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Chapter 4

Overview of Structural

Models

4.1 Introduction

The key characteristic shared by structural models is their reliance on economic
arguments for why firms default (e.g. the firm’s value does not cover its obliga-
tions). These economic models provide the framework to derive a relationship
between defaultable debt prices (or credit spreads) and market variables. Our
investipation focuses on two structural models that are designed to price default-
risky bonds: Merton (1974), and Longstall and Schwartz (1995). We chose to
mvestigate these two models because of their analytical tractability and the fact
that the Longstaff and Schwartz model combines many distinetive features of
other models. Like Merton, they assume that the firm values follows a diffusion-
process, as in Black and Cox (1979), they allow for early default before matu-
rity of default-risky debt and as in Shimko, Tejima and van Deventer (1993),
the riskless rate is assumed to follow the Vasicek (1977), model. Before review-
ing these models, we list below the main issues that need characterization in a

structural model.

1. Asset value process.
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Issuer’s capital structure.

Recovery process.

4. Terms and conditions of the debt issue.

. Default-risk-free interest rate process.

Correlation between the default-risk-free interest rate and the asset price.

Correlation between interest rate risk and default risk.

4.2 Merton (1974)

Beginning with the groundbreaking Black-Scholes (1973), insight that the debt

of a firm can be viewed as a contingent claim on the assets of the firm, Merton

provided one of the first in-depth valuation models for default-risky bonds. The

contingent claims approach requires the specification of three processes. First, a

process for the total asset value process of the firm has to be explicitly modelled.

Second, the bankruptey process has to be wodelled completely. That is, the

“when” and “how” of bankruptey have to be made explicit. Third, the payoffs

to creditors in the event of default have to be specified in detail.

The following assumptions were made in Merton's valnation framework:

1.

2.

Riskless interest rate is constant, ie. r(f) =r ¥t = 0;

Firm value V dynamies: dV; = pVidt + aVidWy, Vy > 0; p is the in-
stantaneous expected rate of return on the firm per unit time; o2 is the
instantaneous variance of the return on the firm per unit time; W is a

standard Gauss-Wiener process;
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Assets Bonds | Liabilities
No default | VP > B | B Vr— B
Default Ve< B | Vp 0

Table 4.1: Payofls to the firm’s liabilities at maturity

3. Firm has a single outstanding issue of debt promising B at T Default
oceurs when Vi < B. Debt covenants grant bondholders absolute pri-
ority: in the event of default, bondholders get the entire firm and the

shareholders get nothing.

Merton also assumes that the firm is neither allowed to repurchase shares
nor to issue any new senior or equivalent claims on the firm. This assumption
implies that at the debt’s maturity T' we have the payofis in Table 4.1 above to
the firm’s liabilities.

If at time T the asset value Vp exceeds or equals the face value B of the
bonds, the bondholders will receive their promised payment B and the share-
holders will get the remaining Vi — B. However, if the value of assets Vi is
less than B, the ownership of the firm will be transferred to the bondholders.
Equity is then worthless (because of limited liability of equity, the shareholders
cannot be forced to pay the shortfall B — Vi), Summarizing, the value of the

default-risky bond issue f(Vp,T') at time T' is given by

f(Vp, T) = min(B, Vy) = B — max(0, B — Vr) (4.1)

which is equivalent to that of a portfolio composed of a default-free loan
with face value B maturing at time T and a short European put position on the
assets of the firm V with strike B and maturity T. The value of the equity Fp

at time T is given by

E¢ = max(0, Vp — B) (4.2)

which is equivalent to the payofl of a European call option on the assets of
the firm V with strike B and maturity 7. With the payoff specifications just
described, we are able to value corporate liabilities as contingent claims on the

firm’s assets.
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At this point, Merton (1974), considers the formation of a zero net invest-
ment portfolio consisting of a claim whose price is the value of the assets of
the firm, the debt of the firm, and the riskless debt. These are held in pro-
portions such that the return on the portfolio is deterministic and the portfolio
requires zero net investment. The expected rate on the portfolio must be zero
to avoid arbitrage. This condition is sufficient to derive the PDE that the price
of any contingent claim on V' must satisfy. Since Merton's paper, Harrison and
Kreps (1979), and Harrison and Pliska (1981), developed martingale methods
for pricing derivatives. Instead of following Merton’s PDE method to derive the
closed form solution for the price at time {, f(V;.T") of the default-risky bond,
we will follow the general martingale pricing techniques outlined in Musiela and
Rutkowski (1998). The aim of introducing the martingale measure is twofold:
firstly, it simplifies the explicit evaluation of arbitrage prices of derivative secu-
rities; secondly, it describes the arbitrage-free property of a given pricing model
for primary securities in terms of the behaviour of relative prices.

Taking as given some risk-free short rate process ry , we suppose that there
is a security with value G; = exp (_fl: 'r_qn!s) at time £, which provides a riskless
investment opportunity. Assuming that there are no arbitrage opportunities in
the financial market, modelled by some probability space (€2, F, P)!, there exists
a probability measure Q. such that the processes of security prices, discounted
with respect to 3, are Q-martingales (Harrison and Kreps (1979), and Harrison
and Pliska (1981)). @ is called the equivalent martingale measure, and we let

}‘[] denote the corresponding expectation operator. This gives us

x !-' ris

edu

f,T) B |:1“111{‘_':f’.";5) | 1‘.",}
edn s

|
=

B — max(B — V., 0) | r}
r 4r

(JJ;.I. rds

Therefore,

L1t is eustomary in financial models to regard Fy as a model for all the information available

to agents at time t.
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FVLT) = B B - max[_B - Vp,0) | F,
: efrr rds :
- B B _B max(B — Vi, 0) | F,
;_1.’;: rds FILT rds ¥
[ ~ | max(B — Vp,0 ‘ ,.
= BeMTH_-F [—M‘(Tsr) | Jw} (4.3)
edt

Merton (1974), using the Black-Scholes (1973), insight that the debt of a
firm can be viewed as a contingent claim on the assets of the firm, observed

that

~ ax(B — .
B {m 1 V. 0) | Ff] (4.4)

o T
J ris
e t

is the value of a European put option on the assets of the firm with strike

B and maturity 7. Thus by the Black-Scholes formula, we have

= B — Vi, 0 . _
D) [E’M;TT—) | F,] = Be "THd(—dy) — Vidb(—dy) (4.5)
el ris

where ¢(x)=standard normal cumulative distribution function,

dy = In(Vi/B) + (r + o*/2)(T' - 1)
avlT —1
i = In(V;/B) + (r — a2 /2)(T —1)
h oVT —1
dy—ovVT —1

Substitution of equation (4.5) into equation (4.3) gives

fVi.T) = Be T8 - Be " T-Np(—dy) + ViD(—d,) (4.6)

elT— Vid(—d
= Be T (1 - &(=dy)) + B(~da) (Be—r-(t’r—(tld)l(}_dz)>}

= Be "TU[(1 — ®(—dy)) + P(—d2)é] (4.7)

where
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Vid(—d .
2% ‘r' . ( 1) {-—1.8}
Be="(T=t1d(—dy)
Proposition 1 Firm Value Dynamies
The SDE for firm value V' dynamics:
dV, = pVidt + aVidW,
Vo = 0 (4.9)
has a unique solution given by
Vy = Voemtroit (4.10)
where
L (4.11)
m=pu——-a 1.
H—3
Proof.
We consider the process X; = pt + gW,;. Clearly, this is a solution to dX; =

puelt + odWy. After making the transformation Y = e

, an application of Ito's
lemma gives the SDE for Y, dY; = Y (p + %o’z):it + YiodW;. Now we consider
the process X, = (jn — %o"’)t + oW, and make the same transformation. Ité’s
lemma confirms that dY; = Y udt + YiodW,.

Using equation (4.10), we can explicitly write down the actual default prob-

ability . From the definition of default,
p = PlVr<B]
&= f’[Vhf*'”T toWr .« B|

= P {HLT + oWy <In -]./E—j|

0
- p [WT < (——1“[‘%: m‘)]
m(B/Vy) — m]") {
= o —— - 4.12
(MEC (112)
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The result in equation (4.11) uses the fact that Wy is normally distributed
with mean zero and variance 7.2 Setting o = r in equation (4.11), gives the

risk-neutral default probability p

p= P[Vr < Bl = ®(—ds) = 1 — d(da) (4.13)

We can now interpret the equation for defaultable debt (4.7) in an intuitive
way. The value of defanltable debt is the value of otherwise similar, defanlt-
risk-free debt times the risk-neutral probability of no default plus the payoff in
the case of default times the risk-neutral probability of default. § is the implied
recovery rate in the Merton model.

Defining s(V4,1') as the spread above the risk-free rate at which the debt

trades at t, we can rewrite equation (4.7) for t < T as

f(Ve,T) = Bexp(—(r + s(V,))(T — 1)) (4.14)
where
1 1
s(iuT) = —z—n lE‘I’(_d” + B(dy) (4.15)
= E s—r{T—t)
d = Vr{

d is the discounted debt-to-asset value ratio, which can be considered as
a measure of the firm’s leverage. Equation (4.15) defines a term structure of
credit risk?, which depends on the time to maturity of the debt, firm's asset
volatility o (the firm’s business risk), and leverage d. In Merton's model, the
credit spread increases as the leverage of the firm rises. This increase in the
credit spread is natural because increased leverage heightens the probability
that the firm may default. Higher default probability is reflected in an increase
in the credit spread. Similarly, a rise in the volatility of the firm’s value increases
the probability that the firm may default, thus expanding the credit spread.

Furthermore,

2See Section 3.1.1 for properties of the standard Brownian motion.
A The term structure of credit risk is also called the risk structure of interest rates, the term

structure of credit spreads or the rigky term structure.
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%ip{}s(‘/’;,t%—h} =0 (4.16)

This follows from the fact that

lim d = o
(T—t)—0
lim dy = oo
(T—1)—0

and from standard properties of the normal distribution that state that

Il
o

®(+0)
P(—o0) = 0

From equation (4,16), we see that credit spreads for maturities going to zero
are zero. Zero short spreads mean that default-risky bond investors do not
demand a risk premium for assuming the default risk of an issuer, as long as
the time to maturity is sufficiently short. This feature is not consistent with
what is observed in the market. In the market, we see non-zero credit spreads
for nearly all default-risky bonds regardless of maturity.

Despite its simplicity and intuitive appeal, Merton’s model has many limi-
tations. First, the credit spreads derived from the model are significantly lower
than those implied by empirical evidence (Mason, Jones and Rosenfeld (1984)).
That is, Merton’s model underprices credit risk. Second, in the model the firm
defanlts only at maturity of the debt, a scenario that is at odds with reality.
Also, most firins have complicated capital structures made up of a variety of
security types, as opposed to a single debt issue. The Merton framework as-
sumes that the absolute-priority rules are actually adhered to upon default in
that debts are paid off in their order of seniority. However, empirical evidence
(Franks and Torous (1989),(1994)) indicates that the priority rule is often vio-
lated.

Yet, another problem with the Merton model is that the value of the firm,
which is an input to the valuation model is difficult to ascertain since not all

the firm’s assets are either tradable or observable. These real life complications
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make the Merton framework less useful as a tool. However, it does not decrease
the intuition behind modelling the default process. Merton’s framework has
spawned an enormous theoretical literature on defaultable debt pricing. Some
examples are Black and Cox (1979). Kim, Ramaswamy and Sundaresan (1993),
Shimko, Tejima and van Deventer (1993), Leland (1994), Longstaff and Schwartz
(1995), Leland and Toft (1996), and Sad-Requejo and Santa-Clara (1999). The
Merton model has also been loosely implemented in a commercial package which
is marketed by KMV corporation. The KMV model draws its main strength
from a judicious (but not-model consistent) use of a large database of historical

defaults.

4.3 Longstaff and Schwartz (1995)

Longstafl and Schwartz (herealter, LS) provide closed form expressions for the
value of risky fixed and floating rate debt. LS address some of the weaknesses
of the Merton model. In a way similar to Merton, LS assumed that the value

ol the firm follows a diffusion process

dV = pVdt + oVdZ, (4.17)

where o is a constant, p is the rate of return on the underlying asset value
and Z, is a standard Wiener process. In contrast to Merton’s assumption of
constant interest rates, LS postulated that the short-term rate follow the mean-

reverting Ornstein-Uhlenbeck process first used by Vasicek (1977).

dr = (v — gr)dt +ndZs (4.18)

where ~, 3 and 7 are constants and Z; is another standard Wiener process.
The authors chose the Vasicek model for the short-term rate because it incor-
porates mean reversion and facilitates the use of closed form solutions. A more
general short-term rate model would require that defaultable debt prices be
solved numerically. The instantaneous correlation between Zy and Z3 is pdt,

e,
dZdZ, = pit (4.19)
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Priority of claim Altman Study: | Frank and Torous
1985-1991 Study:1983-1990
w w

Bank Debt 0.136

Secured Debt 0.395 0.199

Senior Debt 0.477 0.530

Senior Subordinated Debt 0.693

Cash-Pay Subordinated Junior Debt | 0.72 0.711

Non-Cash-Pay Subordinated Debt 0.805

Table 4.2: Historical values of w from various bond classes

LS also assert that strict absolute priority to claims is rarely upheld in dis-
tressed organizations., which also differs from the Merton model. The model
allows for a variety of liability classes with different coupon rates, priorities and
maturity dates.

LS then assumed the existence of a (constant) threshold value of the firm, K,
which serves as a inancial distress boundary; if the value of the assets breaches
this level, default is triggered (on all outstanding obligations), some form of
restructuring occurs and the remaining assets of the firm are allocated among
the firm’s claimants. Thus contrary to Merton’s model, default can occur prior
to maturity. LS simplify their analysis by postulating that it is the ratio of V
to K, rather that the absolute value of which governs financial distress and call
this ratio X.

If a reorganization occurs during the life of a security, the security holder
receives 1 —w times the face value of the security at maturity, where w represents
the write-down on a particular security and is constant over all instruments
issued by the firm. This type of payoff would be consistent with a reorganization
which provided new securities in exchange for old claims. The model thus avoids
the dependence of the payoff on the debt on underlying asset value. Values of
w can be obtained from historical information on various classes of bonds. The
authors site two such studies:(see Table 4.2 above)

For completeness, we now use the assumption of perfect, frictionless mar-

kets in which trading takes place continuously to derive the fundamental PDE

49



University of Pretoria etd — Magwegwe, F M (2006)

that the price of any derivative asset H(V,r, t)must follow. We will derive this
PDE using Merton’s derivation of the Black-Scholes model presented in Merton
(1974).

Let Py(ry,t) and Pa(ry,t) be the prices of two zero coupon bonds with dif-

ferent maturities. Then by applying Ito’s lemma and using equation (4.18) we

have
ar, ar; 1 ,0F aF;
(r,l) = = Br)— + —— 4+ =P =5 ) dt — ) dZ.
dFi(ri,1) (h e T T arz)‘ +(” ar)’ :
e Py ap, Py
= jpp Pt +op PidZy (4.20)

We now consider forming a riskless portfolio of these bonds. Let X and X

be our holdings of P; and P, respectively. From equation (4.20) we have

{1’[){'1 9 &1 +X-2.P'2] = ()(] o, P+ X-zj.'.pqu}df = {X1G’p; Py 4—)&’2(!',112 Py)dZs (4.21)
To eliminate interest rate risk, we now choose X; such that

Xiop, P,

X](Tpl Pl +.\'2!‘7;J._.P2 =0= —X-)_Pvz= (422)
Cl'p3
We have a riskless portfolio and thus
Xipp P+ Xopp, Py = v(Xi P+ X2 Ps)
X P Xiop, P
= Xipip P1 — 1ip, (—IEM) = rXiP—r (—lh—l)
ap, ap,
() - = (2)
= pp e |\ — ) = T/
ap, ap,
— Hp =T = Hpy—r (423}
(J'.x.-l Upg
Therefore ;
pr () =1 ppa-r _ A t) (4.24)

ap(t)  op(t)
where A(r, t) must therefore be independent of the bond's maturity. Market

participants commonly refer to as the market price of interest rate risk.
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I H(V,rt) is the price of any derivative security contingent on V,r and ¢,

then by applying Ito's lemma to H and using equations (4.17) and (4.18) we

have

dH(V,r 1)

We now

= Hydt+ HydV + H,dr

+

1 . o g
5 Hvv(dV)? + Hy(drdV) + %HT.,.(m-)?}
= Hidt+ Hy(pVdt +oVdZ)) + H.((v — Br)dt + ndZ;)
2 2
2 (%v Hyy + panV Hy, + %11) dt

2 2
= (Hf +uVHy + (v — 8r)H, + %Vz Hyv + ponV Hyr + %Hﬂ,) di

;

;.1;:”
+(J'V-1'f\-‘ LfZ] + i’].!‘L—!’I.Z?

= pupHdt +oVHydZ, + nH, dZ,

impose no-arbitrage conditions by selecting a portfolio such that

the interest rate risk and asset risk are eliminated by taking positions in the un-

derlying asset and the risk free zero coupon bond. Assume the riskless portfolio

includes Xy, Xp and Xy units of the derivative security, zero coupon bond and

the firm respectively. Once again by Ito we have

(f[,XHH +XpP+ Xy V] = (XppgH + XppupP + Xy gy V)dt

+ (._,\’H ”v + Xg-')d Vr.’.Zl
+ (XpnH, + XpopP)dZs

We now choose X, Xp and Xy such that we get a riskless portfolio

XuHy + Xy =0 = Xy =-XpuyHy
XihiH; + XpopP=0 =% XpP=—-XuH,
ap

Standardizing to Xy = 1 gives

Xv=—Hy (4.26)

51



University of Pretoria etd — Magwegwe, F M (2006)

and

XoPi= sl (4.27)
op

Once the portfolio has been made riskless, the instantaneous return on the

portfolio must equal the risk-free instantaneous interest rate. Therefore

(XyH+ XpP+XvV)r = XppuH + XpupP + XypvVrH
—l‘?‘JH,. =— TVHI./
ap
0'2 ‘
= Hy+pyVHy +(y—0r)H, + -2—1,/2 Hyv
7 332 n .
+J)U?]'l’ Jl'ir\.',. —+ "‘_”1'7' — !LP”r - “\;’1‘( Hy
2 ap

0

Il

e a (ﬁ —Br)—n (fﬂ)) H,
op

2
7
T H..

2
+rVHy + %VEH._.-V + ponV Hy, + 5

This leads to the following equation;

2 e
f;—v?f-rm.- + ponV Hyr + %H +1+VHy +(a—Br)H, —7H + H, =0 (4.28)
where
a = ¥—A

ftp —T

ap

A =7

A is the adjusted market price of interest rate risk.

Equation (4.28) is the fundamental PDE defining the price of any derivative
security contingent on V, r and ¢ . The value of the derivative security is obtained
by solving equation (4.28) subject to the appropriate maturity condition.

Vasicek (1977), showed that the price of a riskless discount bond D(r,T)

when the dynamics of r are given by equation (4.18) is given by

D(r,T) = exp(A(T) — B(T')r) (4.29)

where
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e ] 2
AT) = (;? - %) Tt (% i %) (exp(~BT) — 1)

,32 . fI‘
~\15 exp((—26T) - 1)
1 — exp(—4T)
3
Given the LS framework, the value of a default-risky discount bond?* is the
solution to equation (4.28) with H(V,r,T) = P(X,r,7) and X = V/K, subject

to the following maturity payoff:

l-wl(r<T) (4.30)

where I(-) is an indicator function taking the value one if the first passage
time 7 of V to K is less than or equal to T, and zero otherwise. Based on the

above assumptions, the value of a default-risky discount bond can be written as

P(X,r,T) = D(r,T)(1 —wQ(X,r,T)) (4.31)

where X = V/K, D(r,T) is the value of a riskless discount bond under the
Vasicek model and Q(X,r.T) = E[I{T < T)] is the probability that the first
passage time of In X to zero is less than T', where the expectation is taken with

respect to the risk-adjusted processes

2
dinX = (r — %— — panB(T — t)) dt + odZ; (4.32)
dr = (a—Br—n*B(T —t))dt + ndZ, (4.33)

Unfortunately, there is no known closed-form solution for Q(X,r,T') when
interest rates are stochastic, so LS proposed a numerical solution that is based
on an implicit formula for the first passage density due to Buonocore, Nobile and
Ricciardi (1987). The first passage density of In X to zero at time 7 starting from

In X at time zero, ¢(0, 7| In X, 0), is defined implicitly by the integral equation

A1 this dissertation, we use the terms discount bond and zera coupon bond interchangeably.,

a3
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(=X - M(T)\ _ [* (M(r,T) - M(t,T)
q (————) _./u q(0,7 | In X, 0)& ( S = ST

S(t)

) dr

(4.34)

where 7 <t < T. To abtain an explicit formula for the first passage density,

the authors discretize time into n equal intervals, and define time {; = % for

{i =1,2,...,n}. Discretizing equation (4.34) gives the recursive system for the

terms below.

Q(X,r,T) = lim Q(X,r,T,n)

n—oo

where

n

QUX.rT.n) =Y

i=1
and the ¢; are defined recursively by
@ = Play),
i—1
g = Oa)-Y_ ¢®(by)i=2.3,...,n,
=1

The parameters a, and b;; are now given by

— X — M(iT/n,T)
MGT/n,T) — M1 /n,T)
VS(iT/n) — S(5T/n)

Here the authors use the functions M and S which are

a; =

b =

¥}

== 2 2
M@, T) = (ﬂ_dm_ g__%){
2
{jJI? T? 'y [ ) [ —
" ( 32 ¥ Qﬁ:;) exp(—GT)exp((8t) — 1)
RN I
T_e& N\ _. .
’ (;i 3z ;3:%) (1 — exp(t))
"?2 o
= (“2:'3‘3) exp(GT)(1 — exp(/t))

o4

(4.35)

(4.36)
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and

2 2
S(1) = (ﬂ;’ & g— + 92)—(%’? ¥ i;—ﬁ) (1—exp{—;5t))+(1) (1—exp(—26t))

j-’j'd
(4.37)
LS propose using n = 200 as approximation to the infinite sum,
n
lim > g, (4.38)
i=1

The equation for defaultable debt, (4.31), has the intuitive structure that
the value of risky debt can be viewed as the difference between the riskless bond
and the discount for the default risk of the bond. The term, wD(r,T), is the
present value of the write-down on the bond in the event of a default. The term,
Q(X,r,T), is the risk-neutral probability of default.

According to Rogers (1999), LS’s derivation for the price of the default-
risky bond is flawed because they applied the results of Buonocore, Nobile and
Riceiardi (1987), concerning the first-passage distributions of one dimensional
diffusions to the log of the discounted firm value, but this process is not a
diffusion. Also, Collin-Dufresne and Goldstein (1999}, (henceforth, CG) assert
that the numerical solution to Q(X,r,T) proposed by LS is only valid for one-
factor Markov processes, that is, when interest rates are non-stochastic. This
means the LS formula is only an approximation to the true solution to their
model. CG derived what they claim to be an efficient algorithm for computing
the exact solution to the LS model. They report that the difference between
the LS approximation and the exact solution to their model is economically
significant for typical parameter values.

In the LS model, default risk is captured by the variable X, so bonds can be
valued by conditioning on X directly rather than on the default status of other
bonds. This implies that coupon bonds can be valued as the sum of a series
of zero coupon bonds. From this model we can see that the price of a default-
risky bond is an increasing function of X' and a decreasing function of w and

T. Default-risky bonds have shorter durations® than their risk free equivalents

"The sensitivity of the bond price to changes in r provides a measure of the duration of

the bond,

cn
(i}
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and this property also holds for the LS model. As r increases, D(X,r,T') and
Q(X,r,T) become smaller. Q(X,r,T) becomes smaller because the increase in
r causes V' to drift away from K at a faster rate. The model can also display
that the duration of a default-risky discount bond need not be a monotone-
increasing function of its maturity. In fact, it can display how the duration can
decrease with time, given a moderate level of default risk. Therefore, it is clear
that while default-risky bond prices are generally decreasing with increases of r
, this can be reversed for extremely defaultable debt.

Findings cited by the authors show that the LS model allows for various
term structures of credit spreads for different levels of default risk. The model
displays a monotone increasing term structure of eredit spreads for bonds with
low default risk and a hump shaped structure for bonds with high default risk.
Also, the model indicates that there should be a negative relationship between
credit spreads and the level of interest rates.

Another important finding of the LS model is that the effect of a firm’s cor-
relation with interest rate changes can be very significant in determining the
value of its debt. Exogenously specifyiug the write-down variable, w, introduces
another degree of freedom into the LS model so that it could, in principle, be
made to fit any given level of the default spread observed in interest rates. More,
problematic, however, is the assumption that w is a constant. The violation of
the absolute priority rule may imply stochastic values of w, contrary to this
assumption. The authors state that their model can easily be extended to al-
low for unsystematic stochastic values of w which are uncorrelated with both
business and interest rate risks. Setting the default trigger. K, to be a constant
is not a satisfactory way of capturing the events that precipitate a firm into
bankruptey. Nevertheless, it precludes the undesirable property of simple ver-
sions of Merton’s model that, before maturity, firm value can fall significantly
below the face value of the bond without triggering default. Ideally, the critical
level K should be a function of the liabilities outstanding at each point in time;
w should be stochastic. However, incorporation of such features may sacrifice
the model’s tractability without providing additional insight into the valuation

of defaultable debt.
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4.4 The Merton (1974) and LS(1995) Models:

A Comparison

The relationship between Merton (1974), and LS (1995), is important since it
not only provides a foundation for empirical comparisons, but also relates to
some fundamental issues of pricing default-risky bonds. This section provides
a comparison of these models. The three major findings are as follows. First,
although the Merton model is less general that the LS model in terms of default
probability, it is more general in terms of the recovery rate. Second, in both
Merton (1974) and LS (1995), the condition triggering a default is not consistent
with the no-arbitrage argument. Third, both models are restrictive due to
predictable arrival times of default, which implies that the term structure of
credit risk has to start from zero.

In LS, default happens when firm value V/(f), which follows a diffusion pro-
cess with a continuous sample path, reaches a constant default threshold K
from above. This results in two important features of the LS model. First, it
permits default before the maturity date of default-risky debt. As a result, the
LS model is more general than the Merton model which permits default only
at the maturity date. Second, the probability of default is predictable, ie., a
currently solvent firm cannot default on its debt in the next instantaneous mo-
ment. The consequence of this feature is that when the time to maturity goes
to zero, the LS model generates a term structure of credit risk that converges
to zero too. This is also a restriction of the Merton model.

For comparison purposes, the pricing formulas for default-risky discount
bonds under the Merton (1974) and LS (1995) models are given below. From

equation (4.7), we have for the Merton model

PV, T) = Be " T1[1 — ®(—dy) + (—dy)d] (4.39)

where
Vid(~d,)

Be~m(T=t1¢(—dy)

is the implied recovery rate. B is the face value of a riskless discount bond

5=

(4.40)

and ©(—dy) is the probability of default in a risk neutral world. From equation

(4.31), we have for the LS model
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P(X.r,T) = D(r,T)((1 - Q(X,rT)) + (1 — w)Q(X,r,T)) (4.41)

where w is the write-down proportion of the debt value in case of default,
X = V/K, D(r,T) is the value of a riskless discount bond under the Vasicek
model and Q(X,r, T) is the probability of default.

It is evident from equations (4.39) and (4.41) that the pricing formula for
default-risky discount bonds has the same form in both the Merton and LS
models. However, there are three key differences hetween equations (4.39) and
(1.41). First, because of the assumption of constant interest rates in the Merton
model, the price of a riskless discount bond is simply the present value of the face
value of the bond, Be=""=t)  whereas in the LS model the price of a riskless
discount bond, D(r,T'), is given by the Vasicek model. Second, the Merton
model, has a closed-form solution for the risk neutral probability of default,
&(—dy), whereas in the LS model, the probability of default, Q(X,r,T), can
be solved iteratively. Third, in the LS model, the recovery rate of default-risk
debt, 1 — w, is an exogenously specified constant whereas in the Merton model
the recovery rate of default-risk debt, &, is stochastic. In other words, the
LS model assumes a zero covariance between recovery rate and probability of
defanlt. Therefore, the LS model is less general than the Merton model in terms

of recovery rate.
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