
2 MAXIMUM LIKELIHOOD ESTIMATION PROCEDURES 

This chapter outlines the theory of the Newton-Raphson, Fisher-Scoring and EM algorithms as procedures 
for maximum likelihood estimation. The EM algorithm is specifically applied to the exponential family to 
determine 11L estimates for incomplete data when the missing data mechanism is ignorable. A maximum 
likelihood estimation procedure for the mean of the exponential family, subject to the constraint 
g (IL) = 0, is also discussed. 

2.1 THE NEWTON-RAPHSON ALGORITHM 

The Newton-Raphson method is an iterative procedure to determine the value 73 of j3 that maximizes a 
function g (13). 
Let 13(r) be the rth approximation of 13 where r = 0, 1, 2, .... As described in Agresti (1990), the method 
requires an initial guess, (3(O) , for the value that maximizes the function. At step r in the iterative process 
the function g (13) is approximated by the terms up to the second order in the Taylor series expansion of 
g (13) around 13(r), that is 

Q(r) (13) = g (13(r)) + q(r), (13 - 13(r)) + ~ (13 - 13(r)), H(r) (13 - 13(r)) + 0 (1113 - 13(r) II) (2) 

where H is the matrix having elements :;~~~, q is the vector having elements &~;::), and H(r) and 

q(r) are Hand q evaluated at 13 = 13(r). 
The next approximation of j3 is in the location of the maximum value of (2). 

Solving &Q~~ (13) = q(r) + H(r) (13 - 13(r)) = 0 for 13 yields the next approximation of 13, 

assuming H(r) is nonsingular. 
Iteration continues until convergence is attained. 

EXAMPLE 2.1 
Determining ML estimates using the Newton-Raphson algorithm. 

The number of accidents per thousand per age group in a certain factory is given in Table 2.1. 

TABLE 2.1: Accidents per 1000 per age group. 

Age group I II III 
Number of accidents 80 15 5 

(3) 

Suppose the elements of Y : 3 x 1, the number of accidents for each category, are independent Poisson 
random variables with parameter vector IL The observed vector is y' = (80,15,5). The model under 
consideration is I-ti = (X'Y i - 1 for i = 1, 2, 3. The likelihood function is given by 

~, 

exp (- I: 1';) [11';' 
[1 y;! 

exp (-a) (1 +, + ,2) a(Y' +y,+y,),(y,+2y,) 

[1 y;! 

The value, 13 = (ii, 9), that maximizes I will also maximize the log-likelihood function 
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and is determined iteratively with the expression 

(4) 

where (3(r) is the rth approximation of 13, and q(r) and H(r) are q and H evaluated at {3 = (3(r) with 

q = 
8L ({3) _ ( a~r:) ) _ ( - (1+ /' + /,2) + y, +y;+y, ) 

(5) 8{3 - aL({3) - -Ct (1 + 2/,) + y,+2y, 
80 0 

(~ ~) ( ~YI+Y2+Y:ll -(1+2/') ) H 
82 L ({3) an' 8cx8"{ Q' (6) 
8{38{3' - 8' £({3) 8' L({3) - -(1+2/,) -2Ct - {Y2+ 2Y31 

8"{8o ar 0' 

From the model to be fitted 0: = 11-1 and 'Y = 11-2 = 11-2. If the observed data is used as an initial estimate 
a 1'1 

of I-' the first approximation of 13 is 

(0) _ ( a(O) ) _ ( 80 ) 
(3 - /,(0) - 0.1875 

and is used to determine q(O) and H(O). Substituting (3(O), q(O) and H(O) into (4) gives 

(3(1) = (3(0) _ (H(O)) -1 q(O) 

This is used to determine q(l) and H(l). 

The process continues until convergence is attained. Table 2.2 shows (3(r) at different steps of the 
algorithm. 

TABLE 2.2: Values of (3(r) at different steps of the Newton-Raphson algorithm. 

r air) /,Ir) 

0 80 0.1875 
1 79.294919 0.2153986 
2 78.829748 0.2200938 
3 78.821827 0.2201973 
4 78.821823 0.2201973 

The value 13 that maximizes the log-likelihood function is 

13 = ( Ci ) = ( 78.821823 ) 
'Y 0.2201973' 

Substituting this into the model to be fitted, I'i = a/,i-1, gives 

( 
Ci) (78.821823) Ci'Y 17.356354. 

Ci'Y2 3.8218228 

The program is given in the Appendix. 

EXAMPLE 2.2 
Determining ML estimates for a loglinear model using the Newton-Raphson algorithm. 

Consider the model in Example 1.2 and Example 2.1. The log-likelihood function is 

(7) 

In Example 1.2 the model l1-i = O:'Yi - 1 was VlIitten as the generalized linear model 
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with f3 , = log a and f32 = log 1', and X the design matrix. 

Using the fact that log I'i = L::J f3JXij and I'i = exp (L:: j f3jXij) the log-likelihood function in (7) can be 

written as a function of the elements of (3. That is 

L(,I3ly) = L::YiL::f3JXij - L::exp (L::f3jXij) - L::logYi L 
I J 1 J t 

(8) 

The value of j3 that maximizes L (,I3IY) can be found iteratively with 

(9) 

where q is the vector with elements the first order partial derivatives 

and H is the matrix of second order partial derivatives having elements 

From this 
q(r) = X' (y _ I-'(r)) (10) 

H(r) = -X'diag (I-'(r)) X (11) 

with I-'(r) = exp (X,I3(r)) the rth approximation of Ii, (r = 0, 1,2, ... ). 

Substituting (10) and (11) into (9) gives 

,I3(r+1) = ,I3(r) + [X'diag (I-'(r)) Xr ' X' (y - I-'(r)). (12) 

From the model to be fitted a = 1'1 and I' = 1'2 = 1'2. Using the observed data as an initial estimate of 
~ a 1'1 

/L, the approximation of ,13 at r = 0 is 

,13(0) = ( log a(O) ) = ( 
log 1'(0) 

1.90309 ) 
-0.72700 . 

This is used to determine 1-'(0) = exp (X,I3(O)). Substituting ,13(0) and /L(O) in (12) gives the next approx­

imation for /3, 
,13(1) = ,13(0) + [X'diag (/L(O)) Xr' X' (Y - /L(O)) 

which is used to determine 1-'(1). 
The process continues until convergence is attained and the value fj that maximizes the log-likelihood 
function in (8) is 

j3 = ( ~, ) = ( log ~ ) = ( 4.3671899 ) 
f3 2 log I' -1.513231' 

Substituting this into the model, J-.li = Q'')'i-l, gives 

This is the same result as obtained in Example 2.l. 
The program is given in the Appendix. 
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2.2 THE FISHER SCORING ALGORITHM 

The Fisher scoring algorithm is similar to the Newton-Raphson algorithm, the distinction being that 
Fisher scoring uses the information matrix. The information matrix is the negative expected value of the 
second order derivitave matrix of the function to be maximized. The Newton-Raphson algorithm uses 
the observed value of the second order derivitave matrix. The formula for Fisher scoring is 

where Inf(r) is the Tth approximation for the estimated information matrix. The information matrix, 
Inf, is the negative expected value of the matrix of second order partial derivatives of the log-likelihood 

(
8

2 
L ((3)) 

and has elements Infhk = -E 8!3
h

8!3
k 

• 

EXAMPLE 2.3 
Determining ML estimates using the Fisher scoring algorithm. 

Suppose the elements of Y : 3 x 1 are independent Poisson random variables with parameter vector 
I-' and observed vector y' = (80,15,5). The model to be fitted is J1i = "l'i-1. In Example 2.1 the 
Newton-Raphson algorithm was used to find the ML estimates. 
The equation used in the iterative procedure is 

where Inf(r) is 

( (~) Inf=_E[82L((3)]= -E an' 
8(38(3' -E (a'L(~») 

8"{8a 

evaluated at (3(r) 
Table 2.3 gives the values of (3(r) at different steps of the Fisher scoring algorithm. 

TABLE 2.3: Values of (3(r) at different steps of the Fisher scoring algorithm. 

r ",r) I'(r) 

0 80 0.1875 
1 79.294919 0.2153986 
2 78.820871 0.2201953 
3 78.821823 0.2201973 

This is the same result as obtained in Example 2.1 with the Newton-Raphson algorithm. 
The program is given in the Appendix. 

EXAMPLE 2.4 
Determining ML estimates for a loglinear model using the Fisher scoring algorithm. 

This example uses the model and data in Example 2.2 where the ML estimates for the GLM were found 
iteratively with the Newton-Raphson algorithm given by the equation 

Since 
H(r) = -X'diag (I-'(r») X 

is not a function of the observed data y, the observed and expected second derivative matrices are the 
same. Thus 

Inf = -H. 

This happens for all GLMs that use a canonical link function. The Newton-Raphson and Fisher scoring 
algorithms are identical in such cases. 
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2.3 IGNORABLE MISSING DATA MECHANISM 

The EM algorithm can be used to determine maximum likelihood estimates for incomplete data. Before 
presenting the theory of the EM algorithm, it is necessary to define an ignorable missing data mechanism. 

Suppose the data of interest is denoted by Y = (Y,,) : n x p matrix of n observations measured for p 
variables. The data is assumed to be generated by a model with probability function f (yIO) where 0 
is the vector of unknown parameters. In the case of incomplete data let Y' = (Y~bSl y:nis) where Yobs 

represents the observed part of Y and Y mis denotes the missing values. The joint probability function 
ofYob, and Y mi, is given by f(YIO) = f(Yob"Ymi,IO). 
An indicator random variable is included in the model which indicates whether each component of Y is 
observed or missing. Define a response indicator R = (Rij) such that 

Yij observed, 
Yij missing. 

The joint probability function of Rand Y can be written as 

f(y,rIO,,p) = f(yIO)!(rly,,p) (13) 

where f(rly,,p) is the distribution of the missing data mechanism. This mechanism depends on Y and 
some unknown vector of parameters 1/;. In the case where the distribution of the missing data mechanism 
does not depend on the missing values Y mis, the data is said to be missing at random (MAR) and 

(14) 

MAR requires only that the missing values behave like a random sample within subclasses defined by the 
observed data. If the missing data values are a random sample of all data values the data is said to be 
missing completely at random (MCAR). 
The observed data consist of the values of the variables (Yob, , R) and its probability function is obtained 
by integrating out the missing data Y mis: 

(15) 

The likelihood of 0 and ,p is proportional to (15), that is 

(16) 

If the data is missing at random, that is if (14) holds, the probability function of the observed data, given 
in (15), can be written as 

J f (Yob" Ymi, 10)! (rIYob",p) dYmi' 

f(rIYob",p) x J f(Yob"Ymi,IO)dYmi' 

f (rIYob",p) f (Yob, 10) . (17) 

The likelihood of the observed data under MAR can thus be factored into two pieces, one pertaining 
to the parameter of interest 0, and the other to,p. The parameters 0 and ,p are distinct if the joint 
parameter space of 0 and ,p is the product of the parameter space of 0 and the parameter space of ,p. If 
both MAR and distinctness hold, the missing data mechanism is said to be ignorable (Little and Rubin, 
1987) and likelihood based inferences about 0 will be unaffected by ,p or f (rIYob" ,pl. 
From equation (17) it follows that 

and thus 
1(0, ,pIYob,' r) <X I (OIYob,) 
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which means that all relevant statistical information about the parameters is contained in the observed 
data likelihood, I (O!Yob,). 

EXAMPLE 2.5 
Incomplete univariate data with an ignorable missing data mechanism. 

Let Y : n x 1 denote a vector of n independent identically distributed random variables. Let yl = 

(Y~bs' y~iS) with y~bs = (Yb Y2, ... , Ym) and y~is = (Ym+b Ym,+2,···, Yn). That is, m units are 
observed and n - m are missing. Let RI = (Rl' R2 , ... ,Rn) denote the response indicators, where Ri = 1 
if Yi is observed and Ri = 0 if Yi is missing. Suppose that each unit is observed with probability 1jJ. The 
missing data mechanism is 

n 
f (r!y,1jJ) = II 1jJr, (l_1jJ)'-r, = 1jJm (1 _1jJ)"-m 

i=l 

and since it does not depend on Y mis the data is MAR. If f) and 1jJ are distinct, inferences about (J can 
be based on the observed data likelihood 

J f(Yob"Ymi,!O)dYmi' 

J ... J iD, f (yilO) ijt, f (Yi!O) dYm+' ... dYn-

m 

II f(Yi!O) 
i=l 

which is a complete data likelihood based on the reduced sample (Y" Y2,··· ,Ym)'. 

EXAMPLE 2.6 
Bivariate data with one variable subject to non response if the missing data mechanism is ignorable. 

Consider a dataset with variables Y1 and Y2 where Y1 is observed for units 1,2, ... ,n and Y2 is observed 
only for units 1,2, ... ,m < n. The missing data will be MAR if the probability that Y2 is missing does 
not depend on Y2, although it may possibly depend on Y,. Let Yi, and Yi2 denote the values of Y, and 
Y2 , respectively, for unit i. Since 

the observed data likelihood can be written as 

J f(Yob"Ymi,!O)dYmi' 

J f(Yob,!O)f(Ymi'!Yob"O)dYmi' 

J iD, f(Yil, Yi2!0) ijt, f (Yil!O) ijt, f (Yi2!Yil, 0) dy mi' 

iD, f (Yil, Yi2! 0) ijt, f (Yil!O) J i)1+, f(Yi2!Yil , 0) dy mi' 

m n 

II f (Yil, Yi2!0) II f (Yi'!O). 
i=l i=m,+l 

This is the product of the joint likelihood for Y, and Y2 where Y, and Y2 are both observed, and the 
likelihood of Y, where only Y, is observed. 
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2.4 THE EM ALGORITHM 

2.4.1 Theory of the EM Algorithm 

Assuming that the ignorability assumption is correct, all relevant statistical information about the para­
meters is contained in the observed data likelihood, I (Oly ob.,)' The EM algorithm uses the interdependence 
that exists between the missing data Y mis and the parameters 8. An initial estimate of 8 is obtained 
from the observed data Y ob,' The missing data is filled in based on this initial estimate of 0 and 0 is then 
Ie-estimated based on Y obs and the filled in Y mis' The process iterates until the estimates converge. 
Suppose the density function of the complete data Y is given by f (yIO) where 0 is the unknown parameter. 
Let Y'= (Y~bS' Y~tiS) where Yobs represents the observed part ofY and Y mis denotes the missing values. 
The distribution of the complete data can be factored as 

(18) 

The objective is to maximize the likelihood function for the observed data, that is maximize 

with respect to 8 OI, alternatively, to maximize the log-likelihood 

The log-likelihood that corresponds to (18) is 

and can be written as 
(19) 

where L (Oly ob,) is the observed log-likelihood to be maximized, L (OIYob,' Y mi,) is the complete data 
log-likelihood and log If (Ymi' Iy ob" 0)] is the missing part of the complete data log-likelihood. 
The expectation of both sides of (19) over the distribution of the missing data Y mi" given Yob, and a 
current estimate of 0, say o(r) is 

(20) 

where 

(21 ) 

and 

H (OIO(r)) = J {log If (Ymi, Iy ob,' OJ]) f (Ymi, IYob,' o(r)) dYmi,' 

From Jensen's inequality (Rao 1972) 

(22) 

(23) 

and therefore maximization of L (Oly ob,) is equivalent to maximization of Q (OIO(r)) with respect to O. 

Each step of the EM algorithm consists of an E-step (expectation step) and an M-step (maximization 
step ): 

• In the E-step the function Q (OIO(r)) is calculated by averaging the complete data log-likelihood 

L(OIY) over f(Ymi,IYob"o(r)) . 

• In the M-step 0(r+1) is found by maximizing Q (OIO(r)). That is Q (0(r+1) 10(r)) ::: Q (OIO(r)) for 

all O. 
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2.4.2 The EM AlgorithIll for exponential families 

Little and Rubin (1987) presents a simple characterization of the EM algorithm when f (yIO) has the 
form for the regular exponential family defined by 

f(yIO) = b(y)exp(s(y)'O)ja(O) (24) 

where fJ is the parameter vector and s (Y) is the vector of complete data sufficient statistics. For regular 
exponential families the complete data MLE can be found as a solution to the likelihood equations 

E (s (Y) 10) = s (25) 

where s is the realized value of the vector s (Y). 
Suppose o(r) denotes the current value f) after r cycles of the algorithm. The next cycle can be described 
in two steps, as follows: 

• E-step: Estimate the complete data sufficient statistics s (Y) by finding 

(26) 

• M-step: The M-step determines the new estimate 9(r+l) of (J as the solution of the equations 

E (s (Y) 10) = S(T) (27) 

which are the likelihood equations for the complete data with s (Y) replaced by S(T) as obtained in 
the E-step in (26). 

EXAMPLE 2.7 
Incomplete univariate normal data. EM algorithm for the regular exponential family. 

Suppose Yi, i = 1,2, ... 1 n are independent identically distributed random variables from a N (,u, (7"2) 
distribution. Let 0' = (Il, 0"2). The log-likelihood function for the complete data is 

L (Oly) 
n 1 n 2 

--log<r2 - -2 L (Yi -Il) 
2 2(1 i=l 

n 2 1 [n 2 n 2] - -2 log 0" - -2 2 L Yi - 21l L Yi + nil 
(T l=l l=l 

which is linear in the sufficient statistics s (Y) = (81 (Y) , 82 (Y)) = C~ Y;, i~ Y?) . 
With no missing data the ML estimates of,u and (T2 are 

1 n 
- LYi 
n i=l 

Suppose now that only the first m components of the data vector Yare observed and that the data are 
missing at random (MAR). 
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The E-step of the EM algorithm calculates 

sIc) E (81 (Y) IYob" O(C)) ~ E C; lilYob" o(r)) ~ ;~ Y; + (n - m) ,,(c) 

s~r) E (82 (Y) IYob"o(r)) ~ ;~ Y7 + (n - m) [(,,(r)f + o-2(C)] 

for current estimates o(r) = (f.1(r) , u 2 (r)) of the parameters. In the M-step the expectations of the sufficient 
statistics calculated in the E-step are substituted in the expressions for the 1\1L estimates giving 

and 

0-2(r+1) 

Numerical Example 

,,(r+1) ~E C; liIYob"o(r)) 

~ [;~ Yi + (n - m) ,,(C)] 

~E C; li2IYob"0(C)) - (,,(r+1)f 

~ [;~, Y7 + (n - m) [(,,(r))2 + o-2(r)]]_ (,,(c+1)f. 

Suppose li, i ~ 1,2, ... ,10 are independent identically distributed random variables from a N (12,9) 
distribution and that Yi are observed for i = 1,2, ... ,6 and missing for i = 7, ... ,10. The 6 observed 
values are 12.893, 7.012, 12.165, 12.274, 14.657 and 8.644. 
The initial values of ,,(0) ~ 10 and 0-2(0) ~ 10 were chosen arbitrarily. Table 2.4 displays the results at 
different steps of the algorithm until convergence. The results are the same as the mean and variance for 
the six observed data points, that is 

1 6 

" - 2:: Y; 
6 i=l 

-2 
J 

2::6 
2 i-I Yi 

6 
-2 -" 

TABLE 2.4: Iterations of the EM algorithm for incomplete univariate 
normal data, n = 10 and m = 6. 

M-Step E-Step 

,,(c) (72(1') '( n (r)) E (.f:. l'?IYob"o(r)) r E 2::liIYob"O 
,-1 ,-1 

0 10 10 107.645 1243.582 
1 10.765 8.4884 110.703 1301.015 
2 11.070 7.550 111.926 1323.988 
3 11.193 7.124 112.415 1333.178 
4 11.242 6.945 112.611 1336.853 
5 11.261 6.873 112.689 1338.324 
6 11.269 6.843 112.721 1338.912 
7 11.272 6.831 112.733 1339.147 
8 11.273 6.827 112.738 1339.241 
9 11.274 6.825 112.740 1339.279 
10 11.274 6.824 112.741 1339.294 
11 11.274 6.824 112.741 1339.300 
00 11.274 6.824 112.741 1339.300 

14 



EXAMPLE 2.8 
EM algorithm for data from a multinomial distribution. 

This example. discussed by Dempster, Laird and Rubin (1977) gives the data in which 197 animals are 
distributed multinomially into five categories. The complete data, Y' = (Y1 , Y2, Y3) Y4, Ys ), are the counts 
for each category and the cell probabilities in this model are given as 

7r' = (~, ~P, ~ (1 - p), ~ (1 - p), ~p) for some 0 ~ p ~ 1 

For the complete data the density function is 

f ( I ) = (Y1 + Y2 + Y3 + Y4 + Y5)! (1)Y' (1 )Y' (1 _ 1 )Y' (1 _ 1 )Y' (1 )Ye. 
Y p , , , " 2 4 P 4 4 P 4 4 P 4 P 

Y1·Y2·Y3·Y4·Y5· 

The ML estimate of p for the complete data is given by 

~ Y2 + Y5 
p= 

Y2 + Y3 + Y4 + Y5 

The kernel of the complete data log-likelihood is 

and the counts are the sufficient statistics. 

(28) 

The observed data is Y~b' = (Y1 + Y2, Y3, Y4, Y5) = (125,18,20,34). Only the total of Y, and Y2 is observed. 
In the E-step the conditional expectations of the sufficient statistics, Yi, i = 2,3,4,5, given the observed 
values and a current estimate of p, are calculated. At step r (r = 0, 1, 2, ... ) 

E(Y3 IYob" p(r)) 

E(Y4 IYob" p(r)) 

E(Y5 IYob" p(r)) 

1p(r) 
125 1 4 1 () 

"2 +"4P T 

18 

20 

34. 

In the M-step the conditional expectations of Yi as calculated in the E-step are substituted in expression 
(28) giving the next estimate of fi in the iterative process 

E(Y2 IYob" p(r)) + 18 + 20 + 34 

" p (r) 
125 1 4 1 (r) + 34 

'2 +:jP 
1p(r) 

125 , 4
, (r) +18+20+34 

'2 + 4P 

The process iterates between the E-step and the M-step until convergence is attained. 
Table 2.5 shows that, starting from p(O) = 0.5, the EM algorithm converges after seven steps. 

TABLE 2.5: Iterations of the EM algorithm. 

M-step E-step 
r p(r) 1C(J72 11{ob,,)J(r)) 

0 0.5 25 
1 0.608247 29.15020 
2 0.624321 29.73727 
3 0.626489 29.82589 
4 0.626777 29.82634 
5 0.626816 29.82773 
6 0.626821 29.82792 
7 0.626821 29.82794 

00 0.626821 29.82794 
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2.5 A MAXIMUM LIKELIHOOD ESTIMATION PROCEDURE WHEN 
MODELLING IN TERMS OF CONSTRAINTS 

Proposition 1 
Suppose Y is a random vector with probability function belonging to the exponential family and with 
E (Y) = 1-'. Matthews (1995) derives a ML estimate of I-' subject to the constraints g (1-') = 0, as 

Ii, = y - (G~ V)' (Gy VG~)-l g(y) + o(lly - 1-'11) (29) 

where g (J..L) is a continuous vector valued function of J..L for which the first order partial derivatives exist, 

G~ = D~~), G y = D~~) l~~y and V is the covariance matrix which could be known or could be some 

function of j..t, say V ~. This result implies that the ML estimate must be obtained iteratively. 

Matthews (1995) gives the following proof of this result. 

Proof: 
Let, be a vector of Lagrange multipliers. To find the ML estimate of I-' subject to the constraints 
g (I-') = 0, we maximize 

:1-' W (y; (J;,) = In b (y) + y'(J -" ((J) + ,'g (I-' ((J)). 

Hence we find 

D D [D(J] DI-'W (y; (J;,) = D(JW (y; (J;,) DI-' . 

Since we set :1-' W (y; (J; ,) = 0 for a maximum, and since [~:] is invertible for a regular exponential 

family, we need further only consider :(JW (y; (J; ,). 

Thus 

Setting :(JW (y; (J;,) = 0, we get 

[
DI-'] , G' I-' = Y + D(J ~-y. 

Using the linear Taylor expansion of g (1-') about y, we get 

g(l-') = g(Y+[~~rG~,) 
g(y)+Gy (y+ [~~r G~,-y) +o(lIY-I-'II) 

g(y)+Gy [~~r G~,+o(lIY-I-'II)· 
Setting g (I-') = 0 and solving for" gives 

,= - (G y [~~r G~) -1 g(y)+o(IIY-I-'II). 
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Substituting I in (30) we get 

Now 

Hence 

and 

Therefore 

which is the required result. 

The iterative procedure 
The process is a double iteration over y and 1-'. Let I-'(i,i) denote the (i,j)th approximation obtained for 
the ML estimate fie of J.L, where i (i = 0, I, 2, ... ) refers to iteration over p, and j (j = 0, 1,2, ... ) refers 
to iteration over y. Note that j = 0 at the start of every iteration over y. 
The initial value for JL is J.L(O,O) = y, the vector of observed values. Iteration then takes place over y and 
the value of I-' in G" and V" is kept constant at 1-'(0,0) = y. The first approximation of /i., is given by 

/.1(0,1) = y _ (GIl-(O,O) V 11-(0,0»)' (Gy V p.(O,O) G~(O'O)) -1 g (y). 

If convergence over y is not attained at this step, y is replaced by p,(O,l) to obtain the next approximation 
of ilCl whilst the estimated value for J.L in Gp. and V p. is kept constant at 1-'(0,0) = y. Thus, 

(0,2) _ (0,1) , , (0,1) ( )-, ( ) J.L - J.L - (Gp,(O,O)Vp.{O,O)) GI1-(O,l)Vp.(O,O)GIl-(O,O) g p, . 

This is repeated until convergence over y is attained, say at j = k. 
The value at convergence, p,(O,k) , is used as the next estimate for p, in Gil- and V jJ.' The procedure again 
iterates over y, starting with the vector of observed values, y, and keeping the estimated value for p, in 
G" and V" constant at I-'(O,k). That is 

1-'(1,1) = y _ (G"(O,,, V "(0,,,)' ( G y V "(0,,, G~(O''') -1 g (y) . 

If convergence over y is not obtained at this step, the next approximation of iLc is 

p,{1,2) = p,(1,1) _ (GjJ.(O,k) V jJ.(O,k)), ( GjJ.(l, I) V jJ.(0,1<) G~(O'k)) -1 g (p,(1,1») . 

At convergence the iteration over y yields the next estimate for p, in Gil- and V jJ.' The process continues 
until convergence over J.L is attained. 

17 



In certain cases the iterative procedure simplifies to an iteration only over y or only over J.t . 

• If g is a linear function of 1-', say g (1-') = AI-' then G" = A = G y and 

For the iteration over y convergence is immediately attained since substitution of J.t(O,l) into y in 
equation (31) gives 

,,(0,1) _ (AV )' (AV' A,)-I A,,(O,I) r IL (0,0) IL (0,0) r 

y - (AV ",0,0»)' (AV ",o,o)A') -I Ay-

(AV",o,o»)' (AV~,o,o)A'rl A [Y- (AV",om)' (AV",o,oJA'f ' Ay] 

y - (AV",o.o))' (AV"co.o)A,)-1 Ay 

1-'(0,1) 

The process simplifies to iteration only over J.t with y remaining constant. 
At step i + 1 (i = 0,1,2, ... ) the approximation of /ie is given by 

with J.t(O) = y. The process converges to the ML estimate Jic' 

• Let DIL be a diagonal matrix with the elements of p,'= (I-LI1J121'" ll-Lp ) on the principal diagonal 
and V = D", Suppose g (1-') = A log (1-'). Then 

and 

o _ 
OI-'Alog(l-') = AD" I 

AD- I 
y 

/ie y - (G" V,,)' (Gy V" G~) -I A log (y) + 0 lilY - 1-'11) 

y - (AD~ID,,)' (AD;ID"D~IATI A log (y) + o(lly -1-'11) 

y - A' (AD;I A'r
l 

A log (y) + 0 (Ily - 1-'11). 

Iteration is only over y. At step j + 1 (j = 0, 1, 2, ... ) the approximation of /ie is given by 

with 1-'(0) = y. The process converges to the ML estimate /ie' 

Proposition 2 
The asymptotic covariance matrix of Jic is given by 

~e = V" - (G" V,,)' (G" V" G~) -I G" V", 

with the MLE obtained by replacing I-' with /ie' 
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EXAMPLE 2.9 
Determining ML estimates under constraints with iteration over y and p,. 

The number of accidents per thousand per age gTOUp in a certain factory is given in Table 2.6. 

TABLE 2.6: Accidents per 1000 per age group. 

Age group I II III 
Number of accidents 80 15 5 

The model under consideration is fJi 

assumed. 
1,2,3, and independent Poisson sampling is 

This model implies the constraint 

In this case 
V~ =D~ 

G~ = (1'3, -2IL2, ILl) 

G y = (Y3, -2Y2, Y1) 

G~D~ = (IL1IL3, -2IL~, IL1IL3) 

GyD~G~ = (Y1 + Y3) IL1IL3 + 4Y2IL~· 

g (/1-) = IL1IL3 - IL~ = O. 

The ML estimate of /1- is found iteratively from 

Iteration is over y and /1-. The process converges after eight steps. 

(32) 

Table 2.7 gives the approximation of Me at different steps of the iterative procedure.These are the same 
results as obtained by the Newton-Raphson and Fisher scoring algorithms (see Examples 2.1, 2.2 and 
2.3). 

TABLE 2.7: Approximation of /1, at different steps of the iterative procedure. 

i IL\i,] ) IL~i,j) ILji,j) j IL\i,j) IL~i,j ) ILji,j) 

0 80 15 5 0 80 15 5 
1 78.526316 16.657895 3.5263158 
2 78.531142 16.652465 3.5311418 

1 78.531142 78.531142 3.5311418 0 80 15 5 
1 78.793103 17.413793 3.7931034 
2 78.821807 17.356387 3.8218065 
3 78.821823 17.356354 3.8218228 

2 78.821823 17.356354 3.8218228 0 80 15 5 
1 78.793103 17.413793 3.7931034 
2 78.821807 17.356387 3.8218065 
3 78.821823 17.356354 3.8218228 

Description of the procedure: 

• Both y and /1- in equation (32) are initially estimated by the observed data, that is y = /1-(0.0). The 
first approximation of Pc is given by 

The process iterates over y until convergence is attained at (i,j) = (0,2) . At this stage the approx· 
imation of lie is 

( 

78.531142 ) 
/1-(0.2) = 16.652465 

3.5311418 

This becomes the next estimate of JL in GJ-t and D It . 
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• The process again iterates over y with the initial value of y ~ ( ~J ) , the vector of observed 

data. 
For (i,j) ~ (1,0) 

and for (i,j) ~ (1,1) 

p,(l,l) = J..L(l,O) _ (Gj.l(O,2) V Jl(U,2»)' (Gp.(I,U) V Il(O'2)G~«()'2») -1 g (tL(I,O») . 

Convergence is attained at (i,j) ~ (1,3). The vector 1-'(1,3) becomes the next estimate of I-' in G" 
and Dw 

• The process again iterates over y with the initial value ofy the vector of observed data. This iteration 
over y converges at (i,j) ~ (2,3) and at this stage 

Since J.t(2,3) = p.(1,3) convergence over J.L is also attained at this step and the process stops. 

The program is given in the Appendix. 
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EXAMPLE 2.10 
Determining ML estimates under constraints with iteration over y. 

Consider the same data as in Example 2.9 but using the constraint 

In this case 
V=D~ 

Gj! = ( ~1' ", ' ::1 ) 
G y = ( :1) ;~ , :1) 
G~D~ = (1, -2, 1) 
G D G' = l + -"- + l. 

Y J! Ii. Yl Y'J. Y3 

The :rvlL estimate of 11. is found iteratively from 

/Lc = 

log(YIY3)-2Iog(Y2) (II _ II) 
1 4 1 +0 Y '" . -+-+-

Yl Y2 Y.1 

Iteration is only over y. 

Table 2.8 gives the estimates of Pc at different steps of the iterative procedure. 

TABLE 2.8: Approximation of Ii, at different steps of the iterative procedure. 

Approximation of Ii, by ",\T) 

r fliT) flr) flr' 
0 80 15 5 
1 78.79924 17.40152 3.79924 
2 78.821801 17.356397 38218013 
3 78.821823 17.356354 3.8218228 

Alternatively, the constraint can also be set up in terms of the GLM given in Example 1.2. The model is 

log", = X{3 

with {3' = (/31' /32) where /31 = log a and /32 = log 'Y, and X the design matrix given in Example 1.2. 
Let P = I - X (X'X) X'. The model can be written in terms of the implied constraints as 

g ("') = [I - X (X'X) X'llog '" = P log", = O. 

The ML estimate for", subject to the constraint g ("') = 0 is found iteratively from 

with V~ = D~ 

G~ = PD~1 

G y = PD;;1 

G~V=P 

G y VG~ = PD;;lp. 

Hence, the estimation procedure is 

Ii, = y - P (PD;; lpf' Plogy + 0Uly -",II)· 

Iteration is only over y. The estimates of jic at different steps of the iterative procedure is exactly the 
same as given in Table 2.8. The programs with these two restrictions are given in the Appendix. 
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EXAMPLE 2.11 
Determination of maximum likelihood estimates under constraints. An example fOT incomplete data. 

Example 2.8 gives data in which 197 animals are distributed multinomially into five categories. 
The complete data, Y' = (Y11 Y2, Y3, Y4) Ys ), are the counts for each category and the cell probabilities 
in this model are given as 

The random vector of complete data is Y'=(Y1 , Y21 Y31 Y41 Ys) and the random vector of observed data 
is Y~bs = (Y1 + Y2, Y3, Y4, Ys) where only the sum of Y1 and Y2 is observed. The observed data is 
y~b' = (125,18,20,34). 
The distributions of Y and Y obs are both multinomial and can be written as 

y ~ Mult(n,-rr) 

with 

-;r' (1fl,1f2,7r3,7r4,7rS) 

(~, :tP, i (1 - p)':t (1- p), :tp) for some 0 S pSI 

and 

with 

(IT} +7rZ,1T3,1T4,7rS) 

(~+ ip, i (1 - p), i (1- p), ip) for some 0 S p S 1. (33) 

The ML estimate of p must be obtained from the observed data, Yobso For the multinomial distribution 

From the cell probabilities given in (33) the constraint g (/Lob,) = 0 can be written as 

where /-L' is the vector of expected cell counts. 

-1 
1 

-1 
-1 

-3 ) o /-Lobs 

The ML estimate, fiobs,c, of the expected cell counts /-Lobs are obtained by solving 

where V Il-obs =Diag(Yobs) - ~YobsY~bs 
GIl-Ob .• = X = G yobs 

g (Yob,) = XYob,· 
Since g (/-Lobs) is a linear function of /-Lobs iteration is only over /-Lobs' 

The ML estimate of p is then determined from fLob"c by 

~ 4/lobs ,4 p= --. 
n 

( 

129.37096) 
~ 18.379041 

The process converges after 4 steps and /Lob,.c = 18.379041 

30.870959 

result as obtained with the EM algorithm in Example 2.8. 
The program is given in the Appendix. 

22 

giving fi = 0.6268215. This is the same 


	Scan0001
	Scan0002
	Scan0003
	Scan0004
	Scan0005
	Scan0006
	Scan0007
	Scan0008
	Scan0009
	Scan0010
	Scan0011
	Scan0012
	Scan0013
	Scan0014
	Scan0015
	Scan0016
	Scan0017

