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Chapter 5

Overview of Reduced-Form
Models

5.1 Introduction

Reduced-form models typically take as the basic ingredients the behaviour of
default-free interest rates, the fractional recovery of defaultable bonds at default,
as well as a stochastic intensity process A for default. The intensity A, may be
viewed as the conditional rate of arrival of default. For example, with constant
A, default is a Poisson arrival. In these models, the intensity process and recov-
ery rates are modelled exogenously and hence the need to directly model the
assets of the firm and understand the priority structure of the firm’s funding
is eliminated. The reduced-form models have been implemented in a commer-
cial software package. The model is called Credit Risk+ and it was develope
by Credit Suisse Financial Products as a tool for the portfolio management of
credit risk. In this model a default is triggered by the jump of a Poisson process
whose intensity is randomly drawn for each debtor class.
A reduced-form model requires characterization of the following:

1. Issuer’s default process (and/or corresponding intensity process).

2. Recovery process.
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3. Default-risk-free interest rate process.

4. Correlation between the default-risk-free interest rate process and the de-

tault process.

Our investigation focuses on two reduced-form models that are designed to
price default-risky bonds: Jarrow, Lando and Turnbull (1997), and Duffie and
Singleton (1999). Before reviewing these two models, we will develop a pric-
ing formula for a general contingent claim (that also includes the possibility of
default), U. Following Duffie and Singleton’s development, we define a default-
able claim to be a pair ((X,T), (X', T")) where the issuer is obligated to pay
X (possibly a random variable) at time T. The second part of this pair says
that 7" is a (exogenously specified) stopping time at which the issuer delanlts
and claimholders receive X' (exogenously specified recovery). This means that
a contingent claim (Z, 1) generated by a defaultable claim ((X,T), (X', T") is
defined by

r=min(T,T"); Z=XIT >T)+X'I(T'<T) (5.1)

where 7 is a stopping time at which Z is paid.

Under the assumption of arbitrage-free markets, there exists an equivalent
martingale pricing measure P relative to the short-rate process r. We also
assume that Z is F, measurable (which allows us to assume that Z can be
determined given the information up to and including 7 ). This means, under
the pricing measure P, the price process for any contingent claim U described
by (Z;,7) is defined by U; = 0 for t > 7 and

[ ~ VA
—_—— = E [—— ] u}
C.I.. Ty du (-'ju rdu
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When the interest rate process, ry, the default process 7" and the recovery
process X' are specified, equation (5.2) fully characterizes the price of the con-
tingent claim U. Also, the differences between reduced-form models are due to

their assumptions for the processes followed by these parameters.

5.2 Jarrow, Lando and Turnbull (1997)

Jarrow, Lando and Turnbull (henceforth, JLT) present an arbitrage-free model
of credit risk which characterizes the default process as a finite state Markov
process in the firm’s credit ratings. The authors begin the construction of their
model by assuming that the markets for risk-free and risky debt are complete

and arbitrage-free. The JLT model has three important characteristics:

e Different seniority debt for a particular firm can be modelled by assuming

different recovery rates in the event of default.
e It can be combined with any default-free term structure model.

e Psendo-probabilities (martingale, risk adjusted) for valuation are deter-

mined from historic transition probabilities for different credit rating classes.

For implementation of this model, the authors impose one major simplifying
assumption. It is assumed that the process of the default-free term structure
and the firm’s bankruptey (or more generally, financial distress) are statistically
independent under the pseudo-probabilities. This means the Markov process for
credit ratings is independent of the level of interest rates. The authors reference
studies that show that while this assumption may hold for investment grade
debt, it is not feasible for speculative grade debt.

The authors assume that default-risky discount bonds pay one dollar at
maturity if there is no defanlt, aud pay § < 1 dollars at maturity in the event

of default. & represents the recovery rate on the bond and is taken to be an
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exogenously given constant. Under the JLT model, default-risky discount bonds

are valued as follows:

(t, T) = p(t, T)(8 + (1 = 8)Qe(r* > T)) (5.3)

where p(t,T) is the time ¢ price of a default-free discount bond, v(t.T") and
is the time ¢ price of a defanlt-risky discount bond. 7% represents the random
time at which bankruptey occurs and Qt{r' > T)is the probability (under the
martingale measure) that default occurs after date T' . From equation (5.3) we
see that the term structure of default-risky debt will be uniquely determined by
specifying a distribution for the time of bankruptcy under the pseudo probabil-
ities. JLT model the distribution of the time of bankruptey as the first hitting
titne of a continuous time Markov chain with discrete states that consist of the
different credit ratings and default (the absorbing state).

The authors use the following methodology to specify the bankruptcy pro-
cess. They define a finite state space § = {1...., K} . which represents all of
the possible classes of credit ratings, with state 1 being the highest, state K —1
being the lowest state and state K being the bankruptey state. Examples of
these different rating schemes can be seen in Table 2.1 on page 20 of this disser-
tation. They then specify a continuous time, time-homogenous Markov chain

{n:0<t<7}in terms of its K x K generator matrix

A A2 Ay o ALk-1 ALK
Az | Az Az oo Mol Aok
A= : : : : i (5.4)
Ak-11 Ak-12 AK-13 ..o AK-1  AK-1K
() 0 0 0 1]

where A; j50 V2,7 and

K
z\i = - E /\-;\‘J

i#j=1

The off-diagonal terms of the generator matrix, A; ;, represent the transition

rates of jumping from credit class i to credit class j. To estimate the empirical
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senerator matrix A, the authors suggest using historical results from Moody's
or Standard & Poor’s which are typically quoted in an annual fashion. The
last row of zeros implies that bankruptcy (state K ) is absorbing (i.e. once you
enter it you can never leave). The K x K t—period probability transition matrix

(under the real-world measure) for 1 is given by

o0 A J\‘
Q(t) = exp(th) = > (tA) (5.5)

k!
k=0

Although these real-world transition probabilities are Markovian, the tran-
sition probabilities under the martingale pricing measure could depend on the
entire history of the process up to time ¢ (i.e. non-Markovian). To facilitate
empirical estimation and implementation, JLT assume that the transition prob-
abilities are Markovian under the martingale pricing measure. In particular,
they assume that the generator matrix under the martingale pricing measure is

given by

A(t) = U()A (5.6)

where U (1) = diag(p(t), ..., pr—1(t)) is a K x K diagonal matrix whose first
K —1 entries (corresponding to the K —1 credit ratings) are strictly deterministic

functions of ¢ that satisfy

S
/ pi(t)dt < oc,i=1,...,K -1 (5.7)
i

Under the assumption in equation (5.6), the credit rating process is still
Markov, but it is no longer time-homogenous. Although homogeneity is desir-
able, the authors make this trade-off so that the model can match any given
initial term structure of credit risk spreads. The p;(t) are interpreted as risk
premia, that is, the adjustments for risk that transform the actual probabilities
into pseudo-probabilities suitable for valuation processes. To estimate the risk
premium one could use the market price of the firm’s default-risky discount
bonds and back-out the implied risk premiums. This method calibrates the
model to market prices in much the same way as arbitrage-free models of the

risk-free term structure.
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The K x K transition matrix from time ¢ to time T for the Markov chain,
77, under the equivalent martingale measure is given as the solution to the Kol-

goromov differential equations

WD = Ae@w Ty (5.8)
2D~ Kmae, (5.9)
Qt.t)y = I (5.10)

where [ is the K x K identity matrix. We will denote the (z, j)th entry of
(%'J'{t, T) by qi;(t, T). 1f we let the firm be in state 7 at time {, that is 9, = i, and

define 7* = inf{s > {;1, = K}, then we have

Q' >T)=Qr* > Tl =1]= ) Gi;(t.T) =1-Gx(t,T) (5.11)
J#EK
To facilitate their exposition, JLT assume a recovery of treasury (RT) recov-

ery process that is given by

Qre = 8P(7",T) (5.12)

where 8, the recovery rate is an exogenously specified constant and P(7*,T)
is the price at time 7 of an otherwise equivalent, riskless discount bond ma-
furing at time 7. Equation (5.12) says that claimholders receive $1 at time T
if default does not occur by T, and otherwise they receive 4 dollars at time T'.
This is equivalent in saying that the claimholders invested the §P(7*,T) in a
riskless discount bond that matures at time T

Under these simplifying assumptions, equation (5.2) becomes

[

U, = [e—.l",' X I(r* > T) + X P(r*  T)I(r* < T)) | ;;;]
=T _ g _ = [T
B L[‘ Jo X per s 1y e de X Pt T < T) | e =";}

— T v i z
= E [e—jf n X s> T e b X Tt < T) | =-;:]
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= E [c' J et (1 > T) 4+ 81(* < T)) | e = ?ﬁl

- i [(_'_ Jrdux () _ et < TY 481 <T)) | e = -i]

- E {E— L ey oy — (1 — §)1(* < T)) | me = :‘]

= & [e‘ J} et F,] BIX(1- (-0 <T)) | ne=i]

= P@t,T)E[X(1-(L=8)I(z" <T)) | ne=1] (5.13)

where the second last equality holds because JLT assume that the process for
defanlt and the default-free term structure are independent under the martingale

pricing measure. The third equality uses the fact that
- -
P, T)=E {e_-fr' Fuild | F,]

If the contingent claim U is a default-risky discount bond (i.e. X = 1), and
v'(t,T) is the price of a default-risky discount bond that is now in credit class

i , then equation (5.13) becomes

ir’l{!.,:l"}

r'"'\-\

ol
T)(1 (1—5Q[ srm-al)
(1-QF >T|n=i])
= P16+ (1-4&
(6+

= P@.T) Tl §) (5.14)

Equation (5.14) indicates that the higher the probability of default not oc-
curring before maturity, the higher the value of the default-risky bond and
therefore the lower the credit spread is.

Qiven that the forward rate for the default-risky discount bond in credit

class 1 is defined by

f'{f,T)E—:%hl‘i"(f-.T). (5.15)

(8
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equation (5.14) yields

Il

_% In (P(t, T)(5 + (1 — 8)Qi[r* > TI))

— T - %mw +(1-8)0ir > T))

(1-8)FQilr > T
6+ (1-0)Qir > 1)

Fie.T)

= f,T)—1(" > 1) (

T
o HT) + I > 1) [ L Oukilt) (5.16)
5+ (1-8)Qilr* > T]
where
O Bir* > T) = 2 Qi(r" > T) = M) (5.17)
dT l.T ) — E)T t{‘ = - i K J"'I g J.
From the definition of I(7* > t), it follows that in bankruptcy,
1t T)= f(t,T) (5.18)

The credit risk spread on the short rate is given by

() =r(t) = N (f(6T) = f(tT)

= lim (m’ >r.)( (1= O)Asrepa(t) )) (5.19)
T—t 5+ (1 0)Qi[r* > T]

= (77 > t)(1 = 8)A kpull) (5.20)

Equation (5.20) follows from equation (5.19) since
limy Qi(r* >T) =1 (5.21)

Ai ki (1) is the pseudo-probability of default. Contrary to market evidence,
equation (5.20) implies that the credit risk premium is identical for all firms in
a given credit class (rating category).

The main strengths of the JLT approach to credit risk modelling are its sim-
plicity and computational tractability. The modelling of default based on credit

rating transitions is intuitive, explicitly accounts for default risk and is not very
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computationally intensive. However, this simplicity is achieved through some
assumptions whose validity is questionable. Most notable is the assumption of
independence of the default process and the process for the default-free short
rate under the martingale measure. This assumption certainly does not hold
for lower rated bonds. Also, it is hard to believe that all bonds within a given
credit rating class have identical transition probabilities. Clearly, some bonds
will be more risky than others within a given class. Finally, there is the ques-
tion of whether the transitions between credit classes are actually governed by a
continuous-time Markov chain, since in practice there appears to be a tendency
for a firm to continue to fall through changes in credit class. Also, modelling the
transitions between credit classes as a continuous-time Markov chain means that
the times in rating classes will be exponentially distributed, but more impor-
tantly, the probability of a downgrade given that the firm has just experienced
one is higher than for a firm that has been in that class for some time. This is
not supported by evidence. Therefore, it is clear that the JLT model will not
be useful in making investment decisions among honds of equal credit ratings,
although it could be used to back out the relative credit risk imputed by the
market. However, this model might be useful in discovering the term structure
of credit risk for a given bond issuer and facilitate investment decisions and

pricing and hedging of derivatives for that family of bonds.

5.3 Duffie and Singleton (1999)

JLT made some strong assumptions about the independence of the default pro-
cess and the process for the riskless short rate under the pricing measure, and
this led to a neat formula for the price of a default-risky discount bond. Under
the JLT model, the default process is governed by a Markov process' under the
pricing measure.

Unlike JLT, Duffie and Singleton (henceforth, DS) abstract from specifying
the details of the default process. They treat default as an unpredictable event
gaverned by an intensity-based or hazard-rate process and focus on the assump-

tion made about the recovery process, which they assume obeys recovery of

LA Markov process is a stochastic process where only the present value of a variable is

relevant for predicting its future,
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market value (RMV). Under this assumption, for contingent claim U we have,

for default at time T

X' = (1-L)Ur_ (5.22)

where X' is the payment claimholders receive given a defaunlt at time 7
and U,_ = limg, Uy is the price of the contingent claim “just before” default.
The DS framework smmmarized below assumes the existence of the processes
Ly, Uy, ry, and hy. The distribution of X = X7 under the pricing measure is also

taken as given,

e h; = risk-neutral hazard rate for default at time ¢

e i, Al = conditional risk-neutral probability at time t of default over small

time interval At, given no default before t
e L; = loss in market value given a defanlt
e hyL; = risk-nentral conditional expected loss rate of market value
e 1 = risk-free short rate process

e iy =71, + hL, = default-adjusted short rate process

Let A%, represent the event of a firm defaulting on its obligation for the first

time in the interval [t, ¢ + At] . Then a hazard rate of implies that

E[I(Ap,) | Fi] =
T at—0 At (6:28)

where I;[I indicates the expectation under the equivalent martingale mea-
sure. One may also think of I, as the jump arrival intensity at time ¢ (under the
equivalent martingale measure) of a Poisson process? whose first jump oceurs
at defanlt.

The fundamental idea behind the hazard rate approach is that default comes
by surprise (i.e., default involves a sudden loss in market value of an asset) and
we only need to model the intensity or infinitesimal likelihood of a default.

To incorporate this element of surprise, we define a default process that is

“See Appendix A
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independent of the processes L, Uy, re, he, and of X. Thus, for the default
process A, which is 0 before the default and 1 afterward,
That is,

Ar=I(r<t) (5.24)

the intensity process is given by

The assumption by DS that i, and L; do not depend on the value Uy of the
contingent claim is typical of reduced-form models. The authors also assume
that [/ does not jump at default 7. This means that, although there may be
surprise jumps in the conditional distribution of the market value of the default-
free claim (X, T'), h. or L , these surprises occur precisely at the default time with
probability zero. At this point, DS apply Ita’s formula for jumping processes to
the discounted gains process (which is a martingale under the pricing measure)

to verify that

_ T
Uuia,n=E [exp (—] (ra + h”[,“)du) X | F (5.26)
t

where the discounted gains process G is defined by

t t ‘u
G, = exp (~ / r”d-u.) U1 —Ay) 1—[ exp (— / 'rsd.-e) (1 = L) Uu_dA,
Ja i Jo

(5.27)

[quation (5.27) has the following intuitive meaning. The first term is the
discounted price of the claim; the second term is the discounted payout of the
claim upon default.

Instead of following DS’s development of equation (5.26) using Ito’s formula
for jumping processes, we will follow Lando’s (1998), more intuitive development
of equation (H.26).

Lando (1998), showed that for the case of zero recovery, (i.e,L; = 1) the

expression of the contingent claim (equation (5.2)) is
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This establishes the result (5.26) in the special case L = 1. We now use
heuristic reasoning to establish the result (5.26) for all L. Suppose that the
default time, happens exactly as before, with intensity . Receiving a fraction
1 — L, of pre-default value in the event of default (at t) of a contract is equivalent,
from a pricing perspective, to receiving the outcome of a lottery in which the full
pre-default value is received with probability (under the martingale measure)
1 — L, and 0 is received with probability L, i.e. the event of default has been
retained with probability L,. This in turn may be viewed as a default process in
which there is 0 recovery but where the default intensity has been thinned using
the process L, producing a new default intensity of hyL;. Clearly, this way of
thinking does not change the expectation in equation (5.2). However, we now
can think of two types of default. Harmless default that occurs with intensity
hy(1 = L), and lethal default that occurs with intensity heL;. As far as valuing
the contingent claim prior to default is concerned, we are clearly only interested
in lethal defaults, and we therefore price using the intensity of lethal defaults.

Equation (5.28) becomes

e T
Uit,TY=FE {exp (— [ (ry + Ty L,,}u_‘u) X| F'njl (5.29)
Ji

By discounting at the adjusted short rate It , both the timing and probability
of default, as well as the effects of losses on default are all accounted for. Using
this approach, defaultable contingent claims are treated as default-free when
they are discounted at the default-adjusted short rate.

The key feature of the DS model is that h, and L; are exogenously speci-
fied. This allows the authors to derive a term structure model for default-risky

debt which can be used in conjunction with common term structure models for
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risk-free debt such as BDT, Vasicek, CIR, and the HIJM approach. The DS
model does not allow for the effects of h and L separately since they enter the
adjustment for default in the discount rate R = r + hL in the product form
hL. While it is clear that hL represents a credit spread between defanlt-risky
and risk-free debt, it 15 not clear what the individual contributions are to this
spread. In order to learn more about the hazard and recovery rates in market
prices, the loss percentage L could be modelled using historic default recovery
rates, such as those in the Longstaff-Schwartz section of this dissertation and
the default probability i could be estimated historically by studying the munber
of defaults within different classes of bonds. Another way to estimate these two
parameters would be to back them out of the market prices of derivatives such as
default-risky bond options whose payoffs depend nonlinearly on h and L. How-
ever, without a wide range of debt securities deriving value from the same issuer
(e.g. liquidly traded bouds, credit derivatives), the components of the mean loss
rate cannot be estimated separately. Given the paucity of credit data, efficient
estimation of each individual parameter in the DS modelling framework can be
a daunting task.

By modelling the default-adjusted rate R, = r¢ + heLy instead of the usual
short rate r,, more non-default factors which influence credit spreads may be
incorporated in the model. Some of these factors could be due to liguidity,
demand and supply, tax costs and embedded options. DS propose that all these
non-default factors, or “liquidity” effects, be modelled with a stochastic process
[, which represents the fractional carrying cost of the default-risky debt. The
new adjusted short rate would then be adjusted for default and liquidity as

follows:

R=r+hL+I (5.30)

To gain insight into the term structure of AL + [, we could fit both a de-
faultable zero curve and a default free zero curve and compare the respective
yields. However it will be difficult to infer anything about h, L and [ individ-
nally. Responding to this, the authors suggest “extracting” information about
the mean-loss-rate process hl from defaultable bond prices (before default) to

infer the contribution of hi to the credit spread. The idea of relating credit
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spreads to firm-specific or macroeconomic variables such as stock prices, investor
sentiment and capital investment is suggested as one possibility.

Although DS favour a reduced-form of credit risk model, they do mention
that a general formula can be given for the hazard rate hiy in terms of the
defanlt boundary for assets, the volatility of the underlying asset process V' at
the default boundary and the risk-neutral conditional distribution of the level
of the assets given the history of information available to investors. This brings
us back in some fashion to the framework of the structural model where default
is triggered by the firm value process.

DS’s modelling approach is deseribed in somewhat general terms, but they
give various examples of how their framework can be applied to the valuation of
default-risky bonds (callable and non-callable) and the pricing of credit deriva-
tives such as credit-spread put options on default-risky bonds. The authors
discuss several approaches to pricing default-risky bonds using equation (5.26).
For example, one can either parametrize R directly, or parametrize the com-
pouent processes 7, i, and L. Pricing models that focus directly on R combine
the effects of the changes in the default-free short rate r and the mean loss-rate
process hL on bond prices. In contrast, pricing models that parametrize R and
hL separately are able to “extract” information about mean loss rates from
historical default-risky bond yields. Alternative specifications of the DS model
focus on the different assumptions regarding the processes governing he, Ty Ly
and ;.

The RMV assumption is central to the DS approach to modelling credit risk.
We now define two other recovery assumptions before discussing the tractability
of the RMV assumption. Let ¢, denote the amount recovered (for every $1 of
face value owed) if default occurs at time 7. Under the recovery of face value
(RFV) framework, the creditor receives a fraction ¢, = (1 — L;) immediately
upon default. Under the recovery of treasury (RT) framework, the creditor
receives a fraction ¢, = (1 — L) P(7,T) immediately upon default. P(7, T) is
the time price of an otherwise equivalent, default-free bond.

The RMV assumption is accurate for products such as interest rate swaps,
cross-currency swaps and discount bonds. These types of products are usually
marked-to-market on a daily basis, and one could expect to receive a fraction of

what the product was marked at just prior to default. Indeed, DS comment that
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“the RMV assumption is well matched to the legal structure of swap contracts in
that standard agreements typically call for settlement upon default based on an
obligation represented by an otherwise equivalent, non-defanlted, swap” While
there may be cases where RT is more realistic than RMV, DS emphasize that
under the RT assumption, the computational burden of computing equation
(5.2) can be substauntial. Largely for this reason, various simplifying assump-
tions regarding the relationships between fi, r, and L have to be made. Finally,
DS note that if one assumes liquidation at default and that absolute priority
applies, then the RFV assumption may be more realistic since it implies equal
recovery for bonds of equal seniority of the same issuer. The main attraction of
the RMV model is that it is easier to use, because standard default-free term
structure modelling techniques can be applied. The key thing to remember is
what simplifications or assumptions one has made, and how this will affect the

pricing of real world securities.
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