 

21 0.0178 0.0811 
AVF 

11 0.3823 0.0666 

Model Fitting Information 
Likelihood Ratio 2.81 
Pearson Chi-Square 2.80 

Obtaining the ML estimates by using the Newton-Raphson algorithm 
The ML estimates are obtained iteratively with equation (41), 

where the matrix Xu is a submatrix of the design matrix, X, of the saturated model and (3u is the 
parameter vector of the reduced model. The model is 

1 1 0 1 1 1 0 1 " 
1 1 0 1 -1 1 0 -1 AM 
1 1 0 -1 1 -1 0 -1 1 

1 1 0 -1 -1 -1 0 1 AM 
2 

1 0 1 1 1 0 1 1 
AV 

1 0 1 1 -1 0 1 -1 1 

log JL = Xu/3u = 1 0 1 -1 1 0 -1 -1 AF 
1 

1 0 1 -1 -1 0 -1 1 
AMV 

1 -1 -1 1 1 -1 -1 1 11 

1 -1 -1 1 -1 -1 -1 -1 AMV 
21 

1 -1 -1 -1 1 1 1 -1 
AVF 

1 -1 -1 -1 -1 1 1 1 11 

The ML estimates of the parameters for the saturated model are used as an initial guess of f3u and are 
given by 

/3~O)= (X~Xu)-l X~ logy. 

The covariance matrix of !3u is 

Cov (.au) = [X~diag(il)Xul-l. 

The results obtained are the same as in Table 3.2. The program is given in the Appendix. 
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Obtaining the ML estimates under constraints 
For the model log (I'i;') = et+Af" + Aj + A[ + AtJv + Aj/, the ML estimate of J.L subject to the constraint 

(

0000 0 
o 000 0 

g (J.L) = C(3 = 0 0 0 0 0 

00000 

can be determined iteratively with equation (44), 

lie = y - Ac (ACD;;' Ac) -1 g (y) + 0 (Ily - J.LID 

where Ac = C (X'X)-' X'. 

Furthermore 

and 

73= (X'X) -1 X' log lie 

est [Cov (73) 1 = (X'X)-l X' [D~~j5eD~~l X (X'X)-' . 

The Wald statistic is 2.79 and the other results obtained are the same as in Table 3.2. The program is 
given in the Appendix. 

3.2 LOGISTIC REGRESSION 

3.2.1 The Model 

Let Yi, i = 1,2, ... ,p be independent random variables with Yi '" bi (ni,1fd. The frequency distribution 
for the p independent binomial distributions is given in Table 3.3. 

TABLE 3.3: Frequency distribution of p independent binomial distributions. 

Subgroups 
1 2 p 

Successes Y1 Y2 ... YP 
Failures n, - Y1 n2 -Y2 ... np - YP 

Suppose that m covariates, Xl, X 2 , .. . , X m ) are observed and that at occasion i, Xi = (XiI) Xi2,·· . ,Xim) 

and Yi is the number of successes in the ni trials, i = 1,2, ... ,po Let -rr' = (1fl) 1f2, ... , 1fp) be the vector 
with probabilities of a success within each subgroup and n' = (nl' n2, ... ) np) the vector indicating the 
number of trials within each subgroup. 
The joint probability function of Y

" 
Y2 , ... , Yp is 

p 

f (yin) = Il P (Yi = Yi) 
i=l 

(45) 
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which is a member of the natural exponential family since it has the form 

p (y, 0) = b (y) exp [y'O - J< (O)J 

where 

b (y) =TI (n,) 
1=1 Yz 

7r. eO; 
e a p x 1 vector with natural parameters (}i = log --' -, that is 7r i = --.-. 

V P (1 1)-7'\ l+e' 
,,(0) = - 2:: n;log (1 - 7f;) = - 2:: n; log --. = 2:: n; log (1 + eO,) . 

i=1 i=l 1 + e ' i=1 

For the exponential class 

E(Y;) 

and 

Cov (y;, Yj) 

a 
ae; J< (0) 

ee, 
n·--

t 1 + eO, 

ni 7ri = fti 

a2 

aejae;" (0) 

{ 
n;7f; (1 - 7f;) 
o otherwise. 

if i = j 

Thus, E(Y) = I-' and Cov(Y) = V" =diag[n;7f; (1 - 7f;)J . 
The logistic regression model is written as i" = X(3 with 

The three components for the GLM are: 

• The random component Y, the vector of successes. 

• The systematic component which relates the linear predictor to a set of explanatory variables, 

"~X"{ 
Xu Xl2 Xlm 

X21 X22 X2m 

xvI Xp2 xpm 

• The link function which links /'; = E (Y;) to 1/;, 

7f' 
The function h is a canonical link since h (/';) = e; = log --'-. 

1 -7ri 
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3.2.2 Newton-Raphson algorithm for ML estimation 

From equation (45) the log-likelihood function for the logistic regression model is 

P (71) P 11" P L (11"Iy) = L log' + Ly;iog -'-. + L ni log (1 ~ 11"i). 
i=l YI i=l 1 - 1TI i=l 

Since log (~) = Lm~o {3jXij, 
1 - 7ri J 

and log (1 ~ 11"i) = ~ log [1 + exp (L;:O (3J XiJ) 1 
the log-likelihood function in terms of 13 is given by 

The value 73 of 13 that maximizes L (13) can be determined with the Newton-Raphson algorithm. At step 
r + 1 (r = 0, 1,2, ... ) in the iterative process the approximation of 73 is given by 

f3(r+1) = f3(T) ~ (H(r)) -1 q(r) (47) 

h . h h· I I)L (13) H· h . h· I t 1)2 L (13) d (T) d were q IS t e vector aVlug e ements~, IS t e matrIX avmg e emen s 8{3h
B

j3k' an q an 

H(T) are q and H evaluated at 13 = f3(T). 

The elements of q(r) can be written as 

and the elements of H(r) as 

Thus 
(48) 

and 
(49) 
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Substituting (48) and (49) into (47) gives 

/3(r+1) = /3(r) + { X'Diag [ni"t) (1 - "lr)) 1 X r' X' (y - n' 7I"(r)) 

where 

exp (I:;"~o (3)') Xij) 

1 + exp (I:;"~o (3)') Xij ) . 

The algorithm requires an initial guess for /3, which is 

/3(0) = (X'X) -1 X' C 

lli 
where £ is calculated from the observed data and has elements ii = log ~. 

1- = n, 
For T > a the iterative process proceeds by using equations (50) and (51). 

(50) 

(51) 

The estimated asymptotic covariance matrix of 73 is a by-product of the Newton-Raphson algorithm, 

Cov (13) = {X'Diag [ni1fi (1 -1fi)1 X} -1 = _H- 1 (52) 

where 1fi is the value of 1r~T) on convergence. 
A canonical link function was used in the GLM in which case the observed and expected second derivative 
matrices are identical. The Fisher scoring algorithm is identical to the Newton-Raphson algorithm. 

3.2.3 Maximum likelihood estimation under constraints 

Maximum likelihood estimation for the logistic regression model, using constraints is discussed by Crowther 
and Matthews (1998). 
The logistic regression model can be written as fJL= X{3 as discussed in section 3.2.1. The elements of 
£1£ written as a function of J-Li is 

Let P = I - X (X'X) X' be the projection matrix of the error space. From this the constraint for a 
logistic regression model as a function of J-L is 

g ({t) = PC,,= PX/3 = o. 

The ML estimate for {t is found iteratively with 

fi, = y - (G" V,,)' (Gy V"G~)-l g(y) + o(lly - {tIl) (53) 

h G ag ({t) -1· oC"" 1 . [ ( )1 were JL = -~-- = PV JL SInce ~ = ( ) and V JL =dIag n(lr i I - IT i . Furthermore, 
UJ-L UJ-Lt ntIT~ I-7f 1 

G ag ({t) I -1 ()" , Yi S I y = -n-- JL=Y = PV Y and g y = P{.y where {.y has elements {.i,y = log ---. ubstituting t lis 
~ ~-~ 

into (53) gives 

{t, Y - (pV~'V,,)' (pV;'V" V~'pr' PCy + o(lly - {tIl) 

y _ P (pV;'p) -1 PCy + 0 (lly - {tIl). 

Iteration takes place over y. 
The asymptotic covariance matrix of ilc is 

- (-1 )-' ~, = V ~ - P PV ~ P P. 
c "0 
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The ML estimates for the parameters in the model are given by 

where fjic is the vector of logits at convergence. 

The asymptotic covariance matrix of jj is 

From the "delta method" , 

and hence, the estimated covariance matrix for fj is 

EXAMPLE 3.2 

(~~JE,(~~J 
V::- 'EcV ::- ' IJ- c JJ.<e 

Maximum likelihood estimation for a logistic regression model with a continuous covariate. 

The data in Table 3.4, taken from Agresti (1990), was reported by Cornfield (1962) for a sample of 
male residents of Framingham, Massachusetts, aged 40-59, classified into 8 subgroups according to blood 
pressure. During a six-year follow-up period, they were classified according to whether they developed 
coronary heart disease. This is the response variable. The explanatory variable in the model is the value, 
Xi) which represents the blood pressure in subgroup i, i = 1,2, ... ,8. 

TABLE 3.4: Cross-Classification of Framingham Men by Blood Pressure and Heart Disease. 

Heart Disease 
Blood Pressure Xi Present (Yi) Absent (ni - Yi) 

< 117 111.5 3 153 
117 -126 121.5 17 235 
127 -136 131.5 12 272 
137-146 141.5 16 255 
147 - 156 151.5 12 127 
157 - 166 161.5 8 77 
167 - 186 176.5 16 83 

> 186 191.5 8 35 

IT' 
The model to be fitted is fi,~ = log --' - = {30 + {3, Xi which can be written as 

1 - 1ri 

( 

1 111.5] 1 121.5 
f~= X{3 = 

1 191.5 

( ~~ ). 
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Results from the Proc Logistic and Proc Genmod procedures in SAS 
The programs and output obtained from the PROC LOGISTIC and PROC GENMOD procedures in 
SAS are given in the Appendix. The results are summarized in Table 3.5. 

TABLE 3.5: Results from SAS: Proc Logistic and Proc Genmod. 

Maximum Likelihood Estimates 
Variable 
Intercept 
Blood Pressure 

Parameter Estimate 
-6.0820 
0.0243 

Model Fitting Information 
Pearson Chi-Square 6.2899 
Deviance 5.9092 

Standard Error 
0.7243 
0.00484 

Obtaining the ML estimates by using the Newton-Raphson algorithm. 
The ML estimate of f3 is found iteratively with equation (50) and the covariance matrix is given by 
equation (52). 
The same results as in Table 3.5 are obtained. The program is given in the Appendix. 

Obtaining the ML estimates under constraints 
The ML estimate for I-' subject to the constraint g (1-') = PC~= PXf3 = 0 is found iteratively with the 
equation 

Ii, = y - P (pV;'p) -1 PCy + a (lly - 1-'11) 

where Cy = (C
"

y, C2 ,y, . .. ,Cp,y), Ci,y = log _Y_i_ for i = 1,2,3 ... p and P = I - X (X'X) X'. 
ni - Yi 

Iteration takes place only over y. 
The maximum likelihood estimates for the parameters are given by 

where iji" is the vector of logits at convergence. 

The asymptotic covariance matrix of (3 is 

Cov (i3) = {X'Diag [niii'i (1 -ii';)l X} -1. 

The same results as in Table 3.5 are obtained. The program is given in the Appendix. 
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EXAMPLE 3.3 
Maximum likelihood estimation for a logistic regression model with a categorical covariate (logit model). 

Pugh (1983) designed a study to examine the disposition of jurors to base their judgments of defendants 
on the alleged behavior of a rape victim. Pugh's study varied the degree to which the juror could assign 
fault to the victim ("lown or "high"). It also varied the presentation of the victim as someone with 
"high moral character", "low moral character" or "neutral". The response variable is the judgment of 
the defendant as "guilty" or "not guilty" by the jurors. The data are given in Table 3.6. 

TABLE 3.6: Data from Pugh (1983). 

Moral (M) 
Verdict (V) Fault (F) High Neutral Low 

Guilty Low 42 79 32 

Not Guilty 

High 23 65 17 

Low 
High 

4 
11 

12 
41 

8 
24 

fi . C "i M ,M ,F h The model to be tted IS i,p. = log -- = a + Al xiI + "'2 Xi2 + Al Xi3 were 
1 -7ri 

XiI = 1 and Xi2 = 0 if Moral = High, 
XiI = 0 and Xi2 = 1 if Moral = Neutral, 
XiI = -1 and Xi2 = -1 if Moral = Low, 
Xi3 = 1 if Fault = Low, 
Xi3 = -1 if Fault = High. 

This model assumes no interaction between moral and fault but it can be extended to include the 
interaction. 

The model can be written as the logit model 

1 1 0 1 

1 0 1 1 ex 

1 -1 -1 1 
AM 

1 

c,,= X{3 = 
1 1 0 -1 AM 

2 

1 0 1 -1 AF 
1 

1 -1 -1 -1 

Programs similar to those in Example 3.2 are given in the Appendix and the results are summarized in 
Table 3.7. 

TABLE 3.7: Results for Example 3.3. 

Maximum Likelihood Estimates 
Variable 
Intercept 
Moral High 
Moral Neutral 
Fault Low 

Parameter Estimate 
1.0783 
0.4553 
0.1210 
0.7739 

Model Fitting Information 
Pearson Chi-Square 0.2552 
Deviance 0.2554 

Standard Error 
0.1469 
0.2226 
0.1717 
0.1355 
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