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2 MAXIMUM LIKELIHOOD ESTIMATION PROCEDURES

This chapter outlines the theory of the Newton-Raphson, Fisher-Scoring and EM algorithms as procedures
for maximum likelihood estimation. The EM algorithm is specifically applied to the exponential family to
determine ML estimates for incomplete data when the missing data mechanism is ignorable. A maximum
likelihood estimation procedure for the mean of the exponential family, subject to the constraint

g{p) =0, is also discussed.

2.1 THE NEWTON-RAPHSON ALGORITHM

The Newton-Raphson method is an iterative procedure to determine the value B of 3 that maximizes a
function g (3).

Let ,@(T) be the rth approximation of B where r =0,1,2,.. .. As described in Agresti (1990}, the method
requires an initial guess, 6(0), for the value that maximizes the function. At step r in the iterative process
the function g (3) is approximated by the terms up to the second order in the Taylor series expansion of
g{B) around 8, that is

Q0 (@) =g (ﬁ(r)) + (ﬁ _ 5(r)) +1 (ﬁ _ ﬁ(r))’H{r) (5 _ ﬁ(r)) +o (||!3 _ "
%9 (8)

where H is the matrix having elements ———-, q is the vector having elements
03,00,
q'”) are H and q evaluated at 8= a8,
The next approximation of 3 is in the location of the maximum value of (2).
aQ'" (8)
o3

) @

99 (B)
ije

, and H(™ and

Solving =q") +H) (ﬁ — ﬁ(r)) =0 for B yields the next approximation of B,

-1
Bt — gt _ (H(r)) q'” (3)

assuming H(") is nonsingular.
Iteration continues until convergence is attained.

EXAMPLE 2.1
Determining ML estimaotes using the Newion-Raphson algorithm.

The number of accidents per thousand per age group in a certain factory is given in Table 2.1.

TABLE 2.1: Accidents per 1000 per age group.

Age group I 11 1III
Number of accidents 80 15 5

Suppose the elements of Y : 3 x 1, the number of accidents for each category, are independent Poisson
random variables with parameter vector g The observed vector is y' = (80,15,5). The model under
consideration is p; = ay'~! for i = 1,2,3. The likelihood function is given by

) = ST

exp (_a) (]_ + ¥ + "}12) a(yl+y2+y3}ﬂy(y2+2y3}

Hyi!

The value, B,: (&, %), that maximizes [ will also maximize the log-likelihood function

L(Bly)=(—a) (1 +v+7%) + (yr +y2 + ya)log (a) + (yo + 2y3) log (7) — 3 log (1:!)
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and is determined iteratively with the expression
-1
B+ _ gn _ (Hm) q'” (4)

where ,B(’”) is the rth approximation of E, and q" and H™ are q and H evaluated at 3 = ,8(” with

oL@ _ ( %5 — {1y o) - i
N W_(%f—)):( —ar (14 29) 4 etk ) )
. aﬂL(ﬁ)_(%@ %@)_(—i@ C(1+2v) ) 6
8808’ %%? gé%@ ~(1+2y) —2a - lutis)

From the model to be fitted o = p; and v = B2 _ 2 {f the observed data is used as an initial estimate
a

of p the first approximation of E is

,6(0) - CI(O) — 80
(0 0.1875
and is used to determine q(® and H(®. Substituting 8%, q® and H® into (4) gives

3 _ g _ (Hw))‘l q@.

This is used to determine q‘¥) and H®),

The process continues until convergence is attained. Table 2.2 shows ﬁ(r) at different steps of the
algorithm.

TABLE 2.2: Values of [3(’") at different steps of the Newton-Raphson algorithm.
al™) +7)

80 0.1875
79.294919 | 0.2153986
78.829748 | 0.2200938
78.821827 | 0.2201973
4 | 78.821823 | 0.2201973

LW B =S

The value E} that maximizes the log-likelihood function is
3- & Yy [ T8.821823
U F /02201973 )

Substituting this into the model to be fitted, p, = avy'~!, gives

fiy a 78.821823
=7 = & | = 17356354 |.
s & 3.8218228

The program is given in the Appendix.

EXAMPLE 2.2
Determining ML estimates for a loglinear model using the Newton-Raphson algorithm.

Consider the model in Example 1.2 and Example 2.1. The log-likelihood function is
L{ply) = Zyi log p; — ZM,- - Elogyi!. (7)

In Example 1.2 the model y; = ay*~! was written as the generalized linear model

1 0 3
logp=X3=| 1 1 (61)
1 2 2
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with 3; = log @ and 3, = log v, and X the design matrix.
Using the fact that logu, = 3, 8;2;; and p; = exp (ZJ ﬁjmij) the log-likelithood function in (7} can be
written as a function of the elements of 3. That is

L(Bly) = Zyi Z Byi — ZEXP (Z 5j$ij) - ZIOE yil. (8)
i 2 t 2 i
The value of B that maximizes L {3y} can be found iteratively with
B+ gt _ (H(r))'lq(r) 9)
where q is the vector with elements the first order partial derivatives
oL
qr= (8) = -} Ty €XP Eﬁjfcz‘j + 3 yitix
e/e7 : 7 7
and H is the matrix of second order partial derivatives having elements
9?L
hpe = 813,,,8(2 = - ; TipTif €XP (ZJ: ﬁjq"ij) =- 21: TinTikfd;-
From this
o) =X (y - ™) (10)
H = _X'diag (,u,(’")) X (11)

with p(") = exp (XB(T)) the rth approximation of i, (r =0,1,2,...).
Substituting (10) and (11) into (9) gives

-1
gl = gl 4 [X'diag (,u.(’“)) X] X' (y - ,u,(r}) . (12)
From the model to be fitted o = g1, and v = % = % Using the observed data as an initial estimate of
I

4, the approximation of B at r =01is
(o) log a{®) 1.90309
A= ® }7\ - :
log ~ 0.72700
This is used to determine 1{% = exp (XB(U)). Substituting 8'” and £ in (12) gives the next approx-

imation for 3,
g — 3™ 4 [X’diag (”(0)) X] -1 X' (y B “(0))

which is used to determine ), N
The process continues until convergence is attained and the value B that maximizes the log-likelihood

function in (8) is
5= B\ _ [ legd \ _ [ 43671899
"\ A, /T \logd )T\ -1513231 /-

Substituting this into the model, y; = ay*~?, gives

R i 78.821823
i = exp (X,@) = | & | = 17.356354
fin 3.8218228

This is the same result as obtained in Example 2.1.
The program is given in the Appendix.
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2.2 THE FISHER SCORING ALGORITHM

The Fisher scoring algorithm is similar to the Newton-Raphson algorithm, the distinction being that
Fisher scoring uses the information matrix. The information matrix is the negative expected value of the
second order derivitave matrix of the function to be maximized. The Newton-Raphson algorithm uses
the observed value of the second order derivitave matrix. The formula for Fisher scoring is

-1
B+l _ gt | (Inf(r)) qt”

where Inf(") is the rth approximation for the estimated information matrix. The information matrix,
Inf, is the negative expected value of the matrix of second order partial derivatives of the log-likelihood

5L (ﬁ))
and has elements Inf,, = —F .
" (%haﬁk

EXAMPLE 2.3
Determining ML estimates using the Fisher scoring algorithm.

Suppose the elements of Y : 3 x 1 are independent Poisson random variables with parameter vector
p and observed vector y' = (80,15,5). The model to be fitted is u; = a+*~!. In Example 2.1 the
Newton-Raphson algorithm was used to find the ML estimates.

The equation used in the iterative procedure is

-1
g+ — gt 4 (Inf(r)) q"

where Inf(™ is

Inf = —E [521‘ (/3)] — o (%ﬁ) - (%%l) | E (W) —(1427)
0808 -B(5H8) -B(ZA) ~(1+2y) B (204wl

evaluated at 8™,
Table 2.3 gives the values of ﬁ(’"} at different steps of the Fisher scoring algorithm.

TABLE 2.3: Values of ﬂ(’") at different steps of the Fisher scoring algorithm.
Oi(r) ,},(T)

80 (.1875
79.294919 | 0.2153986
78.820871 | 0.2201953
3 | 78.821823 | 0.2201973

This is the same result as obtained in Example 2.1 with the Newton-Raphson algorithm.
The program is given in the Appendix.

[N e ] Ry

EXAMPLE 2.4
Determining ML estimates for a loglinear model using the Fisher scoring algorithm.

This example uses the model and data in Example 2.2 where the ML estimates for the GLM were found
iteratively with the Newton-Raphson algorithim given by the equation

Bt = gl 4 [X'diag (”(T)) X] - X’ (y - ”(T)) )

Since
H™ = _X'diag (p(f)) X

is not a function of the observed data y, the observed and expected second derivative matrices are the
same. Thus

Inf = —H.

This happens for all GLMs that use a canonical link function. The Newton-Raphson and Fisher scoring
algorithms are identical in such cases.
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2.3 IGNORABLE MISSIN\J LATA VIRCHANISM

The EM algorithm can be used to determine maximum likelihood estimates for incomplete data. Before
presenting the theory of the EM algorithm, it is necessary to define an ignorable missing data mechanism.

Suppose the data of interest is denoted by Y = (¥;;) : n x p matrix of n observations measured for p
variables. The data is assumed to be generated by a model with probability function f{y|8} where 8

is the vector of unknown parameters. In the case of incomplete data let Y’ = (Y, .Y, ..) where Y 5,

represents the observed part of Y and Y., denotes the missing values. The joint probability function
of Yous and Yois is given by f(¥]0) = f{¥obs) Ymis|€)}-

An indicator random variable is included in the model which indicates whether each component of Y is
observed or missing. Define a response indicator R = (R;;) such that

R — 1, yi; observed,
YL 0, yij missing.

The joint probability function of R and Y can be written as
Flyx|8,4) = f(y|8) f (rly, %) (13)

where f (r|ly, ) is the distribution of the missing data mechanism. This mechanism depends on Y and
some unknown vector of parameters ¢. In the case where the distribution of the missing data mechanism
does not depend on the missing values Yomis, the data is said to be missing at random (MAR) and

f (r|YDbs; ¥mis, Qp) =f (r‘YObs:"/’) . (14)

MAR, requires only that the missing values behave like a random sample within subclasses defined by the
observed data. If the missing data values are a random sample of all data values the data is said to be
missing completely at random (MCAR).

The observed data consist of the values of the variables (Y55, R) and its probability function is obtained
by integrating out the missing data Y, ,:

f (yObS1 I'|8, 'l/J) = /f (yobs;}’mis ‘9) f (rl}'obsa Ymis. 1}") de'is' (15)
The likelihood of & and % is proportional to (13), that is

l(9=¢|yobaal‘) x .f (yobs:r!B;d’) . (16)

If the data is missing at random, that is if (14) holds, the probability function of the observed data, given
in (15), can be written as

f(YUbs:rlga "I’)) = /f (y:;bs:Ymisw)f(r‘YObs:".[’) Y mmis

= f(ﬂycbsrﬁ)) X ff(yobs:ymisla) de'is
f(rlyobsy¢)f(yobslg)- (17)

The likelihood of the observed data under MAR can thus be factored into two pieces, one pertaining
to the parameter of interest 8, and the other to 75. The parameters 8 and 4 are distinct if the joint
parameter space of 8 and ) is the product of the parameter space of 8 and the parameter space of . If
both MAR. and distinctness hold, the missing data mechanism is said to be ignorable (Listle and Rubin,
1987) and likelihood based inferences about € will be unaffected by 4 or f (r|yops, ¥).

From equation (17) it follows that

f(yObS)r|31w) X f (Yabs]g)

and thus
l (97 ,‘J)lygbg‘l I‘) x l (GEyobg)

10
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which means that all relevant statistical information about the parameters is contained in the cbserved
data likelihood, [ (8ly ;. )-

EXAMPLE 2.5
Incomplete univariate data with an ignoreble missing data mechanism.

Let Y : n x 1 denote a vector of n independent identically distributed random variables. Let ¥’ =

(Yipe Yo} with Y/, = (¥1,Ya,...,Yn) and Y, ;. = (Yimg1,Yingo,...,¥a). That is, m units are

observed and n —m are missing. Let R’ = (R;, Rs, ..., R, ) dencte the response indicators, where R; = 1
if y; is observed and R; = 0 if ¥; is missing. Suppose that each unit is observed with probability . The
missing data mechanism is

Flly) = TIo7 (-9 =™ (L) ™

and since it does not depend on Y, the data is MAR. If @ and ¢ are distinct, inferences about 8 can
be hased on the observed data likelihood

LOYobs) = /f(y°b3’ymis|6) Ay s
N ./ /H f ylig}. H f(y1|9)dym+1 - Ay
= ,l;Ilf(yde)

which is a complete data likelihood based on the reduced sample (¥],Y5,..., Ym)l.

EXAMPLE 2.6
Bivariate date with one variable subject to nonresponse if the missing data mechanism is ignorable.

Consider a dataset with variables Y; and Y3 where Y7 is observed for units 1,2, ...,n and Y3 is observed
only for units 1,2,...,m < n. The missing data will be MAR if the probability that Y5 is missing does
not depend on Y3, although it may possibly depend on Y). Let y;1 and g2 denote the values of Y7 and
Y5, respectively, for unit i. Since

f (Yobs: Ymis|0) = f (Yobs|0) f (ymiaiyobsa )

the observed data likelihood can be written as

l(9|yobs) = /f(yobS:Ymistg) AYmis

] £ Fors18) F (Voo e 6) A mis

ki3

Hf(.%l:%z[e) I[I f(yai®) ﬁ f (yizlvin, @) dymis

i=1 i=m+1 i=m+1
= H f Wi, ui2l0) [T flyal®) H+1f(yi2|yi1a9)deis
1 i=m-+1 i=m

3111,%2“9) 1__[ f(yu|9)

i=m+1

Il
E:s i

This is the product of the joint likelihood for Y7 and Y5 where Y; and Y, are both observed, and the
likelihood of Y7 where only Y7 is abserved.

11
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2.4 THE EM ALGORITHM

2.4.1 Theory of the EM Algorithm

Assuming that the ignorability assumption is correct, all relevant statistical information about the para-
meters is contained in the observed data likelihood, [ (8|y ;.). The EM algorithm uses the interdependence
that exists between the missing data Y,;s and the parameters 8. An initial estimate of 8 is obtained
from the observed data Y. The missing data is filled in based on this initial estimate of & and 8 is then
re-estimated based on Y, and the filled in Y,,;,. The process iterates until the estimates converge.
Suppose the density function of the complete data y is given by f {¥|8) where 8 is the unknown parameter.
Let Y'=(Y/,,, Y,.;s) where Y, represents the observed part of Y and Y,,;, denotes the missing values.
The distribution of the complete data can be factored as

f (Yobs: Ymis|0) = F (Vobs10) f (Ymis|¥ s, 9) - {18)

The objective is to maximize the likelihood function for the observed data, that is maximize

01y o) [ ] (Ve Vsl 05
with respect to @ or, alternatively, to maximize the log-likelihood

L (Blyabs) = IOg [l (eiyabs)] .
The log-likelihood that corresponds to (18} is

L (myobssymis) =L (e‘yobs) + log {f (Ymis b’gbgw 9)}

and can be written as
L(81Y,55) = L(BlY pp51 Yimis) — 10&[f (¥mis|¥ s 0)] (19)

where L (fly_,.) is the observed log-likelihood to be maximized, L(8|y,,.,¥m;;) is the complete data
log-likelihood and log [f (¥mis|¥ .5, €)] 13 the missing part of the complete data log-likelihood.

The expectation of both sides of (19) over the distribution of the missing data Y, given Y, and a
current estimate of 8, say 6" is

L(Oly o) =@ (0167) - H (016"”) (20)
where
@ (6167) = [ 1L (Ot Fio ) S (Ve ¥opss 67) e (21)
and
#.(816) = [ {108 [F (i l¥ ot OV (Yol 0:67)) 9 (22)

From Jensen’s inequality {Rao 1972)
H (816 < 1 (8016) (23)

and therefore maximization of L (@]y_,.) is equivalent to maximization of Q) (919“)) with respect to 8.

Each step of the EM algorithm consists of an E-step (expectation step) and an M-step (maximization
step):

# In the E-step the function @ (GIB(T)) is calculated by averaging the complete data log-likelihood
L{01y) over £ (YmislY ops: 87).

o In the M-step 87+ is found by maximizing Q (9|9(‘")). That is Q (9(T+1>|9(”) >Q (0|9(’”)) for
all 6.

12
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2.4.2 The EM Algorithm for exponential families

Little and Rubin (1987) presents a simple characterization of the EM algorithm when f (y|@) has the
form for the regular exponential family defined by

Fyl8) =b(y)exp (s(y) 9) ja(®) (24)

where @ is the parameter vector and s{Y) is the vector of complete data sufficient statistics. For regular
exponential families the complete data MLE can be found as a solution to the likelihood equations

E(s(Y)|#)=s (25}

where s is the realized value of the vector s (Y).

Suppose 0" denotes the current value 8 after r cycles of the algorithm. The next cycle can be described
in two steps, as follows:

* E-step: Estimate the complete data sufficient statistics s (Y') by finding
s = E (s (Y) [Yobs, e(f)) . (26)

e M-step: The M-step determines the new estimate 61 of @ as the solution of the equations
E(s(Y)]6) =" (27)

which are the likelihood equations for the complete data with s (Y) replaced by s{") as obtained in
the E-step in (26).

EXAMPLE 2.7
Incomplete univariate normal data. EM algorithm for the regular exponential family.

Suppose Y;, i = 1,2,...,7n are independent identically distributed random variables from a N (,u,(rz)
distribution. Let 8" = (i, ?). The log-likelihood function for the complete data is

n 1 2
L8ly) = “510802—@;(%—#)2

P lego? . LT
5 loga® — 57— Lgm 2#Ey1+mu]

i=1

which is linear in the sufficient statistics s (Y) = (81 (¥), 82 (Y)) = (Z Y;, Z Yf)
1 =l

With no missing data the ML estimates of x and o are

~ 1 Z”:
Po= =w
i1
2
52 — Z?:lygi E?:lyi
T n

Suppoese now that only the first m components of the data vector Y are observed and that the data are
missing at random (MARJ}.

13



4
&b

ga UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

The E-step of the EM algorithm calc S5e®, (UNIBESITHI YA PRETORIA
ng) = FE (31 (Y} kYobs, B(T)) (Z Y |Yob33 ) Z Yi + )Ju‘(r)
) = B (52(0)¥unr87) = 542 4 (0= m) [(w) +cr?“")]
i=1

for current estimates (") = (;L(’") ,o2(")) of the parameters. In the M-step the expectations of the sufficient
statistics calculated in the E-step are substituted in the expressions for the ML estimates giving

-

E (Z Y;'|Yohsag(r))

i=1

S
i=1

Bl 3=

and

JQ(T+ 1) E

=1

ly +(n—m) [( ('"))2+02(r)” - (‘u(r+1))2_

3 Y2|Y 0, 6 ’) (u("“))z

1
n
1

Msf\

7

-

i

Numerical Example

Suppose Y;, ¢ = 1,2,...,10 are independent identically distributed random variables from a N (12,9)
distribution and that Y; are observed for i = 1,2,...,6 and missing for ¢ = 7,...,10. The 6 observed
values are 12.893, 7.012, 12.165, 12.274, 14.657 and 8.644.

The initial values of p(® = 10 and ¢2(® = 10 were chosen arbitrarily. Table 2.4 displays the results at
different steps of the algorithm until convergence. The results are the same as the mean and variance for
the six ohserved data points, that is

=
Il

(= Y N

& e

2
32 E'L:Sl y'p. _ ‘aQ

TABLE 2.4: Iterations of the EM algorithm for incomplete univariate
normal data, n = 10 and m = 6.

M-Step E-Step
r ,u('") a2 | E (\i Yi| Yo, 9(1”)) E (i y{2|Y0b3, 9(’"))
i=1 i=1
0 10 10 107.645 1243.582
1 } 10.765 | 8.4884 110.703 1301.015
2 | 11.070 | 7.550 111.926 1323.988
J | 11.193 | 7.124 112.415 1333.178
4 | 11.242 | 6.945 112.611 1336.853
5 | 11.261 | 6.873 112.686 1338.324
6 | 11.269 | 6.843 112.721 1338.912
7 111.272 | 6.831 112.733 1339.147
8§ | 11.273 | 6.827 112.738 1339.241
9 | 11.274 | 6.825 112.740 1339.279
10| 11.274 ¢ 6.824 112.741 1339.294
11 | 11.274 | 6.824 112.741 1339.300
co | 11.274 | 6.824 112.741 1339.300

14
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EXAMPLE 2.8
EM algorithm for data from a multinomial distribution.

This example, discussed by Dempster, Laird and Rubin {1977) gives the data in which 197 animals are
distributed multinomially into five categories. The complete data, Y' = (Y7, Y5, Y5, Yy, ¥5), are the counts
for each category and the cell prohabilities in this model are given as

m=(L1p31(1-p),}(1-p),Ip) forsomed<p<1

Yor the complete data the density function is

(it tustvatys) w1 yw
yip 3 P
fvip) = y1lyelyslyslys! (2) (4 ) (
The ML estimate of p for the complete data is given by

- G- Gn”

= Y2t ¥s
2tystuyatus
The kernel of the complete data log-likelihood is

(28)

p)

it

Lply)=vilogl + (y2+ys)log ip+ (y3 +ya)log (L —

and the counts are the sufficient statistics.

The observed datais y/,, = (y1 + ¥2, ¥3, Y1, ¥s) = (125,18,20,34). Only the total of ¥; and Y53 is observed.
In the E-step the conditional expectations of the sufhicient statistics, Y;, i = 2, 3,4, 5, given the observed
values and a current estimate of p, are calculated. At stepr (r=0,1,2,...)

E(Y2|Yobs, p™) 125—21”’ v
2| Xobs, P = 1 _(r
3+ 1"
E(Y3|Yope, ™) = 18
E(Y4|Yops, ™) = 20

E(YsYous, ™) = 34.

In the M-step the conditional expectations of ¥; as calculated in the I-step are substituted in expression
(28) giving the next estimate of pin the iterative process

p(r_i_l) E(Y2|Yabs:p(r)) + 34
E(Ya| Y ops, P + 18 + 20 + 34
1..(7)
125_1__2,73,__ﬁ
3+ 30"
1 {r
I,

T
§+4p(

+ 34

+18+20+ 34

The process iterates between the E-step and the M-step until convergence is attained.
Table 2.5 shows that, starting from p(®) = (.5, the EM algorithm converges after seven steps.

TABLE 2.5: Iterations of the EM algorithm.

M-step E-step

r | P | E(Yal Yo, ™)
0 0.5 25

1 | 0.608247 29.15020
2 | 0.624321 29.73727
3 | 0.626489 29.82589
4 | 0.626777 20.82634
5 | 0.626816 29.82773
6 | 0.626821 29.82792
7 | 0.626821 29.82794
00

0.626821 29.82794

15
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2.5 A MAXIMUM LIKELTHOOD ESTIMATION PROCEDURE WHEN
MODELLING IN TERMS OF CONSTRAINTS

Proposition 1
Suppose Y is a random vector with probability function belonging to the exponential family and with
E(Y) = p. Matthews (1995) derives a ML estimate of g subject to the constraints g (p) = 0, as

fio =y — (G, VY (G, VG.) " g(y) +ollly — ll) (29)

where g (i) is a continuous vector valued function of g for which the first order partial derivatives exist,
e 7]
G, — ATDY G, — g (1)
dpe O
function of g, say V.. This result implies that the ML estimate must be obtained iteratively.

|g=y and V is the covariance matrix which could be known or could be some

Matthews (1995) gives the following proof of this result.

Proof:

Let v be a vector of Lagrange multipliers. To find the ML estimate of gt subject to the constraints
g (1) = 0, we maximize

o (3 0) = Wb y) =0~ (0) + 75 (4 0)).

Hence we find 5 8 26
. . 9
e i 6i) = gty | 52
. a . . a81 . . . .
Since we set aiw {(y;8;~) = 0 for a maximum, and since B; is invertible for a regular exponential
family, we need further only consider %w {v;:8;7v).
Thus

S (¥i87) = Y~ s (8) s 7' E (O]
yu+{a£g(u(9)) [%]}7

_ |
= y—p+ [89] G,

Setting %w (¥; 60;v) = 0, we get

9 ,
=y + [ag] GL7. {30)

Using the linear Taylor expansion of g (u) about y, we get

glp) = g(y+[ge] G, )
g() 1 G, (w 2] @ )+o(uy~un)

£) + Gy | 2] @+ oly - ul).

Setting g (¢} = 0 and solving for ~, gives
o]’ -
7= (Gy E G;,) 8()+ollly ~ ).
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i=v- (G [2]) (Gy [g%]’c;)_lg(y) +olly - ).

Now
Iy, __3_ Ik (6) _32."5(9)
99 - 905 00; - 893895'
Hence
o _ [om] _ #x(0)
88 90, - a90;00;
and ,
6_;,0 _ 825(0) _v
a0 | 06,;00; e
Therefore

fro =y = (Gu V) (GyVG,) g (y) +o(ly — ul)

which is the required result.

The iterative procedure

The process is a double iteration over y and p. Let ,u“*j ) denote the {4, J)th approximation obtained for
the ML estimate fi_ of g, where i (i =0,1,2,...} refers to iteration over g, and j (j =0,1,2,...) refers
to iteration over y. Note that 7 = 0 at the start of every iteration over y.

The initial value for p is p(®% =y, the vector of observed values. Iteration then takes place over y and
the value of p in G, and V, is kept constant at (%% = y. The first approximation of fi, is given by

—1
P'(O’l) =y - (G#(o,o) V#(D,q))f (GyV“((m) GL(D’D)) g (y) .

If convergence over y is not attained at this step, y is replaced by p(%?) to obtain the next approximation
of fi,, whilst the estimated value for g in G, and V,, is kept constant at p(®® = y. Thus,

1
“(0,2) — “(0:1) _ (G“(O,U)V“(o.u))’ (Gp(u.1)v#(u4u)G:‘(0‘o)) g (M(O,l)) .

This is repeated until convergence over y is attained, say at j = k.
The value at convergence, ;"% is used as the next estimate for g in G, and V. The procedure again

iterates over y, starting with the vector of observed values, y, and keeping the estimated value for p in
G, and V,, constant at (0% That is

-1

pY =y~ (Gom Von) (Gyvpm,k) G;Lm,k)) g{y).

If convergence over y is not obtained at this step, the next approximation of ji, is

-1
“{1,2} = ’_L(l’l) — (G#(D,k)v'u_(ﬂ,k))’ (G#(I,I)V#(D_k)GL(U,k)) B (“(1,1}) .

At convergence the iteration over y yields the next estimate for g in G, and V,. The process continues
until convergence over g is attained.

17
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In certain cases the iterative procedure simplifies to an iteration only over y or only over p.
o If g is a linear function of g, say g () = Ape then G, = A = Gy and
H(O,I) =Y — (Avp(o,o))f (A.V'U_(U,U)A,)_l Ay. (31)

For the iteration over y convergence is immediately attained since substitution of p{®!) into y in
equation (31) gives

-1
1O — (AV 00’ (AVL(O,O,A’) Apl®D

h (AV#(U,U))’ (Avu(u,u)A’) -t Ay—

-1 _
(AV“(n,n))’(AVL(o_O)A’) A[y—(AVM(u,o))f(AV#(o_n)A') 1Ay]

Y - (A.VH_(O,O))’ (A.VF_(U,U) A.I)_l Ay
pO0,

The process simplifies to iteration only over p with y remaining constant.
Atstepi+1 (:=0,1,2,...) the approximation of [i_ is given by

i —1
pi) =y — (AV,0) (AV,mAY) Ay

with ¢{® = y. The process converges to the ML estimate fi_.

e Let D, be a diagonal matrix with the elements of p'= (#1: J17 ,,up) on the principal diagonal
and V =D,,. Suppose g () = Alog(p). Then

d _
G, = 5Emog(”):ADMl
G, = AD}'
and
o~ -1
e = ¥~ (GuVa) (GyVLGL) ™ Alog(y) +o(lly ~ ul)

= y- (AD;'D,) (AD;'D.D,'A")”" Alog(y) +o(lly - )
— y—- A (AD;'A) 7 Alog(y) +o(lly — ).

Iteration is only over y. At step j+1 {5 =0,1,2,...) the approximation of i, is given by

“(j+1) =pul — A’ (AD;}J.)A’)_I Alog (p(j))

with 1£(® = y. The process converges to the ML estimate Ji_.

Proposition 2
The asymptotic covariance matrix of i, is given by
-1

L=V, - (Guv.u), (G#V#GL) GV,

with the MLE obtained by replacing pu with fi.

18
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EXAMPLE 2.9
Determining ML estimates under constraints with iteration over y and p.

The number of accidents per thousand per age group in a certain factory is given in Table 2.6.

TABLE 2.6: Accidents per 1000 per age group.

Age group I 1T MI
Number of accidents 80 15 5

The model under consideration is g, = ay~! for ¢ = 1,2,3, and independent Poisson sampling is
assumed.

This model implies the constraint
g (1) = ppg — 3 = 0.

In this case

V, =D,

G, = ( by, —2p, 4y )

Gy={(ws, —2ys, w1 )

G.D, = ( HyHsg, *2#% Hiks )

G,D.G), = (1 + ys) paptg + 4y2143.
The ML estimate of g is found iteratively from

fi. =y~ (GuDy) (GyDLGL) g (y) +ollly — uel). (32)

Iteration is over y and p. The process converges after eight steps.

Table 2.7 gives the approximation of ji, at different steps of the iterative procedure. These are the same
results as obtained by the Newton-Raphson and Fisher scoring algorithms (see Examples 2.1, 2.2 and
2.3).

TABLE 2.7: Approximation of fi, at different steps of the iterative procedure.

i H H
0 80 15 3

gi,j) :(;',j) ugi,j) ”g.j} ,ugi,j)

80 15 3
78.526316 16.657895 3.5263158
78.531142 16.6524656 3.5311418
30 15 5
78.793103 17.413793 3.7931034
78.821807 17.356387 3.8218065
78.821823 17.356354 3.8218228
80 15 5
T8.793103 17.413793 3.7931034
78.821807 17.356387 3.8218065

78.821823 17.356354 3.82138228

1 78.531142 7R.531142 3.5311418

2 78.821823 17.356354 3.8218228

Lo~ O N = DD - O

Description of the procedure:

e Both y and g in equation (32) are initially estimated by the observed data, that is y = u©9, The
first approximation of fi, is given by

-1
“(D,l) -y — (G#(o,n)D#(o,n))' (GYD”(D,B) GL(“'U’) g(y).
The process iterates over y until convergence is attained at (¢, 7) = (0,2) . At this stage the approx-
imation of fi, is
78.531142
p 2 = | 16.652465

3.5311418

This becomes the next estimate of g in G, and D,,.
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80

e The process again iterates over y with the initial value of y = 15 |, the vector of observed

5
data.
For (¢,7) = (1,0)

-1
'u,(l,O) =y - (G#(O,Z)VN,Z))' (Gyvu(n,z)GL(o,g)) 4 (y)

and for (¢,5) =(1,1)
-1
'u,{l’l) = ;1,(1‘0} - (G”(o‘z)vp(u,zy)l (GF(I,U)V’_‘LO“Z)GL(U'Q)) B (”(1,0)) .

Convergence is attained at (¢,7) = (1,3). The vector u**) becomes the next estimate of g in G,,
and D,,.

e The process again iterates over y with the initial value of y the vector of observed data.This iteration
over y converges at (¢,7) = (2,3) and at this stage

-1
#(2,3) — ”(2!2) — (G‘u(l.S)V‘u(l,a)), (G#(z.z)vy(l,a)GL“,s)) g (,U,(E’Q)) .

Since 23 = p(13) convergence over i is also attained at this step and the process stops.

The program is given in the Appendix.
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EXAMPLE 2.10

Determining ML estimates under constraints with iteration over y.

Consider the same data as in Example 2.9 but using the constraint

g () = log (st p13) — 2log{ip) =0

In this case

V=D,
1 -2 1
Gu=(5h = W)
1 -2 1
Gy:(a’ ! Z';)
G#D#:(la -2, 1)
GyD,G, =+ +4 41

The ML estimate of p is found iteratively from

-~

H

Y= (G.uD.u)f (GyD#GL)

‘y'_

1

o | log (y1ys) — 2log(y2)
- 1,4 .1

1 Y1 ¥z | Y3

gly)+o(ly — )

+o(lly —ul).

Iteration is only over y.

Table 2.8 gives the estimates of [i, at different steps of the iterative procedure.

TABLE 2.8: Approximation of fi, at different steps of the iterative procedure.

Approximation of ji, by p'"™
r ,ugr) 'ug") ”gr)
0180 15 5
11 78.79924 17.40152 3.79924
2 | 78.821801 | 17.356397 | 3.8218013
3 | 78.821823 | 17.356354 | 3.8218228

Alternatively, the constraint can also be set up in terms of the GLM given in Example 1.2, The model is

logpu = Xg3

with = (3, 8;) where 3, = log and 3, = logy, and X the design matrix given in Example 1.2.
Let P =1 - X (X'X)X’'. The model can be written in terms of the implied constraints as

g(p)=[I - X(X'X)X']logpr =Plogpp = 0.
The ML estimate for g subject to the constraint g (1) = 0 is found iteratively from
~ -1
He =Y — (G,uv.u)l (GquGL) gy} +olly —ull)

with V, =D,

G, = PD,'
G, =PD,!
G,.V=P

' -1
GyVG, =PD_'P.
Hence, the estimation procedure is
~ 1y 1
fi.=y—P(PDy'P) Plogy+o(lly —ul).

Iteration is only over y. The estimates of Ji, at different steps of the iterative procedure is exactly the
same as given in Table 2.8. The programs with these two restrictions are given in the Appendix.
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EXAMPLE 2.11

Determination of mazimum likelihood estimates under constraints. An example for incomplete data.

Example 2.8 gives data in which 197 animals are distributed multinomially into five categories.

The complete data, Y' = (¥, Y2, Y3, ¥y, ¥s), are the counts for each category and the cell probabilities
in this model are given as

ﬂ":(%,%p,%(l—p),%(l—p),%p) for some 0 < p < 1.

The random vector of complete data is Y'=(¥1, Y, Y3, ¥, Y5) and the random vector of observed data
is Y/,, = (Y1 +Y5,Y3,Y),Ys) where only the sum of ¥7 and Y3 is observed. The observed data is
¥i.s = (125,18,20,34).

The distributions of Y and Y.y, are both multinomial and can be written as

Y ~ Mult (n, )

with
ﬂJ - (ﬂ13ﬁ2>7r3r7r49ﬂ.5)
(3,451 —p), ;{1 —p),;p) forsome 0 <p<1
and
Yous ~ Mult (n, mops)
with
Tops = (M1 + T, 3,74, Ts5)
= (%+%p,%(l*p),i(l-p),i})) fOISOmQOSpSl. (33)

The ML estimate of p must be obtained from the ohserved data, Y. For the multinomial distribution

E (YObS} = NTobs = Hobs-

From the cell probabilities given in (33) the constraint g (pt.;,) = 0 can be written as

1 -1 -1 -3
g ("Lobs) = Xp’obs: ( 0 1 -1 0 ) Hobs

where g is the vector of expected cell counts.
The ML estimate, fi,,, ., of the expected cell counts y¢,;. are obtained by solving

I

—1
—~ !
“’obs,c = Yobs — (Gf"uba Vlu‘obs) (GYDIJ: V“Db:G”()bs) 24 (yObS) +o (”yﬂbs — Hobs “)

where 'V, . =Diag(¥obs) = 2 Vobs¥ops

G.uobs =X= Gy()hﬂ

& (Yobs) = X¥ops-
Since g (f4,.) is a linear function of p,, iteration is only over g, .
The ML estimate of p is then determined from g, . by

e~ 4 luobs,4
T

129.37096
15.379041
18.379041
30.870959

result as obtained with the EM algorithm in Example 2.8.
The program is given in the Appendix.

The process converges after 4 steps and fi ,, . = giving p = 0.6268215. This is the same
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