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0.3 Abstract

In this dissertation, we examine current models used to value default-risky
bonds. These models include both the structural and the reduced-form ap-
proaches. We begin by examining various issues involved in modelling credit
risk and pricing credit derivatives. We then explore the various dimensions of
structural models and reduced-form models and we provide an overview of four
models presented in the literature on credit risk modelling. Both the theoretical
and empirical research on default-risky bond valuation is summarized. Finally,

we make suggestions for improving on the credit risk models discussed.
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0.4 Preface

Building and implementing a model of credit risk requires choices along a variety
of dimensions. To clarify these dimensions, this dissertation will examine, in
detail, several existing credit risk models.

This dissertation is divided into six chapters. The first presents an overview
of credit risk and credit derivatives. The second chapter studies the fundamen-
tals of credit modelling. In essence, this describes the various dimensions of
a credit risk model and categorizes credit risk models into two groups: tradi-
tional credit models and market based models. Market based models are then
further divided into two groups: structural models and reduced-form models.
The third chapter presents the fundamentals of interest rate modelling. The
fourth chapter studies two structural models in the area of default-risky bond
pricing: Merton (1974) and Longstaff and Schwartz (1995). A special section in
the fourth chapter provides a comparison of these two models. The fifth chap-
ter studies two reduced-form models in the area of default-risky bond pricing;:
Jarrow, Lando and Turnbull (1997) and Duffie and Singleton (1999). A compar-
ison of structural and reduced-form models is provided in Chapter 6. Finally,

Chapter 7 gives conclusions and suggests a few directions for further research.
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Chapter 1

Introduction

1.1 Credit Risk

Credit risk or default risk refers to the possibility that the borrower will fail to
service or repay debt on time. Default oceurs when a borrower cannot fulfill
key financial obligations, such as making interest payments to bondholders or
repaying bank loans. The most fundamental example of a credit-linked security
is a corporate bond.

The risk of default affects virtually every financial contract. Therefore, the
pricing of credit risk has received increasing attention recently from practi-
tioners, academics, and regulators. Practitioners need to quantify credit risk
accurately in the market in order to be properly compensated for bearing it.
Academics need to develop a strong modelling framework for credit risk, and
regulators have a great interest in whether and how credit-sensitive transactions
should be regulated. One can often read in academic literature comments such
as “The modelling of credit risk, credit derivatives and non-hedgeable securi-
ties in general, is currently in a poor state” (Wiknott, (1998)). “Unlike market
risk, the modelling of credit risk is a very dilficult task because credit risk is
not the simple manifestation of one single source or driver of the risky event”
(Ong, (1999)). “The current situation with credit derivatives is still awaiting
its Black-Scholes, there is no consensus on the best way of pricing them [credit

derivatives)” (James, (1998)). The focus has mainly been on defanltable debt,



University of Pretoria etd — Magwegwe, F M (2006)

derivatives on financial securities subject to credit risk and, more recently credit
derivatives. The pricing of credit risk is essential to the valuation and hedging
of each of these types of securities, therefore a model of credit risk must be
developed.

Over the past decade, credit markets have seen tremendous growth in both
geographical reach and range of new products. As a result, it has become
imperative for market participants to understand credit risk and how to monitor
and properly manage it. The taking of credit risk is a fundamental function of
banks. For example, when a bank extends a loan to a custorner, it is exposed
to the risk that the customer will default on the loan. Traditionally, banks
hiave dealt with this risk by requiring borrowers to meet certain underwriting
standards. Another traditional approach used by banks to manage credit risk is
to diversify the risk across different borrowers in different geographical regions
and different industries. The development of markets for securitised assets and
for loan sales has provided banks with another method for managing credit risk.
This method allows banks to sell some of their loans into securitised pools or
directly to outside investors. Although these methods reduce banks’ credit risk
exposure, they do not provide a formal method for valuing credit risk.

It is not only banks that are exposed to eredit risk but investors in corporate,
wmnicipal and sovereign bonds as well. There is always a chance that a bond
issuer will not meet its obligations to pay principal and interest. Although this
risk is small for the typical high-grade borrower, investors are still exposed to
credit spread risk, the risk of a decline in a bond’s credit rating. A bond’s credit
rating is a general measure of the credit risk of the issuing firm. Rating agen-
cies, like Standard & Poor’s (S&P), Moody’s, Fitch Ibca and Duffs & Phelps
categorize bonds from the best rating AAA /Aaa to the worst rating C. A down-
grade in a credit rating usually results in an immediate drop in the value of the
bond. A bond issuer’s cost of borrowing crucially depends on his credit rating.
Therefore, not only does a downgrade in a credit rating affect bond investors,
it also increases the bond issuer’s cost of borrowing. Participants in the various
bond markets have developed an informal model of credit risk that determines
the eredit risk premium associated with bonds of differing credit quality. The
credit risk premium is the spread over defanlt-free securities, such as goveri-

ment bonds, that bonds of differing credit ratings trade at. The credit spread
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is commonly expressed as a vield differential and it indicates the compensation
to the lender attributable to credit risk.

The massive growth of the OTC derivatives market has led to a heightened
awareness among banks of another type of credit risk: counterparty risk. Coun-
terparty risk represents the risk that a party with a negative mark-to-market
value on an OTC contract will default on their obligations to the other party
of the contract. To deal with this counterparty risk, some banks insist on doing
business only with highly rated counterparties. In this case, the OTC deriva-
tives are traded at market rates that do not reflect the credit rating differences
between the counterparties. A major development in the OTC derivatives mar-
ket has been the setting up of AAA-rated special-purpose credit subsidiaries by
the major investment banks. For example, in December 1991, Merrill Lynch
launched Merrill Lynch Derivative Products and in early 1993, Salomon Broth-
ers set up Swapco. The AAA-rated subsidiary essentially guarantees derivative
transactions between the parent investment bank and credit-sensitive counter-
parties, However, the setting up of these AAA-rated subsidiaries does not ad-

dress the banks’ evaluation of risky counterparties that it trades with.

1.2 Credit Derivatives

Recent developments in the derivatives market have revolved around instru-
ments that are used to trade credit risk, which iu the process, is separated from
other leatures ol a financial instrument. These instruments, known as credit
derivatives, are derivatives on the credit risk of a given bond, loan or issuer.
The advent of credit derivatives has made most banks realize that more formal
models of credit risk must be developed to price and trade these instruments.
It has become clear to most banks that the traditional methods of managing
credit risk, such as underwriting, diversification, loan sales and asset securitisa-
tion offer only a partial solution to controlling credit risk exposure.

Broadly defined, a eredit derwative is a financial contract outlining either a
certain or a potential exchange of payments in which at least one leg is linked
to the performance of a specified underlying credit-sensitive asset or liability.
The underlying market instruments include bank loans, corporate, emerging

market, and municipal debt, convertible securities as well as the credit exposures

10
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generated from other derivatives-linked activities.

Credit derivatives provide users with an efficient means of hedging or acquir-
ing credit risk. They permit investors to manage credit exposures by separating
their views on credit from other market variables without jeopardizing relation-
ships with borrowers; they also provide access to those investors who may be
precluded from the underlying debt markets. Credit derivatives could also allow
a company whose business depends substantially on another company to gain
some protection from the other company’s failure. Companies planning to is-
sue debt can use credit derivatives to lock in a maximum financing rate at some
issuance time in the future. Clearly, credit derivatives have many potential uses.

The market for credit derivatives has grown rapidly over the past few years.
It was virtually nonexistent in 1994, had reached an estimated $20 billion by
1995, jumped to $350 billion by 1998 and was estimated at $740 billion by end
of 2000." This growth has been driven by the ability of credit derivatives to
provide valuable new methods for managing credit risk.

The potential users of credit derivatives include commercial and invest-
went banks, insurance companies, corporations, money managers, mutual funds,

hedge funds and pension funds.

1.3 Evolution of Credit Derivatives

Credit derivatives have been in existence for a long period of time in the form of
letters of credit (LCs), loan guarantees, bond insurance and option-embedded
corporate debt securities. Under an LC, an issuer pays a bank an annual fee
in exchange for the bank’s promise to make debt payments in case of default.
Under a bond insurance contract, a debt issuer pays an insurer to guarantee
performance on a bond. Under an option embedded contract, a debt issuer or a
debt holder has the right to redeem the debt prior to maturity at a pre-specified
price in response to a credit rating change. The following table® shows the

evolution of credit derivatives.

!These numbers were taken from a 1999 survey by the British Bankers' Association.

2This table was adapted from Beder-lacono (1997).

11
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TIME | EVENTS

1750’s | Standby letters of credit and performance bonds were widely
used in trade finance

1840's | London Guarantee and Accident Co & New York Guaranty Co
were formed to issue credit insurance

1840°s | Governments become large guarantors of bonds for railway
construction

1900°s | Export credit insurance began to be widely used

1900's | Letters of credit emerge

1960°s | Increase in government guarantees

1960's | Foreign Credit Insurance Association begins
to offer foreign political and commercial guarantees

1970’s | State insurance guaranty fund system begins

1970's | Goverument National Mortgage Association (GNMA) begins
issuing guaranteed pass-through mortgages

1970°s | AMBAC Financial Group begins to insure municipal bonds

1970's | Farmer Home Administration (FmHA) begins guaranteeing
loans made by commercial lenders

1980's | Credit supported commercial paper begins to be issued

1980’s | Callable and puttable floating rate notes issued

1990°s | First credit default swaps and credit-linked notes

Table 1.1: Evolution of credit derivatives

12
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1.4 Credit Derivative Structures

In this section, we describe a variety of common credit derivatives and their

uses in financial markets.

1.4.1 Credit Swap

A credit swap enables two parties to swap the credit risk associated with a
reference security (or a portfolio of securities) without transferring the security
itself. The credit risk buyer receives a fee, or periodic fixed payments [rom the
credit seller. In exchange, the credit buyer promises to make a payment if the
reference security experiences a credit event. A credit event may be a rating
downgrade, in which case the credit swap is called a rating option, or it may
be default, in which case the credit swap is called a default swap or default
option. The contingent default payment can be linked to the price movement
of the underlying asset. or it can be a fixed predetermined level based on the
expectation of the loss rate.

Default swaps can be used to free up credit lines by reducing exposure to a
single borrower or group of borrowers without the borrower’s knowledge or con-
sent (which may be required when loans are sold outright). Similarly, investors
who need to protect themselves against default but cannot or do not want to
sell the particular security, for accounting, regulatory, liquidity or tax reasons,
can buy a credit default swap. Companies that have available credit lines but
are unable to lend or invest because of balance sheet constraints can sell default

swaps without breaching balance sheet limits.

1.4.2 Spread Swap

Buying a credit swap can virtually eliminate credit exposure, but this transac-
tion also reduces return, Credit portfolio managers can achieve revenue-neutral
diversification and increase risk-adjusted return by exchanging default obliga-
tions that are not closely correlated. A spread swap or exchange option is an
instrument in which two parties exchange default obligations. Suppose A is
exposed to B's default and X is exposed to Y's default. A and X exchange

default obligations, possibly for a fee, so that A recompenses X for any adverse
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consequence of Y's default and X similarly recompenses A for losses resulting
from B’s default. Assume the default probabilities of B and Y are not jointly
related: a spread swap is equivalent to an exchange of default swaps on B and
Y. IfY is chosen to be a risk-free issuer, then a spread swap becomes a defanlt

swap.

1.4.3 Total Return Swap

Two parties enter into a total return swap in order to swap all the economic
risks associated with a reference security, that is both market and credit risk,
without transferring the security itself. The receiver in the swap will be long of
the total economic risk of the security, and will receive the positive cash Hows
from that asset (coupons or dividends, plus any appreciation in capital value).
The payer in the swap will be paid some spread over a reference rate such as
Libor. as well as any depreciation in the capital value.

For investors seeking exposures to a specific asset, total return swaps are
the synthetic equivalent of buying the asset and locking in term financing. For
investors seeking to eliminate exposure to a specific asset, total return swaps

are the synthetic equivalent of selling the asset and locking in a return.

1.4.4 Credit Spread Option

A credit spread eall (put) option gives the purchaser the right but not the obli-
gation to buy (sell) an underlying credit-risk-sensitive asset or credit spread
at a predetermined price for a predetermined period of time. For example, a
corporate note issuer might purchase a credit spread put to hedge the risk of

widening spreads.

1.4.5 Credit Linked Note

Credit linked notes are debt instruments issued by highly rated issuers in which
the coupon or the redemption value of the note is linked to the performance of a
reference asset or index. They can be used by the seller to hedge against credit

risk and by the buyer to achieve higher yields.

14
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Credit linked notes on multiple assets can be used to enhance return as well
as reduce risk, A first-of-defaull credit note is an instrument whose default is
linked to a basket of high credit rated assets. In the event that any one of
the reference credits defaults, the redemption value of the structured note is
reduced by either a predetermined amount or the fall in value of the defaulted
security. In effect, it may have a default risk equivalent to a credit rating below
the minimal credit rating imposed upon the investor by regulations, even though
each of the component assets has a credit rating exceeding this threshold. In
the present regulatory enviromment, the investors would be allowed to hold the
first-ol~default note, thereby circumventing the minimal rating regulations. On
the other hand, a last-of-default note is an instrument where default is triggered
only when all reference credits default. Consequently, this may have a default
risk equivalent to a higher credit level than any of the assets comprising the

note,

1.5 Modelling Issues

As mentioned previously, the most fundamental example of a credit linked se-
curity is a corporate bond. The price of a corporate bond is subject to three

types of risk:

1. Interest rate risk - this is the most essential part for the valuation of
any security in fixed income markets. There are several models dealing
with interest rates, most notably the Heath-Jarrow-Morton (1992), model,
which provides a universal framework for interest rate risk modelling and

risk management.

!\3

Credit risk or the likelihood of default - this risk pertains to the pure
possibility of the bond entering default, irrespective of the magnitude of
the loss from default. Default risk may be reflected in the borrower’s
credit rating or other macroeconomic variables. In general, credit ratings
provide a good proxy for the defanlt risk. Likelihood of default increases

as credit rating decreases.

3. Recovery risk - different seniority debt for a particular firm can have dif-

15
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ferent recovery rates in the event ol default. This is difficult to model
because it also depends on the market value of residual assets of a firm in

default.

These three factors are the features that must go into a stochastic default-
risky bond model. The first requirement is often over-looked, as it does not
directly pertain to default.? The requirement is crucial because the value of
default-risky bonds is as much a function of risk-free rates as it is a function of
credit spreads. In practice, most default-risky bond models do not model the
risk-free rate directly, but specify a class of stochastic interest rate models that
could be used. A default-risky bond model should also have the ability to price

any contingent claim whose cash flow is subject to default.

*Although risk-free rates and default probabilities may be correlated.

16
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Chapter 2

Fundamentals of Credit
Modelling

2.1 Introduction

Most default-risky bonds will deliver some cash flow other than the promised
cash flow when default occurs. This will necessarily have a present value that
is less than that of the promised cash flows. If this happens, then we say that
there is a partial recovery.t The present value of the default cash flows at the
time of the default is often referred to as the recovery value of the bond.

If there are no-arbitrage opportunities in the market, default-risky bonds
must trade at values that are less than their risk-free counterparties.? This
implies that their vields will be higher than the corresponding risk-free yield.
The difference in yields is referred to as a credit spread (or sometimes just
spread).?

Defanlt risk and recovery risk together determine credit spreads on a bond. It

LFor corporate debt, partial recovery is usually awarded in a bankruptcy settlement well
after the promised cash flows are due. For sovereign debt, partial recovery is usually in the
form of a “restrocturing.” which means that the country pays part of its obligations with new
debt of a lesser value.

2That is risk-free bonds with the same promised cash Hows,

T most cases spreads can be thought of as the market’s “view™ of the likelihood of default.
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is important to segregate them since credit derivatives may be written on either
or both risks - hence from a modelling viewpoint, it is essential to not treat
them as one composite entity. Moreover, the sources of empirical information in
the modelling process will be quite disparate, Ratings and other industry-level
information are quite effective in providing market participants with a good idea
of default likelihood, whereas a more accurate assessment of the individual firm’s
recovery risk is necessary in understanding why spreads tend to be different for
firms with the same rating category and industry.

An important variable in credit modelling is the time of default. This can
be difficult to define in practice. There are many scenarios in which one could
interpret the time of default in multiple ways. For example, let us say that
an issuer declares its intention to default on a certain obligation before any
payment is due. Does defanlt occur at the time of the announcement or at the
next payment date (assuming that the full cash flow is not delivered then)? This
sort of issue needs to be dealt by on a case by case basis. Credit models must
answer these questions when they define default. Actual credit derivatives must
specify what they mean by default in their defining contracts.?

It is desirable that credit risk models possess the following attributes, First,
they should be arbitrage-free and they should reflect current market information.
That is, we should be able to fit a credit risk model to the current term structure
of credit spreads. This is akin to fitting an interest rate model to the current
term structure of interest rates.

Second, the models should produce default rates (sometimes called hazard
rates) that are plausible. Third, models should be computationally tractable
where the inputs to the model are readily estimable.

Now that we have the fundamentals, we are ready to present methods of
credit risk modelling. The current methods of modelling can be divided into

two distinet approaches, namely “traditional” and “market based” models.

*This question is relevant for many credit derivatives. An example is a credit default swap.
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2.2 Traditional Credit Models

Traditional models use historical data to determine both default probabilities
and recovery rates specific to certain debt classes. Traditional credit analysis for
a debt class is a combination ol both industrial and financial analyses. Indus-
trial analvsis focuses on economic cyclicality, growth prospects, R&D expenses,
competition, source of supply, degree of regulation, labour, and company ac-
counting factors, whereas financial analysis looks closely at various financial
ratios, equity returns, foreign exposure, management quality and other factors.
Credit analysts compare these factors to their historical values as well as for
competing companies in the same industry when drawing conclusions about the
creditworthiness of a company

Rating agencies like Standard and Poor's (S&P), Fitch Ibea, Duff and Phelps
and CA Ratings® use traditional credit, analysis in assigning ratings to borrowers.
The ratings are ordinal in nature and do not quantify the default probability.
The rating agencies publish observed historical defaults that can be used to
infer the default probability for a specific rating. The higher credit ratings
exhibit extremely low observed default frequencies, and therefore the historical
experience is only really statistically significant for lower quality credits. For
exarple, for the period 1981 to 1995, Standard & Poor’s only had one default
within one year of an A-rated or better company. The rating designations are

shown in Table 2.1 below.

2.3 Market Based Models

The market based models nse information from the market (equity values and
credit spreads) to derive values for the default probabilities and recovery rates.
Market based models attempt to describe the dynamics of default within the rig-
orous framework of financial mathematics. The key ingredients of this approach
are credit events (e.g. defaults or downgrades) and payments on contracts made
at such events. The mathematical modelling of credit risk involves making as-
sumnptions about the stochastic process driving default, the process generating

the payoff upon default, and the evolution of risk-free interest rates.

PSouth Africa only.
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Moody’s | S&P | Meaning

Aaa AAA | Highest Quality. Smaller degree of risk. Interest
payments protected by a large or stable margin.

Aa AA High Quality. Margin of protection slightly lower than
Aaa (AAA).

A A Upper Medium Grade. Adequate security of principal
and interest. May be susceptible to impairment in future.

Baa BBB | Medium Grade. Neither highly protected nor poorly
secured. Adequate security for the present.
Speculative features.

Ba BB Lower Medium grade. Speculative elements.
Future not well secured.

B B Speculative. Lack characteristics of desirable investment.

Caa CCC | Poor standing. May be in default or danger with respect
to principal or interest.

Ca cC High degree of speculation. Often in default.

C C Lowest-rated class. Extremely poor chance of ever
attaining any real investment standing.

D In defanlt.

Table 2.1: Ratings assignments and their meanings

20
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In an arbitrage-free complete financial market, the price at time t, X;, of a

promised payoff X paid at a terminal time T is

B T
Xe=FE [X exp (- / 'rud-u.) | Fi
oL

where (r,,s > 0) is the spot interest rate and F[] is the expectation taken

(2.1)

under the equivalent martingale measure (Harrison and Kreps (1979), and Har-
rison and Pliska(1981)), and F} is the information available to agents at time
t.

In the default risk framework, a default appears at some random time 7.
We denote by [(T < 7) the indicator function of the set {T" < 7} equal to 1 if
the defanlt occurs after T and equal 0 to otherwise. A default free contingent
claim consists of a nonnegative random variable which represent the amount of
cash paid at a pre-specified time to the owner of the claim. For a defaultable
contingent claim, the promised payment is actually done only if the default
did not occur before maturity. If the default occurs before maturity, some
payment other than the promised payment is done. In general, the payment of

a defaultable claim consists of two parts:

1. Given a maturity date 7' > 0, a random variable X, which does not
depend on 7 represents the promised payoff - that is, the amount ol cash
the owner of the claim will receive at time 7', provided that the default

has not occurred before the maturity date 7.

2. A predictable process g, prespecified in the default-free world, models the
payoff which is received if default occurs before maturity. This process is

called the recovery process.

The value of the defaultable claim is, provided that the default has not occurred

before time ¢,

T Gy
XI(T < t)exp (—- / r.,du.) + @l (T < T)exp (— / 'ru(ﬂ'u.) | F,:l
t Ji

(2.2)

where F; is the mformation at time £, It is assumed that the owner of the

‘\)r = _‘:‘

contingent claim knows when the default appears. At time t, the owner of

21
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the claim knows if the default has occurred before; if the default has not yet
occurred, he has no information on the time when it will happen.

As mentioned before, the time of default 7 is an important variable in default
risk modelling and market based models differ in their modelling of the default
tine. Once an assumption has been made on the evolution of the default time,
the valuing of the defaultable claim (equation (2.2)) reduces to the problem of

computing the expectation of X /(7" < t) under the risk-neutral probability.

2.3.1 Types of Market Based Models

The problem of modelling defanlt risk is well represented in the literature. There
are two distinet approaches. The first, pioneered by Merton (1974), attempts
to model the default process by specifying two processes: one for the market
value of the firm’s assets and one for a benchmark of default. This benchmark
of default is related to the firm’s liabilities, and default is said to occeur when
the value of the firm’s assets falls below this benchmark. Models of this type are
often called structural models. The difficulty of modelling both the conditions
under which default oceurs, and in the event of default, the division of the
value of the firm among claimants has led to the development of an alternative
modelling approach.

Under the alternative approach, no direct reference is made to a firm’s asset
value; instead, defanlt is modelled as an unpredictable event governed by a haz-
ard rate process. The hazard rate process and the recovery rate are exogenously
specified. Models of this type are often called reduced-form models. Reduced
form models are especially practical when it is difficult to gather the asset and
linbility information needed by a structural model.

The distinetion between structural and reduced-form models is only one of
the many distinetions one must take into account when developing a model of
credit risk. One must also model the type of payoff upon default. Different
approaches have provided for fractional recoveries of par, a default-free version
of the bond. or the market value at time of default. Recovery can also be
modelled as a function of the debt’s priority of claim in the capital structure
{e.g. senior or subordinated) or the credit rating that is given to the debt by

one of the major credit rating agencies. Consideration may also be given to the
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type of default. Both business cycles and firm-specific events influence defaults.
However, firm-specific defaults can be unrelated to the business cycles. These
may arise from events related to a firm’s business activities or product liability
lawsuits. Therefore, default may be triggered by some unexpected information
that cannot be observed from economic variables only. Clearly, the modelling
of default is very complex and should take into account as many of these issues
as possible.

Another consideration in modelling credit risk is whether to use an equilib-
riwm or arbitrage-free model. Equilibrium models focus on investor preferences,
anel assume that the economy tends to gravitate towards a state where all in-
vestors have allocated their resources optimally. In any other circmnstance,
investors with suboptimal allocations will attempt to improve their positions,
thus creating instability. This instability will only disappear once the economy
enters into a steady-state where no market participants are motivated to cause
disturbances (i.e. when all investors have achieved optimal wealth creation).
Equilibrium models require that the parameters to a given model be estimated
empirically. The equilibrium model is then used to price securities. Equilib-
rium models require significant data and econometric techniques to estimate,
and their output will not equate to market prices in all (or any) cases.

In contrast to the equilibrium models, arbitrage-free models begin by assum-
ing that the prices of a small number of securities are given, and then deduce
prices of other instruments by attempting to match their behaviour with these
“basic” securities. The main assumption employed is that markets are free from
opportunities to earn riskless profits (i.e. arbitrage). This leads to the result
that any two portfolios producing identical payoffs under all scenarios have the
same price (otherwise, riskless profits are possible by purchasing the cheaper
portfolio and selling the more expensive one). Arbitrage-free models use market
prices of securities to infer a model’s parameters. Therefore, the arbitrage-free
model will be calibrated in such a fashion as to produce the given market prices.
Arbitrage-free models are easy to get data for and are useful in hedging deriva-
tives. However. they can be misled by market imperfections such as illiquidity.

There are two main advantages possessed by the arbitrage-free pricing method-
ology over its equilibrium counterpart. The first is that arbitrage pricing does

not require any assumptions regarding investor preferences, aside from the basic
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axiom that market participants will always prefer more wealth to less (referred
to in economics as insatiability). While equilibrium models are snitable for eco-
nomic theory, in applications to derivatives pricing it is not often justifiable to
assume a specific form of preference function for a given investor. The second
advantage of arbitrage pricing is that it provides an explicit algorithm whereby
the violation of the arbitrage-free results will lead (at least in theory) to a risk-
free profit. The key to choosing between these two types of models is whether
one is more concerned about estimating intrinsic value (equilibrium models) or
value relative to current market prices (arbitrage-free models).

When valuing defaultable debt, it is important not only to model the credit
risk, but also the interest rate risk. For that reason, most models of credit risk
are integrated with an interest rate model. There are two distinct approaches in
the literature on the models of the interest rate curve. The first is the Vasicek
(1977), and its variants, which focus on the dynamics of the short-term interest
rate from which the whole yield curve is reconstructed. Models of this form are
commonly referred to as short rate models. The second approach initiated by
Heath, Jarrow and Morton (1992), takes the full forward rate curve as a dynamic
variable, driven by one or several continuous-time Brownian motions. Models
of this form are commonly referred to as Heath, Jarrow and Morton models
(HIM models). Most interest rate models are based more on their mathematical
tractability rather than on their ability to describe the data. Since it is difficult
to build a model of credit risk, most people choose relatively simple models of
interest rate risk to accompany the model of eredit risk. The simplest approach
assumes constant interest rates,

Another important question when implementing a model of credit risk is
what techmique will be used to calculate prices? The most popular approaches
are analytic (or closed form) solutions, a lattice (or tree) framework, finite dif-
ference methods and Monte Carlo methods. Analytic solutions are convenient
to use and provide quick intuition on important variables, but usually are too
simple or too inflexible in practical situations where complex payout or exercise
contingencies are present. The lattice framework provides more flexibility and
is computationally feasible if the problem can be solved with a recombining
binomial or trinomial tree. Finite difference methods are suitable for problems

with two or three random factors. They are similar to lattice framework in that

24



University of Pretoria etd — Magwegwe, F M (2006)

the computations work back from end of the life of the security to the begin-
ning. However, they are more flexible than the lattice framework because there
are many ways to improve finite difference methods making them faster and
more accurate. Finally, Monte Carlo simulation provides the most flexibility
and is useful for solving complex path-dependant problems or high-dimensional
problems. However, Monte Carlo analysis can be slow and computationally
intensive. The method that is chosen in practice is likely to depend on the

characteristics of the problem being evaluated and the accuracy required.
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Chapter 3

Introduction to Interest
Rate Modelling

3.1 Fundamentals

This section presents the fundamentals of interest rate modelling as they pertain
to work in this dissertation.

A zero coupon bond is an obligation to pay the holder one dollar at a fixed
maturity date T. We write the value of the zero coupon bond at time { as
P(t,T).

We assummne (for this chapter) that the payment will be made with absolute
certainty. At any time ty < t, we let P(¢,T) denote the price of a zero coupon

bond at time ¢ maturing at time 7'. The no arbitrage condition gives
B, TYy=1Plt,r)Plr.T) (3.1)

for all 7 € (£, T)

A general bond may have coupons. These are payments of the same amount
¢; which are paid at times t;, where the {;’s are less than or equal to the final
maturity date T'. The bond will also pay some principal amount p at maturity.!

All bonds of the above form can be written as a linear combination of zero

'The principal amount is generally referred to as the par value of the bond.
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coupon bonds. If 3 is the value at time ¢ of a bond with principal p, maturity

7" and coupons ¢; to be paid at times t;, then we have
B(t) = }: eiP(t,t;) + pP(t,T) (3.2)
<t <T

This implies that it is sufficient to restrict our attention to zero coupon bonds
because all coupon bonds are just linear combinations of zero coupon bonds.

The continwously compounded zero coupon yield, y(t,T) is given by

y(t,T) = _T—l—fT In(P(t,T)) (3.3)

For a fixed ¢, the function T' — y(t,T) is called the (zero coupon) yield
curve.

An instantaneous forward vate f(t,T) is defined as

_n(P(t.T))
aT

5
Pt T) :Fxp{—-/. j'(!,.ﬁ')n’..s} (3.5)

The spot rate? r(t) is defined to be

f,T) = (3.4)

which implies

r(t) = lji_}‘l!lf'[f., T) (3.6)

The spot rate can also be thought of as the rate of return of a bond with an

infinitesimal time to maturity. That is

5 1 -~ .
() == 1}1};'1 T3 In(P(t,T)) (3.7)

3.1.1 The Wiener Process

The definition below and related concepts are taken from (and covered in much
more detail in) Brzezniak and Zastawniak (1999). The Wiener process {or
Brownian motion) is a stochastic process W(t) with values in R defined for

t € [0,0c) such that

2The spot rate is sometimes referred to as the short rate.
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1. W(0)=0as.
2. the sample paths { — W (f) are continuous a.s.;
3. W(t) has stationary independent, normally distributed increments: If

E]:t(,-((.l {I’.z.,.{f,l

and
Yy = W(t) — Wi(ty),Ya = W(ta) = W(t1),....Yn = Witn) — Wi(t.—1)
then
e Yy, Yy, ... Y, are independent.
e BY;] =0V,

e VarlYj| =t; —t; 1 Vj.

3.1.2 Ito’s Lemma

Let W(t) be a Wiener Process. Let (t) be an 1to Process with dz = a(x, t)dt +

bla, t)dW. Let V = V(x,t), then,

. av v 192V
v = Dt Tode+ 35 attd
v av 1 52V . av
= Spr™ as ——0lz, i b, )d
TR a(x,t) + 3 522 S bz, t) ](EH- e b(z, t)dW

Proof: Using a Taylor expansion

av 18%v, ., 8V 182V *v
e = )2 + S dee _
dV'= it + 5 () + Fo et 5 g \® T

dedt + h.ot  (3.8)

Auy term of order {(I!.}T or higher is denoted by h.o.t. and is small relative to
terms of order dt . Note that (dW)? = dt.
S0,

(dt)? = h.ot
dedt = alz, )(d)? + bz, t)dWdt = h.o.t.
(de)? = bz, t)*(dW)? + h.o.t = b(z, t)2dt + ho.t.
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Model v(re, t) | a(ry,t)
Merton * 7 o
GBM? Or, ary

Ho and Lee t; a
Vasicek 0+ar, | o
Brennan & Schwartz | 0 +ary | ory
Cox-Ingersoll-Ross 0+are | ot

Table 3.1: Short rate models

Therefore,

rH av 10°V
= —dt+ —— {
dV d T —dx + 5 902 b("r t)2dt (3.9)

3.2 Short Rate Models

A common approach to stochastic modelling of interest rates is to take the short
rate r(1)® to be a stochastic process. Models of this form are commonly referred
to as short rate models. The process r; is generally taken to be a diffusion

process defined by the stochastic differential equation

dry = v(re, Ddt + o (re, 1)dW, (3.10)

driven by a Wiener process W. We can interpret v as an instantaneous rate
of return. Some examples with their specification of v and @ are shown in Table
3.1 above.

It hias been shown (in Vasicek (1977), for example) that, in this formulation,
the value of a zero coupon bond at time ¢ maturing at time T' must be the

solution to the partial differential equation

1 )
P + 592(?‘,,1)1’,,. +(v(re, 1) + Ay, Da(re 1) P — 1P
P(t,T)

1 (3.11)

4Sometimes written as re.
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where A is the market price of risk." The Feynman-Ka¢ equation gives

Plry,t,T)=Eq,.0 [pr { - /rT 1'sufs}] (3.12)

where 7, is now the solution to the SDE

dry = ju{re, t)dt + a(ry, t)dW, (3.13)

where pt = v + Ag is a risk-neutral drift.

3.3 HJM Models

Aunother approach is to model the instantaneous forward rates f(t,T) as the
underlying stochastic variables. Models which apply this approach are generally
referred to as “Heath, Jarrow and Morton,” models (or HIM models) after the
anthors of Heath, Jarrow and Morton (1992).

Mathematically, an HJM model can be described as follows. Forward rates

are modelled as a stochastic process given by

df (1. T) = p(f, 6, T)dt + Y ([, T)dW¢ (3.14)
=i

where W}, ..., W}* are independent Brownian motious, the o;(f, t,T)'s are
specified by the modeller, and the pu(f,t, T)’s are determined by the no arbitrage

condition. This is the requirement that

n T
p.(f,f,TJzZa,-(f.!.ﬁ"]/ ai(f, 1, s)ds (3.15)

=1

This condition is often referred to as the “HJIM drift condition.”

HThere is a theorem which states that the no-arbitrage condition implies that the difference
between the instantaneous rate of return of any asset and the spot rate divided by the asset's
volatility must be a function of the state variables and calendar time. That function is called

the market price of risk.
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3.4 The Yield Curve

Interest rates vary for different maturities of debt. A graph of the spot yield
for different maturities is called a yield curve. In general, there is a distinct
difference between short and long term interest rates. There are a number of
economic theories that are cited to explain the shape of the yield curve. How-
ever, the expectations theory and the market segmentation theory have evolved
as the major theories that explain the shape of the yield curve.

The expectations theory is based on the premise that current interest rates
are somehow related to the market’s expectations of future rates. These future
interest rates are affected by economic factors such as money supply figures,
inflation and trade deficit figures. Market participants have different views on
the expected future behaviour of these economic factors and this determines
their anticipations of the future interest rates. These expectations are evident
from the shape of the yield: a downward sloping yield curve implies that the
sliort term interest rate is expected to fall, whereas the opposite is expected
from an upward sloping yield curve. In general, the short term interest rate is
more sensitive to the economic factors than the long term interest rate.

The market segmentation theory relies on the idea that some investors have
restrictions (either legal or practical) on their maturity structure. Examples
include money market funds (short-term maturities) or life insurance companies
(long-term maturities). The shape of the yield curve is therefore determined by
the supply and demand for securities within a given maturity segment.

In any nation the lowest interest rates on local currency denominated debt
apply to those loans assumed by the sovereign government. These loans take
place through the sale of government bonds. Provided that the debt is issued in
the sovereign currency, the government has the option of printing money to meet
any payments that are due. It is for this reason that sovereign debt is assumed
to have no risk of default. This means that the probability that the loan will
not be paid is effectively zero and consequently, the interest rate offered on a
sovereign loan is regarded as the risk-free rate. A yield curve constructed using
government bonds is therefore called a risk-free yield curve or a zero-coupon
yield curve.

The risk-free yield curve is a concept central to economic and financial the-
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ory and the pricing of interest rate contingent claims. Together with the no-
arbitrage theory, it provides a mechanism for comparing cash Aows occurring at
different times. Any risk-free financial asset comprised of specified tranches can
e assigned a present value that is arbitrage-free. This is because it is possible
to lend (borrow) the appropriate amount now that will match each tranche as it
occurs. We will illustrate this concept with the arbitrage-free pricing of a South

African government bond

3.5 Pricing A South African Government Bond

South African government bonds have lixed rate coupons which are paid semi-
annually up to and including the maturity date at which time the principal or
face value is also repaid. The coupons are quoted in percentages and indicate
the percentage of the principal to be repaid annually. Therefore a 13% semi-
annual coupon means that 6.5% of the principal is repaid every six months with
the final coupon payment and the repayment of the principal at maturity. South
African bonds are priced by yield-to-maturity - the price of a bond is quoted
as a semi-annual interest rate and the cash price is obtained by discounting the
cash flows of the bond to the present using this yield-to-maturity as the interest
rate for the discounting.”

We now provide the framework for pricing a South African bond, with the

assumption that the principal on the bond is 100.
e P(t,y,n) = trading price of a bond
e t = current time
e 1. = coupons still to be received

e An = [ractional number of half-years before the first coupon will be re-

ceived

e ¢ = coupon rate of the bond (13 for 13%)

TThe yield-to-maturity can thus be regarded as the ‘internal rate of return’ of the bond's

cash fows.
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e y = quoted yield of the bond expressed as an interest rate compounded

semi-annually

The quoted yield is consistent with the traded price if the following equality

holds,

- l &= 2 100
Pl = iy (Z T+u/2r (1+y/2>"—1) 819

i=0

A bond has a specified time structure of payments. Assume a function r(¢,7')
which represents the risk-free, continnously compounded interest rate at time ¢
applicable to loan maturing at time 7. Using no-arbitrage theory, the present
value of each cash How of the bond can then be determined. A coupon received
at time f; will have a present value of (¢/2) exp(—r(t,t;)(t; —1)). The sum of the
present values of all of the cash flows comprising the bond will be an arbitrage-

free value for the bond. Let P(f,n) be the arbitrage-free price for the bond.
Then,

2|

(.'(’_1-(1'.1‘.,)[\‘.,—{]) + lDU‘_,—r{t.f.,J(tN —1) [317}

P(t,n) = (Z :

3.6 Determinants of the Risk-Free Yield Curve

Fundamental to the pricing of interest rate derivative instruments and the man-
agement of their risk is the construction of a risk-free yield curve. In liquid
fixed-income markets, zero-coupon bonds and money market rates are typically
nsed to construct the risk-free yield curve; in markets where a limited num-
ber of zero-coupon bonds are traded, there are usually enough coupon bearing
bonds traded to use in constructing this curve. In the South African fixed-
income-market, however, only a limited number of liquid financial instruments
are available to construct the risk-free yield curve. Under the efficient market
hypothesis the most liquid of these instruments will be trading at arbitrage-free
prices. A risk-free yield curve must be consistent with these prices. The present
value of the cash flows of these instruments should sum to their trade price as

i equation (3.16).

33



University of Pretoria etd — Magwegwe, F M (2006)

The primary financial instruments of South Africa’s money market® that
may be used to reliably fix interest rates at the short end of the risk-free yield
curve are the Johannesburg Interbank Acceptance Rate (JIBAR), Negotiable
Certificates of Deposits (NCDs) and Treasury Bills (T-bills). The JIBAR J; is
the rate of interest that banks will offer to each other for a { -month loan that
begins on that particular day, The most popular period is 3 months but 1, 6,
and 12-month JIBAR rates are also available. NCDs, the most liquid of the
instruments. are issued by all major banks through private placements. T-bills
are issued by the government using an auction and usually have a maturity of
91 days. The secondary market for T-bills is relatively illiquid because local
banks use them to meet reserve requirements. This lack of liquidity in the
T-bills has led market participants to use Forward Rate Agreements (FRAs)
in constructing the short end of the risk-free yield curve instead of T-bills. A
Forward Rate Agreement is a forward contract where two parties agree that a
certain interest rate will apply to a certain notional loan or deposit during a
specified future period of time. A 3 x 6 FRA is an agreement to fix the rate
for the period between three and six months time (i.e., for the 3 month period
starting in 3 months time). Other FRAs frequently traded in the South African
Market are 6 x 9's and 9 x 12’s. Settlement is against the relevant JIBAR rate.
FRAs are settled at the start of the future period, when the FRA yield rate
(i.e., the rate agreed npon in advance under the FRA) and the JIBAR rate
are compared. If there is a difference between these rates a discounted cash
settlement based on the difference is made.

The JIBAR rate is quoted as a yield rate. This means that a discount bond

maturing in three months time would be traded as

100

(1 + Jj%)

P(t,t+3) = (3.18)

where P(t,T) is a zero coupon bond of maturity based on a notional principal
ot 100.

FRAs are also quoted as yield rates implying

SThe money market is the universe of instruments for the relatively short term (< 2years)

borrowing and lending of cash.
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100

P(t,t+3i) = " = l v (3.19)
(l + }3'.3;2_5) (} 1= 1’RA3XG?,;J|31?) (1 -t FRA;_‘;“_UX;j,fG%)
NCDs are quoted as yield rates i.e.,
100
Plt,t+s)= ——7——— 3.20
) (1+ NCD,3) ( )
where s is the term of the NCD in days.
T-Bills are quoted as discount rates i.e.,
8
2 I e = = = ( 3.4
P(t,t+5) = (1= TB.ge=) 100 (3.21)

where s is the term of the T-Bill in days.
The arbitrage-free price of P(t,T) is 100e~"TT =t where the (continu-

ously compounded) risk-free rate r(t, T') of the bond is related to its price by

) 1 100
r(t,T) = 77— In (P_{:‘T)) (3.22)
Assume that there are k of these money market instruments. Using equation
(3.22), the zero coupon bond values for these instruments can be converted into
continuously compounded zero coupon interest rates. This implies that the risk-
free rate r(t) is known at distinct times {t; : j=1,..., k} where at each t] there
is the following restriction on r(t)

rt;)=r}Vi=1,....k (3.23)

J

In South Africa we can use the government bond market and the interest
rate swaps markets to obtain information about interest rates for longer periods.
The South African bond market is a relatively developed fixed income market
with bond maturities of up to 30 years but it suffers from a lack of a complete set
of well-traded bonds with well-spaced maturities. For sectors of the yield curve
that don’t offer good tradable liquidity to reliably fix interest rates, market
participants use interest rate swaps - which can be seen as par yield bonds. An
interest rate swap is an exchange of cash flows based upon different interest rate
indices denominated in the same currency on a pre-set notional amount with a

pre-determined schedule of payments and calculations. Usually, one party will
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receive fixed flows (the swap rate) in exchange for making floating payments
(according to JIBAR). In South Africa, interest rate swaps are quoted form 1
to 25 years. with the most liquid swaps being in the 1 to 10 years area. The
most popular interest rate reset period is for 3 months, but reset periods can
also be 1, 6 or 12 months. Settlement is against the relevant JIBAR rate. On
every reset date the agreed swap rate and the JIBAR rate are compared, and if
there is a difference between these rates, the settlement is made at the end of

the reset period.

3.7 Estimating the Risk-Free Yield Curve

The Fundamental Theorem of Asset Pricing [see Dybvig and Ross (1989), for
example] implies that in a world of certain cash flows, c¢(t), and frictionless
markets, absence of arbitrage is equivalent to the existence of a linear pricing
rule, d(t) > 0 ¥¢, such that

P =" c(t)s(t) (3.24)

t=1

If markets are incomplete, there exists multiple sets of 8(t) which satisfy
this equation. In the term structure of interest rates literature, 6(¢), called
the “discount function” is usually transformed into a zero coupon curve by
(1) = —Ind(t)/t The discount function §(t) is the current price of a risk-free
zero coupon bond paying one unit of currency at time f. Clearly if we exclude the
possibility of negative interest rates we must have the following for a discount
function 4 : [0,00) — [1,0):

50) = 1,

d(h){(sl:fg) = b > ta
Estimating the risk-free yield enrve requires three decisions:

1. A pricing function relating instrument market prices, P, to the discount

rate function, r(t;), via promised cash flows, ¢; at time t;, for 1 < j < K.
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2. A functional form to be used to approximate the yield curve function, r(t),

or the discount function, §(f).

3. An econometric method for estimating the parameters of the yield curve

function.

3.7.1 Pricing function

The simplest pricing function, appropriate to a world with complete markets
and no taxes or transaction costs, is just the present value of the promised cash

flows:

”
P = ZCJA-“J}
j=1
K
= )¢ exp(—tyr(t;)) (3.25)
i=1

Let {B;}i1<icn be a set of observed market instruments, let 7 < 7 < ... <

e be the set of dates at which cash flows occur, let ¢, ; be the cash flow of the

i instrument on date 74, and let P; be the market price of the i instrument.

The pricing function becomes

Pi=P te (3.26)

where P, is defined by

K
Pi = Z"a,}d(rj)
a=1

Iy
Zexp{—rjr{g)} (3.27)

j=1

Since equation (3.25) omits such obvious factors as taxes and liguidity, the

error term, £;, will contain both systematic and random factors.
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3.7.2 Approximating function

After deciding on the appropriate pricing function, the next step is to decide on
the functional form to be used to approximate the yield curve function r(t) or
the discount function, §(t). It is not possible to estimate the value of the yield
curve at each possible horizon as the number of cash flows points will usually
exceed the number of available instruments. The usual practice is to select
an approximating function and then estimate the parameters of this function.
Examples of approximating functions include polynomials, cubic splines, step
functions, piecewise linear and exponential forms.

Given a proposed yield curve function 7y (t) such that

fu(r) =7 ¥i=1,.... K
the resultant theoretical price for the i'" instrument is, from equation (3.25)

K
Py) =) cijexp(=jmy(7)) (3.28)
i=1
The yield curve function, v, could be chosen such that it minimizes the

objective function

LS
Ey =Y (Pi- P(¥))? (3.29)

=1
The problem of solving for the optimal representation of the “true” yield
curve becomes an exercise in finding the most efficient technique for choosing

Fy+1(7) such that

E-,‘-:._| < E‘P

and that convergence occurs “rapidly enough”.

3.7.3 Estimation method

Lastly, the method of approximating the parameters of the approximating func-
tion must be selected. Methods used in the past include weighted least squares,
maximum likelihood and linear programming. Related discussions include error
weighting functions and how to handle the bid-ask spread (usually by collapsing

the bid and ask quotes into a single price by taking their mean).
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3.8 Summary

According to Vasicek and Fong (1982), the objective when estimating the term
structure empirically is to fit a zero-coupon yield curve that both fits the data
sufficiently well and is a smooth function. In this chapter, we introduced some
techniques for determination of the zero-coupon yield curve that have these re-
quirements as their objective. We have shown that the modelling is difficult, and
in general not computationally straightforward or unique. In South Africa, boot-
strapping is a popular technique for determining the zero coupon yield curve.
The fundamental idea behind bootstrapping is to discount the coupons prior
to maturity from a bond using the zero coupon rates already determined from
money market instruments. The zero-coupon rate for a specific term obtained
this way is then used in the bootstrap process for the next bond. In this way
rates for longer and longer periods are obtained and these rates are then ap-
proximated by a curve.

The problem with the bootstrap procedure described above is the assumption
of the existence of a complete series of regularly spaced coupon bearing bonds
- this is not the case in South Africa. Also, according to Smit & van Niekerk
(1997), the commonly used approximating functions such as polynomials and
cubic splines are not always suitable for the South Africa yield curve due to
structural inefficiencies in the fixed-income market and the resultant dispersion
of data points. The problem of yield curve determination, especially in a sparse
and illiquid market such as South Africa, is not trivial and represents significant

opportunities for research for students of financial economics.
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Chapter 4

Overview of Structural

Models

4.1 Introduction

The key characteristic shared by structural models is their reliance on economic
arguments for why firms default (e.g. the firm’s value does not cover its obliga-
tions). These economic models provide the framework to derive a relationship
between defaultable debt prices (or credit spreads) and market variables. Our
investipation focuses on two structural models that are designed to price default-
risky bonds: Merton (1974), and Longstall and Schwartz (1995). We chose to
mvestigate these two models because of their analytical tractability and the fact
that the Longstaff and Schwartz model combines many distinetive features of
other models. Like Merton, they assume that the firm values follows a diffusion-
process, as in Black and Cox (1979), they allow for early default before matu-
rity of default-risky debt and as in Shimko, Tejima and van Deventer (1993),
the riskless rate is assumed to follow the Vasicek (1977), model. Before review-
ing these models, we list below the main issues that need characterization in a

structural model.

1. Asset value process.

40



6.

University of Pretoria etd — Magwegwe, F M (2006)

Issuer’s capital structure.

Recovery process.

4. Terms and conditions of the debt issue.

. Default-risk-free interest rate process.

Correlation between the default-risk-free interest rate and the asset price.

Correlation between interest rate risk and default risk.

4.2 Merton (1974)

Beginning with the groundbreaking Black-Scholes (1973), insight that the debt

of a firm can be viewed as a contingent claim on the assets of the firm, Merton

provided one of the first in-depth valuation models for default-risky bonds. The

contingent claims approach requires the specification of three processes. First, a

process for the total asset value process of the firm has to be explicitly modelled.

Second, the bankruptey process has to be wodelled completely. That is, the

“when” and “how” of bankruptey have to be made explicit. Third, the payoffs

to creditors in the event of default have to be specified in detail.

The following assumptions were made in Merton's valnation framework:

1.

2.

Riskless interest rate is constant, ie. r(f) =r ¥t = 0;

Firm value V dynamies: dV; = pVidt + aVidWy, Vy > 0; p is the in-
stantaneous expected rate of return on the firm per unit time; o2 is the
instantaneous variance of the return on the firm per unit time; W is a

standard Gauss-Wiener process;



University of Pretoria etd — Magwegwe, F M (2006)

Assets Bonds | Liabilities
No default | VP > B | B Vr— B
Default Ve< B | Vp 0

Table 4.1: Payofls to the firm’s liabilities at maturity

3. Firm has a single outstanding issue of debt promising B at T Default
oceurs when Vi < B. Debt covenants grant bondholders absolute pri-
ority: in the event of default, bondholders get the entire firm and the

shareholders get nothing.

Merton also assumes that the firm is neither allowed to repurchase shares
nor to issue any new senior or equivalent claims on the firm. This assumption
implies that at the debt’s maturity T' we have the payofis in Table 4.1 above to
the firm’s liabilities.

If at time T the asset value Vp exceeds or equals the face value B of the
bonds, the bondholders will receive their promised payment B and the share-
holders will get the remaining Vi — B. However, if the value of assets Vi is
less than B, the ownership of the firm will be transferred to the bondholders.
Equity is then worthless (because of limited liability of equity, the shareholders
cannot be forced to pay the shortfall B — Vi), Summarizing, the value of the

default-risky bond issue f(Vp,T') at time T' is given by

f(Vp, T) = min(B, Vy) = B — max(0, B — Vr) (4.1)

which is equivalent to that of a portfolio composed of a default-free loan
with face value B maturing at time T and a short European put position on the
assets of the firm V with strike B and maturity T. The value of the equity Fp

at time T is given by

E¢ = max(0, Vp — B) (4.2)

which is equivalent to the payofl of a European call option on the assets of
the firm V with strike B and maturity 7. With the payoff specifications just
described, we are able to value corporate liabilities as contingent claims on the

firm’s assets.



University of Pretoria etd — Magwegwe, F M (2006)

At this point, Merton (1974), considers the formation of a zero net invest-
ment portfolio consisting of a claim whose price is the value of the assets of
the firm, the debt of the firm, and the riskless debt. These are held in pro-
portions such that the return on the portfolio is deterministic and the portfolio
requires zero net investment. The expected rate on the portfolio must be zero
to avoid arbitrage. This condition is sufficient to derive the PDE that the price
of any contingent claim on V' must satisfy. Since Merton's paper, Harrison and
Kreps (1979), and Harrison and Pliska (1981), developed martingale methods
for pricing derivatives. Instead of following Merton’s PDE method to derive the
closed form solution for the price at time {, f(V;.T") of the default-risky bond,
we will follow the general martingale pricing techniques outlined in Musiela and
Rutkowski (1998). The aim of introducing the martingale measure is twofold:
firstly, it simplifies the explicit evaluation of arbitrage prices of derivative secu-
rities; secondly, it describes the arbitrage-free property of a given pricing model
for primary securities in terms of the behaviour of relative prices.

Taking as given some risk-free short rate process ry , we suppose that there
is a security with value G; = exp (_fl: 'r_qn!s) at time £, which provides a riskless
investment opportunity. Assuming that there are no arbitrage opportunities in
the financial market, modelled by some probability space (€2, F, P)!, there exists
a probability measure Q. such that the processes of security prices, discounted
with respect to 3, are Q-martingales (Harrison and Kreps (1979), and Harrison
and Pliska (1981)). @ is called the equivalent martingale measure, and we let

}‘[] denote the corresponding expectation operator. This gives us

x !-' ris

edu

f,T) B |:1“111{‘_':f’.";5) | 1‘.",}
edn s

|
=

B — max(B — V., 0) | r}
r 4r

(JJ;.I. rds

Therefore,

L1t is eustomary in financial models to regard Fy as a model for all the information available

to agents at time t.
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FVLT) = B B - max[_B - Vp,0) | F,
: efrr rds :
- B B _B max(B — Vi, 0) | F,
;_1.’;: rds FILT rds ¥
[ ~ | max(B — Vp,0 ‘ ,.
= BeMTH_-F [—M‘(Tsr) | Jw} (4.3)
edt

Merton (1974), using the Black-Scholes (1973), insight that the debt of a
firm can be viewed as a contingent claim on the assets of the firm, observed

that

~ ax(B — .
B {m 1 V. 0) | Ff] (4.4)

o T
J ris
e t

is the value of a European put option on the assets of the firm with strike

B and maturity 7. Thus by the Black-Scholes formula, we have

= B — Vi, 0 . _
D) [E’M;TT—) | F,] = Be "THd(—dy) — Vidb(—dy) (4.5)
el ris

where ¢(x)=standard normal cumulative distribution function,

dy = In(Vi/B) + (r + o*/2)(T' - 1)
avlT —1
i = In(V;/B) + (r — a2 /2)(T —1)
h oVT —1
dy—ovVT —1

Substitution of equation (4.5) into equation (4.3) gives

fVi.T) = Be T8 - Be " T-Np(—dy) + ViD(—d,) (4.6)

elT— Vid(—d
= Be T (1 - &(=dy)) + B(~da) (Be—r-(t’r—(tld)l(}_dz)>}

= Be "TU[(1 — ®(—dy)) + P(—d2)é] (4.7)

where
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Vid(—d .
2% ‘r' . ( 1) {-—1.8}
Be="(T=t1d(—dy)
Proposition 1 Firm Value Dynamies
The SDE for firm value V' dynamics:
dV, = pVidt + aVidW,
Vo = 0 (4.9)
has a unique solution given by
Vy = Voemtroit (4.10)
where
L (4.11)
m=pu——-a 1.
H—3
Proof.
We consider the process X; = pt + gW,;. Clearly, this is a solution to dX; =

puelt + odWy. After making the transformation Y = e

, an application of Ito's
lemma gives the SDE for Y, dY; = Y (p + %o’z):it + YiodW;. Now we consider
the process X, = (jn — %o"’)t + oW, and make the same transformation. Ité’s
lemma confirms that dY; = Y udt + YiodW,.

Using equation (4.10), we can explicitly write down the actual default prob-

ability . From the definition of default,
p = PlVr<B]
&= f’[Vhf*'”T toWr .« B|

= P {HLT + oWy <In -]./E—j|

0
- p [WT < (——1“[‘%: m‘)]
m(B/Vy) — m]") {
= o —— - 4.12
(MEC (112)
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The result in equation (4.11) uses the fact that Wy is normally distributed
with mean zero and variance 7.2 Setting o = r in equation (4.11), gives the

risk-neutral default probability p

p= P[Vr < Bl = ®(—ds) = 1 — d(da) (4.13)

We can now interpret the equation for defaultable debt (4.7) in an intuitive
way. The value of defanltable debt is the value of otherwise similar, defanlt-
risk-free debt times the risk-neutral probability of no default plus the payoff in
the case of default times the risk-neutral probability of default. § is the implied
recovery rate in the Merton model.

Defining s(V4,1') as the spread above the risk-free rate at which the debt

trades at t, we can rewrite equation (4.7) for t < T as

f(Ve,T) = Bexp(—(r + s(V,))(T — 1)) (4.14)
where
1 1
s(iuT) = —z—n lE‘I’(_d” + B(dy) (4.15)
= E s—r{T—t)
d = Vr{

d is the discounted debt-to-asset value ratio, which can be considered as
a measure of the firm’s leverage. Equation (4.15) defines a term structure of
credit risk?, which depends on the time to maturity of the debt, firm's asset
volatility o (the firm’s business risk), and leverage d. In Merton's model, the
credit spread increases as the leverage of the firm rises. This increase in the
credit spread is natural because increased leverage heightens the probability
that the firm may default. Higher default probability is reflected in an increase
in the credit spread. Similarly, a rise in the volatility of the firm’s value increases
the probability that the firm may default, thus expanding the credit spread.

Furthermore,

2See Section 3.1.1 for properties of the standard Brownian motion.
A The term structure of credit risk is also called the risk structure of interest rates, the term

structure of credit spreads or the rigky term structure.
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%ip{}s(‘/’;,t%—h} =0 (4.16)

This follows from the fact that

lim d = o
(T—t)—0
lim dy = oo
(T—1)—0

and from standard properties of the normal distribution that state that

Il
o

®(+0)
P(—o0) = 0

From equation (4,16), we see that credit spreads for maturities going to zero
are zero. Zero short spreads mean that default-risky bond investors do not
demand a risk premium for assuming the default risk of an issuer, as long as
the time to maturity is sufficiently short. This feature is not consistent with
what is observed in the market. In the market, we see non-zero credit spreads
for nearly all default-risky bonds regardless of maturity.

Despite its simplicity and intuitive appeal, Merton’s model has many limi-
tations. First, the credit spreads derived from the model are significantly lower
than those implied by empirical evidence (Mason, Jones and Rosenfeld (1984)).
That is, Merton’s model underprices credit risk. Second, in the model the firm
defanlts only at maturity of the debt, a scenario that is at odds with reality.
Also, most firins have complicated capital structures made up of a variety of
security types, as opposed to a single debt issue. The Merton framework as-
sumes that the absolute-priority rules are actually adhered to upon default in
that debts are paid off in their order of seniority. However, empirical evidence
(Franks and Torous (1989),(1994)) indicates that the priority rule is often vio-
lated.

Yet, another problem with the Merton model is that the value of the firm,
which is an input to the valuation model is difficult to ascertain since not all

the firm’s assets are either tradable or observable. These real life complications
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make the Merton framework less useful as a tool. However, it does not decrease
the intuition behind modelling the default process. Merton’s framework has
spawned an enormous theoretical literature on defaultable debt pricing. Some
examples are Black and Cox (1979). Kim, Ramaswamy and Sundaresan (1993),
Shimko, Tejima and van Deventer (1993), Leland (1994), Longstaff and Schwartz
(1995), Leland and Toft (1996), and Sad-Requejo and Santa-Clara (1999). The
Merton model has also been loosely implemented in a commercial package which
is marketed by KMV corporation. The KMV model draws its main strength
from a judicious (but not-model consistent) use of a large database of historical

defaults.

4.3 Longstaff and Schwartz (1995)

Longstafl and Schwartz (herealter, LS) provide closed form expressions for the
value of risky fixed and floating rate debt. LS address some of the weaknesses
of the Merton model. In a way similar to Merton, LS assumed that the value

ol the firm follows a diffusion process

dV = pVdt + oVdZ, (4.17)

where o is a constant, p is the rate of return on the underlying asset value
and Z, is a standard Wiener process. In contrast to Merton’s assumption of
constant interest rates, LS postulated that the short-term rate follow the mean-

reverting Ornstein-Uhlenbeck process first used by Vasicek (1977).

dr = (v — gr)dt +ndZs (4.18)

where ~, 3 and 7 are constants and Z; is another standard Wiener process.
The authors chose the Vasicek model for the short-term rate because it incor-
porates mean reversion and facilitates the use of closed form solutions. A more
general short-term rate model would require that defaultable debt prices be
solved numerically. The instantaneous correlation between Zy and Z3 is pdt,

e,
dZdZ, = pit (4.19)
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Priority of claim Altman Study: | Frank and Torous
1985-1991 Study:1983-1990
w w

Bank Debt 0.136

Secured Debt 0.395 0.199

Senior Debt 0.477 0.530

Senior Subordinated Debt 0.693

Cash-Pay Subordinated Junior Debt | 0.72 0.711

Non-Cash-Pay Subordinated Debt 0.805

Table 4.2: Historical values of w from various bond classes

LS also assert that strict absolute priority to claims is rarely upheld in dis-
tressed organizations., which also differs from the Merton model. The model
allows for a variety of liability classes with different coupon rates, priorities and
maturity dates.

LS then assumed the existence of a (constant) threshold value of the firm, K,
which serves as a inancial distress boundary; if the value of the assets breaches
this level, default is triggered (on all outstanding obligations), some form of
restructuring occurs and the remaining assets of the firm are allocated among
the firm’s claimants. Thus contrary to Merton’s model, default can occur prior
to maturity. LS simplify their analysis by postulating that it is the ratio of V
to K, rather that the absolute value of which governs financial distress and call
this ratio X.

If a reorganization occurs during the life of a security, the security holder
receives 1 —w times the face value of the security at maturity, where w represents
the write-down on a particular security and is constant over all instruments
issued by the firm. This type of payoff would be consistent with a reorganization
which provided new securities in exchange for old claims. The model thus avoids
the dependence of the payoff on the debt on underlying asset value. Values of
w can be obtained from historical information on various classes of bonds. The
authors site two such studies:(see Table 4.2 above)

For completeness, we now use the assumption of perfect, frictionless mar-

kets in which trading takes place continuously to derive the fundamental PDE
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that the price of any derivative asset H(V,r, t)must follow. We will derive this
PDE using Merton’s derivation of the Black-Scholes model presented in Merton
(1974).

Let Py(ry,t) and Pa(ry,t) be the prices of two zero coupon bonds with dif-

ferent maturities. Then by applying Ito’s lemma and using equation (4.18) we

have
ar, ar; 1 ,0F aF;
(r,l) = = Br)— + —— 4+ =P =5 ) dt — ) dZ.
dFi(ri,1) (h e T T arz)‘ +(” ar)’ :
e Py ap, Py
= jpp Pt +op PidZy (4.20)

We now consider forming a riskless portfolio of these bonds. Let X and X

be our holdings of P; and P, respectively. From equation (4.20) we have

{1’[){'1 9 &1 +X-2.P'2] = ()(] o, P+ X-zj.'.pqu}df = {X1G’p; Py 4—)&’2(!',112 Py)dZs (4.21)
To eliminate interest rate risk, we now choose X; such that

Xiop, P,

X](Tpl Pl +.\'2!‘7;J._.P2 =0= —X-)_Pvz= (422)
Cl'p3
We have a riskless portfolio and thus
Xipp P+ Xopp, Py = v(Xi P+ X2 Ps)
X P Xiop, P
= Xipip P1 — 1ip, (—IEM) = rXiP—r (—lh—l)
ap, ap,
() - = (2)
= pp e |\ — ) = T/
ap, ap,
— Hp =T = Hpy—r (423}
(J'.x.-l Upg
Therefore ;
pr () =1 ppa-r _ A t) (4.24)

ap(t)  op(t)
where A(r, t) must therefore be independent of the bond's maturity. Market

participants commonly refer to as the market price of interest rate risk.
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I H(V,rt) is the price of any derivative security contingent on V,r and ¢,

then by applying Ito's lemma to H and using equations (4.17) and (4.18) we

have

dH(V,r 1)

We now

= Hydt+ HydV + H,dr

+

1 . o g
5 Hvv(dV)? + Hy(drdV) + %HT.,.(m-)?}
= Hidt+ Hy(pVdt +oVdZ)) + H.((v — Br)dt + ndZ;)
2 2
2 (%v Hyy + panV Hy, + %11) dt

2 2
= (Hf +uVHy + (v — 8r)H, + %Vz Hyv + ponV Hyr + %Hﬂ,) di

;

;.1;:”
+(J'V-1'f\-‘ LfZ] + i’].!‘L—!’I.Z?

= pupHdt +oVHydZ, + nH, dZ,

impose no-arbitrage conditions by selecting a portfolio such that

the interest rate risk and asset risk are eliminated by taking positions in the un-

derlying asset and the risk free zero coupon bond. Assume the riskless portfolio

includes Xy, Xp and Xy units of the derivative security, zero coupon bond and

the firm respectively. Once again by Ito we have

(f[,XHH +XpP+ Xy V] = (XppgH + XppupP + Xy gy V)dt

+ (._,\’H ”v + Xg-')d Vr.’.Zl
+ (XpnH, + XpopP)dZs

We now choose X, Xp and Xy such that we get a riskless portfolio

XuHy + Xy =0 = Xy =-XpuyHy
XihiH; + XpopP=0 =% XpP=—-XuH,
ap

Standardizing to Xy = 1 gives

Xv=—Hy (4.26)
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and

XoPi= sl (4.27)
op

Once the portfolio has been made riskless, the instantaneous return on the

portfolio must equal the risk-free instantaneous interest rate. Therefore

(XyH+ XpP+XvV)r = XppuH + XpupP + XypvVrH
—l‘?‘JH,. =— TVHI./
ap
0'2 ‘
= Hy+pyVHy +(y—0r)H, + -2—1,/2 Hyv
7 332 n .
+J)U?]'l’ Jl'ir\.',. —+ "‘_”1'7' — !LP”r - “\;’1‘( Hy
2 ap

0

Il

e a (ﬁ —Br)—n (fﬂ)) H,
op

2
7
T H..

2
+rVHy + %VEH._.-V + ponV Hy, + 5

This leads to the following equation;

2 e
f;—v?f-rm.- + ponV Hyr + %H +1+VHy +(a—Br)H, —7H + H, =0 (4.28)
where
a = ¥—A

ftp —T

ap

A =7

A is the adjusted market price of interest rate risk.

Equation (4.28) is the fundamental PDE defining the price of any derivative
security contingent on V, r and ¢ . The value of the derivative security is obtained
by solving equation (4.28) subject to the appropriate maturity condition.

Vasicek (1977), showed that the price of a riskless discount bond D(r,T)

when the dynamics of r are given by equation (4.18) is given by

D(r,T) = exp(A(T) — B(T')r) (4.29)

where
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e ] 2
AT) = (;? - %) Tt (% i %) (exp(~BT) — 1)

,32 . fI‘
~\15 exp((—26T) - 1)
1 — exp(—4T)
3
Given the LS framework, the value of a default-risky discount bond?* is the
solution to equation (4.28) with H(V,r,T) = P(X,r,7) and X = V/K, subject

to the following maturity payoff:

l-wl(r<T) (4.30)

where I(-) is an indicator function taking the value one if the first passage
time 7 of V to K is less than or equal to T, and zero otherwise. Based on the

above assumptions, the value of a default-risky discount bond can be written as

P(X,r,T) = D(r,T)(1 —wQ(X,r,T)) (4.31)

where X = V/K, D(r,T) is the value of a riskless discount bond under the
Vasicek model and Q(X,r.T) = E[I{T < T)] is the probability that the first
passage time of In X to zero is less than T', where the expectation is taken with

respect to the risk-adjusted processes

2
dinX = (r — %— — panB(T — t)) dt + odZ; (4.32)
dr = (a—Br—n*B(T —t))dt + ndZ, (4.33)

Unfortunately, there is no known closed-form solution for Q(X,r,T') when
interest rates are stochastic, so LS proposed a numerical solution that is based
on an implicit formula for the first passage density due to Buonocore, Nobile and
Ricciardi (1987). The first passage density of In X to zero at time 7 starting from

In X at time zero, ¢(0, 7| In X, 0), is defined implicitly by the integral equation

A1 this dissertation, we use the terms discount bond and zera coupon bond interchangeably.,

a3



University of Pretoria etd — Magwegwe, F M (2006)

(=X - M(T)\ _ [* (M(r,T) - M(t,T)
q (————) _./u q(0,7 | In X, 0)& ( S = ST

S(t)

) dr

(4.34)

where 7 <t < T. To abtain an explicit formula for the first passage density,

the authors discretize time into n equal intervals, and define time {; = % for

{i =1,2,...,n}. Discretizing equation (4.34) gives the recursive system for the

terms below.

Q(X,r,T) = lim Q(X,r,T,n)

n—oo

where

n

QUX.rT.n) =Y

i=1
and the ¢; are defined recursively by
@ = Play),
i—1
g = Oa)-Y_ ¢®(by)i=2.3,...,n,
=1

The parameters a, and b;; are now given by

— X — M(iT/n,T)
MGT/n,T) — M1 /n,T)
VS(iT/n) — S(5T/n)

Here the authors use the functions M and S which are

a; =

b =

¥}

== 2 2
M@, T) = (ﬂ_dm_ g__%){
2
{jJI? T? 'y [ ) [ —
" ( 32 ¥ Qﬁ:;) exp(—GT)exp((8t) — 1)
RN I
T_e& N\ _. .
’ (;i 3z ;3:%) (1 — exp(t))
"?2 o
= (“2:'3‘3) exp(GT)(1 — exp(/t))

o4

(4.35)

(4.36)
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and

2 2
S(1) = (ﬂ;’ & g— + 92)—(%’? ¥ i;—ﬁ) (1—exp{—;5t))+(1) (1—exp(—26t))

j-’j'd
(4.37)
LS propose using n = 200 as approximation to the infinite sum,
n
lim > g, (4.38)
i=1

The equation for defaultable debt, (4.31), has the intuitive structure that
the value of risky debt can be viewed as the difference between the riskless bond
and the discount for the default risk of the bond. The term, wD(r,T), is the
present value of the write-down on the bond in the event of a default. The term,
Q(X,r,T), is the risk-neutral probability of default.

According to Rogers (1999), LS’s derivation for the price of the default-
risky bond is flawed because they applied the results of Buonocore, Nobile and
Riceiardi (1987), concerning the first-passage distributions of one dimensional
diffusions to the log of the discounted firm value, but this process is not a
diffusion. Also, Collin-Dufresne and Goldstein (1999}, (henceforth, CG) assert
that the numerical solution to Q(X,r,T) proposed by LS is only valid for one-
factor Markov processes, that is, when interest rates are non-stochastic. This
means the LS formula is only an approximation to the true solution to their
model. CG derived what they claim to be an efficient algorithm for computing
the exact solution to the LS model. They report that the difference between
the LS approximation and the exact solution to their model is economically
significant for typical parameter values.

In the LS model, default risk is captured by the variable X, so bonds can be
valued by conditioning on X directly rather than on the default status of other
bonds. This implies that coupon bonds can be valued as the sum of a series
of zero coupon bonds. From this model we can see that the price of a default-
risky bond is an increasing function of X' and a decreasing function of w and

T. Default-risky bonds have shorter durations® than their risk free equivalents

"The sensitivity of the bond price to changes in r provides a measure of the duration of

the bond,

cn
(i}
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and this property also holds for the LS model. As r increases, D(X,r,T') and
Q(X,r,T) become smaller. Q(X,r,T) becomes smaller because the increase in
r causes V' to drift away from K at a faster rate. The model can also display
that the duration of a default-risky discount bond need not be a monotone-
increasing function of its maturity. In fact, it can display how the duration can
decrease with time, given a moderate level of default risk. Therefore, it is clear
that while default-risky bond prices are generally decreasing with increases of r
, this can be reversed for extremely defaultable debt.

Findings cited by the authors show that the LS model allows for various
term structures of credit spreads for different levels of default risk. The model
displays a monotone increasing term structure of eredit spreads for bonds with
low default risk and a hump shaped structure for bonds with high default risk.
Also, the model indicates that there should be a negative relationship between
credit spreads and the level of interest rates.

Another important finding of the LS model is that the effect of a firm’s cor-
relation with interest rate changes can be very significant in determining the
value of its debt. Exogenously specifyiug the write-down variable, w, introduces
another degree of freedom into the LS model so that it could, in principle, be
made to fit any given level of the default spread observed in interest rates. More,
problematic, however, is the assumption that w is a constant. The violation of
the absolute priority rule may imply stochastic values of w, contrary to this
assumption. The authors state that their model can easily be extended to al-
low for unsystematic stochastic values of w which are uncorrelated with both
business and interest rate risks. Setting the default trigger. K, to be a constant
is not a satisfactory way of capturing the events that precipitate a firm into
bankruptey. Nevertheless, it precludes the undesirable property of simple ver-
sions of Merton’s model that, before maturity, firm value can fall significantly
below the face value of the bond without triggering default. Ideally, the critical
level K should be a function of the liabilities outstanding at each point in time;
w should be stochastic. However, incorporation of such features may sacrifice
the model’s tractability without providing additional insight into the valuation

of defaultable debt.
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4.4 The Merton (1974) and LS(1995) Models:

A Comparison

The relationship between Merton (1974), and LS (1995), is important since it
not only provides a foundation for empirical comparisons, but also relates to
some fundamental issues of pricing default-risky bonds. This section provides
a comparison of these models. The three major findings are as follows. First,
although the Merton model is less general that the LS model in terms of default
probability, it is more general in terms of the recovery rate. Second, in both
Merton (1974) and LS (1995), the condition triggering a default is not consistent
with the no-arbitrage argument. Third, both models are restrictive due to
predictable arrival times of default, which implies that the term structure of
credit risk has to start from zero.

In LS, default happens when firm value V/(f), which follows a diffusion pro-
cess with a continuous sample path, reaches a constant default threshold K
from above. This results in two important features of the LS model. First, it
permits default before the maturity date of default-risky debt. As a result, the
LS model is more general than the Merton model which permits default only
at the maturity date. Second, the probability of default is predictable, ie., a
currently solvent firm cannot default on its debt in the next instantaneous mo-
ment. The consequence of this feature is that when the time to maturity goes
to zero, the LS model generates a term structure of credit risk that converges
to zero too. This is also a restriction of the Merton model.

For comparison purposes, the pricing formulas for default-risky discount
bonds under the Merton (1974) and LS (1995) models are given below. From

equation (4.7), we have for the Merton model

PV, T) = Be " T1[1 — ®(—dy) + (—dy)d] (4.39)

where
Vid(~d,)

Be~m(T=t1¢(—dy)

is the implied recovery rate. B is the face value of a riskless discount bond

5=

(4.40)

and ©(—dy) is the probability of default in a risk neutral world. From equation

(4.31), we have for the LS model
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P(X.r,T) = D(r,T)((1 - Q(X,rT)) + (1 — w)Q(X,r,T)) (4.41)

where w is the write-down proportion of the debt value in case of default,
X = V/K, D(r,T) is the value of a riskless discount bond under the Vasicek
model and Q(X,r, T) is the probability of default.

It is evident from equations (4.39) and (4.41) that the pricing formula for
default-risky discount bonds has the same form in both the Merton and LS
models. However, there are three key differences hetween equations (4.39) and
(1.41). First, because of the assumption of constant interest rates in the Merton
model, the price of a riskless discount bond is simply the present value of the face
value of the bond, Be=""=t)  whereas in the LS model the price of a riskless
discount bond, D(r,T'), is given by the Vasicek model. Second, the Merton
model, has a closed-form solution for the risk neutral probability of default,
&(—dy), whereas in the LS model, the probability of default, Q(X,r,T), can
be solved iteratively. Third, in the LS model, the recovery rate of default-risk
debt, 1 — w, is an exogenously specified constant whereas in the Merton model
the recovery rate of default-risk debt, &, is stochastic. In other words, the
LS model assumes a zero covariance between recovery rate and probability of
defanlt. Therefore, the LS model is less general than the Merton model in terms

of recovery rate.
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Chapter 5

Overview of Reduced-Form
Models

5.1 Introduction

Reduced-form models typically take as the basic ingredients the behaviour of
default-free interest rates, the fractional recovery of defaultable bonds at default,
as well as a stochastic intensity process A for default. The intensity A, may be
viewed as the conditional rate of arrival of default. For example, with constant
A, default is a Poisson arrival. In these models, the intensity process and recov-
ery rates are modelled exogenously and hence the need to directly model the
assets of the firm and understand the priority structure of the firm’s funding
is eliminated. The reduced-form models have been implemented in a commer-
cial software package. The model is called Credit Risk+ and it was develope
by Credit Suisse Financial Products as a tool for the portfolio management of
credit risk. In this model a default is triggered by the jump of a Poisson process
whose intensity is randomly drawn for each debtor class.
A reduced-form model requires characterization of the following:

1. Issuer’s default process (and/or corresponding intensity process).

2. Recovery process.
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3. Default-risk-free interest rate process.

4. Correlation between the default-risk-free interest rate process and the de-

tault process.

Our investigation focuses on two reduced-form models that are designed to
price default-risky bonds: Jarrow, Lando and Turnbull (1997), and Duffie and
Singleton (1999). Before reviewing these two models, we will develop a pric-
ing formula for a general contingent claim (that also includes the possibility of
default), U. Following Duffie and Singleton’s development, we define a default-
able claim to be a pair ((X,T), (X', T")) where the issuer is obligated to pay
X (possibly a random variable) at time T. The second part of this pair says
that 7" is a (exogenously specified) stopping time at which the issuer delanlts
and claimholders receive X' (exogenously specified recovery). This means that
a contingent claim (Z, 1) generated by a defaultable claim ((X,T), (X', T") is
defined by

r=min(T,T"); Z=XIT >T)+X'I(T'<T) (5.1)

where 7 is a stopping time at which Z is paid.

Under the assumption of arbitrage-free markets, there exists an equivalent
martingale pricing measure P relative to the short-rate process r. We also
assume that Z is F, measurable (which allows us to assume that Z can be
determined given the information up to and including 7 ). This means, under
the pricing measure P, the price process for any contingent claim U described
by (Z;,7) is defined by U; = 0 for t > 7 and

[ ~ VA
—_—— = E [—— ] u}
C.I.. Ty du (-'ju rdu

7 = F?[f-"ff ""d”(.‘s’f{'T’>'I')+X'.-'{T’5'I‘)}|Ff}
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F - r'J" rudu < 5t 2 - f; radt xrtprept e .
G lemde X STy Fe e TUXIIT <TY | R (52)

I

E {F.—,!, rudu (T4 5 T)

I

- 'T'..
f“;] L E [6_ _{r ;..rluX.-I(T; o~ T) | Ff]

When the interest rate process, ry, the default process 7" and the recovery
process X' are specified, equation (5.2) fully characterizes the price of the con-
tingent claim U. Also, the differences between reduced-form models are due to

their assumptions for the processes followed by these parameters.

5.2 Jarrow, Lando and Turnbull (1997)

Jarrow, Lando and Turnbull (henceforth, JLT) present an arbitrage-free model
of credit risk which characterizes the default process as a finite state Markov
process in the firm’s credit ratings. The authors begin the construction of their
model by assuming that the markets for risk-free and risky debt are complete

and arbitrage-free. The JLT model has three important characteristics:

e Different seniority debt for a particular firm can be modelled by assuming

different recovery rates in the event of default.
e It can be combined with any default-free term structure model.

e Psendo-probabilities (martingale, risk adjusted) for valuation are deter-

mined from historic transition probabilities for different credit rating classes.

For implementation of this model, the authors impose one major simplifying
assumption. It is assumed that the process of the default-free term structure
and the firm’s bankruptey (or more generally, financial distress) are statistically
independent under the pseudo-probabilities. This means the Markov process for
credit ratings is independent of the level of interest rates. The authors reference
studies that show that while this assumption may hold for investment grade
debt, it is not feasible for speculative grade debt.

The authors assume that default-risky discount bonds pay one dollar at
maturity if there is no defanlt, aud pay § < 1 dollars at maturity in the event

of default. & represents the recovery rate on the bond and is taken to be an
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exogenously given constant. Under the JLT model, default-risky discount bonds

are valued as follows:

(t, T) = p(t, T)(8 + (1 = 8)Qe(r* > T)) (5.3)

where p(t,T) is the time ¢ price of a default-free discount bond, v(t.T") and
is the time ¢ price of a defanlt-risky discount bond. 7% represents the random
time at which bankruptey occurs and Qt{r' > T)is the probability (under the
martingale measure) that default occurs after date T' . From equation (5.3) we
see that the term structure of default-risky debt will be uniquely determined by
specifying a distribution for the time of bankruptcy under the pseudo probabil-
ities. JLT model the distribution of the time of bankruptey as the first hitting
titne of a continuous time Markov chain with discrete states that consist of the
different credit ratings and default (the absorbing state).

The authors use the following methodology to specify the bankruptcy pro-
cess. They define a finite state space § = {1...., K} . which represents all of
the possible classes of credit ratings, with state 1 being the highest, state K —1
being the lowest state and state K being the bankruptey state. Examples of
these different rating schemes can be seen in Table 2.1 on page 20 of this disser-
tation. They then specify a continuous time, time-homogenous Markov chain

{n:0<t<7}in terms of its K x K generator matrix

A A2 Ay o ALk-1 ALK
Az | Az Az oo Mol Aok
A= : : : : i (5.4)
Ak-11 Ak-12 AK-13 ..o AK-1  AK-1K
() 0 0 0 1]

where A; j50 V2,7 and

K
z\i = - E /\-;\‘J

i#j=1

The off-diagonal terms of the generator matrix, A; ;, represent the transition

rates of jumping from credit class i to credit class j. To estimate the empirical

62



University of Pretoria etd — Magwegwe, F M (2006)

senerator matrix A, the authors suggest using historical results from Moody's
or Standard & Poor’s which are typically quoted in an annual fashion. The
last row of zeros implies that bankruptcy (state K ) is absorbing (i.e. once you
enter it you can never leave). The K x K t—period probability transition matrix

(under the real-world measure) for 1 is given by

o0 A J\‘
Q(t) = exp(th) = > (tA) (5.5)

k!
k=0

Although these real-world transition probabilities are Markovian, the tran-
sition probabilities under the martingale pricing measure could depend on the
entire history of the process up to time ¢ (i.e. non-Markovian). To facilitate
empirical estimation and implementation, JLT assume that the transition prob-
abilities are Markovian under the martingale pricing measure. In particular,
they assume that the generator matrix under the martingale pricing measure is

given by

A(t) = U()A (5.6)

where U (1) = diag(p(t), ..., pr—1(t)) is a K x K diagonal matrix whose first
K —1 entries (corresponding to the K —1 credit ratings) are strictly deterministic

functions of ¢ that satisfy

S
/ pi(t)dt < oc,i=1,...,K -1 (5.7)
i

Under the assumption in equation (5.6), the credit rating process is still
Markov, but it is no longer time-homogenous. Although homogeneity is desir-
able, the authors make this trade-off so that the model can match any given
initial term structure of credit risk spreads. The p;(t) are interpreted as risk
premia, that is, the adjustments for risk that transform the actual probabilities
into pseudo-probabilities suitable for valuation processes. To estimate the risk
premium one could use the market price of the firm’s default-risky discount
bonds and back-out the implied risk premiums. This method calibrates the
model to market prices in much the same way as arbitrage-free models of the

risk-free term structure.
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The K x K transition matrix from time ¢ to time T for the Markov chain,
77, under the equivalent martingale measure is given as the solution to the Kol-

goromov differential equations

WD = Ae@w Ty (5.8)
2D~ Kmae, (5.9)
Qt.t)y = I (5.10)

where [ is the K x K identity matrix. We will denote the (z, j)th entry of
(%'J'{t, T) by qi;(t, T). 1f we let the firm be in state 7 at time {, that is 9, = i, and

define 7* = inf{s > {;1, = K}, then we have

Q' >T)=Qr* > Tl =1]= ) Gi;(t.T) =1-Gx(t,T) (5.11)
J#EK
To facilitate their exposition, JLT assume a recovery of treasury (RT) recov-

ery process that is given by

Qre = 8P(7",T) (5.12)

where 8, the recovery rate is an exogenously specified constant and P(7*,T)
is the price at time 7 of an otherwise equivalent, riskless discount bond ma-
furing at time 7. Equation (5.12) says that claimholders receive $1 at time T
if default does not occur by T, and otherwise they receive 4 dollars at time T'.
This is equivalent in saying that the claimholders invested the §P(7*,T) in a
riskless discount bond that matures at time T

Under these simplifying assumptions, equation (5.2) becomes

[

U, = [e—.l",' X I(r* > T) + X P(r*  T)I(r* < T)) | ;;;]
=T _ g _ = [T
B L[‘ Jo X per s 1y e de X Pt T < T) | e =";}

— T v i z
= E [e—jf n X s> T e b X Tt < T) | =-;:]

G4
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= E [c' J et (1 > T) 4+ 81(* < T)) | e = ?ﬁl

- i [(_'_ Jrdux () _ et < TY 481 <T)) | e = -i]

- E {E— L ey oy — (1 — §)1(* < T)) | me = :‘]

= & [e‘ J} et F,] BIX(1- (-0 <T)) | ne=i]

= P@t,T)E[X(1-(L=8)I(z" <T)) | ne=1] (5.13)

where the second last equality holds because JLT assume that the process for
defanlt and the default-free term structure are independent under the martingale

pricing measure. The third equality uses the fact that
- -
P, T)=E {e_-fr' Fuild | F,]

If the contingent claim U is a default-risky discount bond (i.e. X = 1), and
v'(t,T) is the price of a default-risky discount bond that is now in credit class

i , then equation (5.13) becomes

ir’l{!.,:l"}

r'"'\-\

ol
T)(1 (1—5Q[ srm-al)
(1-QF >T|n=i])
= P16+ (1-4&
(6+

= P@.T) Tl §) (5.14)

Equation (5.14) indicates that the higher the probability of default not oc-
curring before maturity, the higher the value of the default-risky bond and
therefore the lower the credit spread is.

Qiven that the forward rate for the default-risky discount bond in credit

class 1 is defined by

f'{f,T)E—:%hl‘i"(f-.T). (5.15)

(8
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equation (5.14) yields

Il

_% In (P(t, T)(5 + (1 — 8)Qi[r* > TI))

— T - %mw +(1-8)0ir > T))

(1-8)FQilr > T
6+ (1-0)Qir > 1)

Fie.T)

= f,T)—1(" > 1) (

T
o HT) + I > 1) [ L Oukilt) (5.16)
5+ (1-8)Qilr* > T]
where
O Bir* > T) = 2 Qi(r" > T) = M) (5.17)
dT l.T ) — E)T t{‘ = - i K J"'I g J.
From the definition of I(7* > t), it follows that in bankruptcy,
1t T)= f(t,T) (5.18)

The credit risk spread on the short rate is given by

() =r(t) = N (f(6T) = f(tT)

= lim (m’ >r.)( (1= O)Asrepa(t) )) (5.19)
T—t 5+ (1 0)Qi[r* > T]

= (77 > t)(1 = 8)A kpull) (5.20)

Equation (5.20) follows from equation (5.19) since
limy Qi(r* >T) =1 (5.21)

Ai ki (1) is the pseudo-probability of default. Contrary to market evidence,
equation (5.20) implies that the credit risk premium is identical for all firms in
a given credit class (rating category).

The main strengths of the JLT approach to credit risk modelling are its sim-
plicity and computational tractability. The modelling of default based on credit

rating transitions is intuitive, explicitly accounts for default risk and is not very
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computationally intensive. However, this simplicity is achieved through some
assumptions whose validity is questionable. Most notable is the assumption of
independence of the default process and the process for the default-free short
rate under the martingale measure. This assumption certainly does not hold
for lower rated bonds. Also, it is hard to believe that all bonds within a given
credit rating class have identical transition probabilities. Clearly, some bonds
will be more risky than others within a given class. Finally, there is the ques-
tion of whether the transitions between credit classes are actually governed by a
continuous-time Markov chain, since in practice there appears to be a tendency
for a firm to continue to fall through changes in credit class. Also, modelling the
transitions between credit classes as a continuous-time Markov chain means that
the times in rating classes will be exponentially distributed, but more impor-
tantly, the probability of a downgrade given that the firm has just experienced
one is higher than for a firm that has been in that class for some time. This is
not supported by evidence. Therefore, it is clear that the JLT model will not
be useful in making investment decisions among honds of equal credit ratings,
although it could be used to back out the relative credit risk imputed by the
market. However, this model might be useful in discovering the term structure
of credit risk for a given bond issuer and facilitate investment decisions and

pricing and hedging of derivatives for that family of bonds.

5.3 Duffie and Singleton (1999)

JLT made some strong assumptions about the independence of the default pro-
cess and the process for the riskless short rate under the pricing measure, and
this led to a neat formula for the price of a default-risky discount bond. Under
the JLT model, the default process is governed by a Markov process' under the
pricing measure.

Unlike JLT, Duffie and Singleton (henceforth, DS) abstract from specifying
the details of the default process. They treat default as an unpredictable event
gaverned by an intensity-based or hazard-rate process and focus on the assump-

tion made about the recovery process, which they assume obeys recovery of

LA Markov process is a stochastic process where only the present value of a variable is

relevant for predicting its future,
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market value (RMV). Under this assumption, for contingent claim U we have,

for default at time T

X' = (1-L)Ur_ (5.22)

where X' is the payment claimholders receive given a defaunlt at time 7
and U,_ = limg, Uy is the price of the contingent claim “just before” default.
The DS framework smmmarized below assumes the existence of the processes
Ly, Uy, ry, and hy. The distribution of X = X7 under the pricing measure is also

taken as given,

e h; = risk-neutral hazard rate for default at time ¢

e i, Al = conditional risk-neutral probability at time t of default over small

time interval At, given no default before t
e L; = loss in market value given a defanlt
e hyL; = risk-nentral conditional expected loss rate of market value
e 1 = risk-free short rate process

e iy =71, + hL, = default-adjusted short rate process

Let A%, represent the event of a firm defaulting on its obligation for the first

time in the interval [t, ¢ + At] . Then a hazard rate of implies that

E[I(Ap,) | Fi] =
T at—0 At (6:28)

where I;[I indicates the expectation under the equivalent martingale mea-
sure. One may also think of I, as the jump arrival intensity at time ¢ (under the
equivalent martingale measure) of a Poisson process? whose first jump oceurs
at defanlt.

The fundamental idea behind the hazard rate approach is that default comes
by surprise (i.e., default involves a sudden loss in market value of an asset) and
we only need to model the intensity or infinitesimal likelihood of a default.

To incorporate this element of surprise, we define a default process that is

“See Appendix A
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independent of the processes L, Uy, re, he, and of X. Thus, for the default
process A, which is 0 before the default and 1 afterward,
That is,

Ar=I(r<t) (5.24)

the intensity process is given by

The assumption by DS that i, and L; do not depend on the value Uy of the
contingent claim is typical of reduced-form models. The authors also assume
that [/ does not jump at default 7. This means that, although there may be
surprise jumps in the conditional distribution of the market value of the default-
free claim (X, T'), h. or L , these surprises occur precisely at the default time with
probability zero. At this point, DS apply Ita’s formula for jumping processes to
the discounted gains process (which is a martingale under the pricing measure)

to verify that

_ T
Uuia,n=E [exp (—] (ra + h”[,“)du) X | F (5.26)
t

where the discounted gains process G is defined by

t t ‘u
G, = exp (~ / r”d-u.) U1 —Ay) 1—[ exp (— / 'rsd.-e) (1 = L) Uu_dA,
Ja i Jo

(5.27)

[quation (5.27) has the following intuitive meaning. The first term is the
discounted price of the claim; the second term is the discounted payout of the
claim upon default.

Instead of following DS’s development of equation (5.26) using Ito’s formula
for jumping processes, we will follow Lando’s (1998), more intuitive development
of equation (H.26).

Lando (1998), showed that for the case of zero recovery, (i.e,L; = 1) the

expression of the contingent claim (equation (5.2)) is
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Il
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Ut,T)

3 ol
e b x> 1) e e ”‘d“X’I(T'E’I'HFa]

- ‘I‘
= FE |exp (— / r‘udu) XIr>T)|F
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|
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o
= Flexp (—] (7 +.’zu)du) X | F
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This establishes the result (5.26) in the special case L = 1. We now use
heuristic reasoning to establish the result (5.26) for all L. Suppose that the
default time, happens exactly as before, with intensity . Receiving a fraction
1 — L, of pre-default value in the event of default (at t) of a contract is equivalent,
from a pricing perspective, to receiving the outcome of a lottery in which the full
pre-default value is received with probability (under the martingale measure)
1 — L, and 0 is received with probability L, i.e. the event of default has been
retained with probability L,. This in turn may be viewed as a default process in
which there is 0 recovery but where the default intensity has been thinned using
the process L, producing a new default intensity of hyL;. Clearly, this way of
thinking does not change the expectation in equation (5.2). However, we now
can think of two types of default. Harmless default that occurs with intensity
hy(1 = L), and lethal default that occurs with intensity heL;. As far as valuing
the contingent claim prior to default is concerned, we are clearly only interested
in lethal defaults, and we therefore price using the intensity of lethal defaults.

Equation (5.28) becomes

e T
Uit,TY=FE {exp (— [ (ry + Ty L,,}u_‘u) X| F'njl (5.29)
Ji

By discounting at the adjusted short rate It , both the timing and probability
of default, as well as the effects of losses on default are all accounted for. Using
this approach, defaultable contingent claims are treated as default-free when
they are discounted at the default-adjusted short rate.

The key feature of the DS model is that h, and L; are exogenously speci-
fied. This allows the authors to derive a term structure model for default-risky

debt which can be used in conjunction with common term structure models for
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risk-free debt such as BDT, Vasicek, CIR, and the HIJM approach. The DS
model does not allow for the effects of h and L separately since they enter the
adjustment for default in the discount rate R = r + hL in the product form
hL. While it is clear that hL represents a credit spread between defanlt-risky
and risk-free debt, it 15 not clear what the individual contributions are to this
spread. In order to learn more about the hazard and recovery rates in market
prices, the loss percentage L could be modelled using historic default recovery
rates, such as those in the Longstaff-Schwartz section of this dissertation and
the default probability i could be estimated historically by studying the munber
of defaults within different classes of bonds. Another way to estimate these two
parameters would be to back them out of the market prices of derivatives such as
default-risky bond options whose payoffs depend nonlinearly on h and L. How-
ever, without a wide range of debt securities deriving value from the same issuer
(e.g. liquidly traded bouds, credit derivatives), the components of the mean loss
rate cannot be estimated separately. Given the paucity of credit data, efficient
estimation of each individual parameter in the DS modelling framework can be
a daunting task.

By modelling the default-adjusted rate R, = r¢ + heLy instead of the usual
short rate r,, more non-default factors which influence credit spreads may be
incorporated in the model. Some of these factors could be due to liguidity,
demand and supply, tax costs and embedded options. DS propose that all these
non-default factors, or “liquidity” effects, be modelled with a stochastic process
[, which represents the fractional carrying cost of the default-risky debt. The
new adjusted short rate would then be adjusted for default and liquidity as

follows:

R=r+hL+I (5.30)

To gain insight into the term structure of AL + [, we could fit both a de-
faultable zero curve and a default free zero curve and compare the respective
yields. However it will be difficult to infer anything about h, L and [ individ-
nally. Responding to this, the authors suggest “extracting” information about
the mean-loss-rate process hl from defaultable bond prices (before default) to

infer the contribution of hi to the credit spread. The idea of relating credit
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spreads to firm-specific or macroeconomic variables such as stock prices, investor
sentiment and capital investment is suggested as one possibility.

Although DS favour a reduced-form of credit risk model, they do mention
that a general formula can be given for the hazard rate hiy in terms of the
defanlt boundary for assets, the volatility of the underlying asset process V' at
the default boundary and the risk-neutral conditional distribution of the level
of the assets given the history of information available to investors. This brings
us back in some fashion to the framework of the structural model where default
is triggered by the firm value process.

DS’s modelling approach is deseribed in somewhat general terms, but they
give various examples of how their framework can be applied to the valuation of
default-risky bonds (callable and non-callable) and the pricing of credit deriva-
tives such as credit-spread put options on default-risky bonds. The authors
discuss several approaches to pricing default-risky bonds using equation (5.26).
For example, one can either parametrize R directly, or parametrize the com-
pouent processes 7, i, and L. Pricing models that focus directly on R combine
the effects of the changes in the default-free short rate r and the mean loss-rate
process hL on bond prices. In contrast, pricing models that parametrize R and
hL separately are able to “extract” information about mean loss rates from
historical default-risky bond yields. Alternative specifications of the DS model
focus on the different assumptions regarding the processes governing he, Ty Ly
and ;.

The RMV assumption is central to the DS approach to modelling credit risk.
We now define two other recovery assumptions before discussing the tractability
of the RMV assumption. Let ¢, denote the amount recovered (for every $1 of
face value owed) if default occurs at time 7. Under the recovery of face value
(RFV) framework, the creditor receives a fraction ¢, = (1 — L;) immediately
upon default. Under the recovery of treasury (RT) framework, the creditor
receives a fraction ¢, = (1 — L) P(7,T) immediately upon default. P(7, T) is
the time price of an otherwise equivalent, default-free bond.

The RMV assumption is accurate for products such as interest rate swaps,
cross-currency swaps and discount bonds. These types of products are usually
marked-to-market on a daily basis, and one could expect to receive a fraction of

what the product was marked at just prior to default. Indeed, DS comment that
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“the RMV assumption is well matched to the legal structure of swap contracts in
that standard agreements typically call for settlement upon default based on an
obligation represented by an otherwise equivalent, non-defanlted, swap” While
there may be cases where RT is more realistic than RMV, DS emphasize that
under the RT assumption, the computational burden of computing equation
(5.2) can be substauntial. Largely for this reason, various simplifying assump-
tions regarding the relationships between fi, r, and L have to be made. Finally,
DS note that if one assumes liquidation at default and that absolute priority
applies, then the RFV assumption may be more realistic since it implies equal
recovery for bonds of equal seniority of the same issuer. The main attraction of
the RMV model is that it is easier to use, because standard default-free term
structure modelling techniques can be applied. The key thing to remember is
what simplifications or assumptions one has made, and how this will affect the

pricing of real world securities.
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Chapter 6

Structural vs.
Reduced-Form Models of
Default

6.1 Introduction

In this chapter we review the strengths, drawbacks and inherent properties
of structural and reduced-form models. In chapters 4 and 5, we showed that
because of the intricate properties of default-risky debt, a model characterizing
default-risky debt value requires a fair amount of complexity. The reason for
this complexity lies in the number of factors driving default-risky debt value
coupled with the interaction of these factors. The two main approaches to
credit risk modelling (structural and reduced-form) differ in their treatment
of the following factors that drive default-risky debt value, together with the

interaction between the default process and the default- risk-free rate process.
e Defanlt- risk-free rate process embodied in the short-rate,
e Default process

e Recovery process
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The assumptions made regarding these processes and their interactions affect
the tractability, simplicity and practical applicability of the different models
for defanlt-risky debt. In general, models for pricing default-risky debt can be

expressed simply using the following equation:

P(r.T,) = B(rT) - 6(-)Q()B(r,T) (6.1)

where 7 is the riskless interest rate, T' is maturity, P(-) is the price of a
default-risky discount bond, B(-) is the price of riskless debt of the same matu-
rity, Q(-) is the pseudo-probability of default and 4(-) = 1 — 3(+), where 3(-) is
the recovery rate on default.

Structural models treat the value of the firm as the underlying stochastic
process. 6(:) and @Q(-) are written as functions of firm value and the debt
claims issued by the firm. While this approach is well-grounded in theory, it
hias the practical difficulty of being predicated on a difficult to observe stochastic
process, the firm value. Reduced-form models treat §(-) and Q(-) as stochastic
processes, utilizing the information about these functions that is embedded in
observed credit spreads and recovery rates, such as in JLT.

Structural models of default posit some dynamics for the firm value process,
and assume that there exists a lower threshold (constant or stochastic) which
triggers default should firm value ever reach it. In contrast, reduced-form models
of default abstract from the firm value process. They effectively assume that
default is a jump process, and directly model the probability of such a jump
occurring, Simply said, structural models rely on economic arguments of why
firms default whereas reduced-form models eliminate the need for an economic
explanation of default. The time at which defanlt might oceur in a reduced-
form model is a random variable. Even in a structural model such as that of
Longstaff and Schwartz (1995), the default time is not known in advance because
the value of the firm is a random variable. Yet there are technical conditions that
niake a crucial distinction between the properties of the default time in most
structural models and those in reduced-form models. In general, the default
time in reduced-form models is more unpredictable than in structural models,

where the time of financial distress can be foretold just before it occurs!

LMore precisely, the time of default is predictable under structural models (based on a dif-

fusion process), meaning that there is an increasing sequence of stopping times that converges
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The strength of reduced-form models is also their weakness. Divorcing the
firm from the intensity process enables modelling default without much informa-
tion about why the firm defaults. Herein lies the strength. However, modelling
default without theoretical guidance runs the risk of both ignoring market in-
formation and drawing erroneous conclusions without the tools to discover the
appropriate explanation. Herein lies the weakness. The point to remember is
that mathematical tractability - not economics - drives the choice of how to
specify a reduced-form model.

Structural models for default-risky bonds are well suited if the relationship
between prices of different securities issued by the firm is of importance, e.g.
for convertible bonds or callable bonds that can be converted into shares when
called by the issuer. Furthermore, the model allows the pricing of default-risky
bonds directly from fundamentals, from the firm's value. Thus structural models
can give a fair price of a default-risky bond as output. Further, questions from
corporate finance like optimal capital structure design or the relative powers ol
shareholders and creditors can be addressed within a structural framework.

The main strength of the structural approach, the orientation towards fun-
damentals is also the model’s weakness. Often it is hard to define a meaningful
process for the firm’s value, let alone observe it continuously. It can be very hard
to calibrate such a firm’s value process to market prices. Furthermore the model
may very quickly become too complex to analyse in a real-world application. If
one were to model the full set of claims on the value of the assets of a medium
sized firm one may very well have to price twenty or more classes of claims:
from banks, shareholders and private creditors down to workers' wages, taxes
and supplier demands. This obviously quickly becomes unfeasible. Another
drawback of the structural models is that they cannot incorporate credit-rating
changes that occur quite frequently for default-risky bonds. Many default-risky
bonds undergo credit downgrades by credit rating agencies before they actually
default, and bond prices react to these rating changes either in anticipation or
when they occur.

Both structural and reduced-form models cannot readily incorporate finan-

cial restructuring that often occurs upon default, such as renegotiating of the

{o the default time, and therefore “foretells” the event of default.
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terms of the debt contract by extending the maturity or lowering/postponing
the promised payments, exchanging the debt for other forms of securities, or
some combination of the above, Also, debt restructurings anticipated by the
market will be priced into the value of a defaultable bond in ways that none of

these models captures.

6.2 Credit Spreads and default Probability

Reduced-form models predict significantly different term structures of credit
spreads than structural models. At the short end of the yield curve, structural
models predict that the credit spread drops to zero as maturity goes to zero (i.e.,
upward sloping term structure of credit spreads). while reduced-form models
predict that the spreads remain positive. The theoretical prediction that the
term structure of credit spreads should be upward sloping at the short end is
not an inherent property of the structural model framework, but rather is due
to the assumption that the evolution of firm value follows a diffusion process.

Before cousidering the implications of the two frameworks at the long end of
the vield curve, we describe below a simple reduced-form and a simple structural
model that we will use in our analysis.

A simple reduced-form model assumes that default is triggered by a Poisson
jumnp process with stochastic intensity hy . Suppose we have a standard Poisson

process N and define the counting process

Ny = N(h) (6.2)

where ,
Hy = [ h,ds (6.3)

0

The function It is the intensity or hazard rate function of the counting process
N; . Let T}, Ty, ... denote the arrival times of the jumps by N. We model the

titwe T of default as the first time that N* jumps, so we have

H, =T, (6.4)

We now assume that the hazard rate process is defined in some way and then

take an independent Poisson process N and define 7 by way of equation (6.3)

T
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and equation (6.4). From this we have immediately, using iterated expectations,

that the default probability is given by

Plr<T] = P[I1<H(T)]
= 1-P[Ty > H(T)]
= 1-E[P[Ty > H(T)] | Fr]
= 1 - Elexp(-H(T))]

o
= 1-F {exp (—] h._.—.l‘f:h‘)] (6.5)
0

f

where F'is a sigma feld with respect to which is h measurable but which is
independent of N and # is the survival probability.

From equation (6.5), we have that
Plr<oco| F]=1 (6.6)

That is, reduced-form models predict that default will occur with certainty
at some finite date. In other words, the probability of a firm never defaulting is
zero in reduced-form models.

In contrast to reduced-form models, standard structural models assume that

firm value V; evolves dynamically as

v,

‘1—),' = pdt + cdW, (6.7)
t

Vo > 0

where g € R is a drift parameter, o > 0 is a volatility parameter, and W is a
standard Brownian motion. For a given default threshold process D = (D;)i<q

with 0 < Dy <V, the default time 7 is given by

r=inf{t >0:V, < D} (6.8)

so that T is a random variable valued in (0, oc].
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In order to caleulate default probabilities in this model, we define the running

minimurm log-usset process M = (M;)i>o0 by
M, = n.]ci:?("’"“ +oW,), (6.9)

that is, M keeps track of the historic low of the log-asset value. With
equation (6.8) we then find for the default probability (using the unique solution

for the SDE in (6.7) given by proposition 1 in Section 4.2.)

Plr < = P [n}{ig Ve < DT}

'] . roomi+aW, e
P [:1%1'}1[\‘/“:, ) < D;}

P My < In(Dp/Vy)] (6.10)

That is, the event of default by time T is equivalent to the running minimum
log-asset value at time T" being below the adjusted default threshold In (Dr/Vy)
at time 7. Assuming that D is a deterministic function of time and using the

fact that the distribution of M, is inverse Gaussian®, we have

Plr<T)

Il

mT — In(Dr/V,
| — @ ( 1 (Dr/ n))
ayT
2 bn (D / V) In(Dy/Vy) +mT 3

+ e - - o (__(;/U:)__) {b,ll}

aVT
where @(-) is the cumulative normal distribution function. If m is positive,
which is a common oceurrence in practice, then the structural model predicts

that the probability of the firm never defaulting is

L by (D Wy )
P[a-;»oo]:1—«3—2“[‘—"I = (6.12)

The probability of the firm never defaulting is positive in structural models
of default. The implication of this is that, if the firm does not default rela-
tively ‘soon’, then structural models predict that the firm value will most likely

continue to drift away from the default threshold forever.

2Ty find that distribution, one first calculates the joint distribution of the pair (W, ;'U,‘_'r),
where M"Y is the running minimum of W, by the reflection principle. Girsanov's theorem is

then used to extend to the case of Brownian motion with drift.

9
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6.3 Previous Empirical Research

Despite the rich arrays of theories for pricing default-risky bonds, the empirical
literature is rather thin. There is especially little to tell us how well different
models perform and what is the nature of the errors they make in predicting
credit spreads. Indeed, only a few empirical papers attempt to implement a
structural or reduced-form model to test its ability to predict prices or credit
spreads. Lack of good bond data, noisiness in even the best bond data, and the
apparent inefficiency of the default-risky bond markets contribute to the dearth

of good empirical evidence in this area.

6.3.1 Testing Structural Models

The empirical literature on structural bond pricing models is rather small, es-
pecially in comparison to the theoretical literature. Partly, this reflects the fact
that reliable bond data have only become recently available to academics. The
empirical studies fall into two categories: (1) tests of predictions that are gener-
ated by the structural models and (2) analyses of the empirical implementation
of the models. The first group includes tests of the shape of the term structure
of credit spreads and tests related to changes in bond prices. The latter group
consists of papers by Jones, Mason and Rosenfeld (1984) and Wei and Guo
(1997) and Eom, Hewege and Huang (2000).

Sarig and Warga (1989), estimated the term structure of credit spreads us-
ing a small mumber of zero coupon corporate bonds and zero coupon U.S. Trea-
suries. They demonstrated curve shapes (slightly upward sloping for investment-
grade bonds, humped shaped for lower-grade bonds, and downward sloping for
speculative-grade bonds) as predicted by Merton. Helwege and Turner (1999),
show that Sarig and Warga's results largely reflect sample selection bias by ma-
turity, and that the term structure of credit spreads facing low-grade issuers
is actually mostly upward sloping, if one controls for firm specific credit risk.
Helwege and Turner conclude that structural models place too much empha-
sis on the upside potential of speculative-grade bonds, perhaps through exces-
sively high volatility parameter or from overstating the typical leverage of a
speculative-grade bond.

Another aspect of the structural models that has been tested is the implied
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risk-neutral default rates. Delianedes and Geske (1998), find that rating migra-
tions (using S&P credit ratings) and defaults are detected months before in the
equity markets.

The second line of empirical research on structural models of default-risky
bond prices involves implementation of the structural model with available data.
These studies compare the actual prices in the market with those predicted by
the model.

The most extensive attempt at implementation of a structural model is found
it Jones. Mason and Rosenfeld (1984) (henceforth JMR). JMR's implementa-
tion of the model shows that model prices are too high, or alternatively, that
credit spreads from the model are too low relative to those observed in the
secondary market. The errors are largest for speculative-grade firms, but they
conclude that the Merton model works better for low-grade bonds than high-
grade bonds because the Merton model has greater incremental explanatory
power for speculative-grade bonds than a naive model (discounting cash flows
at the risk-free rate). They also find that pricing errors are significantly related
to maturity, estimated equity volatility, leverage and time period. Later Franks
and Torous (1989), confirmed the finding that actual credit spreads were much
greater than predicted credit spreads.

Wei and Guo (1997)], implement two structural models to determine their
predictive abilities: Merton (1974), and Longstaff and Schwartz (1995). The
authors find that neither model is able to predict credit spreads that are statis-
tically equal to those found in the Furodollar market?, and the prediction errors
are higher the longer the maturity. Wei and Guo draw two conclusions concern-
ing the performance of the two models: (1) the two models have similar powers
in predicting spreads and (2) the Longstaff and Schwartz model suffers from the
assumption of a constant recovery rate, while benefiting from its more general
treatment of the default event that the Merton model. The problem with this
study concerns what the spread in the Eurodollar market actually represents.
While some portion of that spread undoubtedly compensates for credit risk,
other non-credit characteristics likely explain the bulk of this spread.

More recently, Eom, Hewege and Huang (2000}, (henceforth EHH), test

5The Burodollar market is largely a market of short-term debt issued by banks.
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four structural models to determine their predictive abilities: a naive one-factor
model based on Merton (1974), Geske (1977), Longstaff and Schwartz (1995),
and Leland and Toft (1996). EHH find that both the naive one-factor model
and the Geske model underpredict spreads (overprices bonds). In contrast,
EHH find that under reasonable assumptions, the Longstaff and Schwartz model
generates credit spreads that are too high on average and the Leland and Toft
model, under all circumstances predicts excessively high credit spreads.

The conventional wisdom, while praising the theoretical insights into the
default process gained from structural models, dismisses them as impractical
for actual bond valuation. However, small sample sizes used in some of the
empirical research, and doubts about the quality of bond pricing data leave
us without conclusive evidence regarding the power of structural models. The

resolution of these empirical issues awaits further research.

6.3.2 Testing Reduced-Form Models

Empirical implementation of reduced-form models is still in its infancy. Partly,
this is due the fact that these models require that credit spread data accurately
reflect, market expectations about credit risk, recovery in the event of default,
and liquidity. Accurate bond data is difficult to find.? The question remains
whether reduced-form models can describe the behaviour of default-risky bonds
successfully.

So far the papers that attempt to answer this question are by Duffee (1999),
Frithwirth and Ségner (2001)(FS henceforth). Duffee estimates the parameters
for the stochastic process of the credit spread for the Duffie and Singleton (1999),
framework. FS estimate default intensities within the Jarrow and Turnbull
(1995) framework. Duffee finds that reduced-form models based on the Duffie
and Singleton (1997) framework have difficulty explaining the observed term
structure of credit spreads across firms of different credit qualities. For example,
the model produces both flat term structures of credit spreads for investment-

grade bonds with less default risk and steeper term structures of credit spreads

1Duffee (1996) suggests that the firms’ observed bond yields that make up his dataset are
“flawed” because these yields are traders’ indicative bid prices that appear to react very slowly

to information in the Arms' stock prices.
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for investment-grade bonds with relatively more default risk. He also finds
that the model's parameter estimates imply that regardless of how much the
firm’s financial health improves, the firm’s credit spread remains positive. This
suggests that the model successfully captures a non-default component in credit
spreads, On average, the model appears to fit investment-grade, corporate
bonds well: term structures of credit spreads for lower quality firms are more
steeply sloped than are term structures of credit spreads for higher quality firms.
Duffee makes significant strides in implementing this modelling framework; and
concludes that “The results here can be used both as benchmarks for models
of corporate bond pricing and as directions for future research.” FS show that
estimated default intensities strongly depend on the date of estimation and the
bond. They also show that liquidity has no significant influence. I'S also show
that there is a statistically significant correlation between default intensity and
default-free interest rates and they conclude that *. .. further research should
engage in models where the default rate is a function of some relevant parameters

and in the estimation of these models.”

6.4 Summary

Currently, we can choose from many theoretical models to price default-risky
bonds. The assembling and analyzing of quality pricing data is critical at this
stage because without empirical results, choosing the best model remains a
difficult task. A valuable extension to the structural approach would be to
incorporate jumps in the value of the firm in a reasonable way. With jumps
incorporated in the evolution of firm value, a firm can default instantaneously
beeanse of a sudden drop in its value. Within the reduced-form framework, we

need to explore further parametric forms of the intensity and recovery processes.
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Chapter 7

Conclusion

In this dissertation, we have tried to highlight the growing importance of valuing
credit risk and give an overview of structural models and reduced-form models. A
summary of the salient features of some of the models within these two categories
is found in Appendix B. A summary of the models’ strengths and drawbacks is
found in Appendix C.

Despite the natural and elegant way of modelling default by the first time the
firm value hits some barrier, structural models have been criticized for several
reasons. The major points of criticism are that they require estimating the
parameters of processes that cannot be directly observed, such as firm value
and default boundary. Therefore, they are of limited use in arriving at precise
valuations. They are, however, uselul in gaining intuition about the effects of
various variables on credit risk. The Merton model’s strengths are its relative
simplicity and intuition. However, its lack of interest rate dynamics, correlation
modelling, and tractability limit its practical applications. The Longstaff and
Schwartz model, though not closed form addresses some of the weaknesses of
the Merton model.

Unlike structural models, reduced-form models are based upon more direct
assumptions about the default process. These models can be parameterized to
fit the current term structure of credit spreads. The Jarrow, Lando and Turnbull
(JLT) model provided a simple framework that is easy to calculate. However,

its simplicity results in inflexibility: bonds within a given class are considered
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homogenous and there is no correlation with interest rates modelled. The Duffie
and Singleton (DS) model outlines an interesting framework for modelling credit
risk, with an increasingly complex model of credit risk suggested. However very
little specific guidance is given of model implementation, which leaves a great
deal of unanswered questions. Of particular interest, in future research would be
the possible combination of the JLT approach to modelling the default process
(as a Markov chain in the credit ratings) in combination with the analytic
tractability of the recovery of market value (RMV) assumption of DS on the
IECOVErY Process.

While the structural approach is economically sound and often generates
more conceptual insights on default behaviour, it implies less plausible credit
spreads properties. The reduced-form approach is ad hoe though, but tractable
and implies plausible credit spread properties, Can we have a model which
not only has the flexibility of the reduced-form approach to fit data but also
provides the theoretical insights on the economic mechanism behind default
events of the traditional structural approach? Can we have a model which
allows for both expected and unexpected defaults in a single framework? How
can we reconcile the different implications of the traditional reduced-form and
structural approaches? A valuable extension to the literature on credit risk
modelling would be a model that answers these questions.

Madan and Unal (2000), (hereafter, MU) recently proposed a structural
reduced-form model in closed form that attempts to answer these questions.
The distinguishing feature of this model is that it incorporates the attractive
features of structural models with the reduced-form approach. A key assump-
tion of this model is that default is a consequence of a single jump loss event
that drives the equity value to zero and requires cash outlays that cannot be
externally financed. The authors provide examples such as the near collapse of
Long Term Capital Management (LTCM) in 1998 and the collapse of Barings
bank in 1995 to justify this questionable assumption. MU also state that such
Jump loss events can be the result of the outcome of lawsnits, sudden default of
a creditor, supplier, or a customer and unexpected devaluations.

MU obtained parameter values for their model by calibrating the model to a
small set of data on the term structure of credit spreads. They report that the

resulting model for credit spreads is tractable and can be readily implemented.
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When calibrated to data on credit spreads, the model yielded a variety of re-
alistic credit shapes. An important addition to the literature on the empirical
testing of credit risk models would be a full-scale empirical study of corporate

bond yields using the MU model.
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Appendix A

Poisson Processes

In reduced-form (hazard rate) models, the fundamental modelling tool is the

Poisson process, and this appendix reviews some important aspects of Poisson

processes. The definitions and concepts in this appendix are taken from (and

covered in much more detail in) Rogers and Williams (1994).

A homogeneous Poisson counting process { Ny} is a non-decreasing process

with right-continuous paths and values in Z7 such that

4.

(o]

J'\'Y” = U'.
for any 0 < s; <1y <53 <My < ... < sy < ty, the random variables
X, = N(t;) — N(s;) are independent, and the distribution of each X;

depends only on the length £; — sy
vt >0, Ny — No_ is either 0 or 1.

The definition of the Poisson process uniquely determines its distribution
to within a single parameter A called the rate of the process. When
A = 1, we speak of a standard Poisson process. Here are other key

properties, in which the positive parameter A appears explicitly.

the process N, = N; — M is a martingale;

the inter-event times T), — T}, _ are independent with common exponential
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(A) distribution:

PTo— Thog) > t]=e ¥Vt >0 (A.1)
Here
,.ru = lllf{f =10 1 ,"\T, = ;q} (Afzj

6. for any s < t, Ny — Ny ~ P(A{ — 5)), the Poisson distribution with mean
A

P[N;— N;=k] = %‘/\J"(a‘ — s) exp{—(t - s)A\}, ke Z* (A.3)

The simple (homogeneous) Poisson process can be generalized as follows. NV
is called an inhomogeneous Poisson process with deterministic intensity function

Alt), if the increments N(t) — N{s)are independent and for s,{ we have

ot ! t
P[N; - N, =k]| = % (/ ,\('u)du) FX]){—] ,\(ujdu} (A.4)

The only difference to property (6) above is that A(t — s) has been replaced by

k

the integral of A{u) over the respective time span.
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Appendix B

Summary of Credit Risk
Model Features

In chapters 4 and 5, we provided an overview of structural and reduced-form
models of default. The purpose of this chapter is to summarize the features of

the models reviewed in chapters 4 and 5.
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Credit Risk | Merton LS JLT DS#1
Model (1974) (1995) (1997) (1999)
Default Default Default Default Only
Process oceurs oceurs occurs maodel
when firm when firm when a hazard rate
value falls value falls firm of default.
below debt | below a transitions
value. stochastic into the
boundary. lowest level.
Default Determined | Determined | Determined
Probability | by firm by the by a Markov
value growth, Process in
growth and | volatility &, | the firm’s
volatility. correlation credit
of firm ratings.
value and
boundary.
Recovery Assumed Assumed Assumed Exogenously
Process to be to be a to be a given
value of constant constaut fractional
firm at fraction fraction loss of
time of of face of face market
defanlt. value, value, value.
received received
at maturity. | at maturity.
Risk-Free Constant Vasicek None Use any
Rate interest model. given. interest
Process rates, rate model

to arrive at
risk-
adjusted

short rate.
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Credit Risk | Merton LS JLT DS#1
Model (1974) (1995) (1997) (1999)
Correlation | None Between None None
Modelling interest
rates, and
firm value
processes.
Model Structural Structural Reduced- Reduced-
Category Continuous | Continuous | Form Form
(Closed (Closed Continuous | Continuous
Form) Form with Arbitrage- | and Discrete
Equilibrium | recursion) Free Arbitrage-
Equilibrium Free
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Credit Risk | DS#£2 DS#3
Model (1999) | (1999)
Default Moadel Model
Process mean loss | default
rate probability
directly. and loss
percentage
separately.
Default Estimate
Probability historically
by bond
class.
Recovery Model
Process using
historie
recovery
rates.
Risk-Free None Cox-
Rate givern. Ingersoll-
Process Ross for

interest
rates and
credit

spreads.
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Credit Risk | DS#2 DS#3
Model (1999) (1999)
Correlation | Between Between
Modelling mean loss interest
rate and rates and
interest credit
rates. spreads.
Model Reduced- Reduced-
Category Form Form
Continuous | Continuous

Arbitrage-
Free

Arbitrage-

Free
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Appendix C

Strengths and Drawbacks of
Credit Risk Models

In chapters 4 and 5, we provided an overview of structural and reduced-form
models of default. The purpose of this chapter is to summarize the strengths

and drawbacks of the models reviewed in chapters 4 and 5.
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Model

Advantages

Disadvantages

Merton (1974)

Simple to implement.

(a) Requires inputs related
to firm value.

(b) Default occurs only at
the maturity of debt.

(c) Information in the
history of defaults and
credit rating changes

cannot be used.

Longstaff and Schwartz

(LS) (1995)

(a) Simple to implement.
(b) Allows for stochastic
term structure and
correlation between
defaults and interest

rates.

(a) Requires inputs related to
firm value.

(b) Information in the
history of defaults and

credit rating changes

cannot be used.

Jarrow, Lando
and Turnbull (JLT)
(1997)

(a) Simple to implement.
(b) Can exactly match the
existing prices of
default-risky bond to

infer risk-neutral
probabilities of

defaults and credit

rating changes.

(¢) Uses the information in
the history of defaults

and credit rating

changes.

(a) Correlation not allowed
between default
probabilities and the

level of interest rates.

(b) Credit spreads change
only when credit rating

changes.
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Model

Advantages

Disadvantages

Duffie and Singleton
(DS) (1999)

(a) Allows correlation
between default
probabilities and the
level of interest rates.

(b) Recovery ratio can be
random and depend on
the pre-default value

of the security.

(c) Any interest rate model
can be accommodated
and existing valuation
results for risk-free

term structure models

can be readily used.

(a) Information in the credit
history of defaults and
rating changes cannot

be used.
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