Performance measurement as a tool for
Software Engineering

by
JAN MARKUS VAN AARDT

Submitted in fulfilment of part of the
requirements for the degree of

MAGISTER SCIENTIAE
in the faculty of
NATURAL AND AGRICULTURAL SCIENCES

University of Pretoria

SUPERVISOR: PROF. B.W. WATSON
November 2002

© University of Pretoria

ACKNOWLEDGEMENTS

| would like to thank the following people and instances:

My supervisor, Prof. Bruce Watson, for his excellent guidance

My employer, Deutsche Bank, for study leave and the provision of software

My brothers and sister for their continuous support and inspiration

My loving girlfriend for countless sacrifices and endless support

My parents for endless faith and love

My heavenly Father for grace and love beyond measure

Contents

Contents

CONEENES &« o v ot ittt eeenacenocaanassonssasasanssssssosesans
ListOf tables . .. v v v i ve v ceeassarooanaanantseatoasnocsasasos
Listof figures etennen oo
Listof appendicesc.vvvvn oo oinroanen e
ADSEFACE . . v vt e i e et a st a s e
[=Y 1 Y I IR

CHAPTER 1: BACKGROUND, PROBLEM STATEMENT AND HYPOTHESIS

1.1 Introductory remarkscoeecececaaeraeoe e
1.2 Problemstatementc.ccoiiveenastscesancancansss
1.2.1 Background of research problem
1.2.2 Reasons for Server Deployment Distribution
1.2.3 The research problem and hypothesis
1.3 Researchgoalsciieiiiiinnnnnnnenaenenns
1.4 Studylayoutcceieieititiiinetaatoeennan
1.5 Closingremarkscoeueieennesnanencaasonasnnns

CHAPTER 2: RESEARCH FRAMEWORK

2.1 Introductoryremarks 00ttt
2.2 The need for software measurementcccccveoeenannen
2.3 Measurement framework for evaluated systems
2.3.1 Microsoft Internet Information Server (IIS)

2.3.1.1 Installing Internet Information Server

2.3.1.2 Maintenance and configuration

2.3.1.3 Optimising Internet Information Server

2.3.1.4 Server Architecturec it
2.3.1.5Accesslogging0t
23.1.6SeCUrityttt i i i et

2.3.2 Apache i i ittt e

2.3.2.1 Installing Apache,

Contents

2.4

CHAPTER 3:

3.1
3.2
3.3

2.3.2.2 Maintenance and Configurationc e 25

2.3.2.3 Optimising Apache e reninnrnnnes 26

2.3.2.4 Server Architecturettt 26

2.3.25AccessLoggingo e it it 29

2.3.2.6 SECUMILY « « vttt ien it en ittt e 29

ClosiNg remarksc.oeeeeeecnennnaaneescnannnnnereenens 31
QUANTITATIVE ANALYSIS

Introductory Remarkscciititineinaanainanenen 32

Testing enNVironmeNnt vieiin ittt 32

Statistical analysisof datacccciiaiiiiiinaen 33

3.3.1 Testbreakdownccceiiiieriatsecnncnaonnnaseanen 33

K Ty Y1 711 - I 34

3.3.2.1 Hypothesis testingc.cociciiireeecaeans 34

3.3.2.2 The paired-samples ttestcoinennn 35

3.3.2.3 The Wilcoxon matched-pairs signed rank test 36

3.3.2.4 The Kolmogorov-Smirnov test for normality 36

3.3.2.5 Application of the testresultscccccccevnn 37

3.3.3 Component COMPAriSON et e eer v oneeanoonosasoceenns 38

3.3.3.1 Static document retrievalc.c.iiiiiaaaaaens 39

3.3.3.1.1 Performance comparison: Small documents 39

3.3.3.1.2 Performance comparison: Medium-sized documents 40

3.3.3.1.3 Performance comparison: Large documents 41

3.3.3.2 Common Gateway Interface binaries 42

3.3.3.2.1 Performance comparison: Small documents 42

3.3.3.2.2 Performance comparison: Medium-sized documents 43

3.3.3.2.3 Performance comparison: Large documents 44

3.3.3.3 Dynamic Shared Objects and Dynamic Linked Libraries 45

3.3.3.3.1 Performance comparison: Small documents 45

3.3.3.3.2 Performance comparison: Medium-sized documents 46

3.3.3.3.3 Performance comparison: Large documents 47

3.3.3.4 Cached documents from Dynamic Shared Objects and Dynamic Linked
Librariescovevus oo eeonaensnasenanans 48

Contents

3.3.4

3.3.5

3.3.3.4.1 Performance comparison: Small documents 48
3.3.3.4.2 Performance comparison: Medium-sized documents 49
3.3.3.4.3 performance comparison: Large documents 30
3.3.3.5 Performance COMPparison sSUMMAryccoeoeee 51
Performanceresultsceoeveessssnenoneaanccsncens 52
3.3.4.1 Static document retrieval 52
3.3.4.1.1 Small static documents 52
3.3.4.1.2 Medium-sized static documents 53
3.3.4.1.3 Large staticdocumentsc000n 53
3.3.4.1.4 SUMMANY . ot et tvveoronaencsnaanansns 54
3.3.4.2 Using Common Gateway Interface(CGl) binaries to serve Internet
documentsceiiiarae i erea e 55
3.3.4.2.1 - Smalldocumentscieeeaoencenn 55
3.3.4.2.2 Medium-sized documents 00l 56
3.3.4.2.3 Largedocumentsc.ciicnnannn 57
3.3.4.2.4 SUMMAIY . ..o viinietennanessanaosss 58
3.3.4.3 Dynamic Shared Objects (Apache DSO) and Dynamic Linked Libraries
(ISAPIDLL) o ettt ittt it iee o ananneones 59
3.3.4.3.1 Smalldocumentscccoieennn 59
3.3.4.3.2 Medium-sizeddocuments 60
3.3.4.3.3 Largedocuments0000onn 60
3.3.4.3.4 SUMMAIY . ot v v v v vvvensnocnaoseacnnesas 61
3.3.4.4 Cached documents from Dynamic Shared Objects (Apache DSO) and
Dynamic Linked Libraries (ISAPIDLL) 61
3.3.4.4.1 Smalldocumentsc0c0iaaann 62
3.3.4.4.2 Medium-sizedfiles 0t 62
3.3.4.43 Large documentsccciieen e 63
3.3.4.4.4 SUMMANY . oo vt v v v vt e tanaaneseanneses 64
Platform-specific comparisoncccieiecevaneaenns 64
3.35.1Apache it i i i i i 65
3.3.5.1.1 Smalldocumentsiiiiiracennn 65
3.3.5.1.2 Medium-sizeddocuments 66
3.3.5.1.3 Largedocumentscc000c0nenns 67
3.3.5.1.4 SUMMAIY . ¢t v v vvvvmnennnononsssnssoss 68

iii

Contents

3.3.5.2 Information Serverc.ecesececoennanscsosos 69

3.3.5.2.1 Small documentsccocceeann 69

3.3.5.2.2 Medium-sized documents 70

3.3.5.2.3 Large documentscccicceeann Al

3.3.5.2.4 SUMMANY . ..o vvvvnnononsnnasnanasscs 72

3.4 23T 11T S LI 72
3.5 SUMMANY & o v e evoeceennenensaneessasssnanassesssenoanesess 73

CHAPTER 4: THE APPLICATION OF DYNAMIC DEVELOPMENT METHODOLOGIES

4.1 Introductory remarks v eit ittt i 74
4.2 Differentiating technologiescieiiiannneenennns 75
421 SCrpting .. c.i ittt i i it et 75
42.2 Serverextensioncc et ia et 78
4.3 Constructing a testing framework it 80
4.4 Performance datatceiienncecansrorscannnanonesens 84
441 Generalremarkscovievetenenernascnsanaonanss 84
442 Apachettt it it 86
4.4.3 Internet InformationServerot 87
4,44 SUMMAIY . oot eveeeonnnnnnnnnonasesssssesonaosescsos 88
4.5 Arguments around scripting and server extension 000 88
4.5.1 Characteristicsof scripting00 89
4.5.2 Characteristics of serverextensionsccveeeeroen.s 90
4.6 Final conclusions and architecture recommendationcc0.... 90
4.6.1 SCripting it iiie ittt e 91
4.6.2 Serverextensionccciiiiatete e eanans 92
4.7 Closingremarksiuienennreeeencnennoananasanaranos 93

CHAPTER 5: CLOSING REMARKS AND RECOMMENDATIONS

5.1 Introductoryremarkscciieitiieenreeri o 94
5.1.1 Systemstatesoit ittt 97

51.1.1 Closedsystemoutiteieinioneeecneonannan 97

5.1.1.2 Partiallyopensystemcciierientons 98

Contents

5.1.1.3 Opensystemcccereranto et 99

5.2 RiSk MANAGEMENt . .. ¢ vvvvvverronnnoanesenonenns e s 100
5.3 Software risk managementt am e 101
5.3.1 Risk management CONCEPLSo cvvec v oo 102

5.3.2 The value of software risk managementcccceceec..- 103

5.3.3 The Software Capability Maturity Model (SW-CMM) 104
5.3.3.10nMtHAlt i s e e 104

5.3.3.2 Repeatableccoiiiiiiii e 105
5.3.3.3Defined - . .ot i ittt et 105
5.3.3.4Managed it ae e 105

5.3.3.5 Optimizingvvvrrmnanr e 105

5.3.4 The six-discipline project management modelc....c-. 106

5.3.4. 1 ENVISION « v vt it v ittt s st e s 107

5.3.4.2 Plan . . i v v it it a ettt i s e s 107

5.3 4.3 WOTK « vt v it vennecensenenacascansanananssssens 108

5.3.4.4 MCASUIE .+ « e s e sttt vavsomecnanoacnscasnssasssessse 108

5.3.45 IMPrOVEe . ..ot vt it i ea et 108

5.3.4.6 DISCOVEr . .. veeneeroeeacnsnosassaonssasonses 108

5.3.5 Knowledge and ignorance in software engineering 108

5.3.6 The risk management processceoeooeerencoocannns 109

5.3.6.1 1dentify i i it 110

5.3.6.2 ANalySet iieaee ettt 110

5.3.6.3PlaN . . ittt it et e e e 110

5.3.6.4Track .. v v i ittt it i i et e 110
5.3.6.5ResOlVEt e et e i 11

5.4 Incorporation of risk management principles into software engineering 111
5.5 Recommendations for future studies on the subject 113
5.6 Closingremarkscoeeuenentnnnennnnnecsscncransanncs 114
BIBLIOGRAPHY ittt i iietietcesaneeosanseassnssasaansossasss 115
APPENDICES ... it i it vitinetannnssassanaanssesacsaanansaoss Appendix-i

Contents

Table 1.1
Table 3.1
Table 3.2
Table 5.1

List of tables
NetCraft Web ServerSurveycceveeceenecenaneccs 7
Web server performance comparison SUMMAarycc««-- 51
Web server performance comparison sUMmMAaryc..-- 72
Seashore's levels of Group Functioningcccceeeeoene. 97

Contents

Figure 1.1
Figure 1.2
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6

Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12

List of figures

MOOTE'S LAW &+ . ot vt veevenssnoonanssssenassssessaosesses 3
Distribution of web server deploymento 7
Internet Information Server Architectureccccceeee- 20
Apache high level conceptual architectureoeeer- 27
Concurrency onNApacheccceeveraanancnnaene e 28
Apache Security Modules 30
Performance framework oe e oo eenoencnans 34
Performance comparison: Small static documents 52
Performance comparison: Medium-sized static documents-. 53
Performance comparison: Large documentscoooeo.en 54
Performance comparison: CGl: Small documents 56
Performance comparison: CGl: Medium-sized documents 57
Performance comparison: CGl: Large documents 58
Performance comparison: DSO/DLL: Small documents 59
Performance comparison: DSO/DLL: Medium-sized documents 60
Performance comparison: DSO/DLL: Large documents 61
Performance comparison: DSO/DLL: Cached small documents 62
Performance comparison: DSO/DLL: Cached medium-sized documents 63
Performance comparison: DSO/DLL: Cached large documents 63
Internet development technology breakdown0.... 75
Comparing interpreters to scriptingengines 76
The execution path of ascriptrequestccveenn. 77
The execution path of a server extensionrequest 79
Comparing compiled application to server extensions 79

Mapping scripting documents to server extensions with Internet Information

SEIVET & v e s s st s oe vt sonsesenoaasancananaasoonscsssess 81
Creating DSO mappings for Apacheccciceenn.. 81
Mapping document types to DSO libraries in Apache 82
Combined Apache performance profilecccune.e 84
Combined Internet Information Server performance profile 85
Apache: Performance figures of database-driven pages 87

Internet Information Server: Performance figures of database-driven pages 88

vii

Contents

Figure 5.1
Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10

System design phases of the SDLCo vvenveonnervenee e 95
A totally closed system does not allow any inputs to enter it, and no outputs to
LY 3% 1 S IR I LI 98
A partially open system allows limited interaction between it and its
ENVIFONMENE & o v v o v ot s s o oencenasasssenssessasaossscssoss 99

An open system interacts with it environment exchanging energy, information

andmaterialsiitiei ittt s e 100
Boehm's SpiralModelt 104
The levels of the Capability Maturity Modelc.coeennn 106
The six-discipline modelot 107
Deciding on acceptable riskcoiiiioiiiiieeen 110
Risk ManNagement ProCesSo cveec oo e nos s onoacns 111
The proposed risk management governed open system 113

viii

Contents

Appendix 1

Appendix 2

Appendix 3

Appendix 4

List of appendices

The Critical values of T for the Wilcoxon matched-pairs rank test
Kolmogorov-Smirnov Test
Percentiles in the upper regions of the standard-normal distribution

Glossary of acronyms

Abstract

Abstract

Some software development teams regard software performance measurement as a mere luxury.
When it happens, it often tends to be infrequent, insufficient and subjective. Countless software
projects were sent into an uncontrollable spiral of poor management and unsatisfactory results.
By revisiting old ideas and policies, many companies have turned themselves around. To ensure
that software engineering does the same, technologies and procedures have to be reevaluated.
The fact that many companies have decided to cut costs on technology expenditure necessitates
software development teams to look for alternative options for deploying high performance
software systems. As many companies are moving into the electronic era and evolving to the
next stage of evolution, electronic commerce, the more important it has become to apply these

concepts on Internet development projects and procedures.

The Internet market has shown that two software providers are aiming for worldwide domination
of Internet server deployment, being Microsoft and Apache. Currently, the Apache web server
is the most commonly used server on the Internet today (60%), with Microsoft's internet
Information Server (25%) in a strong second place. The need for higher throughput and better
services is getting more with each passing day. It increases the pressure on these two software
vendors to provide the best architecture for their clients’ needs. This study intends to provide
the reader with an objective view of a basic performance comparison between these two
products and tries to find a correlation between the performance tests and the products’
popularity standings. The tests for this study were performed on identical hardware
architectures with one difference, being the operating system. By comparing the costly
proprietary Microsoft solution with its cheaper open source rival, Linux, certain opinions were
tested. Would a product developed by a software company that invests millions of dollars in
their products perform better than this free-for-all solution, or would the selfless inputs of
hundreds of developers all over the world finally pay off through the creation of the world's best

internet server?

The results of these tests were evaluated through formal statistical methods, providing overall
comparisons of several common uses of web servers. These results were implemented in a small
field test to prove the findings in practice with some interesting outcomes in terms of supportive

technologies, new rapid application development (RAD) tools and data access models.

Abstract

This research in itself will not change the mind of any Internet programmer. What it hopes to
achieve is to demonstrate software engineers that current processes and methods of developing
software are not always the right way of doing things. Furthermore, it highlights many important
factors often ignored or overlooked while managing software projects. Change management,
process re-engineering and risk management form crucial elements of software development
projects. By not adhering to certain critical elements of software development, software
projects stand the chance of not reaching their goals and could even fail completely.
Performance measurement acts as a tool for software engineering, providing guidelines for

technological decisions, project management and ultimately, project success.

xi

Ekserp

Ekserp

Die belangrikheid van prestasiemeting in die ontwikkeling van sagteware word nie altyd na
waarde geskat nie. Programmeringspanne verkies dit om hierdie stap in die sagteware
ontwikkelings proses te ontwyk, of dit af te water net om korporatiewe vereistes na te kom.
Vele sagteware projekte het al gesneuwel as gevolg van swak bestuur en die onbereikbaarheid
van projek doelwitte. Baie maatskappye het hulself op ‘n pad van hernuwing geplaas deur die
hersiening van korporatiewe prosedures en beleidstellings. Dieselfde hernuwing is krities om te
verseker dat programmatuur-ingenieurswese aan die voorpunt bly deur die herevaluering van
tegnologie€ en prosedures. Wat die situasie soveel meer dringend maak vir die
inligtingstegnologie werksmag is die feit dat kostebesparings deur besighede hulle gaan noodsaak
om goedkoper alternatiewe te oorweeg. Die opvlamming van elektroniese handel forseer

dieselfde argumente af op Internet ontwikkelings prosesse.

Die Internet se huidige beeld wys dat twee Internet bedienerstelsels die mark oorheers.
Microsoft en Apache is die twee voorste verskaffers van Internet bedieni ng sagteware en hou tans
vyf-en-twintig en sestig persent onderskeidelik van die mark. As gevolg van die Internet se
eksponensiéle groei gaan sagteware verskaffers onder meer druk begin verkeer om vinniger en
meer doeltreffende stelsels te verskaf. Hierdie studie poog om die leser te lei deur ‘n
objektiewe prestasie evalueringsproses om te vind of daar ‘n verband bestaan tussen die huidige
mark aandeel van die onderskeie Internet bedieners en die sagteware se prestasie en
funksionaliteit. Hierdie toetse was uitgevoer op ‘n identiese hardeware raamwerk met een
verskil: die bedryfstelsel. Deur die duur Microsoft Windows Server met die goedkoper alternatief,
Linux, te vergelyk, kry die leser ook insig in die verskille tussen vry-kode ontwikkeling teenoor
Microsoft se kommersiéle ontwikkelingsbenadering. Die vraag kan dan ook gevra word of
kommersiéle sagteware, met die rugsteuning van miljoene dollars beter sal vaar as vry-kode

sagteware wat hoofsaaklik deur filantropiese programmeerders ontwikkel word.

Die resultate wat verkry is uit hierdie toetse word verder deur statistiese metodes ontleed om
statisties beduidende verskille te identifiseer. Verder word die inligting gebruik in die
ontwikkeling van ‘n korporatiewe Internet stelsel om dit in die praktyk toe te pas. Interessante
bevindings was ook gemaak in terme van ondersteunstegnologieé en die gebruik van

ontwikkelingsgereedskap (RAD tools) en data toegangstegnologieé op beide platforms.

xii

Die doel van hierdie navorsing is nie daarop gemik om sagteware ontwikkelaars te forseer om van
tegnologie€ te verander nie. Wat graag bereik wil word hierdeur is om die leser bewus te maak
van die belangrikheid van proseshersiening ten einde beter produkte te kan vervaardig. Dit lig
verder ook belangrike faktore uit wat maklik geignoreer word in die bestuur van sagteware
ontwikkelingsprosesse. Veranderingsbestuur (change management), proses heringenieuring
(process re-engineering) en risikobestuur vorm kritiese elemente van die sagteware
ontwikkelingsprosesse. Wanneer sekere belangrike elemente van die ontwikkelingsproses nie in
ag geneem word nie, loop die sagteware projek die gevaar om te faal. Prestasiemeting tree op
as ‘n belangrike hulpmiddel vir programmatuur ingenieurswese wat riglyne bied vir die keuse van

tegnologiese komponente en projekbestuur wat projek sukses moet verseker.

xiii

CHAPTER 1
BACKGROUND, PROBLEM STATEMENT AND HYPOTHESIS

1.1 INTRODUCTORY REMARKS

The history of the Internet and Computer Science has shown that continuous change is
inevitable, and it happens at an ever increasing rate. This is obvious, considering the relative
short history of Computer Science. Computer Science finds its roots in two distinct fields:
Electronic Engineering and Mathematics. Electronic engineering is concerned with the physical
operations of a computer, i.e. the transmission of electric currents between the physical
components of a computer, while Mathematics focuses on the programming of actions, based
on a binary representation of data. A major component of circuit programming is Boolean
algebra, whereby logic is built into a circuit for computation. It is solely based on the validity
of a statement. ‘True’ is represented by a one (1), and ‘False’ by a zero (0). The theoretical
work on its computability started in 1930, but the algebra itself was already created in the 19"
century. The studies of Boolean algebra reached a great milestone of Computer Science in
1936, with the development of the Turing Machine (Brookshear, 1994:424). It was a conceptual

system that manipulated an infinite string of zeros and ones.

These humble beginnings evolved into pragmatism, when the UNIVAC, a programmable
computer, was sold for more than one million dollars in 1951. It is considered to be the world’s
first commercially marketed computer. In 1958, International Business Machines (IBM) decided
to add computers to their business product line. FORTRAN was used as the first high-level
computer language for application in mathematics, science and engineering in 1957. By 1960,
the United States had about 6000 computers in operation, which grew to three times as much
in another four years. This was also the same time the first local area network (LAN) was
implemented. In 1970, the first 4*" generation computers emerged, boasting LSI chips that
contained up to 15,000 circuits. Two years later, UNIX was developed using C, and there were
already 600 companies operating in the computer market. ARPANET, the predecessor of the
Internet, became operational in 1973 and in 1975, the first computer store opened in California
and Usenet, a multi-disciplinary network was created in 1979 that hosted news- and discussion

groups. There were over 100,000 UNIX installations running world-wide by 1984 and there were

Chapter 1 Background, problem statement and hypothesis

1000 Internet hosts, with 13% of US households owning computers. In 1985, Microsoft released
Wwindows 1.0 and started work on Windows NT in 1988, which is currently a very popular
corporate operating system for the PC. This coincided with the release of MS-DOS 4.0. By
1991, 25% of US households owned a computer. Marc Andreessen developed Mosaic, a graphical
point-and-click browser program for the Internet in 1993. 1994 saw the launch of the Internet
search engine Yahoo.com, as well as the formation of the World Wide Web Consortium (W3C)
with over 10,000 Internet sites on the web. In 1996, more than 9 million computers were
connected to the Internet that hosted more than 650,000 sites. The year 2000 was predicted
as the year of global recession due to a date compatibility problem identified in old computer
systems, which lead to worldwide corporate investment of billions of dollars to counter the
problem, guaranteeing compatibility when the year 2000 arrived. Also in 2000, one of the
worst computer viruses in history infected millions of computers within 6 hours, causing major

financial losses to corporations worldwide (Bozdoc, 2000:www.bozdoc.com).

The advancements in the field of Information Technology were foretold by intel veteran, Dr.
Gordon E. Moore with the formulation of Moore’s Law in 1965. This law stated that the number
of transistors per integrated circuit will double every few years. This “law” still holds after
almost 40 years with Intel’s “conformance” to his Moore’s philosophy (Moore,1965;
Intel,2002:www. intel.com) as depicted in Figure 1.1. In 1989 Gelsinger, Gargini, Parker & Yu
(1998:47) questioned the possibility of designing and testing a 50 million transistor chip within
a reasonable time. Their question is answered by Intel themselves in 2000 by building a chip
that houses 42,000,000 transistors (intel,2002).

This short time-line that highlighted some key events in the history of computer evolution
shows that in a matter of a mere 50 years, Computer Science is one of the fastest growing
sciences in modern times, based on its global presence in various fields, including finance,
education and medicine. Computers also had their impact on commerce, as it is seen on the

commercial application of technology and the internet today.

The Internet started as an academic network, then tested and implemented for military use and
has now become a commercial necessity (Leiner, Cerf, Clark, Kahn, Kleinrock, Lynch, Postel,
Roberts, Wolff, 2000:www.isoc.org). It is so important to many companies, that should the
Internet no longer exist, it could cause a major worldwide recession. The direct effect of

information technology in business and the economy is not always clear, however, with the

Chapter 1 Background, problem statement and hypothesis

recent decline in international markets, the damage was experienced in the Information
Technology field as well. The technology stock market’s best indicator, the NASDAQ composite
index has fallen from over 5,000 points to just above 2,000 points in a matter of 12 months
(Glasner, 2001: www.wirednews.com). This proved to have a severe impact on the United
States’ economy, that led to the decline of consumer confidence and the subsequent interest
rate cuts implemented by the United States Federal Reserve to keep their economy out of a

recession (Ulick, 2001:money.cnn.com).

Moore's Law
The exponential growth in the number of transistors per integrated circuit

50000000

30000000

20000000 — /

10000000 //

0 T T T T T T T T T 1
1971 1972 1974 1978 1982 1985 1989 1993 1997 1999 2000

Transistors

intel's adherence to Moore’s Law

Figure 1.1 Moore’s Law

All these factors combined restates the enormous business potential of Information Technology
and the Internet. Business is effectively the software developer’s client and software engineers
and developers have to be able to cater for business’s changing requirements. Pressman
(1997:836-837) argues that the future of software engineering will be driven by software
technology which will force the science into more abstract areas, like artificial intelligence and
expert systems. An evolutionary software approach will probably dominate all other

development paradigms, reiterating the dynamic environment of this field.

it is clear from the following example given by Willcocks and Sauer, et al (2000:14-17) that

Chapter 1 Background, problem statement and hypothesis

software products and technology has to evolve and grow with business to ensure that the best
service is delivered to business’ clients. Charles Schwab, a United States-based stockbroker,
had no Internet exposure prior to 1996. In only four years, this company’s client base grew to
a staggering 3.7 million online clients, with $800 billion worth of funds under management. It
handled more than seventy percent of their 1.7 million trades per week over the Internet with
a total value of 25 billion dollars. Accommodating this growth could never have happened
without the constant renovation and innovation of technology. Schwab CEO, Charles Schwab
reiterates this by making the following statement (Willcocks and Sauer, et al, 2000, 15):

“The transforming event is the ability to deliver personalised information to the
customer, at virtually no cost...this is possible because the Net is totally imbedded in

the centre of our business.”

This success is solely based on technological progress and innovation and provides an example

of a perfect merger between business and technology.

1.2 PROBLEM STATEMENT

1.2.1 Background of research problem

Ahituv, Neuman & Riley (1994:328) suggest that whenever a system developer is faced with a
new system or problem, he' should first review current technologies to evaluate it as a viable
technology for implementation. Unfortunately, due toa number of factors this does not always
happen. Resistance to change is one of the major factors keeping project teams and members
from evaluating current processes and comparing it to different approaches and technologies.
By constantly using traditional approaches, certain rewards are still obtained in terms of
development speed. Unfortunately, the opposite is also common where serious re-development
is required, as the implemented technologies were not the best tools for the application. it
can have a serious impact in meeting deadlines throughout the development process, and limit

product innovation.

! For the purpose of uniformity, it was decided to unify reference to people in

the male form (his/he)

Chapter 1 Background, problem statement and hypothesis

Many methodologies have been formulated to improve the software development process. One
of these processes is re-engineering. Jacobson, Ericsson & Jacobson(1995:15) describes re-
engineering to have as aim, the re-evaluation and re-conceptualisation of an existing system
and trying to find better and more efficient ways to perform certain actions. Carnegie Mellon’s
SE|l adds that it is to facilitate the disciplined evolution of a system from its current state to
a desired state (1995:6). It is further mentioned that re-engineering consists of two distinct
sets of activities. Firstly, it supports program understanding and secondly it includes activities
geared towards software evolution. Combining several proven methodologies around software
engineering can lead to a synergy of results, delivering more than the individual results
combined. When re-engineering principles are applied within the software engineering
environment, the development process will have the necessary equipment and skills to gain
better information on the proper course of action to be taken, taking cognisance of the

environment, its technological components and resources requi red to produce a better product.

it is fairly common to overlook basic factors in the development of new systems. Many
developers are used to a certain technology and would continue to use it, rather than
expanding their skills, using new and unfamiliar technologies. Ahituv et al (1994:28) argues
that resistance to change affects all people involved with the use of a new or unfamiliar
system. This problem does not only exist with system users, but also with developers. Some

symptoms of this “disease” include:

. The objection to the introduction of new technology;
. Attempts to block the acquisition of equipment by end-users; and
. The resistance to the formation of new organisational units.

These symptoms manifest themselves through several seemingly unrelated side effects. When
developers’ minds are closed to new energy and ideas, the team and their projects will suffer
from it. Stagnated approaches and methods also stifle creativity and can lead to poor

innovation. Eventually it can have disastrous effects for the team, its outputs and the clients.

It is common that the professional experiences a feeling that he lost control over his area of
expertise and finds himself in unfamiliar territory. Kast and Rosenzweig (1985:220) state the

following:

Chapter 1 Background, problem statement and hypothesis

“Technological changes may create job insecurities and anxieties for workers. Skills
developed over a long period may become outmoded, vitally affecting their self-image
and motivation. We frequently underestimate or fail to perceive the impact of the
technical system on people. With stable operations, the interaction goes unnoticed.
However, a major change in the technology component will often highlight this

interdependence.”

The employment of people in technical or scientific areas has shown that their position inside
the company is often cause of conflict. This is due to the high value they place on intellectual
achievements and innovation. The problem is generally that they are not recognised for their
achievements within the company and amongst their professional colleagues. They are in
search of a high level of automation, discretion over task assignments, professional recognition
and a high sense of personal growth from their work (Kast and Rosenzweig, 1985:223).
Management is to play a critical role here as the catalyst that introduces new technology and

to facilitate the urge to learn new skills.

Developers and their managers, therefore need to learn to adapt to change by constantly
evaluating their methods, tools and environment. Change management is a critical and
effective, tool to deal with these problems. Change management has three distinctive phases
(Ahituv et al, 1994:29):
. Unfreezing Disturbing the current stable equilibrium and,
consequently introducing the need for change;
. Moving Presenting new directions and conducting a learning
process until the material is thoroughly digested; and
. Re-freezing Integrating the change with existing behavioural

frameworks to recreate a whole, natural entity.

As business is constantly pressured to deliver more at a higher speed, it is important for

developers and system engineers to realise a technology’s advantages and shortcomings.

In order for developers to deliver high quality software to business, based on its requirements,
ongoing technological evaluation and evolution has to be at the heart of all software
engineering activities. Apart from quality factors, performance factors should also be

evaluated. NetCraft (www.netcraft.com) has developed a discovery script whereby they query

Chapter 1 Background, problem statement and hypothesis

version, for Microsoft Windows NT and 2000 Server. |IS’s management is GUI-based (Graphical
User Interface) and very easy to install and maintain with a Management Console that allows

the administrator to manage several servers from a single program.

1.2.2 Reasons for Server Deployment Distribution

The reasons for the distribution of web servers are unfortunately not clear. Several
contradictory reports were found that argue that either Apache or IS were the better

performer of the two.

A troubling report, especially for Linux and Apache, was found on performance tests between
the two top servers, done by MindCraft hailing Microsoft’s IIS as the undisputed champion of
web servers. The report was received with dismay within the Linux community, questioned the
fairness and objectivity it was conducted under (Raymond, 1999:www.slashdot.org).
Furthermore, Microsoft’s Windows platform manager in South Africa, lan Hatton, admitted that

the tests were sponsored by Microsoft (Pienaar, 1999:www.itweb.co.za).

One could argue that the uproar from the Linux community did not have any merit. The
Microsoft server could have been faster and the tests were conducted in a proper manner. Why
is it then that Apache is more popular than Internet Information Server (11S)? Is there any
correlation between the popularity of the server and its performance? The popularity

difference could lie in functionality or convenience. It could even be related to stability.

Should one try to explain the deployment figures (Figure 1.1), one should compare several
different variables to determine the reason behind it (MacVittie, 2001):

o Platform;

. Supporting technologies;

. The service application;

. Technical knowledge required to configure and maintain;
. Security requirements;

. Reliability;

. Vendor support and continuous improvement;

. Quality of the API;

. Availability of server extension through plug-ins; and

Chapter 1 Background, problem statement and hypothesis

. Performance.

In general, very few web sites start big. They all had small beginnings, and then, based on their
popularity either exploded and became big and successful, or closed down. More often than
not, these sites do not have the financial backing like the large corporations like AOL Time
Warner’s CNN.com, and had to make it on their own. The only way for a small startup site to
be seen on the Internet at a reasonable cost is through a shared hosting solution. This means
that the site is hosted remotely in a server farm that is closely linked to a major Internet
backbone. The costs are reasonably low, and high volumes of data can be serviced by this
solution. Based on the owner’s financial position, he might opt to go for one of the two most
commonly offered technologies for shared web hosting. Either Linux/Apache or Microsoft
Windows/Internet Information Server. Usually, these services cost roughly the same, which
leaves the owner to decide. By comparing different server technologies and their offerings to
his requirements, technology will be the driving force behind these kinds of business decisions
(Pressman, 1997:835).

1.2.3 The research problem and hypothesis

To select the appropriate technology for deploying a new web site or service, the owner should
always consider a wide range of parameters (paragraph 1.2.2). Fora technology to be selected,
it should therefore excel over its opponents with a fair margin. One can now even speculate
further to say that the server that displays the best set of qualities, when compared to the
other, should automatically be the most popular.

To address the research problem, a null- and research hypothesis is formulated. These
hypotheses are centred around the correlation between a web server’s popularity and its
qualities. This study has therefore as goal the proof of the popularity rating as direct measure
of a server’s overall rating. It is expected that these statistics will show that the more popular
a server is, the better would its overall performance be. The hypotheses are formulated as

follows:

. Null-hypothesis (H,): There exists no correlation between a web

server’s popularity and its performance, functionality and reliability;

Chapter 1 Background, problem statement and hypothesis

and
. Research-hypothesis (H,): A web server’s performance, functionality

or reliability is related to determining its popularity.

In order to prove or reject either the H, or H; hypothesis, a couple of sub-hypotheses were
formulated to combine either an acceptance of rejection of either of the hypotheses

mentioned above. These sub-hypotheses are named and discussed in Chapter 3.

1.3 RESEARCH GOALS

As noted in paragraph 1.2.1, when managing resistance to change, it is important to prepare
developers with the introduction of new technologies in a cautionary way. By getting them
involved in the choice and testing of new technologies, it can greatly improve the introduction
thereof. It is however, always difficult to determine by which standard to measure certain
characteristics of a system. This research will try and add some insight to the measurement
techniques of system components. Furthermore, it might shed some light on using popularity
as an effective way of estimating a system’s overall success. It should however be stressed
here that popularity figures should never be assumed to be the ultimate measurement in
software evaluation, but it can add some value in focussing system evaluation exercises. This
study will provide a mechanism for more objective decision-making in the selection of

technology.

The additional value could be measured in terms of time-costs. By eliminating certain systems
from an evaluation exercise might not be totally objective, but it can save the project much
time and effort, should the initial field of systems be restricted to highly popular systems.
Again, care should be taken with the application of this methodology, as new technologies
might not always be very popular, and could even prove to perform better than existing
technologies. This reiterates the importance of information technology professionals’ interest
in new developments in their area. New technological developments should always be

considered before the final group of test systems are put through the evaluation.

The inclusion of outside contenders can cause an uneasy surprise. Redhat, one of the well-

known Linux distributors in the world has recently launched their own web server. The Tux web

10

Chapter 1 Background, problem statement and hypothesis

server is reviewed as one of the fastest web servers around. This was determined with a
benchmark comparison between Apache, Microsoft IS and the Redhat Tux. Some amazing

performance differences were discovered:

“Tux's amazing performance benchmarks on the SPEC Web 99 benchmark), found that
Tux was able to perform nearly three times faster than current Web server mainstay
Apache (12,792 transactions per second vs. 4,602 tps) when running a mix of dynamic

and static Web content.”

and

“The fact that Tux 2.0 was also significantly faster than Windows 2000's Internet
Information Server 5.0 Web server (5,137 requests per second) clearly shows the

advantages of Tux's new design over that of a well-established Web server.”

(Baltazar, Dyck, 2001:www.zdnet.com)

The great difference in performance is apparently achieved by the fact that Tux’s kernel is
present within the operating system’s kernel, which is different from the other two popular
servers, which have their main processes running outside the operating system’s kernel. This
apparent difference shows that the “vertical position” inside the operating system’s
architecture is very important. The closer the process runs to the kernel, the higher its
performance could be. This has shown so successful, that Microsoft has announced plans to

release a similar architecture in their new web servers soon:

“The next version of 1IS (which ships with Microsoft Corp.’s Whistler project) uses

several ideas introduced by Tux, including the kernel-space design.”

(Baltazar, Dyck, 2001:www.zdnet.com)

The exclusion of Tux for this evaluation was based on the fact that it doesn’t include certain
functions that the other two servers offer. In order to support server extensions and
executable binaries, Tux has to be configured to pass requests to an additional Apache server.

This functionality forms an integral part of the tests performed later in this study.

1

Chapter 1 Background, problem statement and hypothesis

When an analysis of this nature is expanded to include several new or unknown technologies,
many interesting facts can come to light. Business does not really care about which
technologies its Information Technology department comes up with. As long as it can do the
work they are satisfied. Add to this the option of a lowcost alternative and you might have a
totally different scenario. It is therefore imperative that business introduces more rigid
processes to guide and manage decision-making activities. Using several business tools, like re-
engineering and risk management, the teams responsible for these processes can keep the

company out of danger’s way, while ensuring excellence at many levels of the organisation.

1.4 STUDY LAYOUT

This research is presented in five chapters. Chapter One introduces the reader to the
background of this project, highlighting the history and growth of the Internet, Computer
Science and software engineering. The growth of technology has effectively made software
developers the information and knowledge agents of business. Furthermore, technology is
increasingly becoming the central point of many businesses, emphasising the importance of high
quality development and product support. More pressure is placed on developers to deliver
bigger and better systems which require the developer to evaluate supporting technologies to
ascertain their viability as a supportive system.

Chapter Two is concerned with expanding the foundation with a qualitative study into the

systems under evaluation.

Chapter Three focusses on performance issues between two servers. The results are
statistically compared and discussed, and provide a good profile of both servers under stress.
This profile is used to determine the acceptance or rejection of the null hypothesis stated in
Chapter One.

Chapter Four uses the performance results obtained from Chapter 3 to construct a high
performance web application. This application was developed for both platforms to give a good
comparison of the technologies used for the two different servers. The results from the
separate sections will be combined and used to make some recommendations for server

development and deployment.

12

Chapter 1 Background, problem statement and hypothesis

Chapter Five discusses the implications of poor evaluation and control on software
development projects. It highlights the importance of risk management throughout the systems

development life cycle and suggests areas of continued studies.

1.5 CLOSING REMARKS

Throughout this chapter, several problem areas were identified that could cause a resistance
to change with the introduction of new technologies, or issues that could be reason for clouded
judgement on the evaluation of technologies. This study has at aim to evaluate popular web
servers and comparing the overall evaluation of the servers to their popularity. It is aimed at

drawing correlations between their popularity and overall assessment.

Furthermore, it also guides the reader through a basic evaluation technique for evaluating and
comparing server technologies. It should be carefully noted that the choice and introduction
of new technologies are to be made through a combined exercise between developers and

management.

13

CHAPTER 2
RESEARCH FRAMEWORK

2.1 INTRODUCTORY REMARKS

Chapter 1 discussed the dynamic nature of Information Technology and Computer Science. The
fields of Computer Science and software engineering share a common area of interest in the
application of existing technologies, the improvement of insufficient or obsolete ones, and the
development of new technologies. Fenton and Pfleeger (1997:9) state the properties of
software engineering to include management, costing, planning, modelling, analysis,

specification, design, implementation, testing and maintenance.

The evaluation of technologies is therefore of the highest importance to this field of study.
Evaluation and measurement does however seem to be of lesser importance currently in the
area of software engineering (Fenton & Pfleeger, 1997:10). This highlights a serious problem
with the modern approach to software engineering. Measurement is considered a mere luxury
for software developers and project managers. When measurement is applied, however, it
tends to be infrequent, inconsistent and incomplete. This is clearly not conducive to overall
project success. Four critical factors involving poor software measurement are highlighted
(Fenton & Pfleeger, 1997:10):

. Failure to set measurable targets for software products. Often “fuzzy”
objectives are set that are hard to measure at a project’s completion;

. Failure to distinguish between the component costs of the project. For
example, most projects cannot differentiate the cost of design, coding and
testing. Cost control is difficult with poor cost assignment;

. Failure to quantify and predict the quality of the product. This has the effect
that the finished system cannot be benchmarked against estimated
performance figures or system specifications; and

. Often new and revolutionary methods and products lure the developer into
using it without scientific analysis or proof why it should be used and old

technologies are to be discarded.

14

Chapter 2 Research Framework

From an objective point of view, it seems unthinkable that software development projects do
not avoid the pitfalls mentioned above. However, these pitfalls are real in the world of

software development and therefore emphasise the need for exact software measurement.

These sentiments are echoed by Gilb’s Principle of Fuzzy Targets (Fenton & Pfleeger, 1997:10):

“projects without clear goals will not achieve their goals clearly”.

2.2 THE NEED FOR SOFTWARE MEASUREMENT

As stated earlier, measurement is a critical tool by which we compare success, especially in the
areas of engineering. This technique applies to software engineering as well. The ultimate goal
of software measurement is the realisation of pre-project specifications and requirements. it
also helps in assessing the overall health of a project. Good measurement and management
leads to effective control (Fenton & Pfleeger, 1997:11). Furthermore, decisions can now be
made, based on concrete measurement-based information. This is even more true for the
evaluation of new technologies. In order to effectively evaluate supporting technologies, the
developer has to measure the different characteristics of different technologies. Unbiassed
evaluation is required from the programmer and his team. Disregard of standardised testing

may result in skewed outcomes.

The value of measurement in the evaluation of technologies is therefore summarised as follows:

. It will ensure the objective comparison of different technologies;
. It will identify both good and poor characteristics of systems;
. It will provide confidence to the project team that the technology applied will

operate within a set range of parameters;

. It forces the team to compile a thorough list of requirements for the system
or technology, which will be useful in the ongoing evaluation of the technology
and will provide a guideline by which requirements will be met with the

project’s completion.

15

Chapter 2 Research Framework

2.3 MEASUREMENT FRAMEWORK FOR EVALUATED SYSTEMS

In order to structure this research properly, the tests will be grouped in two distinct sections.
Firstly, the qualitative section will look at the soft, non-quantifiable characteristics of the
systems involved. This section will cover several issues, including installation procedures,
aesthetics and general management and maintenance. The second section (Chapter 3) of the
research will focus on the quantitative aspects of the different systems evaluated. This entails

the comparison of performance figures and the like.

2.3.1 Microsoft Internet Information Server (lIS)

Microsoft was a late joiner to the web service party, but having said that, they have made quite
a noticeable impact on the web server market, as depicted in Table 1.1. Even though earlier
versions of Microsoft’s web server were clearly not as nimble and gracious as their fifth, and
current, version, Microsoft’s IIS was so popular over the last few years that it is currently the
second-most common web server on the Internet (NetCraft, 2002). The server is not a core
component of Microsoft’s operating systems, but is however, dependent on it. IS is not
platform independent, which means that you need a Microsoft operating system to deploy lIS.
This can be either Microsoft’s Windows 9x series, Windows NT, Windows 2000 or the latest,
Windows XP. It should therefore be said that Microsoft provided for some kind of flexibility

with regards to IIS, even if it limits the user to a single Operating System vendor.

There are different versions of 1iS. The basic desktop version, Personal Web Server, is intended
to be deployed on a workstation-style operating system. This version supports basic Hypertext
Transfer Protocol (HTTP) and File Transfer Protocol (FTP), but in a very limited fashion. This
version is much less versatile than the server version. The server version is capable of hosting
multiple sites, which makes it an ideal platform for shared hosting. This means that one server
can be used to host multiple sites, which means lower cost of ownership and simpler

management.

Unlike 11S’s rival Apache, IIS is proprietary software. The source code belongs to Microsoft and

only them. No-one else knows the inner workings of IS and Microsoft intends to keep it that

16

Chapter 2 Research Framework

way. This has further implications for the owner. with 1IS being a black-box' installation, it
limits the administrator to be able to configure the server within a maximum parameter set
that Microsoft allows. This does however offer an advantage for novice administrators. This
is a plug-and-play web server that does not require any difficult configuration from the
administrator. Furthermore, Microsoft has proven over time that they are able to deliver a

system that is already configured to deliver a high performance solution to the system owner.

2.3.1.1 Installing Internet Information Server

Microsoft is a master in building and constructing good-looking graphical user interfaces(GUI).
This is true for all their products, from installation, through operation up to software removal.
This goes for the IS installation as well. 1IS 4.0 gives the installer full control over installation.
It allowed for the selection of both installation paths, and component installation. Once all
required options and interactions were executed, the rest of the installation continues

unhindered with the file copying and system configuration.

At the completion of the installation, the server is operational. The service is automatically
added to the operating system’s list of services started at boot-time. Arestartis recommended
and after the system has booted, 1IS is running. This easy installation was duplicated in Ii5 5,
which comes bundled with Microsoft’s Windows 2000 Server Family. It is optional with the
setup of the operating system and can be added or removed at any stage.

By default, IIS will create a default web site on port 80 (the default HTTP port) on the
machine’s main IP address. IS also includes an optional FTP server. A default FTP server will
also be created together with the HTTP server. As part of the default HTTP server, the
installation also installs the required documentation which can be accessed as part of the
default web site.

! ‘Black-box installation’ refers to the closed nature of software and its

internal processes.

17

Chapter 2 Research Framework

2.3.1.2 Maintenance and configuration

Internet Information Server can be managed in two ways. Firstly, the most commonly used is
the application-based management console. It gives the administrator full control over all the
virtual servers set up on a machine. The management console has the ability to log on to a
remote server and allows the administrator remote administration access to any other machine
running 11S. The console is snap-in driven and forms the basis of several management modules
to be installed and run from there. This concept is similar to the console Microsoft distributes
with their flagship database server, SQL Server. The database is managed and maintained

through the console, similar to the IIS server.

Secondly, like many other servers, |IS can be managed through a web-based console that gives
the administrator remote administration functionality through any modern web browser.
Though not as powerful as the application-based system, the web-based console is quite
powerful in general maintenance of the server. These two different maintenance ports offer
therefore an easy configuration framework of the server in a GUI-based environment. High
level optimisation and performance tweaking can however not be done in any of these modes.
In order to obtain full efficiency, minor adjustments to the server have to be performed on
Windows’ registry. This is not recommended to inexperienced administrators and requires some

knowledge of the operating system’s registry.

Microsoft’s IS supports multiple virtual servers. A virtual server is a virtual computer that
resides on one physical computer but appears to the user as a totally separate server. Each
virtual server on the machine has either its own IP address or port and can service its own
domain. This allows a company to host several different web sites on one physical machine at
a relatively low cost. Microsoft’s range of server products allows for multiple IP addresses to
be assigned to a network interface card (NIC). All the addresses that are assigned to the NIC
can be used by IIS to create a virtual server on one of 2% ports. This functionality is however
only available on the high-level server edition of IIS. This is due to the underlying operating
system’s shortcomings with regards to multiple iP address assignment. It could be argued that
it was limited due to commercial motivations. By limiting the functionality to host multiple
sites on Microsoft’s server products only, it created a huge income from corporate clients and

hosting companies.

18

Chapter 2 Research Framework

IS also supports virtual directories. A virtual directory allows the administrator to link
directories outside the server’s root directory to be accessible as a normal subdirectory within

the root. It holds major advantages in terms of resource management and control.

IIS can run as an out-the-box solution. Just install and run. Through their marketing
campaigns, Microsoft claims furthermore that their new generation servers proved to have an
uptime figure of 99.999% (Microsoft, 2001). This is a good indication of IIS and Microsoft’s
reliability and stability. It should however be kept in mind that actual industrial deployment

might have different outcomes to that of development-testing scenarios.

2.3.1.3 Optimising Internet Information Server

Basic optimisation can be done from either of the two management consoles. However, to
really get IIS to perform well, some optimisation has to be performed at the operating system’s
registry level. This is a very basic configuration framework, but one small change to the wrong
value will slow down the server and can even affect the operating system’s stability.

Fortunately, there is sufficient documentation available from Microsoft on optimising IIS.

Trying to optimise this level of IIS should only be attempted once the basic optimisation fails

to deliver the required results.

2.3.1.4 Server Architecture

Like many other web servers, Microsoft’s 1IS web server defines a basic functionality that can
be used to build web applications. Active Server Pages (ASP), Internet Server Application
Programmer Interface (ISAPI) and other technologies extend the basic IIS web server to allow
developers the implementation of technology to develop high-level programs that can run on
top of a web server. This allows the developer to build in functionality that are not available
with straight-forward HTML, such as mathematics, logic, data streaming and database access.

The core functionality of the lIS includes:

. Establishing and maintaining HTTP connections;

19

Chapter 2 Research Framework

performing self-tuning through thread management. Inside the server, threads are maintained
in a thread pool, that is capable of autonomous management to improve the server’s overall

performance.

1S distinguishes between its handling of HTTP requests. Four different processing options are

noted by Microsoft:

1) Static HTML Pages
HTML (also XML, CSS, etc.) documents are served by the server to connecting
clients. These documents are static in nature and is served to the client
without any further pre-processing on them.

2) ISAPI Extensions
11S loads the ISAPI DLL and the request is sent to the extension through the
Extension_Control_Block data structure. IS allows for DLL caching. This
drastically improves performance, as the DLL is loaded only the first time the
DLL is accessed. Thereafter, the cached extension is accessed at memory
speed, compared to disk-read access-speeds.

3) File name extensions mapped to a particular ISAPI extension
As mentioned previously (see 2), the DLL is loaded and IIS presents the request
to the extension. The ASP extension, for example, is mapped to the asp.dll
extension, and all requests to these files are handled by the appropriate DLL.
This forms the basis of ASP operation. Requests to the document will be passed
to the mapping library, where it will load the document requested and perform
pre-processing on the document and send the output to the requesting client.

4) CGl applications
Different from the ISAPI requests, with CGI, IS has to create a new process
whereby the CGl-thread is handled on its own. 1S will provide the query string
to the CGl-thread process. By definition this method of execution should be

much slower than ISAPI.

2.3.1.5 Access logging

Internet Information Server has its own internal high-speed logging system that can be used

ral

b 37935y
biss 21062

Chapter 2 Research Framework

with the server. The logging modules operate independently from the core processes on the
server and offers the user a range of logging formats. The logs are compiled separately for all
virtual HTTP- and FTP servers. Logging is usually done to text files, but 1S also provides for
ODBC-logging (Open Database Connectivity). This enables the administrator to have the logs
recorded straight into a relational database for SQL-based manipulation. Apart from the ODBC
logging format, IIS supports three other log standards, being the W3C Extended Log File Format,
Microsoft 11S Log Format and NCSA Common Log File Format.

Logging is not compulsory, and can be disabled. The main reason to do this is to minimize
system overhead within the server, to obtain better system performance. Different logging
formats and preferences can be set for all virtual servers (both HTTP and FTP) from the

different management consoles. All server activities are logged by the server.

2.3.1.6 Security

IIS supports both anonymous and user-authorised access. Anonymous access is the most
common access-level set for all web sites. Where access to a server or segment needs to be
restricted, user names and passwords are required. IS supports Distributed Authoring and
Versioning (WebDAV) for exposing any storage media over an HTTP connection. WebDAV is
configured by using web server permission settings. This implies therefore that the user logs
on to the server as a remote user. WebDAV permissions can be set to allow the following
(Microsoft, 1999):

. File- and directory search;

. Creation, modification, deletion and browsing of directories and files and their
properties;

. Storing and retrieving custom properties for files and directories; and

. Locking files for collaborative working environments.

1IS’s access control mechanism covers four basic access criteria:

. IP address;

. User permission;

. Web server permissions; and
. Filesystem permissions.

22

Chapter 2 Research Framework

Even though Microsoft has claimed many times that the security they build into their servers
are of the highest standard, their systems seem to be compromised quite often. These
problems are so big that should a server’s security be compromised, and the attacker is familiar
with the structure and location of the server, he can cause serious damage to the server and
the network it is running on. This has been emphasised by the high number of security-related
updates released by Microsoft for their servers. Ritchley & Hamilton compare the two servers’
(Microsoft 1S and Apache) vulnerability histories in terms of severity and exposure time and

found that Apache is in terms of security superior to 1IS (2001).

Based on these issues and many others, many people argue that Microsoft’s attention to
security leaves much to be desired. Others argue that Microsoft is only the target of bad
publicity with the discovery of security holes. Abreu (1999:www.cnn.com) quoted Jeff Tarter,
editor and publisher of Softletter, saying that Microsoft’s software was never really invented
to operate in a networked architecture. As Microsoft and the rest of the software world is
moving to a complete network-oriented architecture, this problem can prove to be fatal to
their future successes. Furthermore, the implications for multinational companies, like
DaimlerChrysler, Deutsche Bank and Ford which rely on these technologies, can be to their

detriment.

Bruce Schneier, cryptology expert, mentioned that Microsoft’s operating system was never
developed with security in mind (Abreu,1999:www.cnn.com). Furthermore, he said that for
them (Microsoft), security is always an afterthought. Many of these security problems have
surfaced in recent times, from e-mail viruses to denial of service attacks from 1IS-driven web
servers. The latest of these vulnerabilities, at the time of this project, are the malicious “Code
Red” and “Code Blue” viruses. This and many of its kind have caused havoc for site owners and
administrators over the last few months, just as the dust settled over the Y2K bug and the large

investments made by Microsoft to update their legacy software systems.

2.3.2 Apache

Apache is a web server built on open-source collaboration. It has at aim the creation of a

robust, commercial-standard and feature-filled web server which is freely available. The source

23

Chapter 2 Research Framework

code is open to use and deploy by anyone, royalty-free. The project is jointly managed by a
group of volunteers world-wide, which use the Internet as their means of communication,

planning and development of the server and its documentation.

Rob McCool developed an HTTP daemon, which was the most popular server software on the
Internet by 1995. Development of this public domain server had stalled and many developers
had to distribute a number of bug-fixes for the system. A small group of these web masters
gathered and formed the original Apache Group, primarily through e-mail communication. They
were to coordinate the changes made and oversee the distribution of these software “patches”.
During the period May 1995 to June 1995, they implemented new features on the National
Centre for Supercomputing Applications (NCSA) 1.3 httpd base system. A new server
architecture was developed, and after extensive beta testing, a new set of documentation and
a myriad of new features and modules, Apache 1.0 was released in December 1995. Apache
managed to pass the NCSA httpd daemon in less than a year after inception as the most popular

web server on the Internet (Apache Project, 1999:www.apache.org).

2.3.2.1 Installing Apache

Apache is open-source. This means that the webmaster can control everything inside Apache.
He can determine the installation directories, its individual configurations, and much more.
Apache is available for installation in two different formats. Firstly, Apache is distributed in
a Redhat Package Manager (RPM) file format. This allows the administrator to install the server
from one installation file to its default location and do not have any control over the finer
options in the installation process. This format is only suitable for Linux machines that support
RPM. The Apache Group released a new Microsoft Windows-based version of their server, which
is also installed by a single installation application, allowing the user to make a few installation

configuration changes.
Apache is probably the widest deployed web server in the world today. This can be attributed
to its multi-platform support approach. Apache is available for almost all variants of Linux,

Unix and Microsoft platforms.

The more involved approach of installing Apache is the compilation process, by which the

24

Chapter 2 Research Framework

source is compiled, built and installed. This is the most common for experienced system

administrators, as they would prefer to customise certain aspects of the server.

Once you get tired of Apache on your server, removal can be done in a few simple steps,
provided it was installed through the RPM (RedHat Package Manager) or any similar installation
wizard. However, should you have used the compile-approach of software installation, it can

be much more involved.

To enable some advanced features for Apache, like Dynamic Shared Object-support (DSO), the
basic installation will not suffice. Certain configuration changes have to be made prior to

installation through the compilation-oriented approach.

2.3.2.2 Maintenance and Configuration

Apache is in essence a UNIX-oriented server which means that, like most parts of UNIX and
Linux, configuration and management of the server happen through text-based configuration
files on the server. The server uses several configuration files, that determine the server’s
characteristics, ranging from domain resolution to IP- and port configuration and dynamic

shared object binding.

For the novice, configuring an Apache server with no previous web server experience might be
a nightmare. There are no ready-made management utilities available like the console that is
included with Microsoft’s 11S. There are a few simple utilities that are installed with recent
versions of RedHat, but they do not provide the administrator with the same power as the 1IS

console does.

Server startup and shutdown are done mainly from a command-line level. Management of the
server through remote Telnet sessions is quite simple and extremely convenient, particularly

when servers are not located where its administrator is.

25

Chapter 2 Research Framework

2.3.2.3 Optimising Apache

Apache is configured through a series of configuration files located in various directories of the
server installation. Needless to say, optimising the server will happen in exactly the same way.
A real powerful optimisation option to go for would be to pre-configure the server at
installation time. Several documents available to the Apache community recommend the
recompilation of the underlying operating system, primarily focussed on the web server’s
application and performance. However, due to the focus of this research, recompiling the

underlying operating system was not considered.

There is a collection of web sites on the Internet dedicated to optimising Apache for maximum
performance. This is in line with the Apache Group’s dedication to open-standards
development of an open-source web server. Server optimisation remains a black art, and this
is even more so for Apache. Apache optimisation can run down to the operating system level,

which can prove to be really complex and intricate.

2.3.2.4 Server Architecture

Apache is a modular web server. This means that the server is built from several components
which perform separate tasks, as opposed to a monolithic server with a single unit that handles
all actions. Apache has a core module that defines and coordinate the steps in servicing a
request. The different modules of the Apache server implement the actual phases in the
handling of the request (See Figure 2.2).

26

Chapter 2 Research Framework

as the event tracking and management of the system can be resource intensive.

2.3.2.5 Access Logging

Every document requested from the server is logged by Apache, as well as any errors that are
experienced or missing documents requested. Apache produces log files in the Common Logfile
Format (CLF) into flat text files. Al basic information is stored, except for the user agent, the
referring Uniform Resource Locator(URL) and the use of any cookies. The access and error logs

are usually stored in the same subdirectory.

The information that is stored in the access log file includes the following:
. The domain name of the requesting machine. Should the domain not be

available through a reverse DNS-lookup, the IP address of the client is used;

. The user name is recorded, should access to the resource require authorisation;
. The date and time on which the request was made;

. The complete first line of the request in quotes; and

. The total number of bytes transferred.

Apache’s error logging system is extensive and logs both errors and warnings. Should basic
problems occur on the server or its network, it is logged, e.g. when a client times out, it is
logged, warning the administrator of possible network problems. Broken links or missing
resources are also logged, ensuring the administrator is aware of certain problems with the site.
Incorrect authorisation is also logged, warning the administrator of attempted break-ins, or the
use of invalid or inactive user credentials (Behlendorf, Chandler, Brintle, Casselberry, Anthony,
Darnell, Estabrook, Graber, Hubbard, Ladd, Parker, Scott, 1997:Chapter 16).

2.3.2.6 Security

Apache is synonymous with UNIX and Linux, both of which are highly acclaimed for their
security. By default Apache allows access to all resources defined as part of the site to all
incoming users. Hontafén (2000:www.networkmagazine.com) questioned Apache’s security

quality with reference to the fact that it is free. This is however highly debatable, as UNIX is

29

Chapter 2 Research Framework

a popular operating system for corporate firewalls. And as the foundation of Linux is ultimately

UNIX-based, one can expect similar standards from the UNIX derivative.

Apache supports access control to individual users, based on certain criteria, being domain-
specific or IP-address or -range specific. Access to resources can be explicitly allowed or
denied. This gives the administrator total flexibility in controlling access to the server. User
authentication is also supported by Apache, requiring the user to logonto the server with a user
name and password pair. The most common access-mode for web users is however the
anonymous mode, which allows all users access to the entire web site. Figure 2.4 shows the

security control modules provided with Apache.

Figure 2.4 Apache Security Modules

The nature of the Apache web server provides the community with well-documented updates

to the system, fixing potential security problems.

With the commercial growth of the Internet and the high need for online commerce, it became
critical to protect sensitive information exchanged between customers and online retailers,
such as credit card numbers, passwords and medical records. This necessitated the creation

of the Secure Sockets Layer (SSL) networking protocol. The SSL protocol encrypts data sent

30

Chapter 2 Research Framework

through it, guaranteeing total confidentiality.

Apache has developed a Secure Sockets Layer-enabled (SSL) version, Apache-SSL. It is based
on the common open source version and supports 128-bit encryption for both commercial and
non-commercial use. There is furthermore, also mod_ssl which is a security module that plugs
into the standard Apache server. It is the web interface to the popular OpenSSL
implementation. SSL is implemented as an extension to the standard Apache source tree. It

is also free to distribute for commercial and non-commercial application.

2.4 CLOSING REMARKS

The need for software evaluation was clearly defined and discussed in this chapter. Due to the
subjective nature of qualitative evaluation, it was decided that the recommendations made
regarding the technologies exclude the qualitative findings for making recommendations. This
study will therefore focus primarily on performance measurement from the context of Internet
development. It is however quite important to realise that performance measurement isa

critical part of all kinds of software development projects.

By combining quantitative analysis with quantitative testing, a project team is able to make
objective decisions about technologies. Objectivity and innovation are stimulated by
investigation and experimentation, and by combining different methodologies to the entire
software development process, better products can be produced, taking cognisance of current
trends in terms of old, current and new technologies. Chapter 3 will expand the analysis of this

study and look at the quantifiable components of the different technologies being evaluated.

3

CHAPTER 3
QUANTITATIVE ANALYSIS

3.1 INTRODUCTORY REMARKS

Chapter 2 focussed on the qualitative aspects of the two Internet servers under evaluation,
namely Internet Information Server and Apache. Chapter 3 focusses on the quantitative aspects

of theses servers, particularly their respective performance under different circumstances.

3.2 TESTING ENVIRONMENT

For the purpose of this study, a stress simulator was built. It consists of one central controller
and several simulator clients (satellites). Each of these clients runs on separate machines
connected to the controller via TCP. A script is compiled on the server of each of the requests
that will be made to the web server. A test is started from the server which sends the test
information to the clients, which in turn create the test threads connecting to the web server.
As soon as all the clients’ threads are created and prepared, the server sends an initialisation
command to the clients, starting the suspended threads. A non-blocking HTTP client was used

to ensure that the maximum throughput can be achieved for the clients.

The load is distributed evenly over the number of clients. For this test three machines were
used. The web server was configured with a 1.6 GHz Intel Pentium 4 processor with a 400MHz
system bus. The server used 256MB DDR RAM, and two identical 20GB hard disk drives. The two
operating systems, Windows NT 4 SP6 and RedHat Linux 7.2, were installed on separate drives.
Both web servers had an identical hardware specification, creating an unbiased hardware
platform. Windows NT was configured with Internet Information Server 4 and RedHat Linux
with Apache version 1.3.24. The three clients and the web server were connected through a

3COM switch and were all running on a 100Mb full-duplex network configuration.

To simulate various number of stress levels, 32 tests were run for every testing scenario. Each

of these tests was run at a higher stress level than the previous one. Starting at 24 threads in

32

Chapter 3 Quantitative Analysis

total, the stress level was divided over the three clients, starting with 8 threads each. With
each iteration, the stress level for each client was increased with 8 threads, up to a total of
256 threads per client, bringing the total stress level to 768 threads. The tests were run at one

minute intervals with a 15-second warmup session for each test.

At the completion of every test, the total for each client was calculated and sent back to the

central server. The totals were then calculated and logged.

3.3 STATISTICAL ANALYSIS OF DATA

3.3.1 Test breakdown

The tests are structured by means of two different variables, namely the nature of the request
and its size. The test can therefore be split into two different sections, being static and
dynamic content. Both sections were run with three different sizes of data fi les'. The filesizes
used for these tests were not based on any scientific calculations, but on log analysis of several
web sites over a period of 1 month. An approximation of the test sizes was made, based on

observed clustering within the file size range.

The dynamic section of the test is further divided into three different subsections. As Apache
and 1IS support similar technologies, the shared methodologies are compared. These

technologies include:

. Static files;
o CGl executables; and
. Dynamic Linked Libraries (1IS) and Dynamic Shared Objects (Apache).

The third item (DLL & DSO) is further sectioned into two different subsections. One being

cached document retrieval, and file-based document retrieval. Figure 3.1 shows a

1 The three different file sizes were as follows:

Small: 15KB
Medium: 100KB
Large: 500KB

33

Chapter 3 Quantitative Analysis

a technique whereby decisions can be made from an observed sample based on the correctness
of a hypothesis (Steyn, Smit, Du Toit, Strasheim, 1994:407). Hypothesis testing is based on a
simple process of stating a hypothesis (makinga statement) about the expected characteristics
of asample. Statistical hypothesis testing usually involves the stating of a null hypothesis (Ho),
and an alternative hypothesis (H,). The null hypothesis is assumed to be true before testing
the hypotheses. Should there be found that the alternative hypothesis holds true, the null
hypothesis is rejected and the alternative hypothesis is accepted. Testing hypotheses always
run the risk of being wrong. An accepted or rejected null hypothesis will have a probable value
of trust associated. A hypothesis with an a-value of 0.05 has a reliability of 95%, or .95 for a
one-tailed test. This means that we can say with a 95% certainty that the test yields the

correct deduction.

To prove a hypothesis, some undertying tests are required to prove that the data conforms to
a predetermined distribution. The statistic calculated for such a test should therefore fall with
a reasonable certainty inside the distribution. Examples of these tests include the t test and
X2 test (Hamburg & Young 1993:309-321).

3.3.2.2 The paired-samples t test

The results of the tests can not be interpreted as independent, as they have a common
variable, being the server load as the active threads. Should these two data sets be compared
with a normal t test, it will violate the independence condition (Hamburg & Young 1993:358).
The test results should be paired by grouping the two servers’ performance figures by threads,
size and style. The samples are related to one-another and should therefore be seen as paired
samples. Two samples of equal size is dependent on one-another when all cases in the one
sample can be directly paired with a corresponding point in the other (Steyn, Smit, Du Toit,
Strasheim 1994: 435).

Furthermore, according to the model presented by Steyn, et al (1994:452), should a paired-

samples t test be applied due to the following reasons:

. Comparison of averages;
. Two samples; and
. Paired values.

35

Chapter 3 Quantitative Analysls

The paired-samples t test requires the assumption that the underlying population originates
from a normal distribution (Hamburg & Young 1993:648; Steyn et al 1994:453).

3.3.2.3 The Wilcoxon matched-pairs signed rank test

Unlike the parametric paired-samples t test, the Wilcoxon matched-pairs signed rank test is
nonparametric, and it does not make any assumption about the population distribution. It is
the nonparametric equivalent of the paired-samples t test (Hamburg & Young 1993:647-648).
The Wilcoxon test is carried out by calculating and tabulating the difference between the
paired observations (d = X; - X;). The absolute values ({d]) are obtained, pooled and ranked
from 1 to n. A positive and negative rank is compared and is used as the basis for the H,
hypothesis: H, : X rank (+) = 2 rank (-).

The smaller of the two rank totals are called the Wilcoxon T statistic and used for determining
the outcome of the hypothesis test. Appendix 1 tabulates the Critical values of T for the
Wilcoxon matched-pairs signed rank test at various levels of probability. The test determines
that the null hypothesis would be rejected at the significance level () at T < T, (Hamburg &
Young 1993:648-649).

Huysamen (1983:179-180) and Hamburg & Young (1993:649) states however that, in cases where
n is large (n > 25), T is approximately normally distributed, with the following mean and

standard deviation:

n(n+l)
!

OT - ’n(n+ 1X2n+1)
24

3.3.2.4 The Kolmogorov-Smirnov test for normality

When the normality of the population cannot be accepted per se, a test for normality must be
performed on the observed sample. The Kolmogorov-Smirnov test compares the observed

36

Chapter 3 Quantitative Analysis

cumulative distribution function for a variable with a specified theoretical distribution, which
may be normal, uniform or Poisson. This goodness-of-fit test tests whether the observations

could reasonably have come from the specified distribution (SPSS, 1996:242).

Steyn et al notes the formula for the T and Z distributions as follows (1994:365):

for a n(0,1) distribution; and

for a t(-1) distribution.

Seeing that S will not differ much for an observed random sampte from 0, it can be expected
that the distribution functions of Z and T will plot roughly the same area, especially with large
values of n (Steyn et al, 1994:365). The test for normality is therefore done by calculating the
Kolmogorov-Smirnov Z. The null hypothesis that the observed sample is sourced from the
predetermined distribution is to be rejected if the calculated ratio is greater than the tabulated

value at the level of confidence.

3.3.2.5 Application of the test results

By evaluating the different sections of the overall performance test, much information is
obtained about the servers’ strengths and weaknesses. When these results are later combined,
a performance profile can be compiled for each of the two servers. The apptication of
statistical methods in comparing the results, keeps the test objective. Calculations for the
statistical analysis is done through the use of the Statistical Package for Social Sciences (SPSS).
SPSS was used due to personal experience with the software, as well as SPSS’s comprehensive

data mining technology and analytic applications for enhanced decision-making.

37

Chapter 3 Quantitative Analysis

3.3.3 Component comparison

As mentioned earlier, four components were identified for evaluation on the two servers:

. Static document retrieval;

. Common Gateway Interface binaries (CGl);

. Dynamic Shared Objects (DSO) & Dynamic Linked Libraries (DLL); and
. Cached DSO & DLL.

Each of these four components will be tested at various stress levels over the three different
document sizes (paragraph 3.3.1). This means that there will be 12 different performance

tests, based on document type and document size.

38

Chapter 3 Quantitative Analysis

3.3.3.1 Static document retrieval

3.3.3.11 Performance comparison: Small documents

Two-tailed test for equality:

Kolmogorov-Smirnov Z: Test for goodness of fit to the normal distribution
Ho: Samples obtained from normal population n=32
.. Use paired t test to compare samples Reject H, if z < .23 (T3, o)
H,: Samples not obtained from normal population
. Use Wilcoxon matched-pairs signed rank test
Obtained values: Results:
Zapache* .652 Apache: Reject
Z\rformation Server- <783 Hy
Information Server: Reject
Ho
Conclusion: Neither of the two samples appear to originate from a normal
distribution. Use Wilcoxon matched-pairs signed rank test
Wilcoxon matched-pairs signed rank test
N Mean Rank Sum of Ranks
Negative ranks 15* 14.63 219.5
Positive ranks 17° 18.15 308.5
Ties o a: 11S slower than Apache
Total 32 b: IIS faster than Apache
y 4 -.832 c: Equal performance

HO: UApache = umformaﬂon Server |-|1: uApache * UInformaﬂon Server

a: .05 Reject H, if 1z;| > 1.96

Conclusion: Accept H, as |-.832] > 1.96 fails

As we accepted H, it is not required to do a one-tailed test to test if one server is faster than

the other.

39

Chapter 3 Quantitative Analysis

3.3.3.1.2 Performance comparison: Medium-sized documents

Kolmogorov-Smirnov Z: Test for goodness of fit to the normal distribution

H,: Samples obtained from normal population n=32
. Use paired t test to compare samples Reject H, if Z < .23 (T3, 05)
H,: Samples not obtained from normal population

.. Use Wilcoxon matched-pairs signed rank

test

Obtained values: Results:
Zapache* .861 Apache: Reject H,
Z,rformation Servers + 109 Information Server: Reject H,

Conclusion: Neither of the two samples appear to originate from a normal

distribution. Use Wilcoxon matched-pairs signed rank test

Wilcoxon matched-pairs signed rank test

N Mean Rank Sum of Ranks

Negative ranks 322 16.5 528
Positive ranks 0P 0 0
Ties 0 a: 1IS slower than Apache
Total 32 b: lIS faster than Apache
y4 -4.937 c Equal performance
Two-tailed test for equality:

Ho: Hapache = Hinformation server H: Hapache * Hinformation server

a: .05 Reject H, if |z;| > 1.96

Conclusion: Reject H; as |-4.937] > 1.96 holds
One-tailed test - Apache provides a higher output than Information Server

HO: uApache = ulnformaﬂon Server H1: uApache > ulnfom\ntion Server
a: .05 Reject H, if |z;| > 1.6449
Conclusion: Reject H, as |-4.937| > 1.6449 holds

For medium-sized static documents, it was found that Apache was the better server under load.

Chapter 3 Quantitative Analysis

3.3.3.1.3 Performance comparison: Large documents

Kolmogorov-Smirnov Z: Test for goodness of fit to the normal distribution

H,: Samples obtained from normal population
.. Use paired t test to compare samples

H,: Samples not obtained from normal population
- Use Wilcoxon matched-pairs signed rank

test

n=32
Reject H, if z < .23 (T3, 05)

Obtained values:
Zppache: .665

zlnformation Server: 91 3

Results:
Apache: Reject H,
Information Server: Reject H,

Conclusion: Neither of the two samples appear to originate from a normal

distribution. Use Wilcoxon matched-pairs signed rank test

Wilcoxon matched-pairs signed rank test

Two-tailed test for equality:

HO: pApache = umformation Server H1:

N Mean Rank Sum of Ranks
Negative ranks 31° 17 527
Positive ranks 1° 1 1
Ties o a: IS slower than Apache
Total 32 b: IIS faster than Apache
z -4,918 c: Equal performance

uApache * ulnformaﬂon Server

a: .05 Reject H, if |z;| > 1.96
Conclusion: Reject H, as |-4.918] > 1.96 holds

One-tailed test - Apache provides a higher output than Information Server

HO: l“IApache = “lnformation Server H1:

pApache > ulnformation Server

a: .05 Reject H, if |z;| > 1.6449
Conclusion: Reject H, as |-4.918| > 1.6449 holds

As with the medium-sized documents, Apache performs better than Information Server.

41

Chapter 3 Quantitative Analysis

3.3.3.2 Common Gateway Interface binaries

3.3.3.2.1 Performance comparison: Small documents

Kolmogorov-Smirnov Z: Test for goodness of fit to the normal distribution

Hy: Samples obtained from normal population
-. Use paired t test to compare samples

H,: Samples not obtained from normal population
. Use Wilcoxon matched-pairs signed rank

test

n=32

Reject H, if Z < .23 (T;;,05)

Obtained values:

Zppache* 1.179

Zlnfom\ation Server: . 632

Results:
Apache:

Information Server:

Reject H,
Reject H,

distribution. Use Wilcoxon matched-pairs signed rank test

Conclusion: Neither of the two samples appear to originate from a normal

Wilcoxon matched-pairs signed rank test

N Mean Rank

Sum of Ranks

Negative ranks 32 16.5

528

Positive ranks o° 0

0

Two-tailed test for equality:

HO: pApache = ulnformation Server H1:

Ties 0 a: 1IS slower than Apache
Total 32 b: {IS faster than Apache

z -4.937 c: Equal performance

uApache * ulnfom\a‘tlon Server

a: .05 Reject H, if 1z;] > 1.96
Conclusion: Reject H, as |-4.937| > 1.96 holds

One-tailed test - Apache provides a higher output than Information Server

Hy: Hapache = Minformation server H:

uApache > plnformation Server

a: .05 Reject H, if 1z;] > 1.6449
Conclusion: Reject H, as |-4.937| > 1.6449 holds

Apache performs better serving small documents from a CGl binary than Information Server.

73

Chapter 3

Quantitative Analysis

3.3.3.2.2

Performance comparison: Medium-sized documents

Kolmogorov-Smirnov Z: Test for goodness of fit to the normal distribution

H,: Samples obtained from normal population
- Use paired t test to compare samples
H,: Samples not obtained from normal population

.. Use Wilcoxon matched-pairs signed rank

n=232
Reject H, if z < .23 (T3, s)

test

Obtained values:
Zppache* 1.38
Z,formation server- 919

Resulits:
Apache: Reject H,
Information Server: Reject H,

Conclusion: Neither of the two samples appear to originate from a normal

distribution. Use Wilcoxon matched-pairs signed rank test

Wilcoxon matched-pairs signed rank test

N Mean Rank Sum of Ranks

Negative ranks 32: 16.5 528
Positive ranks o 0 0
Ties 0 a: 1IS slower than Apache
Total 32 b: IIS faster than Apache
y 4 -4,937 c: Equal performance
Two-tailed test for equality:

Ho: Mapache = Minformation server H: Hapache * Hinformation server

a: .05 Reject H, if |z;] > 1.96

Conclusion: Reject Hy as [-4.937] > 1.96 holds

One-tailed test - Apache provides a higher output than Information Server

HO: UApache = UInformatIon Server H1: uApache > UInformation Server

a: .05 Reject H,

if 12;] > 1.6449

Conclusion: Reject H, as |-4.937] > 1.6449 holds

Apache shows to outperform Information Server when serving medium-sized documents through

a CGl binary.

43

Chapter 3 Quantitative Analysis

3.3.3.2.3 Performance comparison: Large documents

Kolmogorov-Smirnov Z: Test for goodness of fit to the normal distribution T

H,: Samples obtained from normal population n=32
-. Use paired t test to compare samples Reject H, if Z < .23 (T3, 05)
H,: Samples not obtained from normal population

- Use Wilcoxon matched-pairs signed rank

test

Obtained values: Results:
Zppache- 1.31 Apache: Reject H,
Z,formation servers 1-046 Information Server: Reject H,

Conclusion: Neither of the two samples appear to originate from a normal

distribution. Use Wilcoxon matched-pairs signed rank test

Wilcoxon matched-pairs signed rank test

N Mean Rank Sum of Ranks
Negative ranks 12° 13.96 167.5
Positive ranks 20° 18.02 360.5
Ties 0 a: IS slower than Apache
Total 32 b: IIS faster than Apache
Z -1.805 c: Equal performance

Two-tailed test for equality:

HO: UApache = UInformatlon Server H1: pApache ¥ plnformation Server
a: .05 Reject H, if 1z;] > 1.96
Conclusion: Accept H, as |-1.805] > 1.96 fails

Again, no two-tailed test is required, as the test states that there is no significant performance

difference between the two servers.

Chapter 3 Quantitative Analysis

3.3.3.3 Dynamic Shared Objects and Dynamic Linked Libraries

3.3.3.31 Performance comparison: Small documents

Kolmogorov-Smirnov Z: Test for goodness of fit to the normal distribution 4‘

H,: Samples obtained from normal population n=32
-. Use paired t test to compare samples Reject H, if z < .23 (T;; os)
H,: Samples not obtained from normal population

. Use Wilcoxon matched-pairs signed rank

test

Obtained values: Results:
Zapache* 2.65 Apache: Reject H,
Zintormation Servers 1:89 Information Server: Reject H,

Conclusion: Neither of the two samples appear to originate from a normal

distribution. Use Wilcoxon matched-pairs signed rank test

Wilcoxon matched-pairs signed rank test
N Mean Rank Sum of Ranks

Negative ranks 16° 19.38 310
Positive ranks 16° 13.63 218
Ties o a: 1S slower than Apache
Total 32 b: IIS faster than Apache
y A -.86 c: Equal performance
Two-tailed test for equality:

Hy: Mapache = Hintormation server H: Hapache * Hinformation server

a: .05 Reject H, if |z;] > 1.96

Conclusion: Accept H, as |-.86] > 1.96 fails

The outcome of this test finds again no significant differences in the output levels of Apache

and Information Server.

45

Chapter 3 Quantitative Analysis

3.3.3.3.2 Performance comparison: Medium-sized documents

Kolmogorov-Smirnov Z: Test for goodness of fit to the normal distribution

Hg: Samples obtained from normal population n=32
.. Use paired t test to compare samples Reject H, if z < .23 (Ts;,.05)
H,: Samples not obtained from normal population

.. Use Wilcoxon matched-pairs signed rank

test

Obtained values: Results:
Zppache: .825 Apache: Reject H,
Z\ntormation servers 701 Information Server: Reject H,

Conclusion: Neither of the two samples appear to originate from a normal

distribution. Use Wilcoxon matched-pairs signed rank test

Wilcoxon matched-pairs signed rank test

N Mean Rank Sum of Ranks
Negative ranks 25° 18.12 453
Positive ranks 7° 10.71 75
Ties o a: IS slower than Apache
Total 32 b: IIS faster than Apache
y4 -3.534 c: Equal performance

Two-tailed test for equality:

HO: uApache = “Inforrnation Server H1: uApache # ulnformation Server
a: .05 Reject H, if 1z;| > 1.96
Conclusion: Reject H, as |-3.534] > 1.96 holds

One-tailed test - Apache provides a higher output than Information Server

HO: UApache = lJInfomtion Server H1: UApache > ulnfommtion Server
a: .05 Reject H, if 1z;] > 1.6449
Conclusion: Reject H, as |-3.534| > 1.6449 holds

From the test results, it was found that Apache can serve more requests than Information

Server when medium-sized documents are loaded through DSO/DLL’s.

Chapter 3 Quantitative Analysis

3.3.3.3.3 Performance comparison: Large documents

Kolmogorov-Smirnov Z: Test for goodness of fit to the normal distribution

Hg: Samples obtained from normal population n=32
.. Use paired t test to compare samples Reject H, if z < .23 (Ty;,.05)
H;: Samples not obtained from normal population

.. Use Wilcoxon matched-pairs signed rank

test

Obtained values: Results:
Zppache® 475 Apache: Reject H,
Zynformation server- -049 Information Server: Reject H,

Conclusion: Neither of the two samples appear to originate from a normal

distribution. Use Wilcoxon matched-pairs signed rank test

Wilcoxon matched-pairs signed rank test
N Mean Rank Sum of Ranks

Negative ranks 52 10.7 53.5
Positive ranks 27° 17.57 474.5
Ties o a: 1S slower than Apache
Total 32 b: 1S faster than Apache
z -3.937 c: Equal performance
Two-tailed test for equality:

Ho: Hapache = Minformation server H,: Mapache * Minformation server

a: .05 Reject H, if |z;| > 1.96

Conclusion: Reject H, as |-3.937] > 1.96 holds
One-tailed test - Information Server provides a higher output than Apache

HO: uApache = UInformation Server H1: uApache < ulnforma'don Server
a: .05 Reject H, if |z;]| > 1.6449
Conclusion: Reject H, as [-3.937] > 1.6449 holds

When requesting large documents through a DSO/DLL, Information Server is capable of serving

more requests than Apache at the same increasing load.

47

Chapter 3 Quantitative Analysis

3.3.3.4 Cached documents from Dynamic Shared Objects and Dynamic Linked Libraries

3.3.3.4.1 Performance comparison: Small documents

Kolmogorov-Smirnov Z: Test for goodness of fit to the normal distribution

H,: Samples obtained from normal population n=32
.. Use paired t test to compare samples Reject H, if z < .23 (T;;, 05)
H,: Samples not obtained from normal population

. Use Wilcoxon matched-pairs signed rank

test
Obtained values: Results:
Zppache: 1.289 Apache: Reject H,

.789 Information Server: Reject H,

zInl‘on'nation Server:

Conclusion: Neither of the two samples appear to originate from a normal

distribution. Use Wilcoxon matched-pairs signed rank test

Wilcoxon matched-pairs signed rank test
N Mean Rank Sum of Ranks

Negative ranks 26* 13.77 358
Positive ranks 6° 28.33 170
Ties o a: IS slower than Apache
Total 32 b: IIS faster than Apache
Y4 -1.758 c: Equal performance
Two-tailed test for equality:

Ho: Hapache = Minformation server Hy: Hapache * Hinformation server

Qa: .05 Reject H, if |1z;] > 1.96

Conclusion: Accept H, as |-1.758] > 1.96 fails

No significant difference was found between the two servers, yielding an equal observed output

at a .95 confidence level.

Chapter 3 Quantitative Analysis

3.3.3.4.2 Performance comparison: Medium-sized documents

Kolmogorov-Smirnov Z: Test for goodness of fit to the normal distribution

Hq: Samples obtained from normal population n=32
.. Use paired t test to compare samples Reject H, if z < .23 (Tx;,05)
H,: Samples not obtained from normal population

.. Use Wilcoxon matched-pairs signed rank

test

Obtained values: Results:
Zapache* 1.188 Apache: Reject H,
Z,nformation sever- 009 Information Server: Reject H,

Conclusion: Neither of the two samples appear to originate from a normal

distribution. Use Wilcoxon matched-pairs signed rank test

Wilcoxon matched-pairs signed rank test
N Mean Rank Sum of Ranks

Negative ranks 31° 17 527
Positive ranks 1° 1 1
Ties o a: 1IS slower than Apache
Total 32 b: 1IS faster than Apache
z -4.918 c: Equal performance
Two-tailed test for equality:

Ho: Hapache = Hinformation server Hy: Hapache * Hinformation server

a: .05 Reject H, if |z;] > 1.96

Conclusion: Reject H, as |-4.918] > 1.96 holds
One-tailed test - Apache provides a higher output than Information Server

HO: UApache = UInfom-lation Server H1: UApache > UInformation Server
a: .05 Reject H, if |z;]| > 1.6449
Conclusion: Reject H, as |-4.918| > 1.6449 holds

When serving medium-sized documents from the DSO/DLL’s memory, Apache is significantly

faster than Information Server.

49

Chapter 3

Quantitative Analysis

3.3.3.4.3

Performance comparison: Large documents

Kolmogorov-Smirnov Z: Test for goodness of fit to the normal distribution

H,:

H,:

Samples obtained from normal population n=32

.. Use paired t test to compare samples Reject H, if z < .23 (T3, 05)

Samples not obtained from normal population
.. Use Wilcoxon matched-pairs signed rank

test

Obtained values: Results:

Zppache* .479 Apache:

Z,nformation servers 2:194 Information Server:

Reject H,
Reject H,

Conclusion:

Neither of the two samples appear to originate from a normal

distribution. Use Wilcoxon matched-pairs signed rank test

Wilcoxon matched-pairs signed rank test

N Mean Rank

Sum of Ranks

Negative ranks 5° 3

15

Positive ranks 27° 19

513

Ties

Total

z

-4.656 c: Equal performance

Two-tailed test for equality:

0 a: I1S slower than Apache
32 b: 1IS faster than Apache

HO: UApache = umfon'nation Server H1: UApache * umformation Server

a: .05 Reject H, if |z:| > 1.96

Conclusion: Reject H, as |-4.656] > 1.96 holds

One-tailed test - Information Server provides a higher output than Apache

HO: UApache = UInfomlation Server H1: UApache < umformatlon Server

Qa: .05 Reject H, if 1z;]| > 1.6449

Conclusion: Reject H, as |-4.656] > 1.6449 holds

Information Server seems to regain the upper hand on Apache in serving large documents from
its DSO/DLL memory cache.

50

Chapter 3 Quantitative Analysis

way. Increasing the value of content and services through improved usability and
reduced cost per transaction breeds increased business quickness and efficiency. This
relationship is at the core of the dramatic ROl of enterprise information portal
deployments. A successful portal brings rationality to an enterprise’s data and IT
resources, communications and operations efficiency, and flexibility for whatever the

future may bring.”

By applying Apache as a data repository for Intranets, Extranets and Enterprise Portals, the ROl
could be much higher than when Information Server is used, purely based on its ability to serve
static documents at a much higher rate than his competitor. It is equally important to consider

the low cost of the Linux/Apache architecture.

3.3.4.2 Using Common Gateway Interface(CGl) binaries to serve internet documents

The test involves a CGI binary that resides on the web server and loads a file from the
underlying filesystem which is then served to the client. By using CGl binaries on a web server,
one is capable of interacting with databases and transaction systems without having the client
to directly interact with these systems. This is a popular technology for performing e-

commerce transactions.

3.3.4.2.1 Small documents

The performance charts reiterate the statistic findings that Apache is faster than Information
Server in using CGl-binaries to serve small documents from a web server. As CGI’s have to be
loaded from the filesystem, it can place a big load on the operating system. Furthermore, if
the filesystem is too slow to load the CGlI, it will slow down the web server. What is seen here
is that Apache is much better prepared to serve requests through CGl binaries. Both servers

show a slight slowdown at higher loads, but neither of these are critical.

55

Chapter 3 Quantitative Analysis

The last test found Information Server to be the faster of the two. Apache is not suitable for
serving large documents from memory through a Dynamic Shared Object. As the linear trend
lines suggest, Apache’s performance is decreasing rapidly to the end of the test, which makes
it unsuitable for serving documents in this fashion at a high load. Information Server on the
other hand, is more than capable of handling the high number of requests, handling more than
three times as much as Apache at the stress level of 768 clients. By loading highly requested
documents into the Information Server’s ISAPI DLL memory, one would be able to serve clients

much better than when Apache and Dynamic Shared Objects are used in the same fashion.

3.3.4.4.4 Summary

Caching is present in almost all aspects of Computer Science and software development based
on its proven success. For Internet Development, this concept is even more true. By serving
cached documents from a server extension’s memory enables the server to perform better
while using fewer system resources. Dynamic Shared Objects and ISAPI DLL’s enable this as
they can be loaded into the web server and remain memory-resident as long as the server is
running. This has countless applications in the web development field. Cached modules are
effectively used as high performance web server modules on several web sites. The Borland

Delphi 6 Developer’s Guide says the following on the deployment of DLL’s:

“Creating a Web server application as a DLL reduces system load and resource use by
reducing the number of processes and disk accesses necessary to service an individual
request” (Borland, 2001:27-6)

3.3.5 Platform-specific comparison

In order to get a good idea of the different server modules’ performance, the tests in this
chapter is supplemented by vertical comparisons as well. With these tests, the three different
dynamic modules is compared to find the best performing model. The previous sections have
already showed that none of the samples originate from a normal distribution, hence all
performance tests will be performed through nonparametric tests, using the Wilcoxon matched-

pairs signed rank test.

Chapter 3 Quantitative Analysis

3.3.5.1 Apache

3.3.5.1.1 Small documents

DVilcoxon matched-pairs signed rank test - CGl vs DSO

N Mean Rank Sum of Ranks
Tegative ranks 2° 1.5 3
Positive ranks 30° 17.5 525
Ties o a: DSO slower than CGlI
Total 32 b: DSO faster than CGI
Y4 -4.88 c: Equal performance

One-tailed test - DSO faster than CGI
Ho: Hcai = Moso Hy: Hcai < Moso
a: .05 Reject H, if |z;] > 1.6449
Conclusion: Reject H, as |-4.88] > 1.6449 holds

Eilcoxon matched-pairs signed rank test - DSO vs Cached DSO j
N Mean Rank Sum of Ranks
[:egative ranks 2: 17.5 35
Positive ranks 30° 16.43 493
Ties o a: Cached DSO slower than DSO
Total 32 b: Cached DSO faster than DSO
‘l -4.282 c: Equal performance
One-tailed test - Cached DSO faster than DsO
Hy: Hoso = Hcached pso H,: Hoso < Hcached pso
a: .05 Reject H, if |z;] > 1.6449

Conclusion: Reject H, as 1-4.282] > 1.6449 holds

It was found that cached DSO’s deliver the best output for small documents.

65

Chapter 3 Quantitative Analysis

3.3.5.1.2 Medium-sized documents
l Wilcoxon matched-pairs signed rank test - CGI vs DSO j
I N Mean Rank Sum of Ranks 7
Negative ranks 0 0 0 1
Positive ranks 32° 16.5 528 W
Ties 0° a: DSO slower than CGlI
Total 32 b: DSO faster than CGI
y4 -4.937 (o Equal performance
One-tailed test - DSO faster than CaGl
Ho: Hea = Mso Hi Moo < Mso
a: .05 Reject H, if |z;] > 1.6449

Conclusion: Reject H, as |-4.937] > 1.6449 holds

Wilcoxon matched-pairs signed rank test - DSO vs Cached DSO

Sum of Ranks

0

528

I

Cached DSO slower than DSO
b: Cached DSO faster than DSO
c: Equal performance
One-tailed test - Cached DSO faster than DSO

H,: Moso = Hcached nso H,: Hoso < Mcached so
a: .05 Reject H, if |z;] > 1.6449
Conclusion: Reject Hy as 1-4.937| > 1.6449 holds

Again, as with small documents, it was found that cached DSO delivers better performance than

the other two technologies.

66

Chapter 3 Quantitative Analysis

3.3.5.1.3 Large documents
Wilcoxon matched-pairs signed rank test - CGl vs DsO 7
N Mean Rank I Sum of Ranks 1
Negative ranks o ’ 0] I 0 7
Positive ranks 32° T 16.5 ’ 528 1
Ties o a DSO slower than CGI
Total 32 b: DSO faster than CGI
z -4.937 c: Equal performance
One-tailed test - DSO faster than CGl
Ho: Hcar = Hpso Hy: Hcar < Hoso
Qa: .05 Reject H, if |z, > 1.6449

Conclusion: Reject H, as |-4.937] > 1.6449 holds

Cached DSO slower than DSO
b: Cached DSO faster than DSO
c: Equal performance
One-tailed test - DSO faster than Cached CGlI

H,: Hcached pso = Hpso H,: Hcached 050 > Hpso
a: .05 Reject H, if 1Z:] > 1.6449
Conclusion: Reject H, as |-3.74] > 1.6449 holds

For serving large documents through DSO’s on Apache, cached DSO’s are recommended for

better performance.

67

Chapter 3 Quantitative Analysis

3.3.5.14 Summary

Apache’s ability to serve documents from a DSO’s cache faster than from disk again shows the
advantages of memory-resident data. This theory holds true for all file sizes and it is therefore
recommended that caching should be implemented when these kind of application are

developed.

68

Chapter 3 Quantitative Analysis

3.3.5.2 Information Server

3.3.5.2.1 Small documents

Wilcoxon matched-pairs signed rank test - CGI vs DLL
N Mean Rank Sum of Ranks

Negative ranks o 0 0
Positive ranks 32° 16.5 528
Ties o a: DLL slower than CGI
Total 32 b: DLL faster than CGI
z -4.937 c: Equal performance

One-tailed test - DLL faster than CGI

Ho: Hea = Howw Hy: Hcar < How

(o § .05 Reject H, if 1z;] > 1.6449

Conclusion: Reject H, as 1-4.937| > 1.6449 holds
Wilcoxon matched-pairs signed rank test - DLL vs Cached DLL

N Mean Rank Sum of Ranks

Negative ranks o 0 0
Positive ranks 32° 16.5 528
Ties o a: Cached DLL slower than DLL
Total 32 b: Cached DLL faster than DLL
z -4.937 c: Equal performance

One-tailed test - DLL faster than CGI

Hy: Mow = Hcached pLL H: Mo < Hcached L
a: .05 Reject H, if 1z;| > 1.6449
Conclusion: Reject H, as |-4.937| > 1.6449 holds

Cached DLL’s were found to perform the best of the different technologies when used to serve

small files.

69

Chapter 3 Quantitative Analysis

3.3.5.2.2 Medium-sized documents

Wilcoxon matched-pairs signed rank test - CGl vs DLL j
N Mean Rank Sum of Ranks
Negative ranks o 0 0
Positive ranks 32° 16.5 528
Ties 0 a: DLL slower than CGlI
Total 32 b: DLL faster than CGl
z -4,937 J c: Equal performance
One-tailed test - DLL faster than CGI
Ho: Hca = How Hy: Hear < Mo
a: .05 Reject H, if [z;| > 1.6449

Conclusion: Reject H, as |-4.937| > 1.6449 holds

Wilcoxon matched-pairs signed rank test - DLL vs Cached DLL
N Mean Rank Sum of Ranks
(Negative ranks o 0 0
Positive ranks 32° 16.5 528
Ties o a: Cached DLL slower than DLL
Total 32 b: Cached DLL faster than DLL
z -4.937 c: Equal performance

One-tailed test - DLL faster than CGI

Ho: How = Hcached bt Hi: HowL < Mcached pLL
a: .05 Reject H, if |z > 1.6449
Conclusion: Reject H, as |-4.937] > 1.6449 holds

Cached DLL outperforms non-cached DLL’s when serving medium-sized documents.

70

Chapter 3 Quantitative Analysis

3.3.5.2.3 Large documents

Wilcoxon matched-pairs signed rank test - CGl vs DLL
N Mean Rank Sum of Ranks

Negative ranks o 0 0
Positive ranks 32° 16.5 528
Ties o DLL slower than CGl
Total 32 DLL faster than CGI
z -4.937 Equal performance

One-tailed test - DLL faster than CGl
Ho: Hea = How

H: Hce < Mo

a: .05 Reject H, if |z;] > 1.6449

Conclusion: Reject H, as |-4.937] > 1.6449 holds
Wilcoxon matched-pairs signed rank test - DLL vs Cached DLL

N Mean Rank Sum of Ranks

Negative ranks o 0 0
Positive ranks 32° 16.5 528
Ties o a Cached DLL slower than DLL
Total 32 b: Cached DLL faster than DLL
Y4 -4.937 c: Equal performance

One-tailed test - DLL faster than CGI

H,: HoiL = Hcached pLL Hy: Mo < Mcached oL
a: .05 Reject Hy if |z;] > 1.6449
Conclusion: Reject H, as |-4.937| > 1.6449 holds

Cached DLL’s perform better than non-cached DLL’s when serving large documents from

Information Server

7

Chapter 3 Quantitative Analysis

however never loose sight of what is really important to the application of the technology and
the client’s interest. When assigning funding to any project, ROI justification will become more
important in the current economic environment, placing more strain on all business units,
including Information Technology. Increasing the value of content and services through
improved usability and reduced cost per transaction leads to more efficient and quicker
businesses and business processes (Oglethorpe 2002). It makes business sense to be able to get
more for the same expense. |t is therefore found that popularity is related to performance,
hence a rejection of the null hypothesis and acceptance of the alternative hypothesis. An
important factor that has to be kept in mind at all times is that server performance is
application specific. Itis recommended therefore that when technologies are chosen, the best

technology for the specific application has to be selected.

3.5 SUMMARY

Measurement is a tool that can be applied to software engineering to deliver better, faster and

more stable products. It has the following advantages for any software project:

. It will ensure the objective comparison of different technologies;
. it will identify good and poor characteristics of systems;
. It will provide confidence to the project team that the technology applied will

perform within a set range of parameters;

. It forces the team to compile a thorough list of requirements they set for the
system or technologies, which will be useful in the ongoing evaluation of the
technology and will provide a guideline by which requirements will be met with

the project’s completion.

The tests conducted in this chapter support decision-making efforts in the planning of Internet-
based software. This information should be used to select a server platform that matches the
application profile of the system. Chapter 4 describes the efforts in building a multifunction
web server for both server platforms and testing the results obtained here with an actual
Internet system. Using similar technologies and approaches on the two systems will ensure

parallel testing of the servers’ characteristics.

73

CHAPTER 4
THE APPLICATION OF DYNAMIC DEVELOPMENT
METHODOLOGIES

4.1 INTRODUCTORY REMARKS

When a company embarks on a web development venture, many different technologies and
methods have to be evaluated to choose the correct one. As web development is commonly
seen as an advanced version of Desktop Publishing (DTP), managed by highly skilled server
engineers, different opinions exist around the science of Internet development. In order to
partake in a successful internet venture, parties involved have to understand all areas covered.
Apart from knowing how to create HTML pages and uploading them to web servers, the
developer (or designer) has to know the differences between operating systems and web

servers, their technological strengths and weaknesses.

Due to the nature of the Internet and its development path, two main areas of expertise exist,
being Internet design and Internet development. Internet design is mainly focussed on the
graphical representation of content and media on the Internet. This is the next level of DTP
and is mainly concerned with the creation of static content to be placed on web servers.
Internet development is the technical side of dynamic content provision on the Internet. it
focusses on building interfaces to dynamic data sources (like databases) and the development
of dynamic content generators such as online charts and search engines. To make informed
decisions on using specific Internet technologies, management and project teams should

understand this thoroughly. Figure 4.1 shows a breakdown of the methodologies.

At this point the focus will move to the dynamic section of this development structure.
Creating dynamic content on Internet servers was traditionally only possible to Internet
programmers. It is usually done through one of two methods, namely scripting and server

extension.

74

Chapter 4 The application of dynamic development methodologies

llTltemet development
I
—
Server-side
Static
|
[]]
l Flash ‘ \ JavaScript HTML
Server-side
Dynamic
— | I]
Java Server Pages Serviets Database Search engines
(JSP) and portals
Figure 4.1 Internet development technology breakdown

4.2 DIFFERENTIATING TECHNOLOGIES

The technologies of scripting and server extension are related, but operate in totally separate

ways.

4.2.1 Scripting

There exist two different methods of deploying scripting in terms of Internet development:
Client-side scripting and server-side scripting. Client-side scripting is executed inside the user’s
browser. The best known implementation of this is probably JavaScript and all its different
mutations and versions. Client-side scripting requires no processing from the server and is
client-only. Client-side scripting can not interface with databases and data stores on the
server. A JavaScript runs inside of a web browser that supports JavaScript (HTMLGoodies.com,
2002). It is usually applied for aesthetical reasons or for the provision of limited client-side

interactivity, but not for interaction with the server.

75

Chapter 4 The application of dynamic development methodologies

Server-side scripting has more functionality for server interaction. If the scripting engine
supports it, a server-side script can interact with databases, locally or remotely. It has limited
support for client interaction and is limited to data sent with the client’s request to the server.
Scripting languages require an engine to run on. Without it, it is the same as a normal HTML
page. The engine parses the page, like interpreters run programs, compiles the final output
and send it to the web server which serves it back to the client. Figure 4.2 shows the close

comparison between interpreters and scripting engines.

Source Program
program Interpreter output
Script Scripting Document
document - engine output
h
Figure 4.2 Comparing interpreters to scripting engines

76

Chapter 4 The application of dynamic development methodologies

3
l
|
L

scripting
engine
T A

Document mapping

Web browser

Figure 4.3 The execution path of a script request

Figure 4.3 shows the execution path of script-based web server requests.

A request to a script-based document is handled as follows:

. The web browser connects to the web server and requests the script file;

. The server loads the file from its storage system and compares the document
to its registry of file mappings. The web server feeds the document, together
with the request data to the scripting engine;

. The engine does its file manipulation and database interaction based on the
document’s contents; and

. The final document is sent back to the web server which gets passed back to

the client.

The most common of these server-side scripting technologies would be Mic rosoft’s Active Server
Pages (ASP) and the open-source Perl. ASP’s are only supported on Microsoft web servers, while

Perl is supported across platforms.

Chapter 4 The application of dynamic development methodologies

4.2.2 Server extension

Server extensions are created in a number of different ways. Two of the most popular of these
methods are ISAPI (Internet Information Server) and DSO (Apache). After being loaded, a server
extension runs as part of the core web server. As being part of the web server, a server
extension has access to server-side databases and files, which makes it excellent for developing
interactive Internet systems. Server extensions do not use input files like scripts. All inputs
and outputs of the extension are handled and retrieved from inside the extension. This means
that there is less interaction between server components than with server-side scripting.

Figure 4.4 displays the execution model of requests passed to web server extensions.

Requesting a document through a server extension is different from the script-driven system.
it has fewer steps than the scripting model and goes through the following phases:
. The web browser connects to the server and requests the document directly
from the extension;
. The extension interacts with the database and other data sources and builds
the output for the request; and

. The final document is then sent to the client.

Where server-side scripting compares to interpreters, server extensions compare to compiled
executables (Figure 4.5). This suggests that server extensions will have the same benefits as

what compiled applications have.

78

The application of dynamic development methodologies

IR
—
2
Database -
— A

Web browser

Figure 4.4 The execution path of a server extension request
Source C e Executable
program ompiier program
— /,/’ A — ////’ -
ek e
]
Source c " » Server
program omptler extension
S P
M extension output
Figure 4.5 Comparing compiled applications to server extensions

79

Chapter 4 The application of dynamic development methodologies

4.3 CONSTRUCTING A TESTING FRAMEWORK

As both servers support server extensions as well as scripting, a dynamic server environment
was created. A company information portal was developed to interact with a sample human

resource database.

Microsoft’s ASP model is based on server extensions. ASP is the premier scripting technology
used on Microsoft servers today. As a result, it was decided to develop a similar scripting
language and engine to interface with the database. Using the performance results obtained
in the previous chapter, it was developed using Dynamic Shared Objects (DSO) for Apache/Linux

and Internet Server AP| (ISAPI) for Internet Information Server/Windows.

A set of document outlines were created for deployment on both servers. The documents are
requested from the servers in two different ways, one being through a server extension and the
other though its filename which is mapped to a specific server module. Figures 4.6-4.8 show

the mapping procedures to map documents to DSO and DLL handlers.

80

Chapter 4 The application of dynamic development methodologies

To eliminate performance issues specific to the database system, a cross-platform database was
selected. Borland’s InterBase 6 has proven itself as a high performance relational database
management system. Initially developed for the UNIX platform, InterBase was created with a
multi-thread architecture in mind. InterBase is currently supported on Solaris, Microsoft and
Linux platforms, with a huge following after the database was temporarily released as an open-
source product. The main reason for choosing InterBase for this test is its ability to be

deployed on both platforms used here.

One problem unfortunately caused some serious implications for a cross-platform performance
comparison. The database connectivity support for Kylix is currently inferior to the offerings
on the Microsoft platform. This was decided based on the performance comparison to single
platforms only. This is implied by the performance results obtained with these tests. Tight
clustering can be noticed on the combined performance charts for Apache (Figure 4.9). This

suggests a serious bottleneck within the architecture of the Apache-based solution.

83

Chapter 4 The application of dynamic development methodologies

Given that the performance band of Apache/Linux seems to be around the 1000-mark,
regardless of content, it would be unfair to assume that Information Server has the upper hand
in serving test clients at high stress levels to Apache. As the development of these kind of
applications, using a new development environment and components, is still in its infancy when
compared to the legacy already created by thousands of Windows developers, the statement
is being made that the main bottleneck in this system could be the interface to the database.
This is further accentuated by the fact that the two servers are running identical databases by
the same vendor, utilising the same database engine version, only on different platforms. Due
to a lack of equally powerful components for Kylix, it was decided to split the performance

comparison between the servers and focus solely on the different tests on the same server.

These tests focus on the performance differences between server extensions and the scripting
engine developed for the test. By comparing the performance figures between the
technologies, it will give the reader a better understanding of the technology and its

implications on business and the system’s architecture.

4.4.2 Apache

Figure 4.11 shows the different performance profiles for the database-driven pages. Each of
these pages contained different content and used different database tables to retrieve data
from. From this chart it can be seen that in two of the three cases more script-based
documents were served than extension-driven pages. Whether this is caused by the interface
component shortcomings, would be hard to say. It was therefore found that on Apache script-

based solutions could perform better than extension-based systems.

These findings are reenforced by the popularity of scripting with Apache. Perl, which is
incidently also cross-platform, had over 1,000,000 users in 1999 (www.perl.org, 2002).

The close clustering in the chart reiterates the concern that there exists some kind of
bottleneck in the interface between the database and the web server extensions, varying in
total numbers between 600 and 1300 requests. Another observation that can be made from
these performance charts is that all the performance charts tend to deteriorate slightly as the

number of clients and requests increase.

86

Chapter 4

The application of dynamic development methodologies

4.5.1

Characteristics of scripting

Advantages

Disadvantages

Scripting languages can be relatively easy to learn;

Files containing scripts can be changed with a text-editor, as
they are all text-based;

These files are relatively small and easy to understand;
Development is quicker;

The run-code is safer, as errors are to be handl