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Chapter 3

Introduction to Interest
Rate Modelling

3.1 Fundamentals

This section presents the fundamentals of interest rate modelling as they pertain
to work in this dissertation.

A zero coupon bond is an obligation to pay the holder one dollar at a fixed
maturity date T. We write the value of the zero coupon bond at time { as
P(t,T).

We assummne (for this chapter) that the payment will be made with absolute
certainty. At any time ty < t, we let P(¢,T) denote the price of a zero coupon

bond at time ¢ maturing at time 7'. The no arbitrage condition gives
B, TYy=1Plt,r)Plr.T) (3.1)

for all 7 € (£, T)

A general bond may have coupons. These are payments of the same amount
¢; which are paid at times t;, where the {;’s are less than or equal to the final
maturity date T'. The bond will also pay some principal amount p at maturity.!

All bonds of the above form can be written as a linear combination of zero

'The principal amount is generally referred to as the par value of the bond.
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coupon bonds. If 3 is the value at time ¢ of a bond with principal p, maturity

7" and coupons ¢; to be paid at times t;, then we have
B(t) = }: eiP(t,t;) + pP(t,T) (3.2)
<t <T

This implies that it is sufficient to restrict our attention to zero coupon bonds
because all coupon bonds are just linear combinations of zero coupon bonds.

The continwously compounded zero coupon yield, y(t,T) is given by

y(t,T) = _T—l—fT In(P(t,T)) (3.3)

For a fixed ¢, the function T' — y(t,T) is called the (zero coupon) yield
curve.

An instantaneous forward vate f(t,T) is defined as

_n(P(t.T))
aT

5
Pt T) :Fxp{—-/. j'(!,.ﬁ')n’..s} (3.5)

The spot rate? r(t) is defined to be

f,T) = (3.4)

which implies

r(t) = lji_}‘l!lf'[f., T) (3.6)

The spot rate can also be thought of as the rate of return of a bond with an

infinitesimal time to maturity. That is

5 1 -~ .
() == 1}1};'1 T3 In(P(t,T)) (3.7)

3.1.1 The Wiener Process

The definition below and related concepts are taken from (and covered in much
more detail in) Brzezniak and Zastawniak (1999). The Wiener process {or
Brownian motion) is a stochastic process W(t) with values in R defined for

t € [0,0c) such that

2The spot rate is sometimes referred to as the short rate.
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1. W(0)=0as.
2. the sample paths { — W (f) are continuous a.s.;
3. W(t) has stationary independent, normally distributed increments: If

E]:t(,-((.l {I’.z.,.{f,l

and
Yy = W(t) — Wi(ty),Ya = W(ta) = W(t1),....Yn = Witn) — Wi(t.—1)
then
e Yy, Yy, ... Y, are independent.
e BY;] =0V,

e VarlYj| =t; —t; 1 Vj.

3.1.2 Ito’s Lemma

Let W(t) be a Wiener Process. Let (t) be an 1to Process with dz = a(x, t)dt +

bla, t)dW. Let V = V(x,t), then,

. av v 192V
v = Dt Tode+ 35 attd
v av 1 52V . av
= Spr™ as ——0lz, i b, )d
TR a(x,t) + 3 522 S bz, t) ](EH- e b(z, t)dW

Proof: Using a Taylor expansion

av 18%v, ., 8V 182V *v
e = )2 + S dee _
dV'= it + 5 () + Fo et 5 g \® T

dedt + h.ot  (3.8)

Auy term of order {(I!.}T or higher is denoted by h.o.t. and is small relative to
terms of order dt . Note that (dW)? = dt.
S0,

(dt)? = h.ot
dedt = alz, )(d)? + bz, t)dWdt = h.o.t.
(de)? = bz, t)*(dW)? + h.o.t = b(z, t)2dt + ho.t.
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Model v(re, t) | a(ry,t)
Merton * 7 o
GBM? Or, ary

Ho and Lee t; a
Vasicek 0+ar, | o
Brennan & Schwartz | 0 +ary | ory
Cox-Ingersoll-Ross 0+are | ot

Table 3.1: Short rate models

Therefore,

rH av 10°V
= —dt+ —— {
dV d T —dx + 5 902 b("r t)2dt (3.9)

3.2 Short Rate Models

A common approach to stochastic modelling of interest rates is to take the short
rate r(1)® to be a stochastic process. Models of this form are commonly referred
to as short rate models. The process r; is generally taken to be a diffusion

process defined by the stochastic differential equation

dry = v(re, Ddt + o (re, 1)dW, (3.10)

driven by a Wiener process W. We can interpret v as an instantaneous rate
of return. Some examples with their specification of v and @ are shown in Table
3.1 above.

It hias been shown (in Vasicek (1977), for example) that, in this formulation,
the value of a zero coupon bond at time ¢ maturing at time T' must be the

solution to the partial differential equation

1 )
P + 592(?‘,,1)1’,,. +(v(re, 1) + Ay, Da(re 1) P — 1P
P(t,T)

1 (3.11)

4Sometimes written as re.
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where A is the market price of risk." The Feynman-Ka¢ equation gives

Plry,t,T)=Eq,.0 [pr { - /rT 1'sufs}] (3.12)

where 7, is now the solution to the SDE

dry = ju{re, t)dt + a(ry, t)dW, (3.13)

where pt = v + Ag is a risk-neutral drift.

3.3 HJM Models

Aunother approach is to model the instantaneous forward rates f(t,T) as the
underlying stochastic variables. Models which apply this approach are generally
referred to as “Heath, Jarrow and Morton,” models (or HIM models) after the
anthors of Heath, Jarrow and Morton (1992).

Mathematically, an HJM model can be described as follows. Forward rates

are modelled as a stochastic process given by

df (1. T) = p(f, 6, T)dt + Y ([, T)dW¢ (3.14)
=i

where W}, ..., W}* are independent Brownian motious, the o;(f, t,T)'s are
specified by the modeller, and the pu(f,t, T)’s are determined by the no arbitrage

condition. This is the requirement that

n T
p.(f,f,TJzZa,-(f.!.ﬁ"]/ ai(f, 1, s)ds (3.15)

=1

This condition is often referred to as the “HJIM drift condition.”

HThere is a theorem which states that the no-arbitrage condition implies that the difference
between the instantaneous rate of return of any asset and the spot rate divided by the asset's
volatility must be a function of the state variables and calendar time. That function is called

the market price of risk.
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3.4 The Yield Curve

Interest rates vary for different maturities of debt. A graph of the spot yield
for different maturities is called a yield curve. In general, there is a distinct
difference between short and long term interest rates. There are a number of
economic theories that are cited to explain the shape of the yield curve. How-
ever, the expectations theory and the market segmentation theory have evolved
as the major theories that explain the shape of the yield curve.

The expectations theory is based on the premise that current interest rates
are somehow related to the market’s expectations of future rates. These future
interest rates are affected by economic factors such as money supply figures,
inflation and trade deficit figures. Market participants have different views on
the expected future behaviour of these economic factors and this determines
their anticipations of the future interest rates. These expectations are evident
from the shape of the yield: a downward sloping yield curve implies that the
sliort term interest rate is expected to fall, whereas the opposite is expected
from an upward sloping yield curve. In general, the short term interest rate is
more sensitive to the economic factors than the long term interest rate.

The market segmentation theory relies on the idea that some investors have
restrictions (either legal or practical) on their maturity structure. Examples
include money market funds (short-term maturities) or life insurance companies
(long-term maturities). The shape of the yield curve is therefore determined by
the supply and demand for securities within a given maturity segment.

In any nation the lowest interest rates on local currency denominated debt
apply to those loans assumed by the sovereign government. These loans take
place through the sale of government bonds. Provided that the debt is issued in
the sovereign currency, the government has the option of printing money to meet
any payments that are due. It is for this reason that sovereign debt is assumed
to have no risk of default. This means that the probability that the loan will
not be paid is effectively zero and consequently, the interest rate offered on a
sovereign loan is regarded as the risk-free rate. A yield curve constructed using
government bonds is therefore called a risk-free yield curve or a zero-coupon
yield curve.

The risk-free yield curve is a concept central to economic and financial the-
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ory and the pricing of interest rate contingent claims. Together with the no-
arbitrage theory, it provides a mechanism for comparing cash Aows occurring at
different times. Any risk-free financial asset comprised of specified tranches can
e assigned a present value that is arbitrage-free. This is because it is possible
to lend (borrow) the appropriate amount now that will match each tranche as it
occurs. We will illustrate this concept with the arbitrage-free pricing of a South

African government bond

3.5 Pricing A South African Government Bond

South African government bonds have lixed rate coupons which are paid semi-
annually up to and including the maturity date at which time the principal or
face value is also repaid. The coupons are quoted in percentages and indicate
the percentage of the principal to be repaid annually. Therefore a 13% semi-
annual coupon means that 6.5% of the principal is repaid every six months with
the final coupon payment and the repayment of the principal at maturity. South
African bonds are priced by yield-to-maturity - the price of a bond is quoted
as a semi-annual interest rate and the cash price is obtained by discounting the
cash flows of the bond to the present using this yield-to-maturity as the interest
rate for the discounting.”

We now provide the framework for pricing a South African bond, with the

assumption that the principal on the bond is 100.
e P(t,y,n) = trading price of a bond
e t = current time
e 1. = coupons still to be received

e An = [ractional number of half-years before the first coupon will be re-

ceived

e ¢ = coupon rate of the bond (13 for 13%)

TThe yield-to-maturity can thus be regarded as the ‘internal rate of return’ of the bond's

cash fows.
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e y = quoted yield of the bond expressed as an interest rate compounded

semi-annually

The quoted yield is consistent with the traded price if the following equality

holds,

- l &= 2 100
Pl = iy (Z T+u/2r (1+y/2>"—1) 819

i=0

A bond has a specified time structure of payments. Assume a function r(¢,7')
which represents the risk-free, continnously compounded interest rate at time ¢
applicable to loan maturing at time 7. Using no-arbitrage theory, the present
value of each cash How of the bond can then be determined. A coupon received
at time f; will have a present value of (¢/2) exp(—r(t,t;)(t; —1)). The sum of the
present values of all of the cash flows comprising the bond will be an arbitrage-

free value for the bond. Let P(f,n) be the arbitrage-free price for the bond.
Then,

2|

(.'(’_1-(1'.1‘.,)[\‘.,—{]) + lDU‘_,—r{t.f.,J(tN —1) [317}

P(t,n) = (Z :

3.6 Determinants of the Risk-Free Yield Curve

Fundamental to the pricing of interest rate derivative instruments and the man-
agement of their risk is the construction of a risk-free yield curve. In liquid
fixed-income markets, zero-coupon bonds and money market rates are typically
nsed to construct the risk-free yield curve; in markets where a limited num-
ber of zero-coupon bonds are traded, there are usually enough coupon bearing
bonds traded to use in constructing this curve. In the South African fixed-
income-market, however, only a limited number of liquid financial instruments
are available to construct the risk-free yield curve. Under the efficient market
hypothesis the most liquid of these instruments will be trading at arbitrage-free
prices. A risk-free yield curve must be consistent with these prices. The present
value of the cash flows of these instruments should sum to their trade price as

i equation (3.16).
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The primary financial instruments of South Africa’s money market® that
may be used to reliably fix interest rates at the short end of the risk-free yield
curve are the Johannesburg Interbank Acceptance Rate (JIBAR), Negotiable
Certificates of Deposits (NCDs) and Treasury Bills (T-bills). The JIBAR J; is
the rate of interest that banks will offer to each other for a { -month loan that
begins on that particular day, The most popular period is 3 months but 1, 6,
and 12-month JIBAR rates are also available. NCDs, the most liquid of the
instruments. are issued by all major banks through private placements. T-bills
are issued by the government using an auction and usually have a maturity of
91 days. The secondary market for T-bills is relatively illiquid because local
banks use them to meet reserve requirements. This lack of liquidity in the
T-bills has led market participants to use Forward Rate Agreements (FRAs)
in constructing the short end of the risk-free yield curve instead of T-bills. A
Forward Rate Agreement is a forward contract where two parties agree that a
certain interest rate will apply to a certain notional loan or deposit during a
specified future period of time. A 3 x 6 FRA is an agreement to fix the rate
for the period between three and six months time (i.e., for the 3 month period
starting in 3 months time). Other FRAs frequently traded in the South African
Market are 6 x 9's and 9 x 12’s. Settlement is against the relevant JIBAR rate.
FRAs are settled at the start of the future period, when the FRA yield rate
(i.e., the rate agreed npon in advance under the FRA) and the JIBAR rate
are compared. If there is a difference between these rates a discounted cash
settlement based on the difference is made.

The JIBAR rate is quoted as a yield rate. This means that a discount bond

maturing in three months time would be traded as

100

(1 + Jj%)

P(t,t+3) = (3.18)

where P(t,T) is a zero coupon bond of maturity based on a notional principal
ot 100.

FRAs are also quoted as yield rates implying

SThe money market is the universe of instruments for the relatively short term (< 2years)

borrowing and lending of cash.
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100

P(t,t+3i) = " = l v (3.19)
(l + }3'.3;2_5) (} 1= 1’RA3XG?,;J|31?) (1 -t FRA;_‘;“_UX;j,fG%)
NCDs are quoted as yield rates i.e.,
100
Plt,t+s)= ——7——— 3.20
) (1+ NCD,3) ( )
where s is the term of the NCD in days.
T-Bills are quoted as discount rates i.e.,
8
2 I e = = = ( 3.4
P(t,t+5) = (1= TB.ge=) 100 (3.21)

where s is the term of the T-Bill in days.
The arbitrage-free price of P(t,T) is 100e~"TT =t where the (continu-

ously compounded) risk-free rate r(t, T') of the bond is related to its price by

) 1 100
r(t,T) = 77— In (P_{:‘T)) (3.22)
Assume that there are k of these money market instruments. Using equation
(3.22), the zero coupon bond values for these instruments can be converted into
continuously compounded zero coupon interest rates. This implies that the risk-
free rate r(t) is known at distinct times {t; : j=1,..., k} where at each t] there
is the following restriction on r(t)

rt;)=r}Vi=1,....k (3.23)

J

In South Africa we can use the government bond market and the interest
rate swaps markets to obtain information about interest rates for longer periods.
The South African bond market is a relatively developed fixed income market
with bond maturities of up to 30 years but it suffers from a lack of a complete set
of well-traded bonds with well-spaced maturities. For sectors of the yield curve
that don’t offer good tradable liquidity to reliably fix interest rates, market
participants use interest rate swaps - which can be seen as par yield bonds. An
interest rate swap is an exchange of cash flows based upon different interest rate
indices denominated in the same currency on a pre-set notional amount with a

pre-determined schedule of payments and calculations. Usually, one party will
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receive fixed flows (the swap rate) in exchange for making floating payments
(according to JIBAR). In South Africa, interest rate swaps are quoted form 1
to 25 years. with the most liquid swaps being in the 1 to 10 years area. The
most popular interest rate reset period is for 3 months, but reset periods can
also be 1, 6 or 12 months. Settlement is against the relevant JIBAR rate. On
every reset date the agreed swap rate and the JIBAR rate are compared, and if
there is a difference between these rates, the settlement is made at the end of

the reset period.

3.7 Estimating the Risk-Free Yield Curve

The Fundamental Theorem of Asset Pricing [see Dybvig and Ross (1989), for
example] implies that in a world of certain cash flows, c¢(t), and frictionless
markets, absence of arbitrage is equivalent to the existence of a linear pricing
rule, d(t) > 0 ¥¢, such that

P =" c(t)s(t) (3.24)

t=1

If markets are incomplete, there exists multiple sets of 8(t) which satisfy
this equation. In the term structure of interest rates literature, 6(¢), called
the “discount function” is usually transformed into a zero coupon curve by
(1) = —Ind(t)/t The discount function §(t) is the current price of a risk-free
zero coupon bond paying one unit of currency at time f. Clearly if we exclude the
possibility of negative interest rates we must have the following for a discount
function 4 : [0,00) — [1,0):

50) = 1,

d(h){(sl:fg) = b > ta
Estimating the risk-free yield enrve requires three decisions:

1. A pricing function relating instrument market prices, P, to the discount

rate function, r(t;), via promised cash flows, ¢; at time t;, for 1 < j < K.
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2. A functional form to be used to approximate the yield curve function, r(t),

or the discount function, §(f).

3. An econometric method for estimating the parameters of the yield curve

function.

3.7.1 Pricing function

The simplest pricing function, appropriate to a world with complete markets
and no taxes or transaction costs, is just the present value of the promised cash

flows:

”
P = ZCJA-“J}
j=1
K
= )¢ exp(—tyr(t;)) (3.25)
i=1

Let {B;}i1<icn be a set of observed market instruments, let 7 < 7 < ... <

e be the set of dates at which cash flows occur, let ¢, ; be the cash flow of the

i instrument on date 74, and let P; be the market price of the i instrument.

The pricing function becomes

Pi=P te (3.26)

where P, is defined by

K
Pi = Z"a,}d(rj)
a=1

Iy
Zexp{—rjr{g)} (3.27)

j=1

Since equation (3.25) omits such obvious factors as taxes and liguidity, the

error term, £;, will contain both systematic and random factors.
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3.7.2 Approximating function

After deciding on the appropriate pricing function, the next step is to decide on
the functional form to be used to approximate the yield curve function r(t) or
the discount function, §(t). It is not possible to estimate the value of the yield
curve at each possible horizon as the number of cash flows points will usually
exceed the number of available instruments. The usual practice is to select
an approximating function and then estimate the parameters of this function.
Examples of approximating functions include polynomials, cubic splines, step
functions, piecewise linear and exponential forms.

Given a proposed yield curve function 7y (t) such that

fu(r) =7 ¥i=1,.... K
the resultant theoretical price for the i'" instrument is, from equation (3.25)

K
Py) =) cijexp(=jmy(7)) (3.28)
i=1
The yield curve function, v, could be chosen such that it minimizes the

objective function

LS
Ey =Y (Pi- P(¥))? (3.29)

=1
The problem of solving for the optimal representation of the “true” yield
curve becomes an exercise in finding the most efficient technique for choosing

Fy+1(7) such that

E-,‘-:._| < E‘P

and that convergence occurs “rapidly enough”.

3.7.3 Estimation method

Lastly, the method of approximating the parameters of the approximating func-
tion must be selected. Methods used in the past include weighted least squares,
maximum likelihood and linear programming. Related discussions include error
weighting functions and how to handle the bid-ask spread (usually by collapsing

the bid and ask quotes into a single price by taking their mean).
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3.8 Summary

According to Vasicek and Fong (1982), the objective when estimating the term
structure empirically is to fit a zero-coupon yield curve that both fits the data
sufficiently well and is a smooth function. In this chapter, we introduced some
techniques for determination of the zero-coupon yield curve that have these re-
quirements as their objective. We have shown that the modelling is difficult, and
in general not computationally straightforward or unique. In South Africa, boot-
strapping is a popular technique for determining the zero coupon yield curve.
The fundamental idea behind bootstrapping is to discount the coupons prior
to maturity from a bond using the zero coupon rates already determined from
money market instruments. The zero-coupon rate for a specific term obtained
this way is then used in the bootstrap process for the next bond. In this way
rates for longer and longer periods are obtained and these rates are then ap-
proximated by a curve.

The problem with the bootstrap procedure described above is the assumption
of the existence of a complete series of regularly spaced coupon bearing bonds
- this is not the case in South Africa. Also, according to Smit & van Niekerk
(1997), the commonly used approximating functions such as polynomials and
cubic splines are not always suitable for the South Africa yield curve due to
structural inefficiencies in the fixed-income market and the resultant dispersion
of data points. The problem of yield curve determination, especially in a sparse
and illiquid market such as South Africa, is not trivial and represents significant

opportunities for research for students of financial economics.
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