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Summary

We discuss Lojasiewicz’s beautiful proof of the division theorem for smooth
functions. The standard proofs are based on the Weierstrass preparation
theorem for analytic functions and use techniques from the theory of partial
differential equations. Lojasiewicz’s approach is more geometric and syn-
thetic. In the appendices appear new proofs of results which are required for
the theorem.



Contents

Summary

Notation and prerequisites

Preface

1

Germs of functions

1.1 Germs . . . . . . e e e e
12 Theringofgerms . . . ... ... ... ... ... .....
1.3 k-Jets . . . .
1.4 Flatness . . . . . . 0 o v i i e e e e e
1.5 Examplesandalemma . ... .. .. .. .. ... .......
1.6 Thekemelofj ... ... ... ... ... . ... ...,
Germs of mappings
2.1 Differentiable mappings and their germs . . . . ... .. ...
2.2 Some properties of differentiable mappings . . . . . ... ...
2.2.1 'The inverse function theorem . ... ... .. ... ..
2.2.2 The implicit function theorem . . . . ... .. .. ...
2.3 Complex valued functions . . . ... .. .. ... .. .....
The division theorem: Part 1
3.1 Statement of the division theorem . . . . . . ... .. .. ...
3.2 The canonical division theorem . .. ... ... ... .....
3.3 Real forms and real subsets of C* . . . . . . . ... ... ..
331 Realforms. ... ........ ... ..........
332 Realsubsets . . . ... ... ... .. ... ...
3.4 The extension theorem of Lojasiewicz . . . . . .. . ... ...

The division theorem: Part 2
41 The Newtonmapping . . . . . .. .. ... . ... .. .....
4.2 A proposition and alemma . . ... ... ... ... ...,

ii

v

vi



iil

4.3 The proof completed . . . . . .. .. .. ... ... ... 26
The determinant of the Newton mapping 28
Al Introduction . . . . . . . .. . ... e 28
A2 Notation . . . . . .. . . e 28
A.3 The absolute value of |[DN| is equal to that of the Van der
Monde determinant . . . . . . .. ... 0o 29
A4 Aformulafor |DN| . .. ... ... ... ... ......... 32
Extending the derivative of g to an algebraic subset 33
B.1 Introduction . . . .. .. . .. . . ... e 33
B.2 Proof . . . .. . . . . e 33
B.2.1 Line (0,¢) isoutside ¥ . . .. .. .. ... ... . ... 34
B.2.2 The zj-axis lies within X . . . .. ... ... ... .. 34
B3 Lemmas . . ... .. ... . e 35



Notation and prerequisites

We denote by N, R and C the natural numbers, the field of real numbers
and the field of complex numbers respectively. Familiarity with commutative
algebra is assumed with rings, ideals, powers of ideals as well as modules
being used frequently. Nakayama’s lemma [1] is only used once: If A is a
local ring with maximal ideal M and if F is an finitely generated A-module,
then ME = FE implies £ = 0.

Some topology is present and, of course, real and complex analysis. A
function f : U — R, where U C R" is open, is called differentiable if the
partial derivatives of all orders exist and are continuous. Three forms of
Taylor’s formula are often used:

e For any natural number n the differentiable function f on R can be
written as ’

f@)=co+az+cz®+ -+ ca” + ()™
where the ¢; are real constants and r(z) is a differentiable function.
e The differentiable function f on R™ can be written as
[(@,y) = c(y) + a(y)z + c2(y)a’ + - + caly)z” +r(z,y)z™

where (z,y) is shorthand for (z,¥,...,¥m-1), the ¢(y) are differen-
tiable functions of yi,...,¥m—1 and r(z,y) is a differentiable function

of LyY1s- -y Ym—1-

e By repeated use of the above all ¢; can be expanded to give for f(zq,..., %)

on R™:

f = (a polynomial of order n)+> _ g;-(primitive monomial of order n+1);
J

where the summation is over all primitive monomials of order n+1 and
the g; are differentiable functions on R™. (A primitive monomial of

iv



order n is of the form z¥* - - - z¥» with vy, ...,V in Nand vi 4+ - +Um =
n.) For brevity we might also just write

f = (polynomial of order n) + ().



Preface

The local theory of the ring of smooth functions is a branch of mathematics
that brings together ideas of algebra, topology and advanced calculus. The
smooth function is a fundamental concept in pure and applied mathematics
and is used for the construction of models of the continuum containing nilpo-
tent infinitesimals. In this thesis, which relies heavily on the exposition [7]
of Martinet, we discuss Lojasiewicz’s beautiful proof of the division theorem
for smooth functions.

This theorem was first proven by Malgrange [6] at the suggestion of René
Thom. The standard proofs are based on the Weierstrass preparation the-
orem for analytic functions and use techniques from the theory of partial
differential equations. Such a proof can be found in [3}, for instance. Lo-
jasiewicz’s approach is more geometric and synthetic and leads to additional
insights into the preparation theorem.

In the appendices appear new proofs of results which are required for the
theorem.

The author wishes to sincerely thank prof Willem Fouché for his guid-
ance and inspiration over the last few years, as well as the Department of
Quantitative Management at Unisa for the supportive atmosphere.
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Chapter 1

Germs of functions

This chapter introduces the basic concepts. Much follows directly from cal-
culus; proofs being supplied otherwise.

1.1 Germs

A function f : U — R, where U C R” is open, is called smooth or dif-
ferentiable (or an element of C*®° on U) if the partial derivatives of all
orders exist and are continuous. This definition is independent of the choice
of the perpendicular axes in R™. When referring to functions we will usually
assume it to be differentiable functions.

To work locally we define a germ f at £ € R” of a function f as the
equivalence class of functions that agree with f on a neighbourhood (open .
set) of . More formally, if U and V are neighbourhoods of z, then the
functions f : U — R and g : V — R are both representatives of the germ
f at z if an open W exists such that z € W, W Cc U, W C V and the
functions f and g agree on W. We denote the germ as f : (R®,z) — R. We
call a germ differentiable if it can be represented by a differentiable function
on a neighbourhood of . When referring to germs we will usually assume it
to be differentiable germs.

1.2 The ring of germs

The germs at x can be added and multiplied (just like functions) and thus
form a commutative ring with identity (f = 1) or an algebra over R denoted
by E(R",x) or simply by E, when z is 0 (the origin — where we often work
for simplicity).



Some examples of ideals in this ring are :
e All germs in F, such that f(z,0) = 0.

e All germs in E,, that are zero at 0. (This ideal is maximal for if f(0) # 0
then f is non-zero on a neighbourhood of 0 and therefore represents a
unit in E,,.)

e We have a filtration of ideals E, D M; D M; D ---, where My, con-
sists of all those germs whose representatives have all partial derivatives
of order k or smaller zero at the origin (a function is seen as its own
order zero derivative so that M refers to the previous example). A
germ in My, is said to be k-flat. The fact that My is an ideal follows
directly from the rules of differentiation. We write M for Mj.

Proposition 1 The ideal M is generated by the representatives of the coor-
dinate functions x1,Za, ..., Tn.

Proof: Let f € M and use Taylor’s formula to write:
=04+ g1z + g2+ + gnZn

where the g; are in E,,. QED

Proposition 2 We have M, = M*.

Proof: Using Taylor’s formula an element of M} can be expanded as
f=0+)>"g;- (primitive monomials of order k);, g; € E,

Using the previous proposition a germ f in the ideal M* can be written as a
product of k elements of the form (g1z1 + go%o + - - - + gnZn)-
Clearly these two ideals contain the same elements. QED

We can also consider the ideal I C E,,, which consists of those germs at
the origin of R™? = R™ x RP? that is zero on R?. Similarly we then get the
following.

Proposition 3 The ideal I is generated by 1, . ..,%,. (The representatives
of the coordinate functions of R,,.)



1.3 k-Jets

Next we consider the quotient ring (and R-algebra) E,/M**!. Using Taylor’s
formula we see that its members can be represented by polynomials (some-
times referred to as Taylor polynomials) of order k or less. These members
are added like normal polynomials and multiplied like normal polynomials
except that terms with order higher than k are omitted. The ring is called
the R-algebra of k-jets, and we denote the natural homomorphism from
germs to k-jets by
j* B, — J*

where J* denotes E,/M*+!,

1.4 Flatness

At this stage we note that one can talk of the values of a germ or its deriva-
tives at 0 in an unambiguous manner. (It simply refers to these values of
the representative function.) Furthermore local definitions like flatness refer
to germs at the origin when not specified otherwise, but could be defined for
any other point or subspace in a similar manner. We will use these liberties
in the rest of the text for sakes of fluency and brevity.

The subtleties of differentiable germs have much to do with the following
concept: f € E, is called flat if f € N, M*. This implies that all partial
derivatives at the origin are 0 and such a germ has 0 as its Taylor series.
Examples of flat germs are given in the next section. The flat germs form an
ideal denoted M°°.

We can now use M to extend the idea of k-jets of the previous section
to the concept of jets. We denote the natural homomorphism from germs
to jets by

jiEy— Jy
where J, denotes F,,/M®.
From calculus we have the homomorphism E,, — R[[z,.. ., z,]] of a germ

of a function to its formal power series (also called its Taylor series). We now
prove the isomorphism:

E./M® ~ Rz, ...,z

Thus we have to show that F,/M* — R|[z1,...,Z,]| is injective and sur-
jective. Since the natural map E, — R[[zy,...,%,]] has M as kernel the
injectivity follows. We are left to prove surjectivity:



Theorem 1 (Borel, [2]) Given any formal power series over the reals (not
necessarily convergent) there exists a function which has this power series as
its Taylor series at the origin.

Proof: To simplify notation we only prove the one-dimensional case — the
multi-dimensional case being similar.

Let ag + a;x + agx? + - - - be any given Taylor series and take the function
¢ : R — R to be such that 0 < ¢(z) < 1 with ¢(z) = 1 for |z| < 1/2 and
¢(z) = 0 for |z| > 1. Now, for a sequence of reals (t,) with 1 < t,, set

f@) =3 22" §(tn - x) (1.1)

This construction gives us the appropriate function if the ¢, can be chosen
big enough that f is a differentiable function. Thus we need to prove that
all the series

An

_&:_v_n_;.h_l_.xn,qg(tn.a;) ,m=0,1,2/... (1.2)
n=0 :

converge uniformly. (See term-by-term differentiation [9].)
We simplify our notation and write the above as

Sg0 + So1 + So2 +
$10 + 811 + S12 +
S2.0 + 821 + 82,2 +

Consider the first n elements of the n-th column, g, ..., Sn-1,-- (All ele-
ments in column n above or on the diagonal.) We write such an element s,
(with m < n) as

" a,
Smupu — d(E_’" _lx ¢(tn ‘T)
d™ 1\"a, n
= 3= (Z: = (tn - )" G(tn - 2)

s
= d_m <i) 'an'¢n(tn'$)

dz™

where 1), vanishes when |t, - | > 1 and we define

m

H,, = max{| cﬁc—man-zﬁn(:v) || m<n, z€R}



which exists because only finite m are smaller than a specific n.
Now we have

d™ 1\"
Smnm = aﬁ (Z) *Qn - ¢ﬂ(tﬂ : CE)
1\"
| Sm,n | S (tn)m : (t'_> : Hn
S Hn/tn

Finally we choose t, big enough that H,/t, < (1/2)™. This insures that
S0,ms - - - » Sn—1,n are all smaller than (1/2)™. Thus for any m the sum 3°52 Smn
converges, for s, , with n > m (terms right of the diagonal) were chosen
appropriately and s,,, with n < m (terms left of or on the diagonal) are
only finitely many. QED

1.5 Examples and a lemma

As promised, we give some examples, starting with a function that represents
a flat germ.

e Example 1

AR—-R
Alz) =0 forz <0
Az)=eY* forz>0

Due to its composition A is obviously differentiable everywhere off 0.
On closer inspection it is also differentiable at 0 with all derivatives
0, thus rendering the same Taylor series as the zero germ, namely
0+ 0z +0z® + - - -.



e Example 2
®.: R — R ¢ a positive constant
A(z)
o (z) =
(z) Az) + Me — )
_____ 1l /0 ®(z)
I
|
[
|
u
|
|
|
0 € x

We note that ®. is differentiable with ®.(z) = 0 when z < 0 and
®.(z) = 1 when > . The Taylor series at the origin is 0+0z+0x+- - -
and at it is 1 4+ 0z +0z% + --- .

e Example 3
We use polar coordinates to define:

L:R*>R
L(r,0) = ®,/2(0) forr>0 and 0<6 < 7/2
This defines L for 0 < § < 7/2. We extend L to 0 < § < « by taking

it to be symmetric in the y-axis and then extend L to the whole plane
by letting it be symmetric in the z-axis and by defining L(0,0) = 0.






2. L—1isflat on F, — (1N F),

3. L-gisflat on Fy N Fy if g is flat on Fy N F3.

1.6 The kernel of j

We have seen in Section 1.4 that we have a natural homomorphism from
germs to jets
JjiEn—Jn

where J, denotes E,/M® ~ R|[z1,...,Z]]-

From Borel’s Theorem we know that j is surjective. We also know from
example 1 in the previous section that j is not injective, for both 0 and A are
in the kernel of j. We can in fact say more about the size of M.

Proposition 4 The kernel of j, that is M®, is not finitely generated as a
module over E,.

Proof: Assume that M is a finitely generated module over E,. Now since
M is maximal in E, and since we have

M(M®) = M®

we know from Nakayama’s Lemma that M has to be 0. This is not true,
as A is also in M, thus M can not be finitely generated. QED



Chapter 2

Germs of mappings

This chapter generalises the concept of a germ of a differentiable function
to that of a germ of a differentiable mapping. Section one provides the
definitions and the other sections state some useful properties of these germs.

2.1 Differentiable mappings and their germs

A mapping f : U — R*, where U C R" is open, is called differentiable if
the partial derivatives of all orders exist and are continuous. Such a mapping
can be written as

f@, ... z2) = (fi(z1,. -, Tn), ooy fi(Z1, o o s Tn))

where f,..., fi are differentiable functions. We call z,,...,z, the compo-
nents of z and fi(z1,...,%Z,),..., fe(Z1,...,Z,) the components of f(z).

We define the germ of a mapping f at z € R" as the equivalence class of
mappings that agree with f on a neighbourhood of z. The mapping f is then
a representative of the germ f and we denote the germ of the mapping as
f: (R*,z) —» RF. Once again the differentiability of the germ stems from
that of the representative and we will often refer to differentiable mappings
simply as mappings.

2.2 Some properties of differentiable mappings

We state without proof some local properties of differentiable mappings and
consequently of the germs which they represent.
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2.2.1 The inverse function theorem

We can assosiate with a specific point a € U and a mapping f : U — RF,
where U C R", a matrix Df(a). This matrix, which is called the Jacobian
matrix, has real numbers as elements and is defined as:

0 L) - B
D= (w)=| #@ =@
() P(a) - Leo

The Jacobian matrix can be seen as a linear mapping Df(a) : R* — R*
which gives a linear approximation of f in the following sense:

f1(z) fi(a) T1 — a1
: +Df(a) :
fa(T) fa(a) Tn — Qn

Theorem 2 (The inverse function theorem) Let f: U — R" be a dif-
ferentiable function and let x € U where U C R™ is open and let f(z) = y.
Then there exists a neighbourhood of x where f has an inverse f~! which is
defined on a neighbourhood of y if and only if the Jacobian matriz Df (x) is
invertible (non-singular). We call f a local diffeomorphism.

Q

Thus the germ f : (R",z) — (R"y) possesses an inverse germ f~' :
(R*,y) — (R, z) if and only if Df(z) is invertible. Such a germ is called
the germ of a local diffeomorphism.

2.2.2 The implicit function theorem

Theorem 3 (The implicit function theorem) Let U be an open set in
R* x R™ containing the origin. Suppose f : U — RF is differentiable with
f(0) = 0 and suppose that f is a diffeomorphism when restricted to R*. Then
there exists a open set V in R™ containing 0 and a differentiable mapping
o:V — R such that f (o(y),y) =0 wheny € V.

Speaking informally, for the situation where f restricted to R is a dif-
feomorphism, we can say that when y € R" is close enough to O then an x
in R* can be found such that f(z,y) = 0.
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2.3 Complex valued functions

In this section we consider a particular type of mapping; the complex valued
function.

Given a differentiable function f : U — C, with U open in R", it can be
regarded as f(z) = fi(x)+ifz(x) where f; and f, are real valued differentiable
functions. Both f; and f, can be expanded according to Taylor’s formula
giving us

f@) = filz) +ife(z)
= (polynomial of order k); + r1(z) + i(polynomial of order k)s + ira(x)
= (polynomial of order k) + r(z)

where 7, and r; are in M*1, In the last line the polynomial now has complex
coefficients and r is a complex valued function in the complex equivalent of
M**1. We can thus speak of the Taylor polynomial of a complex valued
function and, by letting the order of the polynomial go to infinity, of the
Taylor series of a complex valued function. We again denote this natural
homomorphism by
j Bk, - J,

and write j f(x) for the jet (or Taylor series) of f.

The following theorem is due to Malgrange [5]. We call a function on R”
analytic if it is the restriction of an analytic function on C”.

Theorem 4 Let f1(x) be an analytic function on R™ with values in C. Then
any function f(x) in E, belongs to the ideal of E, generated by fi(z) if and
only if, at each point x in R™, jf(z) belongs to the ideal generated by j fi(x)
in the ring J,.

This theorem is actually true for ideals generated by any finite number of
analytic functions fi,..., fr,- We will however only use it to obtain the
following result.

Let w be defined as:

w:R"—C
w(z,y,2)=z+ 1y
where z € R™2,

Corollary 1 A function f in E, is diwisible by w if and only if its Taylor
series is divisible by x + iy at each point where x =y = 0.
Proof: The divisibility of the Taylor series follows from the fact that j is a

homomorphism; the divisibility of the function is trivially true when = # 0
or y # 0 and follows from the theorem otherwise. QED



Chapter 3

The division theorem: Part 1

In this and the next chapter we state and prove the division theorem. Our
exposition is based on the book by Martinet [7], which in turn relies heavily
on the ideas of Lojasiewicz [4].

3.1 Statement of the division theorem

Consider the ring F14, = E,, of differentiable germs at 0 where we write
(:B)y) for (:B’ Yi, .- ,yn) € R xR"

A germ P in E,, is regular of order k in z or k-regular in z if we
have:

oP o-1p
and ok p
W(O) #0

The division theorem states that if P is regular of order k in z then any
germ f € E,, can be divided by P as follows:

k
f(@,y) = P(z,9) - Qa,y) + 3 rily)a"™

with some @ in E;, and the r; in E,.

3.2 The canonical division theorem

The function
P.:RxR"xRF 5 R
Py(z,y,0) = ¥+ o 4.+ o1 + ok

12
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is called the canonical polynomial of degree k. We will consider Py to be a
germ belonging to E,, ., and will sometimes write Px(z,0) since it is inde-
pendent of y. We note that Py is k-regular in x.

The canonical division theorem states that any germ f € F,,., can be
divided by Py as follows:

k
f(may1 0) = Pk(m7 0) : Q('T,y’ 0) + Zri(y7 O-)Q:k_i

=1

for some @ € F,,, and the r; in E,,.
Theorem 5 The canonical division theorem implies the division theorem.

Thus we introduce more dimensions (with the variable o), but this allows
us to have to work with only one particular regular function, P, instead of
all regular functions. In the remainder of the section we prove this theorem.

Proof: We assume the canonical division theorem to hold and prove that it
implies the division theorem. We work in two steps.

Step 1: Implication of the canonical division theorem for a regular function.

According to our assumption a function P € E, , which is regular of order &
in z can be considered as in E;, ,, and divided by P to give:

k
P(z,y) = (z* + oa* 7 + ...+ or) - Q(w,y,0) + D _omi(y, 0)a* T (3.1)
i=1

At 0 = 0 and y = 0 this becomes:

P(z,0) = z* - Q(x,0,0) + Xk:ri(o, 0)z**

i=1

Since we chose P to be regular we also get, if we differentiate to different
orders, that:
r:(0,0) = 0 for all ¢ and Q(0,0,0) # 0

Furthermore we also chose P to be independent of o. Thus if we differentiate
equation (3.1) with respect to o; and let y = 0 and o = 0 we get:

. oQ k. Or; X
— k-3, kX i k—i
O=zx Q(z,0,0) + x 30, (z,0,0) + ; 9, (0,0)z
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By again differentiating to different orders, we see that:

%(0,0) = 0 ifi>]
3J
950,00 = ~Q(0,0,0)
60']'

We can now represent these derivatives in a matrix:

The matrix is triangular and the diagonal entries are all —Q(0,0,0) which
is non-zero, as we saw, thus the matrix is invertible. This is the Jacobian
matrix of the mapping 7 : 0 x R* — R* where the r; are the components
of r. This mapping must be a diffeomorphism by the inverse function the-
orem. Consequently, by the implicit function theorem, a differentiable o (y)
must exist so that r(y,o(y)) = 0. We write o(y) = (01(y),.-.,0x(y)) and
substitute into (3.1) to get

P(z,y) = (a* + o1(y)a* " + ... + ou(v)) - Q(,,0(y))
If we simplify our notation we have this result:
If the canonical division theorem is true for Py then any P(x,y) which is

regular of order k in x can be written as

P(z,y) = (z" + o1(y)z" " + - + ox(y)) - Q= y)

where Q(0,0) # 0 and the o; are in E, (and in M,).

Step 2: Implication of the canonical division theorem for any function.

Let f € E;, and consider it to be in E,,, to write

k
f(.’D, y) - Pk(x’ 0) “Gh (.’12, Y, 0) + Z Si(y, O')Slik_i

=1
k

= @ +or 4+ ox) - Qi(z,y,0) + Zsi(ya 0)$k_i
i=1

Since f is independent of o we can choose o, as we saw in step one, to
correlate to any specific regular function P(z,y) we want to divide by and
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get

k

f@y) = (F+a@e '+ +0y) lz,y,0( )+21s, y,0

B Q(z,y) :
= (" +...+ () Q(a:,y)Q T,y,0 +§s, Yy, 0

— P(.’L‘,y) Ql(-’E(ya )(y))+z i(y,d(y))mk‘i

which completes the proof since we know that @ is a unit in E,,. QED

We have now shown that in order to prove the division theorem it is
sufficient to prove the canonical division theorem. The proof of the canonical
division theorem of order 1 is quite simple: We have Pi(z,0) = z + o with
z,0 € R. Let f be in F,,,. We set r(y,0) = f(—0,y,0) and consider
g(z,y,0) = f(z,y,0) —r(y,o). By its construction the germ g is zero on the
hyperplane z + o = 0. Thus, by Proposition 3 in Chapter 1, it belongs to the
ideal generated by (z + o) so that we have g(z,y,0) = g1(z,y,0) - (z + 7)
and thus

f(@,y,0) = g1(w,y,0) - (& + 0) +7(y,0)

The proof for higher orders is however much more complex and is the aim of
the rest of this chapter and the next.

3.3 Real forms and real subsets of C"

3.3.1 Real forms

We define a real form in C™ as a real vector subspace F of C™ with these
properties:

a)dim F=n
b) F NiF = {0}
Conditions a) and b) are equivalent to the condition
F +iF =C"
and also to the condition that any basis {es, ..., e,} of F as a real vector space

is a basis of C™ as a complex vector space. Thus F C C" is diffeomorphic to
R* c C".
Examples of real forms:
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e In C any line {zc| z € R, ¢ # 0 a complex constant} is a real form.

e In C? the subspace C x {0} c C? is not a real form but R x R c C*
is a real form.

Now let f : F — C be a differentiable function and let {e1,...,e,} be
a basis of F. This also serves as a basis of C" and we let zi,...,Z, be
coordinates in C" relative to this basis. Now f is a differentiable function
of the real variables z,,... z,, and can, as we have remarked in the previous
chapter, be expanded for every k > 1 to

f(z) = (complex polynomial in z of order k) + r()

where r(z) is in the complex valued M*+1,

We show that the function described by the polynomial does not depend
on the choice of the basis. If we consider another basis with y1,...,y, as
coordinates there would exist a linear transformation such that z = T'(y)
which could be substituted into the expansion for f(z) to give:

f(y) = (complex polynomial in y of order k) + r(y)

We note that since T is a linear transformation it does not change the order
of the polynomial and thus from the uniqueness of Taylor’s expansion the
polynomial found by working in a different basis describes the same function.

We return to the Taylor expansion of f(z) and make the following impor-
tant observation: The function is only defined for real values of z; and this is
also true for r(z) in the expansion. However the polynomial in the expansion
also makes sense for complex . Thus given a differentiable function on a
real form f: F — C we can assosiate with it a polynomial of order £ on C™
written as:

j*f:Ccr > C
We call j*f the complex Taylor polynomial of f.

3.3.2 Real subsets
We define a real subset F of C™ as a finite union of real forms, thus:
F =U_,F;

A mapping f : U — C, where U is an open subset of F, is called differentiable
if:

1. the restriction of f to F; N U, denoted by f;, is differentiable for any
1=1,...,1.
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2. for each i and j (i # ) and z € F;NF; NU we have jf fi(z) = j% f;(x)
for all integers k > 0.

The last condition can also be written as j.fi(z) = j.fj(xz) where jof(z) is
the complex Taylor series of f. The differentiable germs at the origin in F
form a ring denoted by E(F,0) or Ep.

Examples:

e If f is an analytic function we have that its restriction to F, a real
subset, is differentiable.

o Let F=RU{R C Candlet f:F — R be defined as
f(z) = Mz) forzeR
flz) = 0 forzeiR

where A(z) is the flat function which was defined in Chapter 1. We see
that f is differentiable but that it is not the restriction of an analytic
function to F.

For any differentiable function f : U — C, where U is an open subset of
a real set F in C", we can set

Jc f (@) = jc filz)

for any integer k, where z € F; N U. This definition is independent of 3.

3.4 The extension theorem of Lojasiewicz

Given two real subsets H and F of C" with H D F, we have that a differen-
tiable function (or germ) on H is also differentiable on F when restricted to
F, giving us a homomorphism from Eyy to Ep. In this section we prove the
following result:

Theorem 6 (The extention theorem of Lojasiewicz, [4]) Let H and F
be two real subsets of C* with HD F. The restriction homomorphism

Eg—FEp
1s surjective.

The theorem says that any differentiable germ at the origin on F can be
extended to a differentiable germ at the origin on H. We begin the proof
with two lemmas.
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Lemma 2 Let F=RxR*C Cx C" and let F =(c- R)x R" C Cx C",
where ¢ is a non-real complex number. Let H = FU F'. The restriction
homomorphism

8 surjective.

Proof: From Borel’s theorem we know that given any sequence of complex
numbers (a,) there exists a differentiable function f : R — C which has

s

dx?

for any integer p > 0. (We proved this theorem in Chapter 1 for real a,; the
complex case is similar.)

We can generalise this to: given a sequence of complex valued differen-

tiable functions (a,(y)), ¥ in R™, then there exists a differentiable function
f: R™! — C which has

(0) = pla,

%(O,y) = p! a,(y)

for any integer p > 0.
Now since any given differentiable function g on F’ determines the (a,(y)),
it can be extended to a differentiable f on H. QED

Lemma 3 Let Fi,..., F,, with p a positive integer, be vector subspaces of
R". Let f and g be two differentiable functions on R™ such that f — g is flat
on (FLU---UF,_1)NF,. Then there exists a differentiable function h on R"
such that:

1. f—hisflat on L U---UF,_,
2. g— his flat on F,.

Thus if f and g have the same Taylor series at each point of (Fy U ---U
F,_1) N F},, then there exists an h that has the same Taylor series as f on
(F1U---U F,_1) and the same Taylor series as g on Fj,.

Proof: According to the lemma at the end of Chapter 1 there exist
Ly,...,L,_; such that each L, is flat on F,, with L,, — 1 flat on F, (ex-
cluding the intersection). Now let

p—1

L=1] Lm
=1

m
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Since we have L flat on (F;U---U F,_;1) and L —1 flat on F, (excluding the
intersection), we can set

h=f-(1-=L)+g-L
for the desired function. QED

Proof of the theorem: We want to show that for real subsets H O F
we have that Eyy — Fp is a surjective homomorphism. It is sufficient to
prove the theorem for the case H = FUF’ where F" is a real form of C". Let
the real subset F = F,U. . .UF, with the F; real forms and use induction on p.

Step 1: The case p = 1.
In this case F is itself a real form. If FNF’ has dimension n — 1 the situation
is that of Lemma 2.
If the dimension of F N F' is less than n — 1, we construct a sequence of
real forms
F: Fo,Fl,...,Fk

such that:
L. FoNFCcFHNFC...CFNF
2. dmF, NF =n-1
3. dmF;, NnF;,=n-1 ,fori=1,...,k.

We now apply Lemma 2 & times.

Step 2: The case p > 1.
We assume the theorem is true for a real subset consisting of p— 1 real forms
and prove it for a real subset

F=F,U---UF,

Let f € Ep be the germ that we want to extend to H=F U F’. We restrict
ftoF,U.---UF,_, and extend it to F;U---UF,_; U F’ (according to our
assumption), calling it f;. We also restrict f to F, and extend it to F, UF’,
calling it f2.

We now restrict f; and f, to F' and denote F; N F’ by F;. We now have
fi — f. flat on (F'l U---u F;,_l) N F;,. According to Lemma 3 we can get
a function h which is differentiable on F/ ~ R™ such that f; — h is flat on
FiU---UF,_, and fo— h is flat on F,. Thus we can extend f to H=FUF’
by letting it be h on F'. QED



Chapter 4

The division theorem: Part 2

This chapter will complete the proof of the division theorem. As we have seen
in the previous chapter, we are left to prove the canonical division theorem
of order k. We define the canonical polynomial of order k slightly differently
as

Pi(z,0) =zF — oz 1 4+ .. 4 (=)o

for the proof. It should be clear that it is essentially the same as in the
previous chapter and that the relevant results remain true.

We want to prove that any germ f € E,,.,(z,y,0) € R x R* x R¥, can
be written as

k
f(.’B, Y 0) = Pk,(.’l), 0) : Q(:Ea Y, 0) + Z Ti(ya 0').’13k_i
i=1

where @) is in E;,, and the r; are in E, ,.

We work as follows: Section 1 introduces the Newton mapping and some
of its properties, Section 2 proves a proposition and a lemma and Section 3
completes the proof of the division theorem.

4.1 The Newton mapping
The Newton mapping is defined by

N:Ck - C*
N(z)=0

20
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with
o0 = 21 +2+---+ 2
g2 = Z 2325
1<i<j<k
T = Z1Rg 2k
Equivalently we see that the o4,..., 0% can be determined by
k
H(&—z,') =§k—0'1€k_1 + ...+ (—1)k0'k. (41)

i=1

Some properties of the Newton mapping are:

e The Newton mapping is surjective: For any o there exists a z such that
N(z) = o; this follows from (4.1) since the z; are simply the roots of
the equation.

e The Newton mapping is continuous and open.

e N~1(0) consists of at most k! distinct points. This maximum occurs if
o is such that the roots of (4.1) are all distinct; then the k! permutations
of the roots will represent different points in C*¥. N~(¢) consists of less
than k! points if some of the roots of (4.1) are the same; this happens
when the discriminant polynomial of (4.1) is zero:

d(e) =0

e The determinant of DN (the Jacobian matrix of N at z) is zero when
we have z; = z; for some ¢ # j. (See the appendix for proof of this.)
The image of such a z is given by §(¢) = 0 according to the previous
remark. A set like this, which is defined by a polynomial, is called an
algebraic set.

e Let 7 € T}, where T} is the group of permutations of 1, ..., k. We abuse
our notation to write 7(z1, ..., 2x) for (2,1, ..., 2r(k)). For the Newton
mapping we have invariance under Ty:

Nor=N

for any 7 € T.

[ 16A>L27 T
b5k % 214,
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e The analytic theorem of Newton: Let f(z1,...,2) be an analytic func-
tion which is symmetric in 2y,...,2x. (We have for = f for all 7.)
Then there exists a unique analytic function g(ay,...,0%) such that
f = goN. (This is also true with parameters: If f(y, 21,. .., 2x) is sym-
metric in 21, ..., 2 then there is a g(y, o) with f(y, z) = g(y, N(2)).)

The proof of the analytic theorem of Newton is fairly simple and we omit
it since we do not need it for our final goal. In the next section, however,
we will prove a similar looking result (for real subsets) which we do need.
That result furthermore leads directly to the differentiable theorem of New-
ton, but we will not pursue it. We end this section by proving the analytic
division theorem — mainly to demonstrate a technique which we will later use.

Consider the mapping

CxC'xCF-CxC*xCk
(,9,2) = (2,9, N(2))

which we will still call N. For any function f(z,y,0), let flz,y,2) =
f(z,y, N(2)), i.e., f = f o N. Thus we have

P(z,2) = (z — 21)(x — 22)...(x — z),

where P is the canonical polynomial.

Let f(z,y, o) be any analytic function and consider f(z,y,z). We divide
f by P using the following algorithm:
Consider the difference f(z,y, 2)— f(21, ¥, z) and note that it is zero on the set
& — z1 = 0. Therefore, by the analytic version of Proposition 3 in Chapter 1,
it is divisible by (z — z1) in the ring of analytic functions. We thus obtain

f(a"ayaz) = (m - zl)Q_l(xaya Z) + f(zlaya Z)

Repeat this process using Q; and (z — z2) in place of f and (z — 21), etc. By
substitution, we eventually obtain

f(xayaz):(x_zl)"'(x_zk) iB’y, + Zrz Y,z a

where @ and the 7; are analytic.
The functions ) and 7; are in fact symmetric in 2y, .. ., 2x. To see this, let
y and z be given such that the coordinates z, ..., 2x are all distinct. Then
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the equation yields

k f
f(zla Y, Z) = Z fi(y7 z)z{c—z
i=1

k

f(zka Y, Z) = Z T-i(y, z)zllcc—l'
i=1

These equations determine the numbers 7;(y, 2), . . ., 7x(¥, 2) since the deter-
minant of this system is a non-zero Van der Monde determinant. Since the
set of z with coordinates all distinct is open and dense, and since this is also
true for P(z,z) # 0, we have uniqueness for division by P. The symmetry
of Q and of the 7; in z follows immediately from the symmetry of f and P.

We now apply the analytic theorem of Newton (with z and y as param-
eters) to obtain the desired result.

4.2 A proposition and a lemma

Set F equal to N~1(RF), the inverse image of R* by N. Now F is the set of
points (21,...,2x) such that the complex numbers zi, ..., 2x are roots of an
equation

& — "+ .. 4 (-DFor =0,

where the coefficients o4, ..., 0% are real. We know that complex roots will
occur in pairs as complex conjugates, thus there exists a permutation 7 in
Ty, which is an involution, such that

% =72z fori=1,...,k
For each involution 7 of 1,...,k, let
F, = {Z | Zi = Zr(3) =0, 1= 1,...,]{:}.

Each F, is now a real form of C*.
Examples:

e F, = R* where 1 is the identity permutation of 1,..., k.

e For k = 2 we have two involutions (1 and 7). We now have:
F; = R? and
F,={z]| 2= 2z}
We can see that F, is a real form from the fact that (1, 1) and (—, )
form a basis for the real form over R and a basis for C? over C.
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We now have that
F =UF,

and thus that F is a real subset of C*. It is invariant under the group of
permutations Tk:
p(F:) = Fporop1, for p in Ti.

We note that in F the set of points belonging to two distinct real forms is

defined by T](z; — 2;) = 0.

During the rest of this chapter, we will denote by
N:F R

the restriction of the Newton mapping to F. This is a differentiable mapping
from F to R in the sense of Section 3.2 of the previous chapter since it is
the restriction to F of an analytic mapping. It remains continuous, open and
surjective. We can now prove the proposition to which we referred in the
previous section.

Proposition 5 If f is a symmetric differentiable function on F, then there
ezists a unique differentiable function g on R* such that

J=goN.

Proof: The equation f = g o N defines (setwise) a mapping g on RF since
f is constant on the fibres of N and since N is surjective. Furthermore g is
continuous on R* since N is open.

We have that g is differentiable on R¥ — 3, since N is a local diffeomor-
phism over each point of R*—X. Since ¥ C RF is an algebraic subset, to show
that g is differentiable everywhere, we need only prove that its derivatives
of all orders have continuous eztensions to all of R*. (See the appendix.)
We will demonstrate this by induction on the order of the derivative, but we
will only present the first step in the induction to keep the notation simple.
From the chain rule it follows that

Df(z) = Dg(N(2)) - DN(z) (4.2)
for all non-singular points of N. We will consider the linear equation on F
Df(2) = Gi(z) - DN(2) (4.3)

with
Gi(z) € L(C™,C).



25

Let us assume that (4.3) admits a unique solution G; which is symmetric
and differentiable on F. We first show that this result implies the proposition.
Comparing (4.2) and (4.3), we have

Gi=gioN

where g is defined and continuous on R* by the symmetry of G, and the
properness of N. Thus g; is a continuous extension of Dg to R*. Next,
replace f by G, and repeat the same argument to show that the second
derivative of g extends to a continuous function on RF and so on for all
derivatives.

We are left to prove our assumption: equation (4.3) admits a unique
solution G; which is symmetric and differentiable on F.
If we multiply (4.3) term by term by the adjoint matrix A of DN we get

Df(z) A= IDNI . G] = Z (Z,' — Zj) . G]. (44)
1<i<j<k
The first term is clearly differentiable on F and is antisymmetric in (21, . . ., 2).

This means that
(Df-A)or=-Df-A

for any transposition 7 of {1,...,k}.

If 2; — z; = 0 (with i < j) we have by the antisymmetry property that
the Taylor series of Df - A is divisible by z; — z;. It follows from Theorem 4
in Chapter 2 that D f- A is divisible by z; — z;. This is true for all z; —z; =0
(with ¢ < j) so that the first term of (4.4) is divisible by the product of these
forms. The existence and symmetry of G; follows. The uniqueness is clear

since G; has been determined beforehand on an open and dense subset of F.
QED

We end this section with a lemma.

Lemma 4 Consider a real subset consisting of real forms in C":
F=F,U...UF,

Suppose f € Ep and suppose w : F — C is the restriction of a linear form
to F such that at each x € F where w is zero, we have f(z) = 0 and an F;
such that x € F; and w is real on F;. Then f is divisible by w.
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Proof: Consider any z € F where w is zero. The restriction f; of f to
F; ~ R" is divisible by w; (the restriction to F;), since w; is real on F; and
can be considered as a coordinate function, and f; is zero when w; is zero.
(By Proposition 3 in Chapter 1.) It follows that jfi(z) is divisible by jw;(z)
and thus that j.f(z) is divisible by jw(z). By Theorem 4 in Chapter 2 we
now have that f is divisible by w. QED

4.3 The proof completed
Consider again the mapping
CxC"xCk—-CxCtxCF
(z,9,2) — (2,9, N(2))

which we will still call N. Let F = N-!(R x R x R¥). It is again a real
subset
F =UF,

with each F, a real form associated with an involution 7 of 1,...,k.

We now consider
N:F>RxR"xRFf

and for a function f(z,y, o) , we set
F=foN

to obtain a differentiable function on F which is symmetric in (2, ..., 2).
We again have

Plz,2)=(z—2z1)...(x — 2).

We now define in the space C x C™ x C* a real subset F O F as follows:
F=FU(U,; F.))

where for each involution 7 of {1,...,k} and i = 1,...,k we have that F,;
is the set of (z,%,z) in C x C® x C* such that '

Zj—ZT(j):O j:1,...,k
(x—2z)-(Z—-2z) =0, (i.e.,x — z; € R)
y € R.
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Again each F,; is a real form, and the set F is invariant under Tk.

Given any f in E(R x R™ x R¥), set f = fo N € Ep and then extend f
to a function f which is differentiable on F, by using the extension theorem
of Lojasiewicz. We can assume that f is symmetric in (2, ..., 2k). (Use the

sum 1/kN(Y, fo7).)

We are now in the situation where we can divide f on F by (z — z1)(z —
22)...(x — z) in the same way that we did in the analytic case in the first
section. Form

f(x7ya Z) - f(zl,y, Z), (.’17,@/, Z) cF.

The function is well-defined ((21,y, 2) € F,,; for some 7) and is differentiable
on F. It is divisible in Ep by (x — z1), since it is zero by construction if

x — z; = 0, since every point of F where x = 2; belongs to F,; for some 7
and since z — 21 is real on F, ;. (Lemma 4.)

We continue this process as in the analytic case until we obtain

f(x7y7 z) = (11? - zl) <o (37 - zk) : Q(maya z) + Zfi('% z) ’ xk_i'

i=1

We can show uniqueness of the above division process just as in the analytic
case. The symmetry of Q and the 7; in z follows from that of f and P. We
now restrict the above equation to F and use Proposition 1 (with parameters)
to complete the existence of the division.



Appendix A

The determinant of the Newton
mapping

A.1 Introduction

Let N denote the Newton mapping, DN the Jacobian matrix of the Newton
mapping and |DN| the determinant of this matrix. We discuss a combina-
torial proof to show that the absolute value of |DN| is equal to that of the
Van der Monde determinant, and subsequently provide a formula for |[DN|.
As far as the author is aware, the proof is new.

A.2 Notation

The Newton mapping is defined by

N:Ck - C*
N(z)=o0
with
o1 = nntz2t--+zn = Zz.«
02 — Z Zi%j = sz
1<i<j<k
Ok — 2129 2k = sz

where we use the notation ¥ 2P to indicate the sum of all the products
consisting of p different variables z;. We also use 3=, _q2? to indicate that

28
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all terms containing z,, are omitted; for example if k = 4 we have
322 = mzezs + 21202 + 212370 + 22237

and
Z Zf = Z1%3%4.

z2=0

With this notation, the Jacobian matrix of the Newton mapping can be
written as

[ 1 1 1
Ya Sa oo Yo
z1=0 z2=0 zp=0

DN =

DD DRI D
z=0

21=0 22=0

A.3 The absolute value of |DN]| is equal to
that of the Van der Monde determinant

Given a square matrix

11 @2 - Qik

G211 Q22 - G2k
A=| .

k1 Ak2 - Qkk

we begin by noting a way in which A can be altered without changing the
absolute value of its determinant.

Lemma 5 Replacing a row an1,. .., 6.k of A by a new row by, ..., b to form
matriz B changes only the sign of the determinant if there ezists another row
Gml, - -, mk of A such that for all i # j we have

_ | Ami Qmj Ami  Amyj
Qni  Qnj bi bj
We say in this case that we use the row @mi,...,amkr as a hinge for the

replacement.

Proof: We work in three steps.
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Step 1 Interchange the rows of A so that ani, .. ., @n is the last and am1, - . -, Gmk
the second to last row to form A’. Do the same with B so that by, ..., bk
is the last and @1, .. ., amk the second to last row of B'.

Step 2 By beginning at the top and working down, using the usual algorithm
for calculating the determinant, we eventually obtain

A= >

1<i<j<k

Ami  Qmj

?
Qni Qnj

where the ¢;; are complex constants.

Step 3 We do the same for B’ and obtain

|B'l= > «

1<i<j<k

Ami Qm 7

— A
b b | AL

Since interchanging rows can only change the sign of a determinant and since
A and B were treated similarly in Step 1, this completes the proof. QED

We are now ready to show that the absolute value of [DN| is equal to
that of the Van der Monde determinant; that is

Z 2:* Z 2:* T Z Z* zl z2 “ e zk
z1=0 z0=0 2 =0 N :|:

sz_l sz_l DY 7 k=1 _k-1 k-1

z1=0 z9=0 z=0 21 ) Z9 e 2

Our aim is to alter the left-hand side until it corresponds to the right-
hand side, by using induction on the indexes of the rows. We note that the
first rows are already similar. Thus let us assume that the first p rows at the
left can be replaced by rows that are similar to those at the right without
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changing the absolute value of the determinant. This means that we have

Zf_l zg—l . zz—l
|[DN| =+ P SNk N2k
z1=0 29=0 2, =0
Z Zf_l Z Zf_l . Z Zf_l
z1=0 z9=0 2 =0

We want to show that in row p + 1

DO ATRN R

21=0 2zp=0

can be replaced by

<1 Z zf_ly-”,zk Z zf_l,

z1=0 2z=0
then by
2 p—2 2 p—2
zlzz* ""azkzz* ’
21=0 2,=0

and so on, until we have reached row p+ 1 as
2.2

Thus it would suffice to show that we can replace

A AT Y AT

21=0 2,=0
for any n < p, by
n+1 p—n—1 n+1 p—n—1
3Tl gt Yy
21=0 2=0
We use Lemma 5 with row n + 1 as hinge. This row is z27,...,2; by our

inductive hypothesis. For 7 # j we obtain

gy > =g D A-) &
= z;=0

z;=0



32

Omitting terms which negate each other gives

n. n . p—1 . p—1
Z; Zj VA Z Zy Zj Z Ly
z; =0 2z =0

2, =0 z; =0

and then, allowing some terms which negate each other, gives

n n

Z; Zj
n. n i p—1 . p—1 _ _ _
Z; Zj Zi Z 2y Zj Z Ly = z‘{H—l Z 2P 1 z'{z+l Z Zf 1
2;=0 z;=0 ? * J
* 7 z;=0 z;=0

This completes the proof.

A.4 A formula for |DN|

The Van der Monde determinant is given by the well known formula

H (2 — 2).

1<i<j<k

Since we used Lemma, 5 exactly (k—1) + (k—2) +...+ 1 times in the proof
of the previous section, we have

DN = (—)&= Dbt T (5 —z)= [ (a2

1<i<ji<k 1<i<j<k



Appendix B

Extending the derivative of g to
an algebraic subset

B.1 Introduction
Given that
% C RF is an algebraic subset,
g:RM\YZ - Ris in C%,
R* — R (the extension of g to R¥) is continuous,
ol R* — R (the extension of 533:9; to R¥) is continuous,

we want to show that

99 _ 99
8$1 B 8.'1’)1 ’
The proof uses two lemmas which are proved at the end. The author was

unable to find a proof of this result in the literature. The proof is due to
him.

B.2 Proof

We need to show that for any z € ¥ we have

99 .\ _ 99
b—w—lx —awl(x).
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We can assume that £ = 0 and that %(0) = 0. Thus we want to show

that %—"1(0) = 0. We regard the positive z;-axis and show that the right-hand
derivative is zero; the left-hand derivative is similar and the result follows.

According to Lemma 6 we either have that the z;-axis lies within 3 or
that we can choose € small enough for the whole line

(0,€) = {z is on the positive z;-axis, 0 < |z| < €}

to be outside X.

B.2.1 Line (0,¢) is outside ¥

Assume that %(0) # 0. Assuming g(x) positive (without loss) implies that
there exist an angle a and a sequence of points a3, as,... on the positive
z1-axis which approach 0 such that all g(a;) are above the a-line. (Thus

g9(a:) > a(as).)

&(x),
-
>
[
[
[ o
@ L L >
0 a a a xl
3 2 1

It now follows (from the mean-value theorem for derivatives) that between
any a; and 0 there is a point where the derivative will be at least that of the
a-line. Thus the limit of the derivatives can not be zero, that is %’;(0) #£0,
which is a contradiction.

B.2.2 The z;-axis lies within X

The argument is similar to that of the above, but we need Lemma 7. We again
assume %(0) # 0 and find an angle a and a sequence of points a;, ag, ... on
the positive z;-axis which approach 0 such that all g(a;) are above the a-line.

As a; approach 0 we can now find line segments (a, b), according to Lemma 7,
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which lies outside 3 with a arbitrarily close to 0 and b arbitrary close to a;.
Thus, by the continuity of g, we can choose (a,b) such that g has gradient
equal to or higher than that of the a-line. Since (a,b) lies outside 3 g is
differentiable on it and we again use the mean-value theorem for derivatives
to obtain the desired contradiction.

B.3 Lemmas

Lemma 6 If ¥ C RF is an algebraic subset then we either have that the
z1-axzis lies within ¥ or that we can choose € small enough for the whole line

(0,€) = {z is on the positive z1-axis, 0 < |z| <€}
to be outside .

Proof: Regard ¥ N {z;—-axis}. The intersection of two algebraic sets is again
an algebraic set. In one dimension this is either the whole line or a finite
number of points, so that we choose € small enough for (0,¢) to be outside
3. QED

Lemma 7 Let 3 be an algebraic subset such that
{z1-azis} C & C R".

Then there exists a line (a,b) parallel and next to the positive x1-axis such
that it does not intersect with ¥ and with a arbitrarily close to 0.

Proof: Find any point ¢ off ¥ and consider the plane through this point and
the x;-axis. The intersection of this plane and ¥ must again be an algebraic
set (in 2 dimensions) and, since it is not the whole plane, it consists of a finite
number of points and smooth curves with a finite number of intersections.

A
®q
/ 7
g K
& L . o
0 a' b P\ X1
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Suppose p is the closest point of intersection to 0 of ¥ — {z;-axis} on the
positive z1-axis. We can now regard any closed line segment [a/, b'] which lies
strictly between 0 and p to find, by means of a continuity argument, that the
smooth curves of the algebraic set (excluding the z;-axis) attains a minimum
distance from {a’,b]. We can thus construct [a,b] parallel and opposite to
[@/,b] and close enough to the z;-axis to miss . QED
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