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Summary

Heavy haul trains are used to transport mineral resources from inland mines to
harbours in South Africa. It is believed that the cost is less with a larger load per
car or per train. This has resulted in the use of long heavy haul trains. The increase
in train length has posed unprecedented technical challenges. For heavy haul trains,
energy consumption, running time and in-train forces between neighbouring cars are
of much concern to transportation corporations.

The objective of the study is to find optimal driving methodologies for the im-
plementation of a desired speed profile with energy consumption and in-train forces
considered.

Firstly, three control strategies are proposed in this study for train handling. In
view of the characteristics of traditional pneumatic braking systems and the new Elec-
tronically Controlled Pneumatic (ECP) braking systems, a simulation study of optimal
open loop controllers was undertaken. The result shows that the ECP braking systems
demonstrate superb performance compared with pneumatic braking systems, especially
together with independent distributed power (iDP) control.

Thus, the main focus of the study was the control of heavy haul trains equipped with
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ECP braking systems. It is shown that there are redundancies in designing an open loop
controller. An optimization procedure is applied to schedule cruise control by taking the
in-train forces into initial design consideration. Optimal open loop scheduling presents
a better starting point for a closed-loop controller design. A type of linear quadratic
regulator (LQR) controller with state feedback is simulated to verify the above result.

However, the closed-loop control law is designed based on full state feedback, which
is not practical since not all the states can be measured.

An observer could be designed to supplement the LQR controller if partial states
are measured. This is, however, not the approach taken in this study. Instead, the
application of output regulation of nonlinear systems with measured output feedback
to the control of heavy haul trains is considered. This approach to design is practically
feasible and manageable, and by its nature, is also easily integrable with human drivers.
In this study, the existing result of output regulation of nonlinear systems is extended.
The output regulation problem of nonlinear systems with measured output feedback
is formulated in this study and solved for the local version and global version. For
its application to train control, some application issues are discussed. Based on the
proposed theory, a speed regulator for train control is designed. Simulation results
show its applicability.

Lastly, this study concentrates on the fault-tolerant capacity of the speed regula-
tor. Two kinds of fault modes are considered. Fault detection and isolation for the
sensor fault and braking system fault are exploited. Controller redesign is also given.
Simulation results show that such a speed regulator has a fault-tolerant capacity to the
corresponding faults.
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Chapter 1

Introduction

1.1 Background

The railway is believed to be the most economical among all transportation means,
especially for the transportation of mineral resources. In South Africa, most mines
are situated inland, so heavy haul trains are required to transport these resources to
harbours. It is presumed that the cost is less with a larger quantity of load per car or
per train in terms of the schedule and the number of people involved. This has resulted
in the use of long trains with multi-locomotives.

Traditionally, the operation of such multi-locomotive trains with pneumatic braking
systems is in essence a simple one. The brake control signal is transmitted throughout
the train wagons, which results in the same effort command of all the wagons. All the
locomotives also have to make the same efforts, for the remote locomotives (groups) are
operated in tandem with the leading one. In this operation there are only two control
signals, one for locomotives, and the other for wagons. There are two prominent
drawbacks with such an operation method.

1) The locomotives are distributed, but the power is not distributed independently.

2) The wagons’ braking system is pneumatic and the braking control signal is prop-
agated to each wagon through the air pressure change along the air pipe running
throughout the train, which leads to different time delays in braking the wagons.

These drawbacks result in slow running speed, the possibility of derailment and a
limit on the train length.

The first disadvantage is eliminated through the employment of the (independent)
distributed power (DP, iDP) traction operation, in which the traction powers of the

1
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Chapter 1 Introduction

locomotives are different.

The second one was also provisionally solved with the application of new technology
in the 1990s. To improve the train performance (the second of the above disadvan-
tages), the Association of American Railroads developed a new braking system – the
Electronically Controlled Pneumatic (ECP) braking system, in which the brake com-
mand signals are electronic and are received by all the wagons simultaneously although
pneumatics are still used to supply the brake power. Spoornet, one of the train op-
erators in South Africa, is the first railway in the world to roll out the ECP braking
system (on its COALink line) on a large scale. The introduction of ECP braking
systems can be seen in [1, 2]. Operational advantages follow the application of ECP
braking systems [1].

1) Wheel and brake shoe wear can be reduced with an appropriate distribution of
braking and pressure control;

2) Energy-efficient operation can be reached with the use of graduated release ca-
pability to eliminate power braking;

3) The safety level can be increased with the accurate control of the whole train and
decreased stopping distance;

4) The in-train forces can be reduced owing to the complete brake control of every
car of the train.

At present, such a heavy haul train in South Africa is composed of about 200
wagons and it is about 2.5 km long. A train running on the COALink line of Spoornet
is shown in Fig. 1.1. It is exactly because of the above advantages that extremely
long trains (up to 10 km in length) are considered in the business plan of Spoornet of
South Africa on its COALink. This increase in train length has posed unprecedented
technical challenges.

According to [3], train handling includes the start phase of the train, the speed
maintenance phase, and the stop phase of the train. Since the railway track is long
and the train is running in the speed maintenance phase during most of the running
time, the train scheduling of the speed maintenance phase is the focus of this study.
In realizing optimal management of in-train forces, it is justifiable to assume that a
steady state of train motion is reached and held. In this study, the term “scheduling” is
borrowed from the railway industry for train operation and handling, where it refers to
the decision of a driving sequence in terms on locomotives’ power notches and wagons’
braking pressure along a specific railway track. In the context of control systems, this
“scheduling” activity is interpreted as an open loop control design, which brings the
train to an expected motion trajectory.

For heavy haul trains, energy consumption, running time and in-train forces be-
tween the neighbouring cars are of much concern to transportation corporations. The
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Figure 1.1: A heavy haul train of Spoornet, South Africa

energy consumption is related to the direct economic profit while the running time
determines the quality of the service. In-train force control contributes to the safe
running of the train and to limiting maintenance cost. The larger the in-train force is,
the higher the maintenance cost. For long trains, this is even more important. It is
also more difficult to control the in-train forces of a long heavy haul train. It is noticed
that the in-train forces depend both on the driving speed and on the power/brake
distribution along the train. This is why the independent Distributed Power (iDP)
operation and ECP braking systems have been introduced into practice.

1.2 Literature review of train handling

A frame for train handling is shown in Fig. 1.2. In train handling, various studies have
tried to achieve different objectives.

For energy consumption, some studies have been done in [4, 5, 6, 7, 8, 9] for a train
to travel from one station to the next one in a given time. In most of these papers,
the locomotives are supposed to have three discrete control settings: power, coast and
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Figure 1.2: Train handling

brake. A finite sequence of the locomotive settings is arbitrarily predetermined and
then the optimal algorithms are to determine the switching points where the control
setting changes. Recently, an analytical approach has been proposed in [10] to find
the control switching point. A train is modelled as a mass point in these papers. It is
shown in [6] that a train with distributed mass can be treated as a point mass with
actual gradient profile replaced by an effective gradient acceleration. In these papers,
the dynamics within a train are ignored and speed tracking and in-train forces are not
investigated.

The other models a train as a cascade of mass points connected with couplers, for
example in [11, 12, 13, 14, 15]. This model is more accurate than a mass-point model
for a train 2.5 km long. In these papers, a desired speed profile along a given track
is assumed first. The subject of the studies is to design controllers to maintain the
desired speed with some objectives considered.

For high speed (passenger) trains, speed tracking is the most important. The
studies can be seen in [12, 13, 14]. In [12] [13], the H2/H∞ method with full state
feedback is employed to deal with the cruising of high speed trains. The objective is
to maintain the train speed as expected. Cruise control is proposed for two types of
high speed trains, distributed driving with each car having its own driving force, and
push-pull driving only with driving forces at the first and the last car. A calculation
method to determine equilibrium point for distributed driving is given. Even though
the push-pull driving is also taken as a way to operate heavy haul trains, again, this
paper does not present optimal scheduling of equilibrium points. In [14], similar to [12],
different input/output decoupling problems for high speed trains are studied. To get
the equilibrium point, it is assumed that one of the in-train forces is zero or the driving
force is equally distributed to the locomotives. This assumption leads to a heuristic
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trim point. In these papers, a train is considered as a cascade of mass points connected
with nonlinear couplers. This model can be used to study the dynamics within a
train. However, the in-train forces are not emphasized in these papers because they
are not particularly important for such short trains. Without ECP technology, the
application of these control approaches to heavy haul trains is hindered by the control
signal transmission delay.

An early study of in-train forces can be seen in [11], where an LQR optimal algo-
rithm is employed to minimize the coupler forces and/or velocity deviations from the
reference values. It is assumed that at the nominal point, the nominal input vector
consisting of throttling and braking forces to maintain the nominal speed, is equal to
the sum of the resistance and gravity forces. Then a linearized model is used to calcu-
late the control law. Considering the large number and the constraints of the variables,
the train model is simplified. This paper offers an excellent setup to deal with the in-
train forces and various calculations of optimal closed-loop control. While closed-loop
control is used to optimize the interplay between in-train forces and speed holding,
the scheduling of the desired holding speed is typically determined through an open
loop controller design. It is noted, however, that the off-line open loop scheduling in
[11] is a rather heuristic one, without making optimal use of the control redundancies.
The closed-loop control is designed based on full state feedback, and with two crude
assumptions for the insufficiency of the measurement of the states, the closed-loop con-
troller is simplified to full speed feedback. Even for speed, it replaces all cars’ speeds
with the limited number of locomotives’ speeds.

It is quite interesting to note that the early study of [11] takes into consideration
some practical aspects of ECP and iDP even though the ECP/iDP technology is not
implemented in practice on a visible scale. However, the model in this paper is largely
simplified by taking variations due to track slope and curvature changes as model
disturbances. New technologies, such as the Global Position System (GPS), make the
information readily available.

In [15] and [16], based on a cascade point mass model, which is validated in [17]
with the operational data from Spoornet, an LQR approach is employed to optimize
the in-train forces, energy consumption and velocity tracking of a heavy haul train
equipped with an ECP braking system. Considering the constraints of control input
channel number, a concept of fencing is proposed. In off-line scheduling, the equilibria
are calculated under the assumption that the driving force is equally distributed to
the locomotives while all the braking forces of wagons are zeros and the braking force
is equally distributed to the locomotives and wagons. This open loop scheduling is
heuristic, too. With the discrete quantities of the locomotives’ efforts considered, the
efforts of the locomotives are almost always equal.

In [18], flatness-based methods in [19] are used to design the open loop control
schemes for a heavy haul train, where a train is taken as an infinite dimensional linear
model.
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The off-line scheduling for the equilibria in the above papers is based on some
heuristic assumptions without considering the optimization of the equilibrium. The
difference among the different equilibria is of course not discussed.

The heuristic scheduling way may lead to irrational power distribution, especially
when one locomotive group is climbing uphill and the other one is driving downhill.
Assuming a train composed of some wagons with one locomotive at the front and one
at the rear is running over a hill (the front part is driving downhill while the rear
part is climbing uphill), it is expected that the front locomotive is braking and the
rear one is powering and thus the in-train forces are small. However, with the above
heuristic scheduling, the efforts of the front locomotive and the rear one are always the
same, which may lead to irrational power distribution. An extreme example is shown
in Fig. 1.3.

Figure 1.3: Irrational power distribution

With open loop scheduling, the running error always exists and it sometimes leads
to oscillation, which should be avoided in train handling.

The methods to design closed-loop controllers in the above-mentioned papers are
all within linear system theories and based on linearized models. The closed-loop
controllers are in the form of state feedback or in the form of measurement feedback
with some crude assumptions. In train handling, only some speeds of the cars are
practically measurable. A closed-loop controller based on speed measurement feedback
is necessary.

In the above papers on train handling, all the controllers are designed on the as-
sumption that the train is well set up and all the actuators (traction efforts and braking
efforts of locomotives and wagons) and sensors (speed sensors) work as designed, which
is an ideal condition. In practice, some of the actuators and/or sensors may be faulty,
and even worse, the train structure may be changed. For example, the speed sensor
has a constant bias, or the amplifier in the sensor circuit has a fault, which leads to a
gain fault in the sensor. The locomotive may fail during the running, which happened
in the ECP trial run to collect data to validate the cascade-mass-point model in [17]
on 18 November 2003. In the stop distance calculation of the collision mentioned in
chapter 2, one locomotive was not functional during the running. The air pressure in
the braking pipe may be different from the expected one because of the pressure sensor
fault in the pressure recharge system or the air leakage, which makes the braking forces
acting on the wheels less than expected.

When this happens, the controller, designed on the basis of the faultless train model,
cannot work as well as expected, and sometimes it even leads to unsafe running, such
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as train-breaking and derailment. The safe running of trains cannot be promised, so
some safe running methods need to be applied in train handling.

1.3 Motivation

From the above, it is evident that there are some problems in train handling.

1) Optimal scheduling in the calculation of the equilibria of the nominal model.
According to the literature, there are several scheduling methods. However, there
is no comparison among them and it is not known which one is the best or if
there is another better one. This step is very important because it is hoped that
good open loop scheduling will present a good starting point and it can improve
the performance of the closed-loop controller.

2) The design of a closed-loop controller with speed measurement feedback.

3) The fault-tolerant control problem of the designed controller.

It is assumed that there are redundancies in designing an open loop controller. An
optimization procedure is applied in this thesis to schedule cruise control by taking
the in-train forces into initial design consideration. It is hoped that an optimal open
loop controller design will present a better starting point for a closed-loop controller
design. A type of LQR controller with state feedback is simulated to justify the above
redundancies.

However, the closed-loop control law is designed based on full state feedback, which
is not practical since not all the states can be measured.

An observer could be designed to supplement the LQR controller if partial states
are measured. This is, however, not the approach taken in this study. Instead, the
application of output regulation of nonlinear systems with measured output feedback
to the control of heavy haul trains is considered. The optimal scheduling of the open
loop controller is still based on “trading off” the equilibria. Thus the precise balance
between energy consumption and in-train forces is still maintained by the choice of
weight factors in the optimal scheduling. For closed-loop control, the speed regulation
is imposed. This approach to design is practically feasible and manageable, and by its
nature, is also easily integrable with human drivers, if it works as expected. Instead
of the linear system theory, a nonlinear system theory is adopted, implying without
a linear approximation philosophy, the control is closer to reality. Another advantage
of the approach is the assumption that only the locomotives’ speeds are available for
measurement.
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For the last problem above, model-based fault detection and isolation (FDI) is
employed in this thesis for sensor faults and braking system faults. Based on the fault
signals of the FDIs, the controller designed with output regulation can be redesigned
to make it fault-tolerant.

The above indicates that this study is undertaken to find a driving methodology for
the implementation of a given speed profile for the train. In the controller, the energy
consumption, in-train forces and speed tracking are taken into account. Considering the
possibility of failures of sensors and actuators, the controller should be fault-tolerant.

1.4 Contributions of thesis

In this study, the contributions are as follows,

1) One first assumes and validates that the optimal open loop scheduling can im-
prove the performance of the closed-loop controller compared with the existing
heuristic scheduling.

2) The output regulation problem of nonlinear systems with measured output feed-
back is formulated and solved for the global version and local version. This has
extended the existing theory of the output regulation problem and it is applied
to train control.

3) The result of output regulation of nonlinear systems with measured output feed-
back is applied to train handling. Some necessary designs for the application are
undertaken.

4) Taking into consideration the possibilities of the failures of the sensors and ac-
tuators, fault detection and isolations for the gain faults of the sensors and the
braking systems are designed. Based on the fault signals from FDIs, the speed
regulator can be redesigned. Thus, the controller is fault-tolerant.

1.5 Layout of thesis

This thesis includes six chapters. In this chapter, the background of train handling
is described first and followed by a literature review on train handling. Based on the
literature review, the problems in train handling are identified and some approaches
are proposed for them. The contributions of this thesis are presented last.

A train model is described in chapter 2, where the longitudinal dynamics of a
heavy haul train is modelled as a cascade of mass points connected with couplers. The
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mathematical model is given, as well as the state constraints and input constraints.
The second part is about the calculation of the emergency stop distance in a collision.
A mass-point model and a cascade-mass-point model are used respectively. From a
comparison of the calculation result, it can be seen that the cascade-mass-point model
is more accurate for a train longer than 1.8 km.

In chapter 3, three control strategies are proposed first. Then optimal schedul-
ing taking the in-train force into consideration is developed and simulated for trains
equipped with a traditional pneumatic braking system and an ECP braking system,
respectively. This is followed by a comparison of optimal scheduling and heuristic
scheduling. The simulation result shows that optimal scheduling presents a better
starting point for closed-loop control, which is confirmed with an LQR controller.

A speed regulator (closed-loop control) with measurement feedback is proposed in
chapter 4 for train handling. The output regulation problem of nonlinear systems with
measurement feedback is formulated and solved in the global version and the local
version in the first part of this chapter. In the second part, some application issues of
the result of the local version to train handling are discussed.

The fault-tolerant control of heavy haul trains is investigated in chapter 5. Firstly,
the fault detectability algorithm is quoted from [61]. Based on this, the fault detection
and isolation of the sensor gain faults are designed. The fault detection and isolation
for the braking system faults are designed based on an analysis of the steady-state
speeds. The fault signals for locomotives are assumed to be given. With these fault
signals, the speed regulator is redesigned. Finally, the simulation for different kinds of
faults proceeded.

Chapter 6 is the summary of this thesis and presents some discussion of further
studies in train handling.
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Chapter 2

Train model

2.1 Introduction

According to the literature, there are two models in the study of train handling: a
mass-point model and a cascade-mass-point model. For the study of in-train forces, it
is natural to choose the cascade-mass-point model in this thesis.

In section 2.2 of this chapter, the longitudinal dynamics of a heavy haul train is
modelled as a cascade of mass points connected with nonlinear couplers. Considering
the practical application in COALink line trains, the states and input constraints are
given. This model is used throughout the thesis.

The second part of this chapter describes the calculation of the emergency stop
distance for a collision. A mass-point model and a cascade-mass-point model are
employed respectively. The result can be used to compare the difference between the
two models.

2.2 Cascade mass-point model

A heavy haul train, composed of locomotives and wagons (both referred to as cars),
can be modelled as a cascade of mass points connected with couplers. In the following
model, only the longitudinal dynamics of the train is analyzed.
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2.2.1 Car model

A car is running on the track while it is subjected to aerodynamic force, the adjoining
cars’ internal forces, the gravity force and its own traction or brake force. The forces
experienced by a car in the longitudinal direction are shown in Fig. 2.1.

Figure 2.1: Longitudinal model of car

The aerodynamics of a train can be divided into two parts [22] [23]: mechanical
drag and aerodynamic drag. The former includes the sliding forces between the train’s
wheels and the track and the rolling forces of wheels. Aerodynamic drag is dependent
on the cross-sectional area of train body, train length, shape of train fore- and after-
bodies, surface roughness of the train body, and geographical conditions around the
proceeding train.

It has been reasonably assumed that the aerodynamic drag is proportional to the
square of the speed, while the mechanical drag is proportional to the speed. Compared
with the mechanical drag, the portion of the aerodynamic drag becomes larger as the
train speed and length increase (see details from [22] and [23]).

In the open air without any crosswind effects, the total drag on a travelling car can
be expressed by the sum of the aerodynamic and mechanical ones:

f = DM +DA = mc0 +mc1v +mc2v
2, (2.1)

where DA and DM are the aerodynamic and mechanical drags, respectively, c0, c1 and
c2 are constants determined by experiments, v is the car speed and m is the car mass
under discussion.

The variables fini
and fini+1

are the in-train forces between the neighbouring cars.
Only one in-train force is experienced by the front and rear car. The variable ui is the
car’s traction or brake force. For a wagon it refers to the brake force, which must be no
more than zero, while for a locomotive it refers to traction force or brake force, whose
quantity depends on the locomotive’s power notch and speed and its dynamic brake
capacity.

In Fig. 2.1, the resistance force fp = fg +fc, a function of the position, is composed
of the gravity force fg = mg sin θ ≈ mgθ in longitudinal direction and the curvature
resistance force fc [24]. Generally, the track information is known, so it is convenient
to yield the function of fp. In the following simulation study, the curvature resistance
force is ignored, which will not affect the simulation result.
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2.2.2 Coupler model

The coupler between two cars is modelled as Fig. 2.2. When the draft gear is in
its natural length, the in-train force is zero. Considering the coupler’s slack length,
the coupler can be regarded as a composition of the two gears plus the slack length.
Assuming the sum of the length of two gears is L0 − 1

2
Lslack while the in-train force

is zero, the displacement of the coupler is defined as x = L − L0 in which L is the
coupler length. The variable fini

is the in-train force between the ith and (i + 1)th
cars, which is a function of xi, the relative displacement between the two neighbouring
cars, and the difference of the neighbouring cars’ velocities (damping effect). A typical
relationship between the static in-train force fin (without damping) and x is depicted
in Fig. 2.3, which is simplified from the data of Spoornet.

Figure 2.2: Longitudinal model of coupler

Figure 2.3: Coupler force vs. displacement

2.2.3 Train model of a cascade of mass points

Fig. 2.4 is a sketch of the longitudinal motion of a train. Assuming the train consists
of n cars and the locomotives are located at positions li, i = 1, 2, · · · , k, where k is the
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Figure 2.4: Longitudinal model of train

number of locomotives, the train model is described by the following equations.

msv̇s = us + fins−1
− fins

− fas
, s = 1, 2, · · · , n, (2.2)

ẋj = vj − vj+1, j = 1, 2, · · · , n− 1, (2.3)

where the variable mi is the ith car’s mass; the variable vi is the speed of the ith car; the
variables fai

= faeroi
+fpi

, i = 1, 2, · · · , n; the variable faeroi
= mi(c0i

+ c1i
vi + c2i

v2
i ) is

the cars’ aerodynamic force; the variable fpi
= fgi

+ fci
is the force due to the tracking

slope and curvature where the ith car is running; and the variable fini
is the in-train

force between the ith and (i+ 1)th cars. In (2.2), one has fin0
= 0, finn

= 0.

This model is the same in nature as that in [16], which is validated in [17] with the
data from Spoornet.

2.2.4 Input constraint

For a heavy haul train, the control inputs are the efforts of the locomotives and the
wagons. The efforts of locomotives can be traction forces or dynamic braking forces,
and the efforts of wagons are braking forces. The dynamic brake power is also called
regenerative brake power, which can be fed back to the system and could conceivably
be saved. All these inputs are constrained. For a locomotive, the effort is governed
by the current velocity and the current notch setting, which is depicted in Fig. 2.5 for
the 7E1 locomotive used in the COALink trains. The locomotives in this study are
assumed to be electric and it is also convenient to formulate the problem of a train
with diesel–electric locomotives in a similar way.

In the practical operation of 7E1 locomotives, any notch change requires an interval
delay for the field changes. When it changes from dynamic braking to traction or the
other way round, the time delay requires a longer interval.

The braking forces of the wagons are also limited by the braking capacities of the
wagons.
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Figure 2.5: Locomotive group effort vs. notch and velocity

2.2.5 In-train force constraints

The quantity of the in-train forces is related to the safe running of the train. In practice,
the safety range of the in-train forces for COALink trains is ± 2, 000 kN.

2.3 Stop distance calculation – a model-comparison

During the study, the (emergency) stop distance of a train in a collision is requested to
be calculated. The stop distance is calculated with a mass-point model and a cascade-
mass-point model, respectively. From the calculation, the difference between the two
models can be seen. As indicated in chapter 1, the iDP (DP) operation cannot be
considered in a mass point model as well as the internal dynamics in the train. Even
without considering the iDP operation, the cascade-mass-point model is still more
accurate in modelling a train longer than 1.8 km. To demonstrate this, the calculation
procedure is reported in the following.

2.3.1 Information on the collision

When a stop distance is to be calculated, the following data are required:

1) Train composition: locomotive type, wagon type, mass and length of the loco-
motives and wagons, characteristics of the couplers connecting the locomotives
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and wagons, braking system characteristics (pneumatic braking system or ECP
braking system, and its parameters).

2) Track data.

3) Operation code.

4) The initial speed of the train before brake is applied.

Limited information is known from the collision report:

1) The train locomotive was numbered E 7092.

2) There were 40 wagons pulled by two locomotives, one at the front and one at
the rear. The weight of the locomotive is unknown; the wagons and their load
weighed 66 ton each, but the wagon type is unknown.

3) One of the locomotives was not functional.

4) During the collision, the maximum sight distance from the approaching path of
the train was 728 m. The departure path shows the end position of the train at
250 m from the area of impact.

5) The initial speed of the train before applying brake is unknown.

2.3.2 Calculation of stop distance

The emergency stop distance is considered. So the control sequence of the train is
assumed to be in the emergency operation. From the collision report, this assumption is
justified. As is known from [3], the emergency application of freight equipment provides
an extremely rapid transmission of the application throughout the train, as well as
developing higher brake cylinder pressure than is obtained during service braking. By
the movement of the brake valve on the locomotive to the emergency position, the
brake pipe is vented unrestricted to the atmosphere, which results in a rapid drop in
brake pressure, causing the succeeding valves to go to emergencies and vent brake pipe
pressure to the atmosphere at the location. The transmission rate of an emergency is
about 930 feet per second or 635 miles per hour. During the emergency, the AB or ABD
control valves will apply rapidly causing approximate 15psi brake cylinder pressure to
occur on each car within 1.5 seconds after the car brake valve is at the emergency
position. This action applies the brake shoes to the wheel quickly and minimizes
severe slack changes. During an emergency application, the locomotive throttle should
be reduced to idle [3].

From the above description, it is clear that there are time delays for the wagons to
start braking after the application of the emergency brake. The time delays are different
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from wagon to wagon. The longer the distance from the wagon to the locomotive from
where the emergency command originates, the longer the time delay. However, the time
delays are limited, since the train is composed of only 40 wagons with one locomotive
at the front and one locomotive at the rear. The length of the train is about 524 m and
the longest time delay is about 2 seconds. From the collision report, the wagon type is
unknown and the locomotive type, from the number plate, could be 7E. The calculation
of the braking distance can be done by two methods respectively employing a simple
mass-point model and a cascade-mass-point model. The simple mass-point model takes
the whole train as a single mass point, while the cascade-mass-point model take it as
mass points connected by couplers. The cascade-mass-point model is a more accurate
model that takes into consideration the couplers’ energy consumption. It could be seen
from the results that the braking distances are different from two different calculations.
Because of lack of information, the calculation of the braking distance is done on the
basis of the following set of technical assumptions:

(1) The locomotives are idle when the emergency operation is initiated.

(2) The track is flat.

(3) The train is running in its steady state with a velocity that is unknown. However,
calculation is done with a number of initial speeds of worst case scenarios.

(4) The train is equipped with a pneumatic braking system. All the brake equipment
works as designed.

(5) The air dynamics is ignored.

(6) In the analysis using a simple model, the in-train dynamics is ignored, too.

(7) The locomotive is thought to be of the 7E1 type, whose length is 20.47 m and
whose mass is 126 tons.

(8) The loaded mass of the wagon is known to be 66 tons.

(9) The wagon types are unknown. Spoornet has a number of different wagon types in
operation: CCL1, CCL2, CCL3, CCL5–9 and CCR1, CCR2, CCR3 and CCR5-9.
Calculations are done for all these wagon types.

The characteristics of the wagon types in emergency application are indicated in
Table 2.1, where BBF is the brake block force, EBCP is the emergency brake cylinder
pressure and COF BB is the coefficient of friction. All these terms of the railway are
referred to [3] or [25].

In the following calculation, the simple model is used to estimate the possible ve-
locities and the cascade-mass-point model is used to simulate the emergency operation
of the train.
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Table 2.1: Wagon types and parameters
CCL1&3 CCL2 CCL5–9 CCR1&3 CCR2 CCR5–9

EBCP (kpa) 472 472 472 240 240 240
COF BB 0.25 0.25 0.33 0.25 0.25 0.33
BBF(N) 218,951 220,921 215,205 266,782 220,921 215,205

2.3.3 Simple model

In this model, a train is simplified to a mass point. The train mass is

M = (126 × 2 + 66 × 40) × 1, 000 = 2, 892, 000kg.

When the wagon’s type is CCL1&3

The brake force acting on the train is

F = 40 × COF BB ×BBF = 40 × 0.25 × 218, 951 = 2, 189, 510 N.

The deceleration velocity of the train is

a =
F

M
=

2, 189, 510

2, 892, 000
= 0.7571 m/s2.

The first point from where the train driver is able to see to the collision point is 728 m.
The first simple calculation is the maximum initial speed of the train that the collision
could have been avoided.

For the maximum possible braking distance s1 = 728 m, the admitted maximum
initial velocity is

v0 =
√

2as1 =
√

2 × 0.7571 × 728 = 33.2 m/s = 119.5 km/hour.

The distance from the point (where the train driver is able to see the collision point)
to its full stop is 978 m. The next simple calculation is the maximum initial speed of
the train if the driver had applied the emergency brake immediately at this point. For
the real braking distance s1 = 978 m, the velocity before the application of emergency
braking is

v0 =
√

2as1 =
√

2 × 0.7571 × 978 = 38.48 m/s = 138.54 km/hour.

This calculation is done without considering the time delay of the application of the
emergency. If one considers the worst case, considering the longest time delay for each
wagon and the operational time between the emergency operation of the brake valve and
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the full application of the emergency brake, one allows 2 seconds for transmission delay
and 2 seconds for the application delay. This yields Td = 4 s and s1 = Tdv0 + v2

0/(2a).
The solution is v0 = 30.31 m/s = 109.12 km/hour for s1 = 728 m. When s1 = 978 m,
the initial velocity is v0 = 35.57 m/s = 128.06 km/hour. That is, if the train’s velocity
before emergency is no more than 109.12 km/hour (128.06 km/hour), the train can be
stopped within the braking distance 728 m (978 m).

It is normal that a reaction time is needed for the train driver to apply the emergency
brake. A normal reaction time is 5 seconds. When 5 seconds is accepted for the decision
of the operation of the emergency brake, then Td = 9 s. The initial velocity is solved
with v0 = 27.08 m/s = 97.5 km/hour and v0 = 32.27 m/s = 116.16 km/hour for
s1 = 728 m and s1 = 978 m, respectively.

The similar calculation steps are applied in other wagon types.

When the wagon’s type is CCL2

The brake force acting on the train is

F = 40 × COF BB ×BBF = 2, 209, 210 N.

The deceleration velocity of the train is a = 0.7639 m/s2.

For the maximum possible braking distance s1 = 728 m, the admitted maximum
initial velocity is v0 = 33.35 m/s = 120.1 km/hour.

For the real braking distance s1 = 978 m, the velocity before the application of
emergency braking isv0 = 38.65 m/s = 139.16 km/hour.

Considering 2 seconds for transmission delay and 2 seconds for the application delay,
one has Td = 4s and the solution is v0 = 30.43 m/s = 109.56 km/hour for s1 = 728 m
while v0 = 35.72 m/s = 128.59 km/hour for s1 = 978 m.

When 5 seconds is considered for the decision of the operation of the emergency
brake, Td = 9s. The initial velocity is solved with v0 = 27.18 m/s = 97.84 km/hour
and v0 = 32.39 m/s = 116.59 km/hour for s1 = 728 m and s = 978 m, respectively.

When the wagon’s type is CCL5–9

The brake force acting on the train is

F = 40 × COF BB ×BBF = 2, 840, 700 N.

The deceleration velocity of the train is a = 0.9827 m/s2.
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For the maximum possible braking distance s1 = 728 m, the admitted maximum
initial velocity is v0 = 37.8 m/s = 136.2 km/hour. . For the real braking distance s1 =
978 m, the velocity before the application of emergency braking isv0 = 43.84 m/s =
157.83 km/hour.

Considering 2 seconds for transmission delay and 2 seconds for the application
delay, the solution is v0 = 34.01 m/s = 122.76 km/hour for s1 = 728 m while v0 =
40.09 m/s = 144.32 km/hour for s1 = 978 m.

When 5 seconds is considered for the decision of the operation of the emergency
brake, Td = 9s. The initial velocity is solved with v0 = 30.00 m/s = 108.01 km/hour
and v0 = 35.88 m/s = 129.17 km/hour for s1 = 728 m and s = 978 m, respectively.

When the wagon’s type is CCL1&3

The brake force acting on the train is F = 2, 667, 820 N. The deceleration velocity of
the train is a = 0.9225 m/s2.

For the maximum possible braking distance s1 = 728 m, the admitted maximum
initial velocity is v0 = 36.65 m/s = 131.9 km/hour.

For the real braking distance s1 = 978 m, the velocity before the application of
emergency braking isv0 = 42.48 m/s = 152.92 km/hour.

Considering 2 seconds for transmission delay and 2 seconds for the application
delay, the solution is v0 = 33.14 m/s = 119.32 km/hour for s1 = 728 m while v0 =
38.95 m/s = 140.21 km/hour for s1 = 978 m.

When 5 seconds is considered for the decision of the operation of the emergency
brake, Td = 9 s. The initial velocity is solved with v0 = 29.28 m/s = 105.39 km/hour
and v0 = 34.98 m/s = 125.93 km/hour for s1 = 728 m and s = 978 m, respectively.

When the wagon’s type is CCR2

The result is the same as that of CCL2.

When the wagon’s type is CCR5-9

The result is the same as that of CCL5-9.
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2.3.4 Cascade mass-point model

The simple model is used to estimate the initial velocity of the train. Here a cascade-
mass-point model connected with nonlinear couplers is used to simulate the running
of the train. In this model, the locomotive is thought to be 7E1 and the wagons are
thought to be the above different types of wagons. The coupler characteristic is as
indicated in Fig. 2.5.

The operational procedure of the emergency brake is thought to be as follows.

First the train driver notices the environment and makes a decision to initiate the
emergency brake operation. In the following simulation, the time is denoted as T1.
The train driver begins to move the brake valve to the emergency position. During
this operation, the braking pipe needs time to release its air pressure. This time is
denoted as T2. Actually there is another time delay mixed in this time delay, which is
the transmission delay of the braking signal. In simulation, the transmission velocity
of the emergency brake is about 300 m/s.

The following tables show the simulation results. In these tables, S1 is the brak-
ing distance without any time delays considered; S2 is the braking distance with the
transmission delays (part of T2) considered; S3 is the braking distance with the trans-
mission delays and another 2-second delay for the application delay considered and S4

is the braking distance with the transmission delay, 2-second application delay (T2)
and 5-second decision time delay (T1) considered.

Table 2.2: Wagon type CCL1&3
V0 (km/hour) S1 (m) S2 (m) S3 (m) S4 (m)

138.54 986.62 1,063.58 1,256.00
128.05 844.83 915.97 1,093.82
119.52 712.9 738.00 814.40
117.29 686.5 711.12 776.28
116.17 697.83 762.37 923.72
109.12 616.89 677.51
108.00 582.1 604.50 664.50
97.49 494.52 548.68 684.08

Some explanations of the above tables follow.

In Table 2.2, the wagon type of the train is CCL1&3 and the BBF is 54, 738 N. If
the driver applied emergency braking once the train reached the point of sight distance
(728 m from the cross) and the train’s velocity was no more than 109.12 km/hour, the
braking distance would not be more than 677.51 m. If the driver applied emergency
braking 5 seconds after the train passed the point of sight and the train’s velocity was
no more than 116.17 km/hour, the braking distance would not be more than 923.72
m. Even if the couplers connecting the locomotives and wagons were rigid, the above
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Table 2.3: Wagon type CCL2(CCR2)
V0 (km/hour) S1 (m) S2 (m) S3 (m) S4 (m)

139.16 986.75 1,064.50 1,257.33
128.59 844.48 915.92 1,094.52
120.06 712.95 738.15 804.85
117.28 686.67 711.37 776.83
116.59 696.71 761.49 923.42
109.55 616.27 677.10
108.00 576.90 599.50 659.50
97.84 493.62 547.98 683.86

Table 2.4: Wagon type CCL5–9(CCR5–9)
V0 (km/hour) S1 (m) S2 (m) S3 (m) S4 (m)

157.77 990.48 1,078.12 1,297.25
144.32 830.91 911.09 1,111.53
136.08 740.90 816.50
133.38 712.35 786.45
129.17 668.72 740.48 919.89
122.76 605.00 673.20
108.00 471.00 531.00
108.01 471.10 531.10 681.11

Table 2.5: Wagon type CCR1&3
V0 (km/hour) S1 (m) S2 (m) S3 (m) S4 (m)

152.92 989.42 1,074.38 1,286.77
140.21 834.45 912.35 1,107.09
131.94 710.45 813.75
129.28 711.59 783.41
125.93 676.02 745.98 920.88
119.32 607.86 674.14
108.00 500.50 560.50
105.39 477.12 535.68 682.05
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two distances would not be more than 728 m and 978 m, respectively.

In Table 2.3, the wagon type of the train is CCL2 or CCR2 and the BBF is 55, 230 N.
If the driver applied emergency braking once the train reached the point of sight dis-
tance (728 m from the cross) and the train’s velocity was no more than 122.76 km/hour,
the braking distance would not be more than 673.20 m. If the driver applied emergency
braking 5 seconds after the train passed the point of sight and the train’s velocity was
no more than 116.59 km/hour, the braking distance would not be more than 923.42
m. Even if the couplers connecting the locomotives and wagons were rigid, the above
two distances would not be more than 728 m and 978 m, respectively.

In Table 2.4, the wagon type of the train is CCL5-9 or CCR5-9 and the BBF is
71, 018 N. If the driver applied emergency braking once the train reached the point
of sight distance (728 m from the cross) and the train’s velocity was no more than
109.55 km/hour, the braking distance would not be more than 677.10 m. If the driver
applied emergency braking 5 seconds after the train passed the point of sight and the
train’s velocity was no more than 129.17 km/hour, the braking distance would not be
more than 919.89 m. Even if the couplers connecting the locomotives and wagons were
rigid, the above two distances would not be more than 728 m and 978 m, respectively.

In Table 2.5, the wagon type of the train is CCR1&3 and the BBF is 66, 696 N. If
the driver applied emergency braking once the train reached the point of sight distance
(728 m from the cross) and the train’s velocity was no more than 119.32 km/hour, the
braking distance would not be more than 674.14 m. If the driver applied emergency
braking 5 seconds after the train passed the point of sight and the train’s velocity was
no more than 125.93 km/hour, the braking distance would not be more than 920.88
m. Even if the couplers connecting the locomotives and wagons were rigid, the above
two distances would not be more than 728 m and 978 m, respectively.

2.3.5 Conclusions of the calculation

Although some information is unknown about the train and the track, some conclusions
can be drawn based upon the aforementioned assumptions and calculations:

1) The faster the train, the longer the braking distance.

2) For different braking systems, the braking distances are different.

3) The smaller the COF BB of the wagons is, the longer the braking distance is.

4) The later the driver initiated emergency operation, the longer the braking dis-
tance was.

5) If the braking equipment worked as designed, and the driver initiated the emer-
gency operation once the train was at the point of sight distance from the cross,
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the braking distance would not be more than 728 m if the velocity of the train
was no more than 110 km/hour. Even if the driver applied emergency operation
5 seconds after the train passed the sight point, the braking distance would not
be more than 728 m if the velocity of the train was no more than 97 km/hour.

6) If the braking equipment worked as designed, and the driver initiated the emer-
gency operation once the train was at the point of sight distance from the cross,
the braking distance would not be more than 978 m if the velocity of the train was
no more than 128 km/hour. Even if the driver initiated the emergency operation
5 seconds after the train passed the sight point, the braking distance would not
be more than 978 m if the velocity of the train was no than 116 km/hour.

From this calculation, it is also seen that at the same initial speed, the stop distance
calculated with the cascade-mass-point model is shorter than that in the case of the
mass-point model (simple model). This is because with a cascade-mass-point model,
part of the kinetic energy is consumed by the couplers, which is ignored in the mass-
point model. From this point of view, the cascade-mass-point model is more accurate
when a train is longer than 1.8 km, which is the case in this study.

2.4 Conclusion

In this chapter, a cascade of mass points connected with nonlinear couplers is described
as a model for a long heavy haul train. This model has been validated in [17] with
data from Spoornet.

A stop distance calculation is also given in this chapter with a mass-point model
and a cascade-mass-point model, respectively. The calculation result shows that the
latter is more accurate when a train is longer than 1.8 km, which is the case in this
study.
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Optimal scheduling

3.1 Introduction

In train handling, different kinds of scheduling approaches are proposed in the litera-
ture. However, the differences among them are not discussed. It is assumed that there
are redundancies in optimization of scheduling. Optimal scheduling may improve the
performance of a train. It is said in chapter 1 that the ECP braking system can im-
prove train performance. In this chapter, the difference between trains equipped with
a pneumatic braking system and an ECP braking system is first compared and then
the difference between optimal scheduling and heuristic scheduling is discussed.

In the first part of this chapter, three control strategies are proposed for train
handling. In the second part, the performances reached with optimal scheduling with
in-train forces taken into initial consideration on trains equipped with a tradition pneu-
matic braking system and an ECP braking system are compared. ECP braking systems
show superb performance compared with pneumatic braking systems. Thus, in the rest
of this thesis, the handling of trains equipped with ECP braking systems is studied.

It is hoped that optimal scheduling can improve the performance of train handling.
Optimal scheduling, taking in-train forces and energy consumption into consideration,
is compared with the heuristic scheduling proposed in [15] in the third part of this
chapter. It is shown that optimal scheduling presents a better start for closed-loop
controllers. The work of this part is seen in [20].

In the last part, a closed-loop controller combining the optimal scheduling and LQR
controller in [15], employing a linear system theory, is adopted to compare with the
closed-loop controller in [15]. Optimal scheduling is used to calculate the equilibria,
while a closed-loop controller based on LQR is employed to bring the trajectory of the
train to the equilibria. It is confirmed from the simulation that Optimal scheduling
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actually improves the performance of the closed-loop controllers and that the 2-2 strat-
egy, ECP/iDP-only strategy yields the best performance of all strategies. The work of
this part can be seen in [21].

3.2 Control strategies

A traditional heavy haul train with a pneumatic controlled braking system is controlled
by drivers in the leading locomotive. A single air pipe runs throughout the whole train
and is responsible for supplying pressure to the braking system in each wagon as well as
transmitting braking control signals. The driver controls the leading locomotive’s effort
while other locomotives’ efforts follow that of the leading one. Because of the pressure
wave propagation speed, the front wagons are responsible for most of the braking owing
to the signal propagation delay and the pressure gradient. From a control point of view,
there are only two control signals in this kind of strategy, one for locomotive effort and
the other one for wagon brake.

When the locomotives’ efforts are controlled independently and separately, this
is referred to as multi-powered [11] or distributed powered. In this strategy, every
locomotive or every locomotive group (some locomotives connected with rigid drawbar)
has an independent control signal.

While the train is equipped with an ECP braking system, the braking control
signal is transmitted electronically. There is nearly no time delay for the braking
signal transmission. When the above two control strategies are implemented with an
ECP system, the braking signals are not delayed.

An ECP braking system adds a new dimension to control strategy: it allows indi-
vidual wagon braking. So in a fully ECP/iDP mode, every car, including locomotives
and wagons, has its own independent control signal.

Summarizing the above, three major types of control are discussed in this study:

• 1-1 strategy
One control signal is for all locomotives and one braking control signal for all
wagons. Currently, this control strategy is still in use on the heavy haul trains
of Spoornet equipped with ECP braking systems, for this control strategy was
in use before the application of ECP braking systems and was well designed for
short heavy haul trains. However, this strategy hinders the expansion of the
train’s length.
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• 2-1 strategy
Different control signals are for different locomotives while the same braking
control signals server for all wagons. This is an iDP-only strategy.

• 2-2 strategy
Every car has its own control signal. This is an ECP/iDP-only strategy.

3.3 Optimal scheduling on trains equipped with dif-

ferent braking systems

In chapter 1, it is said that a train equipped with an ECP braking system performs
better compared with the traditional pneumatic braking system. The main difference
between these two braking systems is the braking command signals. In a pneumatic
braking system, the braking signals for all the wagons are the same and there are
different time delays for the wagons to receive them. In an ECP braking system, the
signal for all wagons may be different and it is received by all wagons simultaneously. In
this chapter optimal scheduling on the trains equipped with these two braking systems
will respectively be simulated and the difference between them will be compared. Here
only the result of in-train forces is compared, while other advantages of the application
of an ECP braking system are not shown. From the simulation, the ECP braking
system shows superb performance compared to the pneumatic braking system on the
one hand. On the other hand, the application of an ECP braking system enriches the
control strategy of train handling.

An optimization procedure is applied to schedule cruise control by taking the in-
train forces into initial design consideration. It is hoped that an optimal open loop
controller design will present a better starting point for a closed-loop controller design.
To demonstrate the open loop control design, the throttling and braking are constrained
and three different operational strategies of heavy haul trains are distinguished.

3.3.1 Formulation of the optimal problem

Transient control

The inputs in (2.2) are insensitive to the change in the reference speed. To get a
rapid response to the reference speed change, transient control is designed through an
acceleration profile in the following open loop scheduling. When a closed-loop controller
is considered, this step is unnecessary. An acceleration profile is calculated according
to the velocity profile with a parameter, the acceleration limit, arr. For example, at the
travel distance dis = 1, 000 m, the reference velocity is changed from 12 m/s to 15 m/s
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and at the distance dis = 5, 000 m, it is changed to 10 m/s, then the acceleration profile
is as in Table 3.1, where s1, s2 are calculated as s1 = 1, 000 + (152 − 122)/(2arr), s2 =
5, 000 + (152 − 102)/(2arr). Thus from the point 1, 000 m to the point s1 and from

Table 3.1: Acceleration profile

distance · · · 1,000 s1 5,000 s2 · · ·
a 0 arr 0 −arr 0 · · ·

the point 5, 000 m to the point s2, the open loop scheduling should maintain the
accelerations.

Performance function of optimal control

The objectives of a train control project are that with optimal control, 1) the train
can travel a given distance within a given period; 2) energy consumption is reduced;
and 3) the range of in-train forces is in the admission range of the train couplers. At
the equilibrium point, where the speeds of the cars and the displacements of couplers
are constant, that is, v̇i = 0, ẋj = 0, i = 1, 2, · · ·n, j = 1, 2, · · · , n − 1, the energy
consumption of all control strategies is nearly equal, for most of the energy is used
to conquer the resistance of drag forces, which are determined by the speed profile,
track profile and the train. So the second objective can be ignored in scheduling the
open loop controller. The first objective is more closely related to the speed profile and
speed holding. In scheduling the open loop controller, it is assumed that the desired
speed is reached and held. In this chapter, the objective, therefore, is taken as

J =
n−1∑

i=0

f 2
ini
, (3.1)

where n is the number of cars in the train. That is, the purpose of the scheduling is to
minimize the in-train forces.

In the following analysis, the train is assumed to consist of n cars, in which there
are k locomotives. The cars are numbered from the front to the back with 1 to n. The
locomotives’ numbers are from l1 to lk.
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Constraints of the optimal problem

For open loop control, the dynamic process in the train is ignored and the reference
velocity is reached or the acceleration is maintained, that is,

dvi

dt
= a, i = 1, 2, · · · , n

dxj

dt
= 0, j = 1, 2, · · · , n− 1,

(3.2)

where a is the acceleration, which is zero when the train is cruising and is ar(−ar)
when the train is running within a scheduled acceleration (deceleration) period.

Applying (3.2) to equations (2.2) and (2.3), one has

us + fins−1
− fins

− fas
−msa = 0, s = 1, 2, · · · , n. (3.3)

From the first (n− 1) equations of (3.3), the in-train forces can be calculated as

fins
=

s∑

i=1

ui −
s∑

i=1

(fai
+mia), s = 1, 2, · · · , n− 1. (3.4)

From the last equation of (3.3), one has

n∑

i=1

ui −
n∑

i=1

(fai
+mia) = 0. (3.5)

In train operations, the inputs and the in-train forces have some constraints:

U i ≤ ui ≤ U i, i = 1, 2, · · · , n;

F inj
≤ finj

≤ F inj
, j = 1, 2, · · · , n− 1,

(3.6)

where U i, U i are the upper and lower constraints for the ith input, and F inj
, F inj

are

the up and lower constraints for the jth in-train force, respectively. For a wagon, Ui = 0
and the value of Ui depends on the capacity of the wagon’s brake. For a locomotive, the

constraints U i, U i depend on the locomotive’s capacity in traction effort. The notch
should be changed step by step, and every notch should be kept for longer than a fixed
time interval before it is changed. The constraints F inj

, F inj
are limited because of the

requirement of safe operation and limiting of maintenance cost.

Thus open loop scheduling is an optimization problem of the objective function
(3.1) with equality constraints (3.3) and inequality constraints (3.6).
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3.3.2 Optimization algorithm

In the following, the optimization algorithm of the 1-1 strategy is given as an example.
The other two are similar and are omitted.

With the 1-1 strategy, all the locomotives share the drag forces equally and the
brake forces of all the wagons are equal. This imposes additional constraints on the
optimization problem.

ul1 = ul2 = · · · = ulm−1
= · · · = ulk

∆
= ut,

ui
∆
= ub, i = 1, · · · , n; i 6= lj, j = 1, · · · , k.

(3.7)

It is distinguished between two cases.

1) The last locomotive is not at the rear of the train. In this case, lk < n. Combining
(3.7) with (3.4), one has

fini
=







iub −
i∑

j=1

(faj
+mja), 1 ≤ i < l1,

(i− 1)ub + ut −
i∑

j=1

(faj
+mja), l1 ≤ i < l2,

. . .

(i− k)ub + kut −
i∑

j=1

(faj
+mja), lk ≤ i < n,

and

kut + (n− k)ub =
n∑

i=1

(fai
+mia).

The objective function is rewritten as

J =
n−1∑

i=1

f 2
ini

=

l1−1∑

i=1

(

iub −
i∑

j=1

(faj
+mja)

)2

+ · · ·+

+

lk−1∑

i=lk−1

(

(i− k + 1)ub + (k − 1)ut −
i∑

j=1

(faj
+mja)

)2

+
n−1∑

i=lk

(

(i− k)ub + kut −
i∑

j=1

(faj
+mja)

)2

.

The optimization with equality and inequality constraints can be solved with the
Lagrange multiplier approach [26]. The equality constraints can be taken care of with
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the following extended objective function with a Lagrange multiplier:

J̄ = J + 2λ

(

kut + (n− k)ub −
n∑

j=1

(faj
+mja)

)

. (3.8)

First, one calculates

1

2

∂J

∂ut

=
k∑

j=1





lj+1−1
∑

i=lj

jQi,j



 ,

1

2

∂J

∂ub

=
k∑

j=0





lj+1−1
∑

i=lj

(i− j)Qi,j



 ,

(3.9)

where Qi,s = (i−s)ub+sut−
i∑

j=1

(faj
+mja), s = 0, · · · , k, l0 = 1, lk+1 = n and, denotes

them as
1

2

∂J

∂ut

= Tbub + Ttut +
n−1∑

i=1

Ti(fai
+mia),

1

2

∂J

∂ub

= Bbub +Btut +
n−1∑

i=1

Bi(fai
+mia).

(3.10)

The necessary condition for extremality of J̄ is:

1

2

∂J̄

∂ut

=
1

2

∂J

∂ut

+ λk = 0,

1

2

∂J̄

∂ub

=
1

2

∂J

∂ub

+ λ(n− k) = 0,

kut + (n− k)ub −
n∑

i=1

(fai
+mia) = 0.

(3.11)

From them, one can get the following equations:

Pbbub + Pttut =
n−1∑

i=1

(kBi − (n− k)Ti)Fi,

Pbb = (n− k)Tb − kBb,
Ptt = (n− k)Tt − kBt,

(n− k)ub + kut =
n∑

i=1

Fi,

(3.12)

where Fi = fai
+mia and from which one can get the solutions of ub, ut. In applying

this solution to (3.6), if no constraint is violated, this solution is the optimal value. If
some constraints are violated, then one takes these violated inequality constraints as
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equality constraints, and re-solves the optimization problem. For example, one may
wish to minimize J(x) subject to f(y) ≤ 0, where f , J and x are vectors of different
dimensions. Suppose that x has p components and that n components of the inequality
constraints are violated, that is, fi(x) > 0, i = 1, 2, · · · , n. The other constraints,
fi(x) ≤ 0, i = n+ 1, · · · , may be disregarded. Define a new function, J̄ = J + λTF ,
where λT = [λ1 · · · λn], F = [f1(x) · · · fn(x)]T to replace J . Solving this
minimization problem, one can get a new solution which is more admissible. The above
process is repeated if necessary. This procedure of solving a constrained optimization
problem is described in detail in [26].

2) The last locomotive is at the rear of the train. In this case, lk = n.

In the above calculation (lk < n), one could consider lk+1 = n. So one can replace
k in the above case with k − 1 in this case.

fini
=







iub −
i∑

j=1

(faj
+mja), 1 ≤ i < l1,

(i− 1)ub + ut −
i∑

j=1

(faj
+mja), l1 ≤ i < l2,

· · ·
(i− k + 1)ub + (k − 1)ut −

i∑

j=1

(faj
+mja), lk−1 ≤ i < n,

and

kut + (n− k)ub =
n∑

i=1

(fai
+mia).

One can get similar results.

For instance, n = 52, l1 = 1, l2 = 52, then

ut =
1

2262

52∑

i=1

−3888 − 25i+ 5i2

2
(fai

+mia),

ub =
1

2262

52∑

i=1

1230 + 5i− i2

10
(fai

+mia).

(3.13)

The mathematic developments for the other two control strategies are similar to the
above one.

3.3.3 Simulation of different braking systems

In simulation, one assumes that the train consists of 200 wagons. Every four wagons (a
rake) are linked with rigid drawbars of which the in-train forces are not considered and
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are regarded as one unit. There are two locomotives at the front and two at the rear.
The neighbouring locomotives are linked with rigid drawbars and regarded as one unit
too. So the train can be regarded as consisting of 50 wagons between two locomotives.

The parameters of the train are given in the following tables [15].

Table 3.2: Locomotive group parameters

m(ton) c0(m/s
2) c1(1/s) c2(1/m) L(m)

252 7.6685e-3 1.08e-4 2.06e-5 40.94

Table 3.3: Wagon group parameters

m(ton) c0(m/s
2) c1(1/s) c2(1/m) L (m) Fb(kN)

417 6.3625e-3 1.08e-4 1.492e-5 48.28 720

In the tables, Fb represents the capacity of brake force, and L is the longitudinal
length of a locomotive or wagon group. Fig. 2.5 shows the locomotive (group) effort
(7E1) corresponding to a particular notch level and velocity. These data, including the
track profile, are based on the COALink trains operated in South Africa by Spoornet.
The relation between the displacement and the static force (without damping) of the
coupler is shown in Fig. 2.3. The damping coefficient is notoriously difficult to estimate
because the train speed is limited by dominant quadratic resistance term. According
to [11] it can be as high as 1

34
of the spring coefficient. Since the damping coefficient is

not available in this study, it is taken as 1
100

of the spring coefficient in the train model,
and ignored in the control design.

In (3.6), Fini
= −Fini

= 1600 kN. There are some constraints with the locomotive
notch operation. Firstly, the notch could only be changed stepwise; secondly, the loco-
motive engine should stay at a notch for at least 10 seconds, and when the locomotive’s
effort changes from traction to dynamic braking or the other way round, the first notch
should last at least 20 seconds. The acceleration limit ar is 0.07 m/s2. The reference
velocity is 36 km/h from the simulation starting point −2 km to 3 km and then it
is 43.2 km/h. At the point 6 km, it is changed to 54 km/h, while it is changed to
43.2 km/h again at the point 8 km. Some distances are negative because the reference
point is chosen in the middle of the track and the distance values are relative.

The initial state is that the train is in its steady state with all the cars’ velocities
10.5 m/s and all the in-train forces zeros. For a traditional train, the time delay for a
wagon’s braking force is calculated with the wagon’s distance to the first locomotives
divided by the velocity of sound.

The simulation is processed with MATLAB. The train model runs continuously and
the control signal is updated every second.
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The track profile is shown in Fig. 3.1. All simulations in this study, without special
description, are processed on this track profile and the track profile in the rest is
omitted.
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Figure 3.1: Track profile

Simulation results are shown in the following figures.

 

10

12

14

16

sp
ee

d(
m

/s
)

ref speed
front speed
rear speed
mean speed

 
−1000

0

1000

in
−

tr
ai

n
fo

rc
e(

kN
)

max in−train force
min in−train force
mean in−train force

 
−1000

0

1000

st
ea

dy
 s

ta
te

in
−

tr
ai

n 
fo

rc
e(

kN
)

max in−train force

min in−train force

−4000 −2000 0 2000 4000 6000 8000 10000
−5

0

5

distance (m)

no
tc

h

front notch

rear notch

Figure 3.2: 1-1 strategy without ECP

Fig. 3.2 and Fig. 3.3 show the applications to traditional heavy haul trains (with
pneumatic braking system) of 1-1 strategy controller and 2-1 strategy controller, re-
spectively. The train is not equipped with an ECP braking system and therefore there
are time delays for the wagons’ control signal transmission.
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Figure 3.3: 2-1 strategy without ECP
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Figure 3.4: 1-1 strategy with ECP
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Figure 3.5: 2-1 strategy with ECP
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Figure 3.6: 2-2 strategy with ECP/iDP
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The applications to a heavy haul train with an ECP braking system installed of
1-1 strategy controller, 2-1 strategy controller and 2-2 strategy controller are shown in
Fig. 3.4, Fig. 3.5 and Fig. 3.6, respectively. The control inputs in Fig. 3.4 are the same
as in Fig. 3.2 and those in Fig. 3.5 are the same as in Fig. 3.3. However, because of the
installation of an ECP braking system, there is no time delay for the wagon control
signal transmission.

In these figures, the first subplot is the front locomotive group speed, rear locomotive
group speed and the mean speed of all the cars with respect to the distance from the
starting point. The second subplot is maximum and minimum in-train forces and
mean in-train force (the mean value of the absolute values of all the in-train forces at
a specific time with respect to the distance). The third is the steady in-train forces,
which are calculated by applying the efforts of the cars to the train model, with the
reference speed (and the acceleration) maintained and the dynamic process ignored.

Table 3.4 is the performance comparison of Fig.s from 3.2 to 3.6. The variable |δv̄|
is the absolute value of the difference between the reference velocity and the mean value
of all the cars’ velocities at a specific point. |fin| is the mean value of the absolute values
of all the couplers’ in-train forces at a specific point. Item E is the energy consumed
during travel. The items max, mean and std are the maximum value, mean value and
standard deviation of the statistical variable, respectively.

Table 3.4: Comparison of braking systems: pneumatics vs. ECP

|δv̄|(m/s) |fin|(kN) E
max mean std max mean std (MJ)

Fig. 3.2 3.6225 0.9179 0.51 466.46 173.17 96.61 1,170
Fig. 3.4 3.7063 0.9650 0.53 391.82 146.70 101.79 1,180
Fig. 3.3 3.3715 0.7032 0.54 467.16 151.20 88.26 2,110
Fig. 3.5 3.4530 0.7401 0.50 424.50 113.51 63.05 2,130
Fig. 3.6 3.3901 0.6510 0.42 461.86 111.18 90.95 1,370

When comparing Fig. 3.2 with Fig. 3.3, it can be seen that the locomotive speed
error is smaller in the 2-1 strategy than in the 1-1 strategy. The absolute values of the
maximum and the minimum in-train forces are smaller with the 2-1 strategy when it
comes to steady running. However, the energy consumption with the 1-1 strategy is a
little less than with the 2-1 strategy. This is because some energy is used to overcome
the in-train forces’ fluctuation and larger brake forces are applied. The same result can
be seen when comparing Fig. 3.4 with Fig. 3.5.

When comparing Fig. 3.5 with Fig. 3.6, the locomotive speed fluctuation and error
with the 2-2 strategy are smaller than those with the 2-1 strategy. The absolute values
of maximum and minimum in-train forces with the 2-2 strategy are also a little lower
than with the 2-1 strategy. The energy consumption with the 2-1 strategy is a little
higher than with the 2-2 strategy. The steady in-train forces with the 2-2 strategy are
nearly zero when the train is running in its steady state without velocity accelerations
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or decelerations.

When comparing Fig. 3.2 with Fig. 3.4, both with the 1-1 strategy, the former train
is equipped with a pneumatic braking system and the latter is equipped with an ECP
braking system. The speed fluctuation in Fig. 3.2 is greater than in Fig. 3.4. The
absolute values of maximum and minimum in-train forces and the mean in-train forces
are greater in Fig. 3.2 than in Fig. 3.4. The energy consumption is almost equal in
both figures.

When comparing Fig. 3.3 with Fig. 3.5, one can reach similar conclusions than when
comparing Fig. 3.2 with Fig. 3.4.

It can be seen that the velocity error exists in all the results when open loop
scheduling is used. When comparing the steady in-train forces, which represent the
reference value for closed-loop control, the performance of the 2-2 strategy is the best
among the three control strategies and the performance of the train equipped with an
ECP braking system is better than that of a traditional train. With the introduction
of the acceleration profile, the speed variations lead to larger in-train forces, especially
within the speed acceleration periods. However, the accelerations decrease the speed
tracking error. The transient control is a “trade-off” between the two aspects.

From the simulation results, the following conclusions can be drawn:

1) The scheduling with the averagely distributed power among the locomotives is
not optimal for train performance.

2) The higher the number of controllable inputs is, the better the train performance.

3) The ECP braking system has demonstrated superb performance compared with
a pneumatic braking system.

4) The 2-2 strategy is the best among the strategies for heavy haul trains equipped
with ECP braking systems.

5) Open loop scheduling cannot yield satisfactory performance, but may be a good
reference for closed-loop control, which is the purpose of this chapter.

3.4 Scheduling

An open loop controller is used to calculate the inputs when a train is running in its
steady state with the reference velocity and acceleration maintained.

In [11], the off-line schedule for the throttling and braking inputs is chosen in such
a way that the train is in its steady state with the reference velocity maintained. The
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settings do not contribute to additional accelerations/decelerations of the train. The
schedule determines the sequencing and the amplitudes of the inputs in case there
are continuous input variations and no power limits. The applied inputs ou(t) are
nonlinear functions of the schedule parameters p (grade of the track, velocity profile
and train data) and the travelled distance z of the train: ou = fu(z, p). The inputs are
approximated by step functions of variable amplitudes. Such an optimal problem can be
solved with MISER developed Toe in [74]. The sequence of the steps is predetermined
and tuned, and the time instants of the step functions at which the steps are applied
are decided on line. It is obvious that this off-line schedule is heuristic and subject to
the pre-determined control sequence, so it will not be discussed further in this study.

The transient control is the same as in section 3.3.1.

3.4.1 Heuristic scheduling

According to [15], open loop control is chosen as follows, with Beq =
n∑

i=0

(fai
+mia),

ul = Beq/k, ub = 0 Beq ≥ 0,

ul = Beq/n, ub = Beq/n Beq < 0,
(3.14)

where ul is the locomotives’ effort and ub is the wagons’ effort, and the variables k and n
are the respective total numbers of locomotives and cars. The acceleration a = 0 in
the cruising period while a = ±arr in the scheduled acceleration/decelertation periods.
The power distribution is heuristic, so one calls it heuristic scheduling.

3.4.2 Optimal scheduling

According to the three operational strategies described in Section 3.2, there are three
corresponding optimal open loop controllers for the train. In the following, the per-
formance is a function of the in-train forces and the energy, which can be written
as

J =
n−1∑

i=0

Kff
2
ini

+
n∑

i=0

Keu
2
i , (3.15)

where the weights of the in-train force and energy consumption are Kf and Ke, respec-
tively. Optimal power distribution is characteristic of this scheduling, so one calls it
optimal scheduling.

The energy cost is not proportional to u2, but items proportional to u2 are also
evaluations of energy. From the energy point of view, it is not rational to include the
minus input in the energy consumption function. However, considering the braking
application for the cost of maintenance of the rail track and the train wheels, it is
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retained in the performance function although it is not suitable to be classified into
energy. On the other hand, if necessary, it is not difficult to separate the positive inputs
and negative inputs in the performance function. In this study the energy consumption
and the cost of braking are processed in a simple way.

For open loop control, the dynamic process in the train is ignored and the system
is assumed to be in its steady state with acceleration maintained, that is,

dvi

dt
= a,

dxj

dt
= 0, i = 1, · · · , n, j = 1, · · · , n− 1. (3.16)

Applying (3.16) to (2.2), and assuming fin0
= 0, one has

us + fins−1
− fins

− fas
−msa = 0, s = 1, · · · , n. (3.17)

In train operations, the inputs, ui, i = 1, · · · , n and the in-train forces fini
have some

constraints.
U i ≤ ui ≤ U i, i = 1, · · · , n;

F inj
≤ finj

≤ F inj
, j = 1, · · · , n− 1,

(3.18)

where U i, U i are the upper and lower constraints for the ith input, and F inj
, F inj

are
the upper and lower constraints for the jth in-train force, respectively. For wagons,
Ui = 0 and the values of Ui depend on the braking capacities of the wagons. For

locomotives, the constraints U i, U i depend on the locomotives’ capacities in traction
efforts and the running states. The constraints F inj

, F inj
are limited because of the

requirement of safe operation and maintenance cost.

Thus optimal scheduling is a standard quadratic programming (QP) problem with
objective function (3.15), equality constraints (3.17), inequality constraints (3.18) and
some additional equality constraints.

With the 1-1 strategy, the additional constraints imposed on the optimization prob-
lem are

ulj

∆
= ut, ui

∆
= ub, i = 1, · · · , n; i 6= lj, j = 1, · · · , k. (3.19)

With the 2-1 strategy, the additional constraints are the following

ui
∆
= ub, i = 1, · · · , n; i 6= lj, j = 1, · · · , k. (3.20)

With the 2-2 strategy, there is no additional constraint.

3.4.3 Simulation of heuristic scheduling vs. optimal schedul-
ing

There is only one open loop operational strategy for heuristic scheduling, as shown in
Fig. 3.7. Figs. 3.8, 3.9 and 3.10 are the optimal scheduling of 1-1 strategy, 2-1 strategy

Electrical, Electronic and Computer Engineering 39

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  ZZhhuuaann,,  XX    ((22000077))  



Chapter 3 Optimal scheduling

and 2-2 strategy respectively, with Ke = 1, Kf = 1.

In these figures, the first subplot is the front locomotive group speed, rear locomotive
group speed and the mean speed of all the cars with respect to the distance from the
starting point. The second subplot is maximum and minimum in-train forces and the
mean value of the absolute values of all the in-train forces in a specific time with respect
to the distance.The third is the steady in-train forces, which are calculated by applying
the efforts of the cars to the train model with the reference speed (and the acceleration)
maintained and the dynamic process ignored. As can be seen there are dips in the third
subplots of these figures when the reference speed changes. This is because the steady-
state in-train forces in the third subplots are the calculation results of the algebraic
equations. When the reference speed has a step-type change in the algebraic equations,
the other variables, such as in-train forces, unavoidably have step-type changes, which
results in the dips.
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Figure 3.7: Heuristic scheduling

Table 3.5 is the performance comparison of Fig. 3.7 to Fig. 3.10. The variable |δv̄| is
the absolute value of the difference between the reference velocity and the mean value
of all the cars’ velocities at a specific point. |fin| is the mean value of the absolute
values of all the couplers’ in-train forces at a specific point. The item E is the energy
consumed during travel. The items max, mean and std are the maximum value, mean
value and standard deviation of the statistical variable, respectively.

The running results of the open loop scheduling show that the velocity tracking
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Figure 3.8: 1-1 strategy optimal scheduling
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Figure 3.9: 2-1 strategy optimal scheduling
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Figure 3.10: 2-2 strategy optimal scheduling

Table 3.5: Comparison of optimal scheduling vs. heuristic scheduling

|δv̄|(m/s) |fin|(kN) E
max mean std max mean std (MJ)

Fig. 3.7 3.9179 0.8225 0.53 390.23 143.85 98.86 8,520
Fig. 3.8 3.7187 0.9410 0.54 392.13 144.81 101.83 11,400
Fig. 3.9 3.5277 0.7460 0.54 420.31 118.51 70.42 23,300
Fig. 3.10 3.0195 0.4152 0.46 498.59 141.43 103.73 16,400
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error exists in all the scheduling. The performance of the heuristic scheduling and
1-1 strategy optimal scheduling are similar. The performance of in-train force of 2-2
strategy optimal scheduling is the worst because of oscillation, while its speed tracking
error is the smallest. The velocity tracking error and the possibility of oscillation are
the drawbacks of an open loop controller.

However, the performance of the steady-state in-train force of the 2-2 strategy
optimal scheduling is best. The performance of the steady-state in-train force of 1-1
strategy optimal scheduling is similar to that of heuristic scheduling. The performance
of the steady-state in-train force of 2-1 strategy optimal scheduling is also better than
that of 1-1 strategy optimal scheduling, except within the acceleration/deceleration
periods, where the states of the train change abruptly. Actually, the entire state of
the train should change continuously, which leads to smoother change. The open
loop scheduling does not consider the real running state, and it is difficult to say
which scheduling is best. However, the open loop scheduling provides a reference to
the closed-loop controller, so the steady state calculated by the scheduling is more
important than the real running result. From this point of view, one can see that the
performance of the 1-1 strategy optimal scheduling is similar to that based on heuristic
scheduling, and the performance of 2-2 strategy optimal scheduling is best.

3.5 LQR controller

3.5.1 LQR closed-loop controller

With the calculation of open loop scheduling (optimal scheduling or heuristic schedul-
ing), the steady state and input of the train can be denoted as f 0

inj
(x0

j), v
0
i (vr), u

0
i , j =

1, · · · , n − 1, i = 1, · · · , n, which are the in-train forces (static displacement of cou-
pler), the velocities and the traction forces or braking forces of the cars. The static
displacement x0

j is interpolated from f 0
inj

. Then one can rewrite the train model with
the following equations.

δv̇s = (δus + δfins−1
− δfins

− δfas)/ms, s = 1, · · · , n,
δẋj = δvj − δvj+1, j = 1, · · · , n− 1,

(3.21)

where δvs = vs − v0
s = vs − vr, δus = us − u0

s, δfins
= fins

− f 0
ins
, δxj = xj − x0

j . The
variable vr is the reference speed. When the damping of the coupler is ignored, this
model can be linearized as follows:

δv̇s = (δus + ks−1δxs−1 − ksδxs)/ms − (c1s
+ 2c2s

vr)δvs, s = 1, · · · , n,
δẋj = δvj − δvj+1, j = 1, · · · , n− 1,

(3.22)

where ks is the linearized coefficient of the coupler with the assumption k0 = 0. The
model can be written as

Ẋ = AX +BU,
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where X = [δv1, · · · , δvn, δx1, · · · , δxn−1]
T , U = [δu1, · · · , δun]T , A =

[
A11 A12

A21 A22

]

,

A11 = −diag(c11
+ 2c21

vr, · · · , c1n
+ 2c2n

vr), A22 = 0(n−1)×(n−1), B = diag( 1
m1
, · · · , 1

mn
).

A12 =










− k1

m1
0 · · · 0 0

k1

m2
− k2

m2
· · · 0 0

· · · · · · · · · · · · · · ·
0 · · · 0 kn−2

mn−1
− kn−1

mn−1

0 · · · 0 0 kn−1

mn










,

A21 =







1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 −1






,

The variables ki, i = 1, · · · , n − 1 are chosen to be constant. Although different
scheduling has different equilibria, the coefficients in the linearized model (3.22) are
identical.

In simulation, however, the original nonlinear model has been used for the train
model.

When an LQR controller is to be designed with the approach in [16], the perfor-
mance function is chosen as

δJ =

∫

(X ′QX + U ′RU) dt

=

∫
(

n−1∑

i=0

Ko
fδx

2
i +

n∑

i=0

Keδu
2
i +

n∑

i=0

Ko
vδv

2
i

)

dt,

(3.23)

where Ko
f , Ke, K

o
v are the weights for in-train forces, energy consumption and velocity

tracking, respectively. When the coefficients Ko
f , Ke, K

o
v are chosen so that the first

item of (3.23) dominates, the controller is an in-train force emphasized one. When
the second item of (3.23) dominates, the controller is an energy emphasized one. It is
speed emphasized control if the third item dominates.

Based on the optimization approach [27], one can get feedback control U = −KX,
and the complete closed-loop control is

u = U + u0. (3.24)

3.5.2 Anti-windup technique

Within a closed-loop controller in this thesis, open loop scheduling is used to calculate
the inputs when a train is running in its steady state with the reference velocity main-
tained and the input constraints are not considered in open loop scheduling. Since the
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throttle of the locomotives takes discrete values and the braking capacities of the wag-
ons are constrained, when the control inputs u of a closed-loop controller are applied to
the train, an anti-windup technique is employed. For the wagons, the application of the
anti-windup technique is very simple. For the locomotives, the inputs are discrete with
some operation constraints. Similar methods as described in [29] are used to smooth
continuous control inputs. Assuming the required force of jth locomotives is Fj and
the output of the kth notch with the current velocity vj is g(k, vj), the output force F r

j

for the jth locomotives can be defined as

F r
j = g(k, vj) if G(k − 1, vj) ≤ Fj < G(k, vj),

G(k, v) = g(k, vj) + α (g(k + 1, vj) − g(k, vj)) .
(3.25)

In (3.25), G(k, vj) and G(k−1, vj) are the upper and lower boundaries of the admitted
notch k, respectively. The variable α is the ratio of the separation for the boundary.
In simulation, α is chosen as 0.5.

3.5.3 Simulation settings of LQR controllers

In simulation, the model parameters of the train, the track profile and the reference
speed profile are the same as those in the previous chapter, as well as the locomotive
notch operation constraints.

The track profile shown in Fig. 3.1 is from the COALink line, which is typically
downhill when the train is loaded. In this section of track, there are also two uphill
segments, which make it difficult to drive a long train that may extend over several
different gradient sections at any given time. The largest incline degree is 0.09152 and
the largest decline one is -0.1, which are very similar to the slope degree (+/- 0.1) in
[3].

A piecewise linear function is used to approximate the non-linear function of a
coupler. In the controllers one chooses a greater value, namely 3× 107 N/m for all the
couplers’ linearized coefficients in (3.22).

A safe-operation requirement for a train on the COALink is that the in-train forces
should be less than ±2, 000 kN. In simulation, Fini

, Fini
are chosen as 1, 200 kN, con-

sidering the redundancy for a longer train with 800 wagons.

In the simulation, the weights for in-train force, energy and velocity areKf , Ke, Kv,
respectively, and Ko

f = 3 × 108Kf , K
o
v = 5 × 106Kv, which gives the same value for

the in-train forces, speed deviation and input in (3.23) as would be obtained when
δx = 0.01m, δv = 0.1 m/s2, δu = 200 N with the weights Kf = Ke = Kv.

The acceleration limit arr is 0.07 m/s2. This value is calculated on the assumption
that the train is running on a flat track and all the traction power of the locomotives is
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used to accelerate. The maximum acceleration can be 760× 2/(252× 2 + 417× 50) =
0.07118 m/s2. The maximum deceleration is more than the maximum acceleration, but
in the simulation they are assumed to be the same for the sake of simplicity.

The initial state of the train is that the train is in its steady state with all the cars’
velocities 10.5 m/s and all the in-train forces equal to zero.

3.5.4 Simulation results of LQR controllers

Simulation results of the three different strategies’ closed-loop controllers based on the
heuristic scheduling and optimal scheduling are shown from Fig. 3.11 to Fig. 3.16,
where the weights are Kf = 1, Ke = 1, Kv = 1. The energy consumption in these
figures is shown in Table 3.6.
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Figure 3.11: 1-1 strategy closed-loop control based on heuristic scheduling

When comparing the figures of the closed-loop controllers with those of the open
loop scheduling, it is obvious that the steady velocity error is much smaller and bet-
ter in closed-loop controllers than in open loop scheduling. For heuristic scheduling,
the performances of the in-train force and the energy consumption of the open loop
scheduling are similar to those of closed-loop controllers. For optimal scheduling, the
performances of the energy consumption with the closed-loop controllers of the three
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Figure 3.12: 2-1 strategy closed-loop control based on heuristic scheduling
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Figure 3.13: 2-2 strategy closed-loop control based on heuristic scheduling
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Figure 3.14: 1-1 strategy closed-loop control based on optimal scheduling
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Figure 3.15: 2-1 strategy closed-loop control based on optimal scheduling
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Figure 3.16: 2-2 strategy closed-loop control based on optimal scheduling

strategies are similar to those of the corresponding open loop scheduling. The 2-1
strategy and 2-2 strategy closed-loop control give better in-train force performances
than the corresponding scheduling.

When comparing the three different strategies’ closed-loop controllers based on
heuristic scheduling, the performances are very similar.

When comparing the closed-loop controllers of the three different strategies based
on corresponding optimal scheduling, the performances of the velocity and in-train
force with the 2-2 strategy are best and those with the 1-1 strategy are worst. The
energy consumption with the 1-1 is a little better than that with the 2-2 strategy, which
is also a little better than that with the 2-1 strategy.

When comparing the corresponding strategy closed-loop controllers based on opti-
mal scheduling and heuristic scheduling, the energy consumption with the three differ-
ent strategies based on heuristic scheduling is less than that based on the corresponding
optimal scheduling. The performances of the velocity and the in-train force with the 2-2
strategy based on optimal scheduling are better than those based on heuristic schedul-
ing. The performance of the velocity with the 1-1 strategy based on optimal scheduling
is worse than that based on heuristic scheduling, while the performances of the in-train
force based on the two scheduling approaches are similar. The performances of the
velocity with the 2-1 strategy based on the two scheduling approaches are similar and
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the performance of in-train force with the 2-1 strategy based on optimal scheduling is
better than that based on heuristic scheduling.

From the above comparison, it can be seen that the performances of the in-train
force and the velocity with the 2-2 strategy based on optimal scheduling are best. In
this strategy, it is very interesting to see, as depicted in Fig. 3.16, the variation of the
traction efforts of the front and rear locomotives (groups) when the train travels from
0 m to 4, 000 m and from 9, 500 m to 11, 000 m; those sections are hills in the track.
When the front locomotives (groups) are climbing uphill and the rear ones are driving
downhill, the front locomotives make increasing traction efforts and the rear ones are
braking. When more and more cars are climbing uphill, the rear locomotives begin to
make traction efforts, increasing gradually. When the front locomotives pass the top
of the hill and begin to drive down, their efforts begin to decrease and the rear ones
increase their efforts gradually. When the front locomotives are driving downhill and
the rear ones are climbing uphill, the front ones are braking and the rear ones make
traction efforts. At 3, 000 m, the train begins to accelerate from 10 m/s to 12 m/s.
The front and rear locomotives begin to increase their traction efforts simultaneously,
which can also be seen from distance points 6, 000 m and 8, 000 m. That is consistent
with common sense.

Table 3.6: Performance with Ke = 1, Kf = 1, Kv = 1

|δv̄|(m/s) |fin|(kN) E
max mean std max mean std (MJ)

C01 3.3241 0.4573 0.58 386.94 145.82 100.27 8,700
C02 3.3244 0.4539 0.57 376.78 145.30 99.32 8,610
C03 3.3241 0.4613 0.58 373.60 144.45 97.50 8,470
C1 3.2274 0.4992 0.56 387.04 147.52 102.65 11,760
C2 3.1405 0.4585 0.53 318.97 106.16 59.35 22,100
C3 3.0182 0.3166 0.48 454.50 97.40 86.44 16,500

Table 3.7: Performance with Ke = 1, Kf = 1, Kv = 10

|δv̄|(m/s) |fin|(kN) E
max mean std max mean std (MJ)

C01 3.0412 0.3062 0.55 394.39 145.72 99.57 8,620
C02 3.0413 0.3080 0.55 394.50 144.54 100.07 8,550
C03 3.0412 0.3085 0.55 369.24 144.61 96.63 8,586
C1 3.0070 0.3372 0.57 382.57 147.38 102.40 11,100
C2 2.9891 0.3629 0.53 344.95 103.57 67.20 21,800
C3 3.0225 0.2443 0.50 408.70 74.07 76.34 16,500

Tables 3.6, 3.7, 3.8 and 3.9 are the simulation results of the six closed-loop con-
trollers with different weights in the performance function for the in-train force, the
energy consumption and the velocity tracking. Table 3.6 is the performance compari-
son of Fig.s from 3.11 to 3.16. In these tables, C01, C02 and C03 are 1-1 strategy, 2-1
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Table 3.8: Performance with Ke = 1, Kf = 10, Kv = 1

|δv̄|(m/s) |fin|(kN) E
max mean std max mean std (MJ)

C01 3.3251 0.4611 0.57 385.83 146.17 100.43 8,790
C02 3.3234 0.6609 0.57 377.25 145.96 98.68 8,610
C03 3.3243 0.4604 0.58 368.28 144.61 96.40 8,460
C1 3.2663 0.5312 0.58 384.58 147.53 101.76 11,460
C2 3.1379 0.4542 0.52 331.48 105.82 62.57 22,300
C3 3.0090 0.3670 0.47 405.70 70.77 78.04 15,000

Table 3.9: Performance with Ke = 100, Kf = 1, Kv = 1

|δv̄|(m/s) |fin|(kN) E
max mean std max mean std (MJ)

C01 3.8039 0.7383 0.56 392.08 145.01 99.50 8,795
C02 3.8056 0.7361 0.56 389.83 146.27 99.24 8,600
C03 3.8041 0.7415 0.56 386.49 144.19 99.08 8,560
C1 3.6744 0.6889 0.57 390.46 143.61 101.44 9,550
C2 3.4603 0.6388 0.53 300.06 110.47 61.90 16,800
C3 3.247 0.4918 0.47 297.27 78.90 63.27 13,400

strategy and 2-2 strategy closed-loop controllers based on heuristic scheduling, and C1,
C2 and C3 are 1-1 strategy, 2-1 strategy and 2-2 strategy closed-loop controllers based
on optimal scheduling. |δv̄| is the absolute value of the difference between the reference
velocity and the mean value of all the cars’ velocities at a specific point. The variable
|fin| is the mean value of the absolute values of all the couplers’ in-train forces at a
specific point. The item E is the energy consumed during travel. The items max, mean
and std are the maximum value, mean value and standard deviation of the statistical
variable, respectively.

From these tables, it can be seen that the three strategies based on heuristic schedul-
ing have similar performances. This is because their scheduling is the same. However,
based on optimal scheduling, the 2-2 strategy yields a better performance in terms of
velocity, in-train force and energy consumption than the 2-1 strategy with the same
parameters. The performance of velocity in Table 3.7, which is with the velocity em-
phasized optimal parameters, is the best compared with the corresponding operational
strategy of the other tables. The performance of the in-train force based on heuristic
scheduling of the corresponding operational strategy is approximate in the four tables,
while the performance of the in-train force based on optimal scheduling is best in Table
3.8, which is with the in-train force emphasized parameters, but only the improvement
of the 2-2 strategy is obvious and that of the other two is only approximate. In Table
3.9, with the energy consumption emphasized parameters, the performance of energy
consumption with all the corresponding controllers based on optimal scheduling, is the
best among the four tables. On the whole, local optimization does work and leads to
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global optimization in some degree.

From simulation, it is shown that the train tracks the reference speed quickly when
the reference speed changes and tracks the reference speed very well when the train
is cruising. So the track length is enough for simulation of the driving profile. On a
longer track, the same result can be reached, which will be shown in the next chapter.
However, it should be pointed out that when the objective is to test the optimization
combination of a driving profile and a reference speed profile, a longer track might be
necessary.

Based on the observation of the 2-2 strategy, another approach to controller design
is proposed in the following chapter by assuming only the locomotives’ speed measure-
ment. Performance comparisons are detailed further in the following chapter.

3.6 Conclusion

This chapter emphasizes open loop scheduling for the handling of heavy haul trains,
which constitutes a basic problem about the trim point. In this chapter the cascade-
mass-point model is adopted for a long heavy haul train. Three control strategies are
proposed and then followed by the open loop optimal scheduling algorithms for them.
Simulation results of these control strategies for a traditional heavy haul train and a
train equipped with an ECP braking system are shown. It is noticed that ECP braking
systems show superb performance compared with pneumatic braking systems.

Optimal scheduling and heuristic scheduling in [15] are compared when they are
applied to trains equipped with ECP braking systems. It is shown that optimal schedul-
ing can improve performance and the ECP/iDP is the best of the three strategies. A
closed-loop controller based on an LQR approach is used to verify the result.
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Chapter 4

Speed regulation

4.1 Introduction

In the previous chapter, optimal scheduling shows a better start for the design of a
closed-loop controller for train handling. An LQR closed-loop controller is designed
to verify the advantage of optimal scheduling. However, the closed-loop controller is
based on full state feedback, which is not practical in train handling to measure all
states. If partial states are measured, an observer can be designed to supplement the
LQR controller. This is, however, not the approach employed in this chapter. Instead,
output regulation with measurement feedback is adopted for the full ECP/iDP mode
subject to the assumption that only speed measurement of locomotives is available:
while optimality is retained in open loop control design, closed-loop control is done by
employing a nonlinear system regulator theory.

In this chapter, the output regulation of nonlinear systems with measured output
feedback is first formulated and solved for the global version and the local version. Then
the result of the local version is applied to train control. The simulation result shows the
feasibility of such a speed regulator with only measurement of the locomotives’ speeds,
in terms of its simplicity, cost-effectiveness and its implementation convenience.

4.2 Output regulation with measured output feed-

back

The output regulation problem in linear systems has been studied in [30, 31, 32]. The
internal model principle is proposed in [30], enabling the conversion of output regulation
problems into stabilization problems. The details on the solvability of the problem can
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be found in [31, 32].

The internal model principle is extended to nonlinear systems in [33], which shows
that the error-driven controller of the output tracking necessarily incorporates the
internal model of the exosystem. The conditions of the existence of regulators for
nonlinear systems are detailed for different kinds of exosystems with bounded signals in
[34, 35, 36]. The necessary and sufficient conditions are given in [37] for the local output
regulation problem of nonlinear systems, which is the solvability of regulator equations.
With an assumption added to the conditions in [37], the results in [37] have been
improved in [38]. A differential vector space approach is used in [39] to develop solutions
of state feedback for nonlinear systems with both bounded and unbounded exogenous
signals. An approach for robust local output regulation problems is presented in [40]
in a geometric insight. In [41], an output regulation problem of a class of single-
input single-output (SISO) nonlinear systems is reformulated into an output feedback
stabilization problem.

The robust version of output regulation problem of nonlinear systems with uncertain
parameters is studied in [42]. Furthermore, the output regulation problem of nonlinear
systems driven by linear, neutrally stable exosystems with uncertain parameters is
presented in [72], in terms of the parallel connection of a robust stabilizer and an
internal model, which has recently been in [73]. Recently, the concept of the steady-
state generator has been advanced in [43] as well as that of the internal model candidate.
Based on these dynamic systems, a framework for global output regulation of nonlinear
systems with autonomous exosystems is proposed in [43] for bounded signals, in [44]
for unbounded signals, and in [47] for nonlinear exosystems. The frameworks are in
the form of output feedback or plus (partial) state feedback.

All the controller design approaches in these papers cannot be extended directly
to the form of measurement (measured output) feedback. Measurement feedback is
considered in this chapter instead of the output feedback, because generally the mea-
surable output is different from the output to regulate. For example in this study, in
the handling of heavy-haul trains, the outputs to be regulated are all the cars’ speeds;
however, only part of the speeds (for example, the first and last locomotives’ speeds)
can be practically measured. On the other hand, the measurable output covers the
form of the output or output plus (partial) state, as considered in [44].

In the above papers, an important idea is to design an internal model to eliminate
the effect of the unknown states of the exosystem. In the controllers of [37] for the
local version of output regulation problem, the internal model is given together with the
stabilizer directly. In the global version, it is proposed in [43] and [44] firstly to design
an internal model candidate, and thus the solvability of the output regulation problem
is transformed into the solvability of the stabilization problem. This is a very smart
technique to deal with the output regulation problem. The internal model candidates
incorporate the output (or plus [partial] state, dependent on the measurability of the
state) and the input to design. It does not incorporate the information of the stabilizer,
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which will be known in the controller. In this chapter, another approach is proposed
to solve output regulation problems. Similar to [43] and [44], an output regulation
problem is transformed into a stabilization problem of a simplified system with the
assumption that the states of the exosystem are known, and a stabilizer is designed
for it. It will be shown that the existence of the stabilizer is sometimes necessary for
the solvability of the output regulation problem. Then an internal model with respect
to the stabilizer for the original system is constructed. Specifically, the internal model
can incorporate the information of the stabilizer. This approach is more natural than
the ones in [43] and [44], where the internal model is a prerequisite and first designed.
It can be seen that the existence of the internal model is sometimes not necessary.
However, the existence of the stabilizer is necessary when the output zeroing manifold
is unique, which is the case in all the examples given in [43, 44] and examples 1, 2 and
4 in this chapter.

The definition of the output regulation problem of nonlinear systems in [44] is bor-
rowed, but the feedback is in the form of measurement feedback. A stabilizer for the
simplified system is firstly designed. Then with respect to the stabilizer, an internal
model is constructed to estimate the exosystem states. If successful, the output regu-
lation problem is solved. In this study, the exosystem may be linear or nonlinear, the
signals of which may be bounded or unbounded. The results for both the global ver-
sion and the local version of dynamic measurement feedback output regulation problem
(DMFORP) are reported.

4.2.1 Problem formulation and preliminaries

In this chapter, as well as in the subsequent chapter, extensive use of the differential
geometric concepts and notations will be made to show the application of two most
recent nonlinear control techniques in the case of heavy haul trains. The prerequisite
for these two chapters are [45] and [46], A. Isidori’s classic books.

Consider a nonlinear system,

ẋ = f(x, u, w),

ẇ = s(w),

e = h(x,w),

ym = hm(x,w).

(4.1)

The first equation describes the original system, with state x ∈ X ⊂ Rn, and input
u ∈ U ⊂ Rm. The second one defines an exosystem, with state w ∈ W with W ∈ Rs a
compact set. The exosystem models the class of disturbance and/or reference signals
taken into consideration. The third one is the error equation. The fourth one is the
measured output ym ∈ Rpm . The vector fields f(x, u, w) and s(w) are smooth, and the
mappings h(x,w) and hm(x,w) are smooth, too.
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It is assumed that f(0, 0, 0) = 0, s(0) = 0, h(0, 0) = 0, i.e., the system (4.1) has
the equilibrium state col(x,w) = col(0, 0) for u = 0 with zero track error h(0, 0) = 0.

Before the problem is formulated, some concepts in [45, 46] are stated firstly.

A continuous function f : [0, a) → [0,+∞) is a class-K function if f(0) = 0 and it
is strictly increasing.

A continuous function f : [0,+∞) → [0,+∞)is a class-L function if it is decreasing
and

lim
t→∞

f(t) = 0.

The function f(r, s) is a class-KL function if f(·, s) ∈ K for all s ≥ 0, and f(r, ·) ∈ L
for all r ≥ 0.

The equilibrium x = 0 of the system ẋ = f(x) with f(0) = 0 is said to be globally
(locally) asymptotically stable in the sense of KL functions if from any initial state
x0 ∈ Rn (some initial state x0 ∈ X with X ⊂ Rn through the origin), the solution of
system satisfies ‖x‖ ≤ ̺(‖x0‖, t) for some class-KL functions ̺(·, ·).

A system of ẋ = f(x, u), y = h(x), with f(0, 0) = 0 is said to be globally (locally)
stabilizable if there exists a control law ż = η(z, y), u = ϑ(z, y) satisfying η(0, 0) =
0, ϑ(0, h(0)) = 0 so that the origin of the closed-loop system ẋ = f(x, ϑ(z, h(x))), ż =
η(z, h(x)) is globally (locally) asymptotically stable in the sense of KL functions.

The dynamic measurement feedback output regulation problem of the system (4.1)
considered here is to design a controller, in the form of

u = ϑ(z, ym),

ż = η(z, ym).
(4.2)

An advantage of a controller in the form of (4.2) is that it depends only on the cur-
rent values of the measured variables, instead of differentiated signals of the measured
variables, as introduces noise, and stably filtered signals of the measured variables. As
a result, the closed-loop system can be written as

ẋc = fc(xc, w),

ẇ = s(w),

e = hc(xc, w),

ym = hmc
(xc, w),

(4.3)

where xc = col(x, z), fc(xc, w) = col(f(x, ϑ(z, ym), w), η(z, ym)), hc(xc, w) = h(x,w),
hmc

(xc, w) = hm(x,w).
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The formulation of the output regulation problem involves two requirements from
the closed-loop system (4.3). One is the asymptotical convergence to zero of the error
output, that is,

P1
lim
t→∞

e(t) = lim
t→∞

h(x(t), w(t)) = 0.

This property reflects the objective of the output regulation problem.

The other one is the internal stability of the closed-loop system (4.3). The sys-
tem (4.3) is said to be globally (locally) asymptotically stable, irrespective of w, when
for all w(0) ∈ W with W any (a) compact set (containing the origin), the subsys-
tem, parameterized by w, of the first equation of the system (4.3) is globally (locally)
asymptotically stable in the sense of KL functions.

When the local version of the output regulation problem is considered, assuming
the exosystem is Poisson stable at the origin (neutrally stable), the internal stability
is given in [37] by

P2 the equilibrium of the closed-loop system (4.3) with w = 0 is asymptotically
stable (or exponentially stable).

Actually, this property guarantees the boundedness of the trajectories of the closed-
loop system with sufficiently small exosystem signals. But once the signals of the
exosystem are large, the boundedness may not be kept [44].

Example Consider the following system

ẋ1 = −x1 + v,

ẋ2 = −x2 + x2w,

ẇ = 0,

e = x1 − w.

(4.4)

The solution is
x1 = (x1(0) − w)e−t + w,

x2 = x2(0)e(−1+w)t,

e = (x1(0) − w)e−t.

(4.5)

It is easy to check that the condition P2 is satisfied, but when w > 1, the state x2

approaches infinity. So P2 cannot be used for the global version of output regulation
problem. The internal stability of a global version of output regulation problem is
given in [43] as
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P3 for all w ∈ W with W any compact set, the trajectories of the closed-loop system
(4.3) starting from any initial state xc0 exist and are bounded for all t > 0.

This interpretation of internal stability is meaningful if the states of the exosystem
are bounded. When they are unbounded, the condition is modified [44] as the following
two properties:

P4 for all w0 ∈ W , there exists a sufficiently smooth functions πc(w) with πc(0) = 0
satisfying

∂πc(w)

∂w
s(w) = fc(πc(w), w),

0 = hc(πc(w), w).
(4.6)

P5 for all w0 ∈ W , xc = πc(w) of the closed-loop system of (4.3) is globally asymp-
totically stable, irrespective of w, in the sense of some class KL functions.

The property P4 actually defines an invariant flow for the closed-loop system (4.3),
on which the output error is exactly zero. The property P5 is about the asymptotical
convergence of the invariant flow. From any initial state, the trajectories will converge
to the invariant flow.

When the exosystem is neutrally stable, a closed-loop system satisfying properties
P4 and P5 satisfies the properties P1 and P2.

If the P4 is fulfilled, then there exists an invariant manifold xc = πc(w), on which
the output is exactly zero. And for πc(0) = 0, and from P5

‖xc − πc(w)‖ ≤ ̺(‖xc(0) − πc(w0)‖, t)

for some class-KL functions ̺(·, ·), one has ‖xc‖ ≤ ̺(‖xc(0)‖, t) when w = 0. Thus the
asymptotical stability of P2 is satisfied. With the continuity of the output h(x,w),
xc → πc(w) as t → 0, and w is bounded, P1 is satisfied. So the property P2 can be
interpreted by

P4’ for some compact set W through the origin, there exists sufficiently smooth func-
tions πc(w) with πc(0) = 0 satisfying the equations of (4.6).

P5’ the equilibrium xc = πc(w(t)) of the closed-loop system (4.3) is locally asymp-
totically stable, irrespective of w, in the sense of KL functions.

It is pointed out that the asymptotical stability in the sense of KL functions is more
general than the exponential stability. So the properties P4’ and P5’ are more general
than the requirement P2 in [37].
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The properties P4 and P5 are also sufficient conditions for the property P3 when
the exosystem is Poisson stable. Because the πc(w) is bounded, and from the asymp-
totically stability, the state xc(t) is also bounded.

The global DMFORP is to find, if possible, a controller in a form (4.2) that allows
the closed-loop system (4.3) to satisfy the properties P1, P4 and P5 for any compact
set W ⊂ Rs.

The local DMFORP is to find, if possible, a controller in a form (4.2) that allows
the closed-loop system (4.3) to satisfy P1, P4’ and P5’ for a compact set W ⊂ Rs

through the origin.

In the problem formulation, measurement feedback, instead of output feedback, is
considered because the measured output is usually different from the output to regu-
late, and measurement feedback is more universal than output or plus (partial) state
feedback. If measured output is the output error to regulate, then measurement feed-
back is output feedback. If it is just partial output, the feedback is in the form of partial
output feedback, as in example 1. If the measurement includes the (partial) state, then
the feedback includes (partial) state feedback. It is common for the measurement to be
completely different from the output or/and state. When only measurement feedback
can be used, such as in example 2 and example 3, the output regulation problem cannot
be solved with output feedback or plus partial state feedback.

Remark 1 The zeroing output is guaranteed by the property P1. The properties P4
and P5 usually imply P1. However, when the state of exosystem is unbounded, the
output cannot be definitely zero sometimes, which can be seen in [44].

Remark 2 The exosystem considered in this study is given as ẇ = s(w). In the global
version of DMFORP, the exosystem may be Poisson stable or not, linear or nonlinear,
bounded or unbounded. However, in the local version, the exosystem is required to be
neutrally stable.

Remark 3 Even though the exosystem may be unbounded in global version, a con-
straint should be put on the exosystem. The state of the exosystem should not vary too
quickly. This is because in that case it is difficult to design an observer to estimate or
track the state of the exosystem ẇ = s(w).

4.2.2 Assumptions

In this chapter, one makes some assumptions. The first one is as follows:
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A1 There exist sufficiently smooth functions π(w) and c(w) with π(0) = 0 and c(0) =
0, for all w ∈ Rs, satisfying,

∂π(w)

∂w
s(w) = f(π(w), c(w), w),

0 = h(π(w), w).
(4.7)

Remark 4 The above assumption is a standard one. It is a necessary condition for the
solvability of the output regulation problem [37]. The equation (4.7) is called regulator
equation.

With this assumption, the original system can be written as the following (called
simplified system) with the coordinate change x̄ = x− π(w), ū = u− c(w),

˙̄x = f̄(x̄, ū, w),

ym = h̄m(x̄, w),
(4.8)

where f̄(x̄, ū, w) = f(x̄ + π(w), c(w) + ū, w) − f(π(w), c(w), w), h̄m(x̄, w) = hm(x̄ +
π(w), w).

Furthermore, one makes another assumption.

A2 The above simplified system is globally stabilizable, irrespective of w, by a con-
troller in the form of measurement feedback.

With this assumption, there exists a (dynamic) measurement feedback stabilizer in the
form of

ż1 = η1(z1, ym, w), η1(0, h̄m(0, w), w) = 0,

ū = ψ1(z1, ym, w), ψ1(0, h̄m(0, w), w) = 0,
(4.9)

with which the equilibrium col(x̄, z1) = col(0, 0) of the closed-loop simplified system
composed of (4.8) and (4.9), for any w ∈ W , is globally asymptotically stable, irre-
spective of w, in the sense of KL functions.

Remark 5 The assumption A2 is also necessary for the solvability of the output reg-
ulation problem on the zeroing output manifold {(x,w) | x = π(w), w ∈ W}. It is
obvious that in this case, the state of the exosystem is assumed to be known. This is
a middle case between full information feedback and output feedback [37], where the
measurement is the output.

The necessity is as follows:
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Lemma 6 If the global output regulation problem is solvable with a unique output ze-
roing manifold {(x,w)|x = π(w), w ∈ W}, then there must exist a stabilizer in the
form of (4.9) such that for any w ∈ W , the equilibrium col(x̄, z1) = col(0, 0) of the
closed-loop simplified system is globally asymptotically stable, irrespective of w, in the
sense of KL functions.

Proof: Assume the condition P4 is satisfied, then there exists sufficiently smooth
function col(x, z) = πc(w) = col(π(w), z∗(w)) satisfying

∂π(w)

∂w
s(w) = f(π(w), ϑ(z∗(w), hm(π(w), w)), w),

∂z∗(w)

∂w
s(w) = η(z∗(w), hm(π(w), w), w)

0 = h(π(w), w).

Choosing

z1 = z − z∗(w),

x̄ = x− π(w),

c(w) = ϑ(z∗(w), hm(π(w), w)),

ψ1(z1, ym, w) = ϑ(z1 + z∗(w), ym, w) − c(w),

η1(z1, ym, w) = η(z1 + z∗(w), ym) − η(z∗(w), hm(π(w), w)),

one has the equation of (4.9) and the system (4.8).

Furthermore if the condition P5 is fulfilled, i.e, for all w0 ∈ W , the trajectories of
the closed-loop system (4.3) starting from any initial state xc(0) exist for all t > 0, and
satisfying

‖xc(t) − πc(w(t))‖ ≤ ̺(‖xc(0)) − πc(w0)‖, t),
which can be written as ‖col(x̄, z1)‖ ≤ ̺(‖col(x̄0, z10

)‖, t).

Thus the equilibrium col(x̄, z1) = col(0, 0) of the closed-loop simplified system com-
posed of (4.8) and (4.9), is globally asymptotically stable, irrespective of w, in the
sense of KL functions.

Remark 7 The above necessity is true when the original system has a unique output
zeroing manifold. It is not difficult to give some conditions under which the output
zeroing manifold is unique. For example, if the maximal output zeroing manifold of
(4.1) takes the form N∗ = {x − φ(w) = 0} for some smooth functions φ(w), then
uniqueness is guaranteed. This, together with more general cases, are under separate
study. It is nevertheless worth noting that all examples given in [43, 44] and Exam-
ple 1, 2 and 4 given in this chapter admit unique output zeroing manifolds. When
the original system has more than one output zeroing manifold, there are more than
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one corresponding simplified system. The existence of the stabilizer for one simplified
system may be unnecessary for the solvability of DMFORP. However, if the DMFORP
is solvable on a specific output zeroing manifold, there must exist a stabilizer for the
corresponding simplified system. It is demonstrated in Example 3.

For the observability of the states of the exosystem, one makes the following as-
sumption.

A3 there exist mappings θ(w) : Rs → Rd, α : Rd → Rd, β : Rd → Rs satisfying

dθ(w)

dt
= α(θ(w)),

w = β(θ(w)).
(4.10)

Remark 8 The dynamic system of (4.10) is very similar to the definition of the
steady-state generator in [43]. The difference is that the output of (4.10) is exactly
the state of the exosystem while it is the steady input or input plus (partial) state of
the original system of (4.1) in [43] and [44]. With the output of this dynamic system,
all the steady input and state of the original system can be generated. In this study it
is therefore still called steady-state generator.

When it comes to the local DMFORP, the first two assumptions are as follows:

A1’ There exist sufficiently smooth functions x = π(w), u = c(w) with π(0) = 0,
c(0) = 0, satisfying, ∀w ∈ W with W a neighbourhood of the origin, regulator
equation (4.7) is solved.

A2’ The system (4.8) is locally stabilizable, irrespective of w, by a controller in the
form of measurement feedback.

With the assumption A2’, there exists a dynamic measurement feedback control
law in the form of (4.9) with which the closed-loop simplified system composed of
the simplified system (4.8) and the stabilizer (4.9) is locally asymptotically stable at
col(x̄, z1) = col(0, 0) for all w ∈ W .

4.2.3 Solution of the global DMFORP

Definition 1: An internal model candidate with respect to the stabilizer (4.9) and the
steady-state generator (4.10) is as (4.11) satisfying η2(0, θ(w), hm(π(w), w)) = α(θ(w)).

ż2 = η2(z1, z2, ym). (4.11)
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Remark 9 This definition is consistent with the one in [43] and [44], which also re-
quires η2(0, θ(w), hm(π(w), w), w)) = α(θ(w)) when hm(π(w), w) = e = 0. Here the
concept is extended to the case of the measurement feedback form. Furthermore, this
internal model candidate incorporates the information of the stabilizer, which is differ-
ent from that in [43] and [44].

The following system is called the closed-loop stabilized system in this chapter,

˙̄x = fx̄(x̄, z1, z̄2, w),

ż1 = ηz1
(x̄, z1, z̄2, w),

˙̄z2 = η̄z̄2
(x̄, z1, z̄2, w),

(4.12)

where fx̄(x̄1, z1, z̄2, w) = f(x̄+ π(w), uz, w)− f(π(w), c(w), w), uz = c(β(z̄2 + θ(w))) +
ψ1(z1, hm(x̄+ π(w), w), β(z̄2 + θ(w))), ηz1

(x̄, z1, z̄2, w) = η1(z1, hm(x̄+ π(w), w), β(z̄2 +
θ(w))), η̄z̄2

(x̄, z1, z̄2, w) = η2(z1, z̄2 + θ(w), hm(x̄+ π(w), w))− η2(0, θ(w), hm(π(w), w)).

Definition 2: The internal model candidate (4.11) is called a global (local) internal
model with respect to the stabilizer (4.9) and the steady-state generator (4.10) for the
original system (4.1), if for any w ∈ W, the closed-loop stabilized system of (4.12) is
globally (locally) asymptotically stable, irrespective of w, in the sense of KL functions
̺(·, ·).

Remark 10 An additional restriction is added to the internal model candidate. Thus
the candidate becomes a “real one”. The restriction gives an approach to modify the
candidate to get a real internal model.

In the original system, the output function h(x,w) is globally Lipschitz with respect
to x if there exists a class-K function l0 such that for all x1, x2 ∈ Rn, w ∈ Rs,

‖h(x1, w) − h(x2, w)‖ ≤ l0(‖x1 − x2‖). (4.13)

Theorem 11 If A1, A2, A3 hold, there exists a global internal model (4.11) with
respect to the stabilizer (4.9) and the steady-state generator (4.10), and the output
function h(x,w) is globally Lipschitz with respect to x, then the global DMFORP of the
original system (4.1) is solvable.

Proof Consider the following controller,

ż1 = η1(z1, ym, β(z2)),

ż2 = η2(z1, z2, ym),

u = c(β(z2)) + ψ1(z1, ym, β(z2)).

(4.14)
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Given any compact set W , the origin of the closed-loop stabilized system of (4.12)
is globally asymptotically stable from initial state (x̄0, z10

, z̄20
, w0). The state of the

augmented system composed of the original system (4.1) and the controller (4.14) is
xc = col(x, z1, z2), and the state of system (4.12) is x̄c = col(x̄, z1, z̄2), with a relation

col(x, z1, z2) = col(x̄, z1, z̄2) + col(π(w), 0, θ(w)).

It is easy to verify that πc(w) = col(π(w), 0, θ(w)) satisfies the equations (4.6) for the
augmented system composed of the original system (4.1) and the controller (4.14).
Thus the condition P4 is satisfied.

On the other hand, xc − πc(w) = col(x, z1, z2)− col(π(w), 0, θ(w)) = col(x̄, z1, z̄2) =
x̄c, and from the definition of the internal model, one has ‖x̄c(t)‖ ≤ ̺(‖x̄c(0)‖, t), then

‖xc(t) − πc(w(t))‖ ≤ ̺(‖xc(0) − πc(w0)‖, t).

The condition P5 is satisfied.

With the Lipschitz condition, and x̄(t) → 0 as t→ 0,

lim
t→∞

‖e(t)‖ = lim
t→∞

h(x̄(t) + π(w), w) − h(π(w), w)

≤ lim
t→∞

l0(‖x̄‖) = 0,
(4.15)

i.e., the requirement P1 of the asymptotical convergence to zero of the error output is
satisfied.

Thus the global DMFORP is solvable.

Remark 12 In the theorem, if the solution of (4.12) satisfies

lim
t→∞

(h(x̄+ π(w), w) − h(π(w), w)) = 0 (4.16)

for any w ∈W, the Lipschitz condition is not necessary for the solvability of DMFORP.

Remark 13 This theorem gives an approach to solve the output regulation problem.
The first step is to design a stabilizer for the simplified system on the assumption that
the states of the exosystem are known. Then an internal model candidate is constructed
with respect to the stabilizer and a steady-state generator for the exosystem. If the
internal model is found and the condition of (4.16) is satisfied, then the DMFORP is
solved.

Remark 14 If w is not explicit in ψ1(z1, ym, w)+ c(w) and the mapping η1(z1, ym, w),
the internal model is unnecessarily constructed, and the dynamic measurement feedback
output regulation problem is solved by the following controller.

ż1 = η0
1(z1, ym),

u = ψ0
1(z1, ym),

(4.17)
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where η0
1(z1, ym) = η1(z1, ym, w), ψ0

1(z1, ym) = ψ1(z1, ym, w) + c(w). From the proof of
the above proposition, one can see that the internal model is to estimate the functions in
the stabilized system related to w. So in the steady-state generator definition, the output
of the generator can be just the functions related to w. This is also consistent with the
origin of the internal model candidate, which is to estimate the unknown parameters in
the controller. The internal model can be thought of as an observer for the exosystem
and its design can be thought of as an observer design for nonlinear systems, which is
another problem. So the design techniques of the internal model are not detailed in this
thesis.

Proposition 15 If the output regulation problem is solvable by the approach proposed
in [43] and [44] with the measurement being the output or the output plus the (partial)
state, it is also solvable with the above theorem.

Proof In [43] and [44], output regulation problem of the following system

ẋ = f(x, u, w),

e = h(x, u, w),
(4.18)

is solved by the controller

η̇ = γ(η, x, u, e),

ξ̇ = ζ(x̄1, · · · , x̄d, ξ, e),

u = βu(η) + k(x̄1, · · · , x̄d, ξ, e),

(4.19)

where the solution of the regulator equation is x = π(w), u = c(w), and

dθ(w)

dt
= α(θ(w)),

col(π1(w), · · · , πd(w), c(w)) = β(θ(w)),

βu = col(βd+1, · · · , βd+m),

γ(θ(w), π(w), c(w), 0) = α(θ(w)),

k(0, · · · , 0, 0, 0) = 0, ζ(0, · · · , 0, 0, 0) = 0,

x̄i = xi − βi(η), i = 1, 2, · · · , d.

With the approach proposed in this chapter, the stabilizer for the simplified system
can be chosen as

˙̄η = γ̄(η̄, x1, · · · , xd, w),

ξ̇ = ζ(¯̄x1, · · · , ¯̄xd, ξ, e),

ū = βu(η) + k(¯̄x1, · · · , ¯̄xd, ξ, e) − c(w),

(4.20)

where
¯̄xi = xi − βi(η̄ + θ(w)), i = 1, 2, · · · , d,
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γ̄(η̄, x1, · · · , xd, w) = γ(η̄ + θ(w), ¯̄x1, · · · , ¯̄xd, ū+ α(θ(w)), e) − α(θ(w)).

In the closed-loop stabilized system, only the function θ(w) is related to w. So
the output of the internal model can be just the function θ(w). It is obvious that the
dynamic system η = γ(η, x, u, e) is naturally the internal model candidate. Actually
this candidate is a “real one”. This internal model is principally the same as part of
the stabilizer. Combining the stabilizer and the internal model, the controller of (4.19)
solves the global DMFORP.

All in all, if an output regulation problem is solvable by the approach proposed in
[43] and [44], it must be solvable by the approach proposed in this chapter.

4.2.4 Solution of the local DMFORP

Similar to the global version, there is a theorem for the local DMFORP.

Theorem 16 If A1’, A2’ and A3 hold, the exosystem is neutrally stable, and if there
exists a local internal model with respect to a stabilizer (4.9) and a steady-state gener-
ator (4.10), then the local DMFORP is solvable.

Proof Consider the controller (4.14). The closed-loop stabilized system of (4.12)
is locally asymptotically stable from the initial state x̄0, z10

, z̄20
, w0. The state of the

augmented system composed of the original system (4.1) and the controller (4.14) is
xc = col(x, z1, z2), and the state of the system (4.12) is x̄c = col(x̄, z1, z̄2), with a
relation

col(x, z1, z2) = col(x̄, z1, z̄2) + col(π(w), 0, θ(w)).

It is easy to verify that πc(w) = col(π(w), 0, θ(w)) satisfies the equations (4.6) for the
augmented system composed of the original system (4.1) and the controller (4.14).
Thus the condition P4’ is satisfied.

On the other hand, xc − πc(w) = col(x, z1, z2)− col(π(w), 0, θ(w)) = col(x̄, z1, z̄2) =
x̄c, and from the definition of the local internal model, one has ‖x̄c(t)‖ ≤ ̺(‖x̄c(0)‖, t),
then

‖xc(t) − πc(w(t))‖ ≤ ̺(‖xc(0) − πc(w0)‖, t).
The condition P5’ is satisfied.

With continuity of h(x,w), x̄(t) → 0 as t→ 0, and with w bounded,

lim
t→∞

e(t) = lim
t→∞

h(x̄(t) + π(w), w) = h(π(w), w) = 0,

that is, the requirement P1 is satisfied.
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Thus the DMFORP is solved by the controller (4.14). If the state w of the exosys-
tem is not explicit in the mapping η1(z1, ym, w) and the controller u = ψ1(z1, ym, w) +
c(w), then the internal model need not be constructed.

For a nonlinear system (4.1), one has the notations:

A =
∂f(0, 0, 0)

∂x
, S =

∂s

∂w
(0), Cm =

∂hm

∂x
(0, 0), P =

∂f

∂w
(0, 0, 0),

B =
∂f

∂u
(0, 0, 0), C =

∂h

∂x
(0, 0), Q =

∂h

∂w
(0, 0), Qm =

∂hm

∂w
(0, 0).

Proposition 17 For (4.1), if the exosystem is neutrally stable, (A,B) is controllable
[28] and

([
A P
0 S

]

, [Cm, Qm]

)

is detectable [28], furthermore the condition A1’ is satisfied, then the local DMFORP
is solvable.

Proof With the assumption A1’, using the coordinate change x̄ = x − π(w), ū =
u− c(w), the simplified system (4.8) can be stabilized by the following controller.

ż11 = f(z11 + π(w), c(w) + ū, z12 + w) − f(π(w), c(w), w)

+G1(hm(x̄+ π(w), w) − hm(z11 + π(w), z12 + w)),

ż12 = s(z12 + w) − s(w)

+G2(hm(x̄+ π(w), w) − hm(z11 + π(w), z12 + w)),

ū = c(z12 + w) +H(z11 + π(w) − π(z12 + w)) − c(w),

(4.21)

where H, G1, G2 are chosen such that

A+BH

and [
A−G1Cm P −G1Qm

−G2Cm S −G2Qm

]

are Hurwitz, which guarantees the following Jacobian matrix of the closed-loop simpli-
fied system is Hurwitz [28].





A BH BK
G1Cm A+BH −G1Cm P +BK −G1Qm

G2Cm −G2Cm S −G2Qm



 , (4.22)

where K = (∂c(w)
∂w

−H ∂π(w)
∂w

)|w=0. Since the pair of (A,B) is controllable and the pair of
([

A P
0 S

]

, [Cm, Qm]

)

is detectable, it is possible to choose H, G1, G2 satisfying the

above conditions. With the Lyaponov theory, the Hurwitz Jacobian matrix means the
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system is exponentially stable, which leads to asymptotical stability in the sense of KL
functions. So the above controller can be thought of as a stabilizer. The assumption
A2’ is satisfied.

Now the steady state generator is chosen as θ(w) =

[
π(w)
w

]

, β(θ(w)) = w,

and the internal model candidate ż2 = η2(z2, z11, z12, h̄m(x̄, w)) is constructed. If one
chooses z2 = col(z21, z22) satisfying z21 = z11 + π(w), z22 = z12 + w, then one gets

ż21 = f(z11, uz, z21) +G1(ym − hm(z21, z12)),

ż22 = s(z22) +G2(ym − hm(z21, z22)),

uz = c(z22) +H(z21 − π(z12),

(4.23)

The stabilizer (4.21) is rewritten as (4.24).

d(z11 + π(w))

dt
= f(z11 + π(w), u, z12 + w)

+G1(hm(x̄+ π(w), w) − hm(z11 + π(w), z12 + w)),

d(z12 + w)

dt
= s(z12 + w)

+G2(hm(x̄+ π(w), w) − hm(z11 + π(w), z12 + w)),

u = c(z12 + w) +H(z11 + π(w) − π(z12 + w)).

(4.24)

With the internal model candidate (4.23), replacing the functions z11+π(w), z12+w
in the stabilizer (4.24) with z21 = z̄21 +π(w) = z11 +π(w) and z22 = z̄22 +w = z12 +w,
respectively, the closed-loop stabilized system can be written as

˙̄x = f(x̄+ π(w), u, w) − f(π(w), c(w), w),

ż11 = f(z11 + π(w), u, z12 + w) − f(π(w), c(w), w)

+G1(ym − hm(z11 + π(w), z12 + w)),

ż12 = s(z12 + w) − s(w) +G2(ym − hm(z11 + π(w), z12 + w)),

u = c(z12 + w) +H(z11 + π(w) − π(z12 + w),

(4.25)

whose Jacobian matrix is the same as (4.22). That is, the internal model candidate
(4.23) is a “real one”.

It is noticed that in the closed-loop stabilized system (4.25), the dynamics of the
internal model disappears because when one changes the coordinates of the internal
model candidate, and replaces the functions of w in the stabilizer, the dynamics of the
stabilizer is the same as the internal model candidate.

With the theorem 16, the local DMFORP is solved by the controller (4.23).
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Remark 18 From the proof, it can be seen that the problem is locally solved by the
following controller,

ż21 = f(z11) + g(z11)uz + p(z11)z22 +G1(ym − hm(z21, z12)),

ż22 = s(z22) +G2(ym − hm(z21, z22)),

uz = c(z22) +H(z21 − π(z12)),

(4.26)

where H, G1, G2 can simply be chosen such that

A+BH

and [
A−G1Cm P −G1Qm

−G2Cm S −G2Qm

]

are Hurwitz, which guarantees the following Jacobean matrix of the closed-loop simpli-
fied system is Hurwitz,





A BH BK
G1Cm A+BH −G1Cm P +BK −G1Qm

G2Cm −G2Cm S −G2Qm



 ,

where

K = (
∂c(w)

∂w
−H

∂π(w)

∂w
)|w=0.

In particular, when the state of the exosystem w is known, for example, ym =
col(y1

m, w), the problem can be solved by

ż = f(z) + g(z)u+ p(z)w +G1(y
1
m − hm(z, w)),

u = c(w) +H(z − π(w)), (4.27)

where G1, H are chosen such that A+BH and A−G1C
1
m are Hurwitz (C1

m = ∂y1
m(0,0)
∂x

.)

Remark 19 The parameters K (H), G can be chosen with different kinds of methods,
such as with pole placement or a linear-quadratic state-feedback regulator approach.
Although K (H), G are chosen with a linear system theory, the nonlinear regulator
problem is solved by the controller (4.26) with them.

If the measurement is the output, the above proposition leads to the theorem in
[37]. However, Theorem 16 is not limited to processing the case of the proposition; as
can be seen in Example 4, this theorem can process a nonlinear system whose closed-
loop simplified system has a Jacobian matrix which is not Hurwitz but is stable in the
sense of some class KL functions.

Consider a simplified system

˙̄x = f̄(x̄, ū, w)

Electrical, Electronic and Computer Engineering 69

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  ZZhhuuaann,,  XX    ((22000077))  



Chapter 4 Speed regulation

can be stabilized by a stabilizer

ż1 = η1(z1, ym, w),

ū = ψ1(z1, ym, w).
(4.28)

The Jacobian matrix of the closed-loop simplified system at the origin is not Hurwitz,
but it is still stable in the sense of some class KL functions.

Assuming an internal model candidate ż2 = η2(z1, z2, ym) with respect to the above

stabilizer and a steady-state generator dθ(w)
dt

= α(θ(w)), w = β(θ(w)) is a “real one”,
and with a coordinate change z̄2 = z2 − θ(w), the closed-loop stabilized system can be
written as

˙̄x = f̄(x̄, ū, w),

ż1 = η1(z1, ym, β(z̄2 + θ(w))),

˙̄z2 = η2(z1, z̄2 + θ(w), ym) − α(θ(w)),

ū = ψ1(z1, ym, β(z̄2 + θ(w))),

ym = h̄m(x̄, w).

(4.29)

When z̄2 = 0 in (4.29), it is the closed-loop simplified system, which is stable
although its Jacobian matrix is not Hurwitz. So according to the reduction principle
[45], it is possible to find a linear change of coordinates col(p1, p2) = Tcol(x̄, z1)+Kz̄2,
with T nonsingular, such that the closed-loop stabilized system (4.29) can be rewritten
as

ṗ1 = F1p1 + g1(p1, p2, z̄2),

ṗ2 = F21p1 + F2p2 +G2z̄2 + g2(p1, p2, z̄2),

˙̄z2 = A1p1 + A2p2 + Az̄2 + g3(p1, p2, z̄2),

(4.30)

where F1 has all the eigenvalues with zero real part, F2 has all the eigenvalues with
negative real part, and the functions g1, g2, g3 vanish at (p1, p2, z̄2) = (0, 0, 0) together
with their first order derivatives.

When z̄2 = 0 in (4.30), the first two equations are as follows.

ṗ1 = F1p1 + g1(p1, p2, 0),

ṗ2 = F21p1 + F2p2 + g2(p1, p2, 0),
(4.31)

which is the transformation of the closed-loop simplified system with the linear change
of coordinates col(p1, p2) = Tcol(x̄, z1). For the origin col(x̄, z1) = col(0, 0) of the closed-
loop simplified system is locally asymptotically stable in the sense of KL functions, the
origin col(p1, p2) = col(0, 0) of the (4.31) is also locally asymptotically stable in the
sense of KL functions. So according to the reduction principle, there must exist a
center manifold p2 = π2(p1) for the system (4.31) and the origin x = 0 of the reduced
system ẋ = F1x+g1(x, π2(x), 0) is necessarily locally asymptotically stable in the sense
of KL functions.

If A1z1 + A2π2(z1) + g3(z1, π2(z1), 0) = 0 and

[
F2 G2

A2 A

]

is Hurwitz, then p2 =

π2(p1), z̄2 = 0 is a center manifold for the system (4.30) and the reduced system
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is the same as that of the system (4.31), the origin of which is locally asymptot-
ically stable in the sense of KL functions. According to the reduction principle,
col(p1, p2, z̄2) = (0, 0, 0) of the system (4.30) is locally asymptotically stable in the
sense of KL functions. In addition, T is nonsingular in the linear change of coordi-
nates, the origin col(x̄, z1, z̄2) = col(0, 0, 0) of the closed-loop stabilized system is locally
asymptotically stable in the sense of KL functions. According to the definition of the
internal model, the internal model candidate is a “real one”, that is, the aforementioned
assumption is true. According to Theorem 16, the local DMFORP is solved.

The above analysis gives an approach to check if the observer (internal model can-
didate) is a “real one” in the local DMFORP.

Remark 20 The above condition is sufficient for the solvability of the local DMFORP.

4.2.5 Examples

Four examples are employed to show the application cases of the proposed theories.
Example 1 will show the solution of DMFORP with partial output feedback (static
stabilizer and measured output being partial of the regulated output), Example 2
will show the solution of DMFORP with measured output feedback (static stabilizer
and measured output being different from the regulated output) and Example 3 will
show the solution of DMFORP with measured output feedback (dynamic stabilizer and
measured output being different from the regulated output). These three examples are
application cases of Theorem 10 while Example 4 is an application case of Theorem 15.

Example 1 Here, consider the system [44],

ẋ1 = x1 + u1,

ẋ2 = −x2 + 1.2(x1 − w) + 0.3u2,

ẇ = 2w,

e1 = x1 − w,

e2 = x1x2 − 0.2w2,

ym = e1 = x1 − w.

(4.32)

The solution of the regulator equation is x = π(w) =

[
w

0.2w

]

, u = c(w) =
[
w
2w

]

. One can get the following simplified system with x̄ = x−π(w), ū = u− c(w),

˙̄x1 = x̄1 + ū,

˙̄x2 = −x̄2 + 1.2x̄1 + 0.3ū2.
(4.33)
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It is obvious that the above linear system is globally asymptotically stable if one chooses
the stabilizer ū1 = −k1x̄1 = −k1ym, ū2 = 0, k1 > 1.

One considers a steady-state generator with θ(w) = w, β(θ(w)) = θ(w), and an
internal model candidate with respect to the stabilizer in the form of ż2 = kym +2z2 =
kx̄1 + 2z2, k ∈ R. Then one can get the following closed-loop stabilized system with
z̄2 = z2 − θ(w),

˙̄x1 = (1 − k1)x1 + z̄2,

˙̄x2 = 1.2x̄1 − x̄2 + 0.6z̄2,

˙̄z2 = kx̄1 + 2z̄2

(4.34)

If k1, k is chosen such that k1−3 > 0, k+2(k1−1) < 0, for example, k1 = 7, k = −15,
the above system is globally asymptotically stable and thus ż2 = kym+2z2 is an internal
model with respect to the stabilizer. Then the output regulation problem of (4.32) is
solved by

ż2 = kym + 2z2,

u1 = −k1ym + z2,

u2 = 2z2.

(4.35)

Remark 21 This example is in the form of (partial) output feedback. And the stabi-
lizer is designed for a linear system. Some parameters in the stabilizer can be tuned
together with some parameters in the internal model such that the origin of the closed-
loop stabilized system is globally asymptotically stable in the sense of some class-KL
functions.

Example 2 Consider the following system with some changes in the above exam-
ple,

ẋ1 = x1 + u1,

ẋ2 = −x2 + 1.2(x1 − w) + 0.3u2,

ẇ = 2w,

e1 = x1 − w,

e2 = x1x2 − 0.2w2,

ym = x1 − w/2.

(4.36)

The solution of the regulator equation and the simplified system are the same as
in Example 1. But the stabilizer is in the form of ū1 = −k1x̄1 = −k1(ym −w/2), ū2 =
0, k1 > 1.

One considers a steady-state generator with θ(w) = w, β(θ(w)) = θ(w), and an
internal model candidate with respect to the stabilizer in the form of ż2 = kym −
kz2/2 + 2z2 = kx̄1 − kz2/2 + kw/2 + 2z2, k ∈ R. Then one can get the following
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closed-loop stabilized system with z̄2 = z2 − θ(w),

˙̄x1 = (1 − k1)x1 + (1 + k1/2)z̄2,

˙̄x2 = 1.2x̄1 − x̄2 + 0.6z̄2,

˙̄z2 = kx̄1 + (2 − k/2)z̄2.

(4.37)

If k1, k is chosen such that k1 > 1, k1 − 3 + k/2 > 0, −3k/2 − 2(k1 − 1) < 0, for
example, k1 = 10, k = −13, the above system is globally asymptotically stable. Then
the output regulation problem of (4.36) is solved by

ż2 = kym + (2 + k/2)z2,

u1 = −k1ym + (1 + k1/2)z2,

u2 = 2z2.

(4.38)

Remark 22 From the above examples, one can see that not all stabilizers have the
corresponding internal model such that the closed-loop stabilized system is globally as-
ymptotically stable. It should be pointed out that all the examples in [44] can be dealt
with in the framework proposed in this chapter with stabilizers in the form of static
feedback. Next, a system that cannot be stabilized by a static measurement feedback
controller is considered.

Example 3 Consider the following system

ẋ1 = −2x1 − x2 + u+ 3w,

ẋ2 = x1 + 3x2 − 3w,

ẇ = w,

e = x1x2 − w2,

ym = x2.

(4.39)

A solution of the regulator equation is x = π(w) = col(w,w), u = c(w) = w. One can
get the following simplified system with x̄ = x− π(w), ū = u− c(w),

˙̄x1 = −2x̄1 − x̄2 + ū,

˙̄x2 = x̄1 + 3x̄2,
(4.40)

with measurement ym = x̄2 +w. This system cannot be stabilized by a static feedback
controller even if w is known. However, it can be globally stabilized by a dynamic
feedback controller,

ż11 = −(ym − w) − 8z11 − 29z12 = −x̄2 − 8z11 − 29z12,

ż12 = 9.5(ym − w) + z11 − 6.5z12 = 9.5x̄2 + z11 − 6.5z12,

ū = −6z11 − 29z12,

(4.41)
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Consider a steady-state generator with θ(w) = w, β(θ(w)) = θ(w), and an internal
model candidate ż2 = k1(ym − z12 − z2) + z2 = k1x̄2 − k1z12 − k1(z2 − w) + z2, k1 ∈ R.
Then one can get the closed-loop stabilized system with z̄2 = z2 − θ(w),

˙̄x1 = −2x̄1 − x̄2 − 6z11 − 29z12 + z̄2,

˙̄x2 = x̄1 + 3x̄2,

ż11 = −(ym − z2) − 8z11 − 29z12 = − x̄2 − 8z11 − 29z12 + z̄2,

ż12 = 9.5(ym − z2) + z11 − 6.5z12 =9.5x̄2 + z11 − 6.5z12 − 9.5z̄2,

˙̄z2 = k1x̄2 − k1z12 + (1 − k1)z̄2.

(4.42)

If k1 = −3, the above system is globally asymptotically stable and the internal
model candidate is a “real one”. So the output regulation problem is solved by

ż11 = −(ym − z2) − 8z11 − 29z12,

ż12 = 9.5(ym − z2) + z11 − 6.5z12,

ż2 = −3(ym − z12 − z2) + z2,

u = −6z11 − 29z12 + z2.

(4.43)

Another solution of the regulator equation is x = π(w) = col(2w, 0.5w), u = c(w) =
3.5w. With a similar approach, one can get another solution of the output regulation
problem as follows,

ż11 = −(ym − 0.5z2) − 8z11 − 29z12,

ż12 = 9.5(ym − 0.5z2) + z11 − 6.5z12,

ż2 = −6(ym − z12 − 0.5z2) + z2,

u = −6z11 − 29z12 + 3.5z2.

(4.44)

From this example, one can see that the DMFORP may be solved on different
manifolds.

Remark 23 Not all stabilizers have the corresponding internal model such that the
closed-loop stabilized system is globally asymptotically stable. It should be pointed out
that all the examples in [44] can be processed by the framework proposed in this chapter
with stabilizers in the form of static feedback. The output regulation problem in this
example cannot be solved by a static measurement feedback even if the state w of the
exosystem is known. When a dynamic measurement feedback controller is considered,
it is possible to find an internal model to incorporate the exosystem. In the example,
the design of the stabilizer is not detailed, for there are a number of methods to go about
it. However, it really concerns the example of how to apply the idea of this chapter to
solve dynamic measurement feedback output regulation problems.
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Example 4 Consider the following system,

ẋ1 = −x3
1,

ẋ2 = x1(x2 − w) + x2 + u+ 2w,

ẇ = 0,

e = x2 − w,

ym = x2.

(4.45)

The unique solution of the regulator equation is π(w) = col(0, w), c(w) = −3w.
A1’ holds. With x̄ = x− π(w), ū = u− c(w), the simplified system is

˙̄x1 = −x̄3
1,

˙̄x2 = x̄2 + x̄1x̄2 + ū.
(4.46)

It can be stabilized by a static controller ū = −k1ym +k1w, k1 > 1. A2’ holds. Consider
a steady-state generator θ(w) = w,α(θ(w)) = 0, β(w) = w, and an internal model
candidate ż2 = k2ym − k2z2 = k2x̄2 − k2(z2 − w). With z̄2 = z2 − w, the stabilized
closed-loop system is

˙̄x1 = −x̄3
1,

˙̄x2 = (1 − k1)x̄2 + (k1 − 3)z̄2 + x̄1x̄2,

˙̄z2 = k2x̄2 − k2z̄2.

(4.47)

The above system is actually locally asymptotically stable in the sense of KL func-
tions when k1 > 1, k2 > 0. The internal model is a “real one”. According to The-
orem 16, the local DMFORP is solvable. With w in the stabilizer u = ū + c(w) =
(−k1ym + k1w) − 3w replaced by z2, the controller is as follows,

ż2 = k2ym − k2z2, k2 > 0,

u = −k1ym + (k1 − 3)z2, k1 > 1.
(4.48)

4.3 Speed regulation

In the previous chapter, it is shown that optimal scheduling can improve the perfor-
mance of the closed-loop controller, and that the 2-2 strategy, the ECP/iDP mode, is
the best of all the strategies.

In this section, one considers the application of output regulation of nonlinear sys-
tems with measured output feedback to the control of heavy haul trains. Optimal
scheduling is still based on “trading off” the equilibria. Thus the balance between en-
ergy consumption and in-train forces is still maintained. For closed-loop control, speed
regulation is imposed. This approach to design is practically feasible and manageable,
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and by its nature, is also easily integrable with human drivers. Instead of the linear
system theory, a nonlinear system theory is adopted so that without a linear approxi-
mation philosophy, the control is closer to reality. Another advantage of the approach
is the assumption that only the locomotives’ speeds are available for measurement.

4.3.1 Application of output regulation in heavy haul trains

The mathematical model of train is repeated as follows,

msv̇s = us + fins−1
− fins

− fas
, s = 1, 2, · · · , n,

ẋj = vj − vj+1, j = 1, 2, · · · , n− 1,
(4.49)

For the model of a train (4.49), some changes are required to be made for the
application of output regulation. On the one hand, the origin is not an equilibrium
of the system (4.49). On the other hand, there are many trajectories to annihilate
the output (to regulate the output to the reference). However, for train handling, the
choice of trajectories involves the balance between energy consumption and in-train
forces. So in the application scheme, a quadratic programming algorithm is firstly
applied to calculate the equilibrium of the system (4.49) with the reference speed held.
Then, based on the equilibrium, a difference system between state of the origin system
(4.49) and the equilibrium is formed, which can be stabilized with output regulation
in the form of measurement feedback.

Optimal scheduling is referred to in section 3.4.2, where the equilibrium calcula-
tion is a quadratic programming problem. The performance function, considering the
“trade-off” between the in-train forces and the energy consumption, is as (3.15).

In open loop control, the dynamic process in the train is ignored and the train is
assumed to be in its steady state with the reference speed maintained, that is,

dvi

dt
= 0, i = 1, 2, · · · , n,

dxj

dt
= 0, i = 1, 2, · · · , n− 1.

(4.50)

Applying (4.50) to (4.49), one has

us + fins−1
− fins

− fas
= 0, s = 1, 2, · · · , n. (4.51)

In practical operations, ui and fini
have some constraints.

U i ≤ ui ≤ U i, i = 1, 2, · · · , n;

F inj
≤ finj

≤ F inj
, j = 1, 2, · · · , n− 1,

(4.52)

where U i, U i are the upper and the lower constraints for the ith input, and F inj
, F inj

are the upper and lower constraints for the jth in-train force, respectively. For wagons,
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Ui = 0 and the values of Ui depend on the braking capacities of the wagons. For

locomotives, the constraints U i, U i depend on the locomotives’ capacities in traction
efforts and the running states. The constraints F inj

, F inj
are limited because of the

requirement of safe operation and low maintenance cost.

Thus optimal scheduling is a standard quadratic programming (QP) problem with
objective function (3.15), equality constraints (4.51) and inequality constraints (4.52).
The input operation limits are not considered. When the inputs are applied to the
model, an anti-windup technique, detailed later, is applied.

With the above scheduling, the equilibrium can be denoted as f 0
inj

(x0
j), v

0
i (vr), u

0
i ,

j = 1, 2, · · · , n − 1, i = 1, 2, · · · , n, which are the in-train forces (static displacement
of coupler), the velocities (reference velocity) and the efforts of the cars. Then one can
rewrite the train model as:

δv̇s = (δus + δfins−1
− δfins

− δfas)/ms, s = 1, · · · , n,
δẋj = δvj − δvj+1, j = 1, · · · , n− 1,

(4.53)

where δvs = vs − v0
s = vs − vr, δus = us − u0

s, δfins
= fins

− f 0
ins
, δxj = xj − x0

j .

Thus in the controller design, the system (4.53) can be rewritten as

Ẋ = f(X) + g(X)U, (4.54)

where
X = col(δv1, · · · , δvn, δx1, · · · , δxn−1);

U = col(δu1, · · · , δun);

fi(X) =
1

mi

(ki−1Xn+i−1 − kiXn+i) − (ci1 + 2ci2vr)Xi − ci2X
2
i , i = 1, 2 · · · , n,

fn+i(X) = Xi −Xi+1, i = 1, 2, · · · , n− 1;

g(x) =

[
diag( 1

m1
, · · · , 1

mn
)

0(n−1)×n

]

.

The outputs to regulate are the cars’ speeds, i.e., assuming the reference speed is
w1, which is to be designed later, ei = vi −w1 = Xi + vr −w1. The measured output is
part of the cars’ speeds, i.e., ym = Cm(X + vr), where Cm = (Cij)pm×(2n−1) and all the
entries of the row vectors of Cm are zeros, only except one of the first n ones, which

is one. For example, Cm =

[
1 0 0 · · · 0
0 1 0 · · · 0

]

if only the first two cars’ speeds are

measured.

Notice that the measured output is different from the output error.

The linearized system of (4.54) has system matrixes

A =

[
A11 A12

A21 A22

]

,
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A11 = −diag(c11
+ c21

vr, · · · , c1n
+ c2n

vr),

A12 =










− k1

m1
0 · · · 0 0

k1

m2
− k2

m2
· · · 0 0

· · · · · · · · · · · · · · ·
0 · · · 0 kn−2

mn−1
− kn−1

mn−1

0 · · · 0 0 kn−1

mn










,

A21 =







1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 −1






,

A22 = 0(n−1)×(n−1),

B =

[
diag( 1

m1
, · · · , 1

mn
)

0(n−1)×n

]

.

It can be verified that the above linearized pair (A,B) is controllable and (A,Cm)
is observable with the PBH criterion in [28]. First one verifies the controllability.

[λI − A | B] =

[
λIn×n − A11 −A12 diag( 1

mi
)

−A21 λI(n−1)×(n−1) 0(n−1)×n

]

∼
[
λIn×n − A11 −A12 In×n

−A21 λI(n−1)×(n−1) 0(n−1)×n

]

∼
[

0n−1×n−1 0 0n×(n−1) In×n

I(n−1)×(n−1) 0 λI(n−1)×(n−1) 0(n−1)×n

]

,

from which one can get rank ([λI − A | B]) = 2n−1, and the pair (A,B) is controllable
according to the PBH criterion.

When it comes to observability, if the first or the last car’s speed is measured, the
pair (A,Cm) is observable. Assuming, for example, the first car’s speed is available,
one has

[
A− λI
Cm

]

=





A11 − λIn×n A12

A21 −λI(n−1)×(n−1)

1 0 · · · 0 01×(n−1)



 ∼
[
I(2n−1)×(2n−1)

01×(2n−1)

]

,

from which one knows that rank

([
A− λI
Cm

])

= 2n − 1, and the pair (A,Cm) is

observable according to the PBH criterion. Actually the first car of a train is usually
a locomotive, which is often a leader and whose speed is available. So the above
assumption does not lose generality.
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4.3.2 Trajectory design of heavy haul trains

As described, only the speed maintenance phase, speed acceleration and speed dece-
leration phases are discussed in this study. The cars’ speeds are the subject of regula-
tion.

To apply Theorem 16 into train control, the trajectory of the reference speed should
satisfy the condition of neutral stability. It can be designed as

ẇ1 = aw2,

ẇ2 = −a(w1 − w3),

ẇ3 = 0,

(4.55)

whose solution is
w1 = w3(0) + A sin(at+ φ0),

w2 = A cos(at+ φ0),

w3 = w3(0),

(4.56)

where A and φ0 are determined by the initial conditions (w1(0), w2(0), w3(0)).

Within the cruise phase, the initial conditions are chosen as

(w1(0), w2(0), w3(0)) = (vr, 0, vr),

where vr is the cruise speed.

Assuming the reference speed before acceleration/deceleration is vr1
and the refer-

ence speed after acceleration/deceleration is vr2
, then the initial conditions are chosen

such that w3(0) = vr1
, φ0 = 0, A =

√
2(vr2

− vr1
).

The variable a in (4.55) is chosen considering the acceleration limit ar or dece-
leration limit ac of the train, which is determined by the effort capacity of the train.
In simulation, a = ar

A
within the acceleration phase and a = ac

A
within the deceleration

phase. For example, one chooses ar = 0.07 m/s2, ac = −0.2 m/s2, φ0 = 0, and the time
interval T1 = π

4a
as acceleration/deceleration phase. The modified speed file according

to the speed profile is shown in Fig. 4.1.

The coefficient matrix of (4.55) is constant and its eigenvalues obviously lie on the
imaginary axis, so the above designed trajectories are neutrally stable.

4.3.3 Speed regulation controller design

From the above designed trajectories, the conditions in Proposition 17 are satisfied if
the regulator equations (4.7) are solved. Actually, one can verify that X = π(w) =
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Figure 4.1: Modified speed profile

(w1 − w3)[(11×n, 01×(n−1)]
T , U = c(w) = w2B

−1
1 · 1n×1 − B−1

1 f 1(π(w)), where f 1 is the
first n entries of f and B1 is the first n rows of B, is a solution of (4.7).

According to Remark 18, the output regulating controller with measurement feed-
back is

ż = f(z) + g(z)U +G1(ym − Cmz),

U = c(w) +K(z − π(w)),
(4.57)

where G1, K are chosen such that A+BK and A−G1Cm are Hurwitz.

Based on the optimal scheduling and the output regulating controller, the complete
closed-loop controller is

u = U + u0. (4.58)

In simulation, one chooses K with a linear quadratic algorithm in [15], where the
performance function is

δJ =

∫

(X ′QX + U ′RU) dt =

∫
(

n−1∑

i=0

Ko
fδx

2
i +

n∑

i=0

Keδu
2
i +

n∑

i=0

Ko
vδv

2
i

)

dt,

in which the variables Ko
f , Ke, K

o
v are the weights for in-train forces, energy consump-

tion and velocity tracking, respectively. The different choices of the values of the
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weights lead to speed emphasized control, in-train force emphasized control and en-
ergy consumption emphasized control, respectively.

The parameter G is also obtained by a quadratic programming algorithm in simu-
lation where the weights for all the entries are equal.

These choices of K and G are consistent with Remark 19.

4.3.4 Simulation of speed regulation

Simulation setting

The simulation setting and parameters are the same as those in the previous chapter
except that the deceleration limit is −0.2 m/s2.

The weights for in-train forces, energy and velocity are Kf , Ke, Kv, respectively,
and Ko

f = 3×108Kf , K
o
v = 5×106Kv, which leads to the same quantities of the items of

the in-train forces, speed and input in (4.3.3) when δx = 0.01 m, δv = 0.1 m/s2, δu =
200 N with Kf = Ke = Kv.

The acceleration limit ar is 0.07 m/s2. This value is calculated on the assumption
that the train is running on a flat track and all the traction power of the locomotives
is used to accelerate. The maximum acceleration can be 760 × 2/(252 × 2 + 417 ×
50) = 0.07118 m/s2. The absolute value of the deceleration ac is more than that of the
acceleration.

The observer is designed on the assumption that the front and rear locomotive
group speeds are available. Since the exosystem is designed and its state is known,
the observer is just to estimate the running state of the train model (deviations of the
cars’ speeds and the displacements of the couplers). The initial states of the observer
are set to be zeros.

The observer is designed based on the difference system (4.53), which is related to
w3 of the exosystem. When w3 is changed, the observer needs some time to track the
state of the difference system. So in the control design, when w3 is changed, the closed-
loop controller is disabled (i.e., only open loop scheduling is used) for some interval,
during which the observer will track more closely to the state of the difference system.
In simulation the interval is assumed to be a distance interval, whose length is equal
to 15 × w3.
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Simulation result

A simulation result is shown in Fig. 4.2 with the optimal parameters Kf = 1, Kv =
1, Ke = 1.
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Figure 4.2: Output regulation with measurement feedback

In comparing the results shown in the above figure with Fig. 3.10 and Fig. 3.14, it
can be seen that the oscillation is most obvious in open loop scheduling, while it is least
in the output regulation with measurement feedback. The steady state error exists in
open loop scheduling while it is smaller in optimal control with state feedback and
output regulation with measurement feedback. However, it tracks the reference speed
more quickly with state feedback than with measurement feedback. This is because
of the application of the observer in the latter, which needs some time to track the
state of the train. Coincidentally for the same reason, the in-train forces in Fig. 4.2
are smaller than those of the other two in the steady state. This is because the slower
response of the observer leads to more gentle output.

Table 4.1 shows the simulation results of the state feedback controllers Si, i =
1, 2, 3, 4 advanced in Section 3.5 and measurement feedback controllers Mi, i = 1, 2, 3, 4
proposed in this chapter with different tuning parameters. The indices 1, 2, 3, 4 de-
note the different sets of parameters (Ke, Kf , Kv) = (1, 1, 1), (Ke, Kf , Kv) = (1, 1, 10),
(Ke, Kf , Kv) = (1, 10, 1), (Ke, Kf , Kv) = (100, 1, 1). |δv̄| is the absolute value of the
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Table 4.1: Performance comparison

|δv̄|(m/s) |fin|(kN) E
max mean std max mean std (MJ)

S1 3.0182 0.3166 0.48 454.50 97.40 86.44 16,528
S2 3.0225 0.2443 0.50 408.70 74.07 76.34 16,524
S3 3.0090 0.3667 0.47 405.70 70.77 78.04 15,007
S4 3.2470 0.4918 0.47 297.27 78.90 63.27 13,422
M1 2.9827 0.3250 0.53 322.02 56.49 63.54 12,400
M2 2.9801 0.2969 0.53 329.39 54.28 65.28 12,713
M3 2.9692 0.3290 0.52 329.00 56.74 64.14 12,570
M4 3.6094 0.8942 0.62 405.34 98.41 73.50 10,493

difference between the reference velocity and the mean value of all the cars’ velocities
at a specific point. |fin| is the mean value of the absolute values of all the couplers’
in-train forces at a specific point. The items max, mean and std are the maximum
value, mean value and standard deviation of the statistical variable.

These data reflect the working of the optimization parameters. From Table 4.1, it
can be seen that more energy is consumed in the optimal controller with state feedback
than in output regulating controller with measurement feedback, no matter which group
of the optimal parameters is chosen. This is because the optimal controllers of state
feedback are sensitive to the state deviation from the equilibrium, and the energy
optimization is local, thus the locomotives’ traction efforts and the cars’ braking are
more frequent, which leads to the consumption of more energy.

For speed tracking, the optimal controller with state feedback is a little better than
the output regulating controller with measurement feedback, and for in-train forces,
the former is worse than the latter. This confirms the above result, by comparing
Fig. 3.14 and Fig. 4.2.

In the above chapter, it is said that the length of the track does not affect the result
in this thesis. To show this, the above speed regulator will be simulated on a longer
track (27 km), as indicated in Fig. 4.3. The simulation result is reflected in Fig. 4.4.

From Fig. 4.4, it can be seen that the train tracks the reference speed well except
within the distance from 18 km to 21 km, where the train speed is much lower than
the reference speed. This is because the train is passing over a hill during this period,
which can be seen from Fig. 4.3. Because of the operational constraint (the time delay
between two notch changes), the train has enough traction power to maintain or be
closer to the reference speed.
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4.4 Conclusion

In this chapter, a framework is introduced to solve the output regulation problem using
measurement feedback.

The measurement feedback is considered because the measurement can cover the
output and/or (partial) state, even some measurable output different from the output
and state, that is, it is more general.

This framework can also incorporate different kinds of exosystems with bounded
signal or unbounded signal, Poisson stable or not. Some assumptions in this chapter
are necessary.

Similar to [43] and [44], the solvability of the output regulation problem is trans-
formed to the solvability of the corresponding stabilization problem. The difference is
that in this chapter a stabilizer is firstly designed assuming the states of the exosystem
are known, and then an internal model is designed with respect to this stabilizer and
a steady-state generator. The internal model is in nature an observer of the state of
the exosystem. The existence of the stabilizer is sometimes a necessary condition for
the solvability of the output problem. The properties of the internal model, in which
the state of the stabilizer and the measurement of the original system can appear, are
also given.

It should be pointed out that not all stabilizers have the corresponding internal
models. Sometimes the parameters in the stabilizer and the internal model candidate
need to be tuned. The design techniques of the internal model, in essence an observer
for nonlinear systems, are not detailed, nor are the design techniques of the stabilizer,
which are out of the scope of this study.

The application of output regulation of nonlinear systems with measured output
feedback to the control of heavy haul trains is investigated in section 4.3. The optimal
scheduling of the open loop controller is still based on “trading off” the equilibria. Thus
the balance between energy consumption and in-train forces is still maintained. For
closed-loop control, speed regulation is imposed. This approach to design is practically
feasible and manageable, and by its nature, is also easily integrable with human drivers,
because the human drivers drive the train according to the train’s speed.

Instead of the linear system theory, a nonlinear system theory is adopted so that
without a linear approximation philosophy, the control is closer to the reality. Another
advantage of the approach is the assumption that only the locomotives’ speeds are
available for measurement.

A controller of speed regulator is designed based on the result mentioned in the first
part of this chapter. The conditions of the application are verified. In the controller
design, Optimal scheduling is retained in the control of output regulation. It is noted
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that when the difference system is changed with the variation of the reference speed,
the state of the observer is changed suddenly and sufficient time should be given to the
observer to track the state of the difference system, and thus the control of the output
regulation is disabled during this period. Simulation shows the feasibility of the output
regulating controller with only measurement of the locomotive speeds, in terms of its
simplicity, cost-effectiveness and its implementation convenience.
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Chapter 5

Fault-tolerant control

5.1 Introduction

In the existing papers on train handling as well as the previous chapters, all the con-
trollers are designed on the assumption that the train is well set up and all the actuators
(traction efforts and braking efforts of locomotives and wagons) and sensors (speed sen-
sors) work as designed, which is an ideal condition. In practice, some of the actuators
and/or sensors may be faulty, and even worse, the train structure may be changed. For
example, the speed sensor has a constant bias, or the amplifier in the sensor circuit
has a fault, which leads to a gain fault of the sensor. The air pressure in the brak-
ing pipe may be different from expected because of a fault in the pressure sensor in
the air recharge system or air leakage, which makes the braking forces acting on the
wheels less than expected. When a fault happens, the controller, designed on the basis
of the faultless train model, cannot work as well as expected, and sometimes it even
leads to unsafe running, such as train-breaking and derailment, i.e., the safe running
of trains cannot be promised. Some safe running methods are therefore necessary in
train handling.

Actually, in some fault modes of train handling, it is possible to assure train per-
formance with suitably redesigned controllers. That is what is studied in this chapter.

In nature, the above-mentioned controller redesign is a fault-tolerant control prob-
lem. In the literature, there are many papers about such problems. Some survey
papers, such as [48, 49, 50, 51, 52, 53, 54, 55], provide excellent reviews on the subject
of fault-tolerant control. For linear systems, geometric approaches are proposed for
fault detection and isolation (FDI), e.g. in [56, 57, 58]. A combined input-output and
local approach is proposed in [59] for the problem of FDI of nonlinear systems modelled
by polynomial differential-algebraic equations. A high-gain observer-based approach
for FDI of an affine nonlinear system is advanced in [60], where a sufficient condition is
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given. In [61], a geometric approach to FDI of nonlinear systems is proposed, while a
necessary condition for the existence of FDI is exploited based on a geometric concept–
unobservability distribution introduced by the authors in [62]. For the solution of FDI,
a sufficient condition is also given. A stability- and performance-vulnerable failure of
sensors can be identified with the approach in [63] for nonlinear systems. The switch
between two robust control strategies based on normal operation and faulty operation
is used to realize fault-tolerant control. An information-based diagnostic approach is
investigated in [64] for a class of SISO nonlinear system in a triangular structure. In
[65], a fault diagnosis approach is proposed based on adaptive estimation by combin-
ing a high gain observer and a linear adaptive observer. As is known, the high-gain
observer is sensitive to measurement noise. In speed regulation of heavy haul trains
with measurement (speeds) feedback, noise is inevitable, so a high-gain observer is not
considered in this study. Recently, compared to [61], a relaxed formulation of FDI of
nonlinear systems is proposed in [66], where a residual has been designed to detect a
set of faults.

In train handling, such problems have been investigated in [69, 70] for some faults
with induction motors. The fault detection and isolation of diesel engines are seen
in [67, 68]. Paper [70] is in essence on fault-tolerant control of the induction motor,
which can also be seen in [71]. In this chapter, the fault-tolerant control of the whole
train is studied. The faulty modes of a train include the gain faults of speed sensors,
the locomotive actuators (induction motors, in this study), and wagon actuators (the
braking systems). The locomotive fault signal is assumed to be acquired from other
FDIs and is available in its fault-tolerant controller redesign. Based on the train model
and fault modes, a fault-tolerant speed regulator (including the FDI part and FTC
part) is designed for the faults of sensors and braking systems, respectively. The fault-
tolerant speed regulator of sensors’ faults is based on the approach in [61], while the
fault-tolerant speed regulator of the braking system fault is based on steady state
calculation.

In this chapter, a geometric approach to fault detectability is quoted from [61] in
section 5.2. The approach in [61] is employed for the FDI of sensor faults. Then the
fault modes of train handling are assumed with sensor faults and actuator faults, re-
spectively. Considering the convenience of application considered, the sensor equipment
structure of a train is suggested and the train structure is assumed for the subsequent
study. The third part, the application condition of the result in section 5.2, is justified
for the speed sensors as well as for the wagon actuators. An FDI for the sensor faults is
designed on the basis of the approach in [61] and an FDI for the wagon actuator faults
is designed on the basis of an approach proposed in this thesis. Based on the fault
signals, the fault-tolerant controller is very convenient to be redesigned. Simulation for
the proposed approaches is also given in the last part of this chapter.
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5.2 Fault detectability

Based on a concept of the observability co-distribution in [62], a geometric approach is
proposed in [61] for the fault detection problem of nonlinear systems. This approach
will be adopted to justify the detectability of the train faults.

Consider a nonlinear system in the following form,

ẋ = f(x) + g(x)u+ l(x)uf + p(x)w,

y = h(x),
(5.1)

where x ∈ X ⊂ Rn is the state with X a neighbourhood of the origin, u ∈ Rmu is the
control input, uf ∈ R is a fault signal (input), w ∈ Rd is the disturbance and/or other
fault signals, and y ∈ Rq is the output. g(x) = [g1(x), · · · , gmu

(x)] and it is assumed
g0(x) = f(x). p(x) = [p1(x), · · · , pd(x)]. The vector fields gi(x), i ∈ [0,mu], pj(x), j ∈
[1, d], h(x) are assumed to be smooth and f(0) = 0, h(0) = 0.

The task of fault detection is to design a filter (residual generator) in the form of

˙̂x = f̂(x̂, y) + ĝ(x̂, y)u,

r = ĥ(x̂, y),
(5.2)

where x̂ ∈ X̂ ⊂ Rn̂, r ∈ Rq̂, q̂ ≤ q, and the vector fields f̂(x̂, y), ĝ(x̂, y), ĥ(x̂, y) are
smooth and f̂(0, 0) = 0, ĥ(0, 0) = 0 such that the output r of the cascade system
composed of (5.1) and (5.2) depends only on the fault signal uf , is decoupled from
the disturbance w and asymptotically converges to zero whenever uf is identically zero
with any input u.

This problem is formulated in a geometric concept in [61].

The system (5.1) can be rewritten as follows without the fault and disturbance
signals considered:

ẋ = g0(x) +
mu∑

i=1

gi(x)ui,

y = h(x).

(5.3)

Based on this system, some concepts are given below.

ker{dh} is the distribution annihilating the differentials of the rows of the mapping
h(x).

span{dh} is the co-distribution spanned by the differentials of the rows of the map-
ping h(x).

A distribution ∆ is said to be conditioned invariant ((h, f) invariant, f = g0) of the
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system (5.3) if it satisfies

[gi,∆ ∩ ker{dh}] ⊂ ∆,∀i ∈ [0,mu], (5.4)

A co-distribution Ω is said to be conditioned invariant if

Lgi
Ω ⊂ Ω + span{dh},∀i ∈ [0,mu]. (5.5)

The symbol Ωo denotes the smallest co-distribution invariant under gi, i ∈ [0,mu]
which contains span{dh}.

The cascade system of (5.1) and (5.2) can be written as

ẋe = ge
0(x

e) +
mu∑

i=1

ge
i (x

e)ui + le(xe)uf +
d∑

i=1

pe
i (x

e)wi,

r = he(xe),

(5.6)

where xe =

(
x
x̂

)

, ge
0(x

e) =

(
f(x)

f̂(x̂, h(x))

)

, ge
i (x

e) =

(
gi(x)

ĝi(x̂, h(x))

)

, i ∈ [1,mu],

le(xe) =

(
l(x)
0

)

, pe
i (x

e) =

(
pi(x)

0

)

, i ∈ [1, d],

he(xe) = ĥ(x̂, h(x)). Let Ωe
o denote the smallest co-distribution invariant under

ge
i , i ∈ [0,m] which contains span{dhe}.

The local nonlinear fundamental problem of residual generation (lNLFPRG) can
be formulated in a geometric way [61].

Problem: Given a system (5.1), find, if possible, a dynamic system in the form of
(5.2) such that the smallest co-distribution invariant Ωe

o defined in (5.6) satisfies

i) span{pe
1, · · · , pe

d} ⊂ (Ωe
o)

⊥;

ii) span{le} 6⊂ (Ωe
o)

⊥;

iii) there exists a neighbourhood of Xe ∈ Rn+n̂ containing the origin, such that the
output r of system (5.6) asymptotically converges to zeros when uf (t) = 0 and
xe(0) ∈ Xe.

The fault detectability of nonlinear systems is incorporated with the conditioned
invariant distribution and observability co-distribution [61].
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An algorithm is given in [61] for a conditioned invariant distribution for the system
(5.3) as follows. The nondecreasing sequence of distributions is defined:

S0 = P̄ ,

Sk+1 = S̄k +
mu∑

i=0

[gi, S̄k ∩ ker{dh}], (5.7)

where P = span{p1(x), · · · , pd(x)} and S̄ denotes the involutive closure of S. Then the
following lemma holds.

Lemma. Suppose there exists an integer k∗ such that

Sk∗+1 = S̄k∗ , (5.8)

and set ΣP
∗

= S̄k∗ . Then ΣP
∗

is involutive, contains P and is the smallest conditioned
invariant.

One can see that (ΣP
∗
)⊥ is the maximal conditioned invariant co-distribution, which is

locally spanned by exact differentials and contained in P⊥.

An algorithm is also given for an observability co-distribution of the system (5.3).
Let Θ be a fixed co-distribution and define the following nondecreasing sequence of
co-distributions

Q0 = Θ ∩ span{dh},

Qk+1 = Θ ∩
(

mu∑

i=0

Lgi
Qk + span{dh}

)

.
(5.9)

Suppose that all co-distributions of this sequence are nonsingular, so that there exists
an integer k∗ ≤ n − 1 such that Qk = Qk∗ ,∀k > k∗, and set Ω∗ = Ωk∗ = o.c.a(Θ),
where “o.c.a” stands for “observability co-distribution algorithm”. Then the following
holds.

Proposition. Suppose all the co-distributions generated by the algorithm above are
nonsingular. Then repeat the algorithm above with Θ′ = o.c.a(Θ), that is,

Q0 = Ω∗ ∩ span{dh},

Qk+1 = Ω∗ ∩
(

mu∑

i=0

Lgi
Qk + span{dh}

)

.
(5.10)

As a consequence, Ω∗ = o.c.a(Ω∗). If the co-distribution Θ is conditioned invariant, so
is Ω∗.

A co-distribution Ω is said to be an observability co-distribution for the system
(5.3) if

Lgi
Ω ⊂ Ω + span{dh},∀i ∈ [0,mu],

o.c.a(Ω) = Ω.
(5.11)
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A distribution ∆ is an unobservability distribution if its annihilator Ω = (∆)⊥ is an
observability co-distribution.

Also it is true that the co-distribution o.c.a(Θ) is the maximal observability co-
distribution contained in Θ. If the distribution ΣP

∗
is well-defined and nonsingular, and

ΣP
∗
∩ ker{dh} is a smooth co-distribution, then

o.c.a((ΣP
∗
)⊥) is the maximal observability co-distribution, which is locally spanned by

exact differentials and contained in P⊥.

A necessary condition for the solvability of lNLFPRG is that

span{l} 6⊂
(
o.c.a(ΣP

∗
)⊥)
)⊥
. (5.12)

A sufficient condition is also given in [61].

Consider a system (5.1), determine the co-distribution o.c.a(ΣP
∗
)⊥), the largest ob-

servability co-distribution locally spanned by exact differentials and contained in P⊥,
and suppose the necessary condition (5.12) is satisfied. Then the system (5.1) can be
rewritten as follows

ż1 = f1(z1, z2) + g1(z1, z2)u+ l1(z1, z2, z3)uf ,

ż2 = f2(z1, z2, z3) + g2(z1, z2, z3)u,

ż3 = f3(z1, z2, z3) + g3(z1, z2, z3)u,

y1 = h1(z1),

y2 = z2,

(5.13)

with a coordinate change

z = Φ(x) =





z1

z2

z3



 =





Φ1(x)
H2h(x)
Φ3(x)



 , (5.14)

where Φ(x) is determined as described below.

When the fault signal and the disturbance signals are not considered, the system
(5.1) is the one (5.3). Consider this system, let Ω be an observability co-distribution and
n1 = dim(Ω). Suppose Ω is spanned by exact differentials and span{dh} is nonsingular.
q − n2 = dim(Ω ∩ span{dh}). Suppose there exists a surjection Ψ1 : Rp → Rp−n2 such
that

Ω ∩ span{dh} = span{d(Ψ1 ◦ h)}.

At xo ∈ X, a neighourhood of the origin (yo = h(xo)), there exists a selection
matrix H2 (i.e., a matrix in which any row has all zero entries but one, which is equal
to one) such that

Ψ(y) =

(
y1

y2

)

=

(
Ψ1(y)
H2y

)

(5.15)
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is a local diffeomorphism at yo ∈ Rp. Choose a function Φ1 : U o → Rn1 , where U o is a
neighbourhood of xo, such that in U o,

Ω = span{dΦ1}.

Then there exists a function Φ3 : U o → Rn−n1−n2 such that Φ(x) in (5.14) is a local
diffeomorphism at xo ∈ U o. With this coordinate change, the system (5.3) is described
in the following form,

ż1 = f1(z1, z2) + g1(z1, z2)u

ż2 = f2(z1, z2, z3) + g2(z1, z2, z3)u,

ż3 = f3(z1, z2, z3) + g3(z1, z2, z3)u,

y1 = h1(z1),

y2 = z2.

(5.16)

If p(x) is a vector field in the annihilator of Ω, (which is true when Ω ⊆ ΣP
∗
,) and the

condition (5.12) is satisfied, then in the new coordinates, the system (5.1) is in the
form

ż1 = f1(z1, z2) + g1(z1, z2)u+ l1(z1, z2, z3)uf ,

ż2 = f2(z1, z2, z3) + g2(z1, z2, z3)u+ l2(z1, z2, z3)uf + p2(z1, z2, z3)w,

ż3 = f3(z1, z2, z3) + g3(z1, z2, z3)u+ l3(z1, z2, z3)uf + p3(z1, z2, z3)w,

y1 = h1(z1),

y2 = z2.

(5.17)

It is very interesting to study the following z1-system of (5.16), which is locally weakly
observable with inputs u, y1, and y2 if g1(z1, z2) is a sum of a vector field of z1 and a
vector field of z2.

ż1 = f1(z1, y2) + g1(z1, y2)u,

y1 = h1(z1).
(5.18)

The following system is also locally weakly observable,

ż1 = f1(z1, y2) + g1(z1, y2)u+ l1(z1, z2, z3)uf ,

y1 = h1(z1).
(5.19)

As assumed in (5.12), l1(z1, z2, z3) is non-zero. So the occurrence of the fault signal uf

may be detected by an appropriate observer.

5.3 Fault modes of trains

The previous train model is repeated as follows,

miv̇i = ui + fini−1
− fini

− fai
, i = 1, · · · , n,

ẋj = vj − vj+1, j = 1, · · · , n− 1.
(5.20)
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With open loop scheduling, one can get the equilibria. Then a difference system
between the train model and the equilibria is as (3.21), which can be rewritten as

δv̇ = f11(δv) + A12δx+Bδu,

δẋ = A21δv.
(5.21)

where δv = col(δv1, ..., δvn), δx = col(δx1, ..., δxn−1), f11(δv) = [f 1
11(δv1), ..., f

n
11(δvn)]T

in which f i
11(δvi) = (c1i

+ 2c2i
vr)δvi + c2i

δv2
i ,

B = diag(
1

m1

, · · · , 1

mn

),

A12 =










− k1

m1
0 · · · 0 0

k1

m2
− k2

m2
· · · 0 0

· · · · · · · · · · · · · · ·
0 · · · 0 kn−2

mn−1
− kn−1

mn−1

0 · · · 0 0 kn−1

mn










,

A21 =







1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 −1






.

The variables ki, i = 1, · · · , n− 1 are chosen to be constant.

In this thesis, the fault modes include speed senor faults and actuator faults.

5.3.1 Speed sensor faults

The states of a train include the speeds of cars and the relative displacement of the
couplers (in-train forces). It is practical to measure the speeds of cars. The speed
sensor may be faulty with a constant bias, and/or with a gain fault due to the gain
change of the amplifier in the circuit. In the former case, such a fault can be corrected
by the calibration before its application. In this chapter, the latter case is considered,
that is, the sensor for the ith car’s speed is faulty with a gain fault,

vi = (1 +mf
vi
)vo

i , (5.22)

where the variable vi is the sensor output for the ith car’s speed, vo
i is the real speed,

and mf
vi

is the constant gain fault of the sensor.

Assuming there are q sensors equipped for q cars of the train, and they are located
at the positions ls1, · · · , lsq, then, the dynamics of a train with speed measurement
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(5.21) is as follows,

δv̇ = f11(δv) + A12δx+Bu,

δẋ = A21δv,

yi = (1 +mf
vlsi

)vlsi
− vr, i = 1, · · · , q,

(5.23)

where the variable mf
vlsi

is the constant gain fault of the ith sensor.

5.3.2 Actuator faults

The actuators of a train include the locomotives’ engines (traction efforts or dynamic
braking forces) and the wagons’ brakes (braking efforts). However, the actuators are
sometimes faulty. For example, one locomotive in a locomotive group (composed of
nl locomotives) does not work, then the actual output of the locomotive group is nl−1

nl

of the expected. The air pressure in the braking pipe is sometimes different from the
designed one owing to air leakage or a fault of the pressure sensor in the air recharging
system, which leads to less braking effort in the braking system. In train handling,
every locomotive has its own engine, whose running condition is independent with the
others while all wagons share the same braking pressure in the air pipe along the train,
whose fault leads to the same faults on all wagons.

In the above cases, the outputs of the actuators may not be equal to those expected,
but proportional to the expected ones, i.e.,

uf
i = (1 −mi

f )ui, i = 1, · · · , n, (5.24)

in which ui, u
f
i are expected output and real output, respectively. The output in-

cludes the open loop part uo
i and the closed-loop part Ui. The coefficient mi

f is a fault
coefficient. In (5.24), 0 ≤ mi

f ≤ 1.

In the following analysis, one assumes the locomotives’ faults are independent and
the wagons’ faults are the same, i.e.,

uf
li

= (1 −mli
f )uli , i = 1, · · · , k,

uf
j = (1 −mw

f )uj, j = 1, · · · , n, j 6= li.
(5.25)

5.4 Fault detection and isolation

5.4.1 Sensor fault detection and isolation

The sensors in train handling are the speed sensors. When the faults of these sensors
are considered and viewed as pseudo-actuators’ faults, the train model described in
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(5.23), is as follows.
δv̇ = f11(δv) + A12δx+BU,

δẋ = A21δv,

v̇f
lsi

= −vf
lsi

+ uf
lsi
vlsi

,

yi = δvlsi
+ vf

lsi
, i = 1, · · · , q,

(5.26)

where uf
lsi

is the pseudo-actuator of the sensor fault. When there is no fault with the

sensor, i.e., vf
lsi

= 0, the dynamics are v̇f
lsi

= −vf
lsi

+uf
lsi
vlsi

, in which uf
lsi

must be zero.

When there is a fault with the sensor, i.e., vf
lsi

6= 0, one has uf
lsi

=
v

f
lsi

vlsi

6= 0 in steady

state. So uf
lsi

can be thought of as the sensor fault signal.

In the previous chapter, it is assumed that there is a speed sensor for the first
car (usually a locomotive). It is convenient to assume that this sensor is always in
good condition and the output of this sensor is y1, which can be guaranteed by some
hardware structures, for example, a hardware redundancy. With this assumption, for
every sensor fault mode (the output of this sensor is yi, i = 2, · · · , q), the train is
modelled as

δv̇ = f11(δv) + A12δx+BU,

δẋ = A21δv,

v̇f
lsi

= −vf
lsi

+ uf
lsi
vlsi

,

y1 = δv1,

yi = δvlsi
+ vf

lsi
, i = 2, · · · , q.

(5.27)

When the ith sensor fault uf
lsi

is considered as uf in (5.1), the other sensor faults

(uf
lsj
, j ∈ [2, q], j 6= i) are thought as w in (5.1) to be decoupled. Then in the form of

(5.1), one has x = [δv, δx, vf
ls]

T , u = U, uf = uf
lsi
, w = (uf

lsj
), j ∈ [2, q], j 6= i,

f(x) =

[
f11(δv) + A12δx

A21δv

]

,

g(x) = B,

l(x) = [

n−2+i
︷ ︸︸ ︷

0, · · · , 0, vlsi
,

q−i
︷ ︸︸ ︷

0, · · · , 0]T ,

pj(x) = [

n−2+j
︷ ︸︸ ︷

0, · · · , 0, vlsj
,

q−j
︷ ︸︸ ︷

0, · · · , 0]T , j ∈ [2, q], j 6= i,

and

h(x) =







δv1

δvls2

· · ·
δvlsq






.
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For the system (5.27), assuming the co-distribution

Θ = Ω0 = span{d(δv1), · · · , d(δvn), d(δx1), d(δxn−1)}
in the observability co-distribution algorithm (5.9), one has,

span{dh} = span{d(δv1), d(δvls2
+ vf

ls2
), · · · , d(δvlsq

+ vf
lsq

)},
Q0 = Ω0 ∩ span{dh} = span{d(δv1)},

Q̄0 =
m∑

i=0

Lgi
Q0 + span{dh}

= span{d(δv1), d(δx1), d(δvls2
+ vf

ls2
), · · · , d(δvlsq

+ vf
lsq

)},
Q1 = Ω0 ∩ Q̄0 = span{d(δv1), d(δx1)},

Q̄1 =
m∑

i=0

Lgi
Q1 + span{dh}

= span{d(δv1), d(δv2), d(δx1), d(δvls2
+ vf

ls2
), · · · , d(δvlsq

+ vf
lsq

)},
Q2 = Ω0 ∩ Q̄1 = span{d(δv1), d(δv2), d(δx1)},

· · · ,
Q2n−1 = span{d(δv1), · · · , d(δvn−1), d(δx1), · · · , d(δxn−1)},

Q̄2n−1 =
m∑

i=0

Lgi
Q1 + span{dh} = span{d(δv1), · · · , d(δvn),

d(δx1), · · · , d(δxn−1), d(δvls2
+ vf

ls2
), · · · , d(δvlsq

+ vf
lsq

)},
Q2n = span{d(δv1), · · · , d(δvn), d(δx1), · · · , d(δxn−1)}.

Then Qk = Q2n,∀k > 2n, which results in o.c.a(Ω0) = Q2n = Ω0.

Considering the co-distribution Ω = Ω0 + span{d(vf
lsj

)}, i.e.,

Ω = span{d(δv1), · · · , d(δvn), d(δx1), d(δxn−1), d(v
f
lsj

)},∀j ∈ [2, q],

one has o.c.a(Ω) ⊇ o.c.a(Ω0).

Then from (5.10), one has Q′

i ⊇ Qi and Q̄′

i ⊇ Q̄i where Q̄′

i and Q′

i are the calculation
results with Ω and Q̄i and Qi with Ω0. Then one has Q̄′

2n−1 ⊇ Q̄2n−1 and furthermore

Q′

2n = (Ω ∩ Q̄′

2n−1)

⊇ (Ω ∩ Q̄2n−1)

= span{d(δv1), · · · , d(δvn), d(δx1), d(δxn−1), d(v
f
lsj

)}
= Ω,

which means o.c.a(Ω) ⊇ Q′

2n ⊇ Ω. As is known, o.c.a(Ω) ⊆ Ω, so o.c.a(Ω) = Ω.

Furthermore, one has

Lgj
Ω ⊂ Ω = Ω + span{dh},∀j ∈ [0,m]. (5.28)
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The conditions in (5.11) are satisfied, i.e., Ω is an observability co-distribution.

It is obvious that the vector field pj, j ∈ [2, p], j 6= i is in the annihilator of Ω while
span{l} ⊂ Ω. So it is possible to transform the train dynamics with sensor faults (5.27)
into the form of (5.17), which means the possibility of fault detection of ith sensor
fault.

A residual generator for the ith sensor can be in the following form,

ξ̇1 = f11(ξ1) + A12ξ2 +BU + L11(y1 − ξ11) + L13(yi − ξ1,lsi
),

ξ̇2 = A21ξ1 + L21(y1 − ξ11) + L23(yi − ξ1,lsi
),

ξ̇3 = −ξ3 + L31(y1 − ξ11) + L33(yi − ξ1,lsi
),

ri = (yi − ξ1,lsi
)/(vr + ξ1,lsi

), i ∈ [2, p].

(5.29)

where ξ1 = col(ξ11, · · · , ξ1n) ∈ Rn, ξ2 = col(ξ21, · · · , ξ2,n−1) ∈ Rn−1, ξ3 ∈ R. In the
above equation, Lij are chosen by observer design approaches, such as pole placement
(Luenberger observer) or optimization control (Kalman filter).

Especially, when L13 = 0, L23 = 0, it is also possible for the above form of dynamics
to be a residual generator, because the original system without the faulty output is
also observable, which has been proved in the previous chapter. It is very interesting
to observe that this residual generator is naturally a fault identifier because the fault
signal does not affect the states ξ1, ξ2, and the residual signal is actually the identifier
signal of the fault. Furthermore, in this way, the residual generators and identifiers of
all the sensor faults can share the same dynamics with different outputs, i.e.,

ξ̇1 = f11(ξ1) + A12ξ2 +BU + L11(y1 − ξ11),

ξ̇2 = A21ξ1 + L21(y1 − ξ11),
(5.30)

and the output (a residual generator as well as a identifier) for the ith sensor fault is

ri =
y2 − ξ1,lsi

ξ1,lsi
+ vr

. (5.31)

5.4.2 Actuator fault detection and isolation

A locomotive group effort is sometimes not the same as the expected one for some
reasons, such as one locomotive of the locomotive group not working. The braking
efforts of wagons may be different from the expected, because of the pressure change
in the braking pipe. In the following, only the fault modes as in (5.24) are studied.

When this happens, the efforts of the cars are proportional to the expected efforts,
that is, the fault mode described in (5.25) is repeated as follows,

δv̇ = f11(δv) + A12δx+BU +Bf (U + uo),

δẋ = A21δv,
(5.32)
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where Bf = diag(ml1
f /m1,

n−2
︷ ︸︸ ︷

mw
f /m2, · · · ,mw

f /mn−1,m
l2
f /mn).

To detect the actuators’ faults, some states are assumed to be measurable. In this
study, the train is assumed to be composed of n cars with one locomotive (group) at the
front and one at the rear. The wagons are between these two locomotives (locomotive
groups). The speeds of the two locomotives and the two wagons next to the locomotives
are also available, i.e.,

y =







v1

v2

vn−1

vn






. (5.33)

The two kinds of fault modes (sensor fault and actuator fault) are studied separately,
because there are some difficulties in studying these two kinds of faults simultaneously,
which will be discussed later. So, in the study of actuator faults, the speed sensors are
assumed to be in good condition.

Locomotive fault detection and isolation

The locomotive group fault diagnosis is not studied in this chapter. Some approaches
may be used to supervise the running states of the locomotives, such as in [69, 70, 67,
68, 71]. In this thesis, one assumes that the fault diagnosis signals and fault isolation
signals are given, and when a fault happens, one’s task is to reconfigure/redesign the
controller.

Wagon fault detection and isolation

When the wagon faults in the system (5.32) are concerned, in the form of (5.1) for the
algorithms in section 5.2, one has

x =

[
δv
δx

]

∈ R2n−1,

u = U,

uf = mw
f ,

w =

[
m1

f

mn
f

]

,

f(x) =

[
f11(δv) + A12δx

A21δv

]

,

g(x) = B,
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l = [0, (U2 + uo
2)/m2, · · · , (Un−1 + uo

n−1)/mn−1,

n
︷ ︸︸ ︷

0, · · · , 0 ]T ,

p1 = [(U1 + uo
1)/m1,

n−2
︷ ︸︸ ︷

0, · · · , 0,
n

︷ ︸︸ ︷

0, · · · , 0 ]T ,

p2 = [

n−1
︷ ︸︸ ︷

0, · · · , 0, (Un + uo
n)/mn,

n−1
︷ ︸︸ ︷

0, · · · , 0 ]T ,

and
h(x) = [δv1, δv2, δvn−1, δvn]T .

According to the algorithm (5.7), one has

S0 = P̄ = span{p1, p2},
S̄0 ∩ ker{dh} = 0,

· · · ,
Sk∗ = span{p1, p2}.

from which one has

(ΣP
∗
)⊥ = span{δv2, · · · , δvn−1, δx1, . . . , δxn−1}.

Furthermore, applying the algorithm (5.9) with Θ = (ΣP
∗
)⊥, one has

span{dh} = span{d(δv1), d(δv2), d(δvn−1), d(δvn)},
Q0 = Θ ∩ span{dh} = span{δv2, δvn−1},

Q̄0 =
m∑

i=0

Lgi
Q0 + span{dh} = span{d(δv1), d(δv2), d(δvn−1), d(δvn),

d(k1δx1 − k2δx2), d(kn−2δxn−2 − kn−1δxn−1)},
Q1 = Θ ∩ Q̄0 = span{d(δv2), d(δvn−1),

d(k1δx1 − k2δx2), d(kn−2δxn−2 − kn−1δxn−1)},

Q̄1 =
m∑

i=0

Lgi
Q1 + span{dh}

= span{d(δv1), d(δv2), d(δv3), d(δvn−2), d(δvn−1), d(δvn),

d(k1δx1 − k2δx2), d(kn−2δxn−2 − kn−1δxn−1)},
Q2 = Θ ∩ Q̄1 = span{d(δv2), d(δv3), d(δvn−2), d(δvn−1),

d(k1δx1 − k2δx2), d(kn−2δxn−2 − kn−1δxn−1)},
· · · ,

Qk∗ = span{d(δv2), · · · , d(δvn−1), d(k1δx1 − k2δx2),

· · · , d(kn−2δxn−2 − kn−1δxn−1)},
that is,

Ω = o.c.a((ΣP
∗
)⊥) = span{d(δv2), · · · , d(δvn−1), d(k1δx1 − k2δx2),

· · · , d(kn−2δxn−2 − kn−1δxn−1)}.
(5.34)
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Repeat the above algorithm with Θ = Ω, and one has

Ω = o.c.a(Ω).

The second condition in (5.11) is satisfied. Then one can verify the first condition in
(5.11).

LgΩ = span{d(k1δv1 − (k1 + k2)δv2 + k2δv3),

· · · ,
d(kn−2δvn−2 − (kn−2 + kn−1)δvn−1 + kn−1δvn),

d(k1δx1 − k2δx2),

· · · ,
d(kn−2δxn−2 − kn−1δxn−1)},

and

Ω + span{dh} = span{d(δv1), d(δv2), · · · , d(δvn−2), d(δvn−1),

d(k1δx1 − k2δx2), · · · , d(kn−2δxn−2 − kn−1δxn−1)},

so Lgj
Ω ⊂ Ω + span{dh},∀j ∈ [0,m].

The conditions in (5.11) are satisfied with Ω defined above, which means the co-
distribution Ω is the maximal observability co-distribution contained in P⊥.

Assuming z11 = δv2, z12 = δv3, · · · , z1,n−2 = δvn−1, and z1,n−1 = k1δx1 − k2δx2, · · · ,
z1,2n−4 = kn−2δxn−2 − kn−1δxn−1, the z1-system of (5.13) is as follows:

ż11 = f 2
11(z11) + z1,n−1/m2 + U2/m2,

· · · ,
ż1,n−2 = fn−1

11 (z1,n−2) + z1,2n−4/mn−1 + Un−1/mn−1,

z1,n−1 = k1δv1 − (k1 + k2)z11 + k2z12,

z1,n = k2z11 − (k2 + k3)z12 + k3z13,

· · · ,
z1,2n−5 = kn−3z1,n−4 − (kn−3 + kn−2)z1,n−3 + kn−2z1,n−2,

z1,2n−4 = kn−2z1,n−3 − (kn−2 + kn−1)z1,n−2 − kn−1δvn

y1 = col(z11, z1,n−2),

y2 = col(δv1, δvn).

(5.35)

It can also be seen that span{l} ⊂ Ω, which means the possibility of detectability of
the wagon fault.
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A residual generator is in the following form,

ξ̇11 = f 2
11(ξ11) + ξ21/m2 + U2/m2 + L11(ξ11 − y11) + L12(ξ1,n−2 − y12),

· · · ,
ξ̇1,n−2 = fn−1

11 (ξ1,n−2) + ξ2,n−2/mn−1 + Un−1/mn−1

+ Ln−2,1(ξ11 − y11) + Ln−2,2(ξ1,n−2 − y12),

ξ̇2,1 = k1y21 − (k1 + k2)ξ11 + k2ξ12

+ Ln−1,1(ξ11 − y11) + Ln−1,2(ξ1,n−2 − y12),

ξ̇2,i = kiξ11 − (ki + ki+1)ξ1,i + ki+1ξ1,i+1

+ Li+n−2,1(ξ11 − y11) + Li+n−2,2(ξ1,n−2 − y12), i = 2, · · · , n− 3,

ξ̇2,n−2 = kn−2ξ1,n−3 − (kn−2 + kn−1)ξ1,n−2 + kn−1y22 + L2n−4,1(ξ11 − y11)

+ L2n−4,2(ξ1,n−2 − y12),

y1 = col(δv2, δvn−1),

y2 = col(δv1, δvn),

(5.36)

where the matrix L = (Lij) is suitably chosen with observer design approaches, such
as pole placement (Luenberger observer) or optimization control (Kalman filter).

From (5.36), it can be seen that the dimension of the observer is 2n− 4. For a long
train, n is very large. To avoid such a high-dimension observer, one considers another
approach to identify the wagons’ faults. The full train model is repeated as follows:

miv̇i = (1 −mi
f )ui + fini−1

− fini
−mi(c0i

+ c1i
vi + c2i

v2
i ) − fpi

, i = 1, · · · , n,
ẋj = vj − vj+1, j = 1, · · · , n− 1,

(5.37)

where fin0
= 0, finn

= 0.

When mi
f = 0, one has reached an equilibrium (steady state, v̇ = 0, ẋ = 0) vi =

vr, i = 1, · · · , n, and f 0
inj

(x0
j), with ui = u0

i .

v̇r = u0
i + f 0

ini−1
− f 0

ini
−mi(c0i

+ c1i
vr + c2i

v2
r) − fpi

, i = 1, · · · , n,
ẋ0

j = vr − vr, j = 1, · · · , n− 1.
(5.38)

Thus one has a difference system (5.21) with δvi = vi − vr, δxj = xj − x0
j , which is also

denoted as follows,
Ẋ = f(X) +BU. (5.39)

A speed regulator designed in the previous chapter for this difference system is
repeated as follows,

ż = f(z) +BU +G1(ym − Cmz),

U = c(w) +K(z − π(w)),
(5.40)
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The closed-loop dynamics are

Ẋ = f(X) +BU,

ż = f(z) +BU +G1(ym − Cmz),

U = c(w) +K(z − π(w)).

(5.41)

When the train is faultless, the train speed will track the reference speed under
the above controller. How are the train’s dynamics when mi

f 6= 0? One first checks
whether the train dynamics are stable. If they are, then one will study the new steady
states.

The locomotives’ faults are assumed to be detected and isolated through other
approaches, so only the faults of the wagons with mi

f = mw
f , i = 2, · · · , n − 1 are

considered in the following identification.

When mw
f 6= 0, the closed-loop dynamics (5.41) in cruise phase is as follows

Ẋ = f(X) +BU −Bf (U + uo),

ż = f(z) +BU +G1(ym − Cmz),

U = Kz,

(5.42)

where Bf = diag(0,

n−2
︷ ︸︸ ︷

mw
f /m2, · · · ,mw

f /mn−1,

n
︷ ︸︸ ︷

0, · · · , 0 ).

Assuming A = ∂f(0)
∂X

, (from the above, one knows A+BK < 0, A+G1Cm < 0,) one
has a linearized model as follows:

Ẋ = AX + (B −Bf )Kz −Bfu
o,

ż = −GCmX + (A+G1Cm +BK)z.
(5.43)

If the K, G are chosen such that

[
A (B −Bf )K

−GC A+GC +BK

]

< 0,

then the above system (5.43) is stable.

The steady state of the train can be denoted as (v̇ = 0, ẋ = 0) vi = vf
r , i = 1, · · · , n,

and f f
inj

(xf
j ), with ui,

m1v̇
f
r = u1 − f f

in1
−m1(c01

+ c11
vf

r + c21
(vf

r )2) − fp1
,

miv̇
f
r = ui + f f

ini−1
− f f

ini
−mi(c0i

+ c1i
vf

r + c2i
(vf

r )2) − fpi
−mi

fui, i = 2, · · · , n− 1,

mnv̇
f
r = un + f f

inn
−mn(c0n

+ c1n
vf

r + c2n
(vf

r )2) − fpn
,

(5.44)
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The locomotive fault is identifiable with other approaches and only the fault of
wagons with mi

f = mw
f , 2, · · · , n − 1 is considered. Furthermore if vf

r is known, then

there are only n unknown variables f f
ini
, i = 1, · · · , n− 1,mw

f in the above n equations.
Especially when summing up the first n equations, one has

0 =
n∑

i=1

ui −
n∑

i=1

mi(c0i
+ c1i

vf
r + c2i

(vf
r )2) −

n∑

i=1

fpi
−

n−1∑

j=2

mi
fui. (5.45)

It is possible to solve them, which means the identifiability of the wagon fault.

Although it is impossible for a train to reach steady states in practical running, it
is practical to assume that the train can approximate its steady state, at least within
a cruise phase. The practical steady-state speed of the running train is defined with
the analysis of differences of the measurable speeds (v1, v2, vn−1, vn) in this chapter.

When all the wagon are faultless and the train is running in its steady state, one
has,

0 =
n∑

i=1

uo
i −

n∑

i=1

(
mi(c0i

+ c1i
vr + c2i

(vr)
2) + fpi

)
. (5.46)

With (5.45) and (5.46), if all the wagons’ faults are the same, i.e., mi
f = mw

f , i =
2, · · · , n− 1, one has

(1 −mw
f )

n∑

i=1

ui −
n∑

i=1

uo
i =

n∑

i=1

mi

(
c1i
vf

r + c2i
(vf

r )2 − (c1i
vr + c2i

v2
r)
)
, (5.47)

from which one can get mw
f .

5.5 Fault-tolerant control (FTC)

5.5.1 FDI and FTC in the case of sensor faults

The residual generator in the case of sensor faults is as in equations (5.30) and (5.31),
where function f11 is linearized and thus the observer is a linear system. The matrices
L11, L21 are determined through the function LQR in MATLAB. If the sensor fault
model is linearized as

ż = Az +BU,

ym = Cmz,

yi = (1 +mf
vi
)vi − vr, i = 2, · · · , p,

(5.48)

then one assumes Cm1 = Cm(1, :), Q = I(2n−1)×(2n−1), R = 1, and with the function
L = lqr(A′, C ′

m1, Q,R), L = L′, one gets the residual generator.
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In the controller, one assumes the outputs of the residual generator are v̄i and
the measured speeds vmi. The reference speed is vr. In the control process, for the
output vmi of the ith speed sensor, one will take Ksensor

i × vmi as the real speed of
the corresponding car, where Ksensor

i is a coefficient, which will be modified when the
sensor fault is detected and isolated. A constant Vth is set as the threshold of fault
diagnosis. For the fault detection and isolation, one has other arrays in the programme,
KDsensor

i,1:11 , Nsensori. The former is used to store the past 11 coefficients of the sensor
and the latter the times of continuous violations of the fault-free condition.

The fault detection and isolation programme is shown as Fig. 5.1, whereKDsensor
i,1:11 =

01×11, N
sensor
i = 0 and Ksensor

i = 1 are initialized. This programme is executed once a
second.

It is known that there is a possibility of false rejections and a possibility of false
acceptances for a fault-tolerant controller, which should be considered. The first pos-
sibility is that it does not detect or isolate the fault well when a fault occurs. The
second is that it takes a faultless system as a fault system. The choice of the thresh-
olds affect these two possibilities. Generally, when one possibility is reduced with a set
of thresholds, the other one is increased. When the threshold is to be determined, the
balance between the two possibilities should be considered. From Fig. 5.1, it is impos-
sible to avoid the above two possibilities. However, the effects of the possibility of false
acceptance can be discussed qualitatively. If a fault is falsely accepted, for example, a
sensor with a gain 1 is falsely identified with a gain 1.05, then with the FTC, the speed
of the train will be underestimated, and thus the train will be overspeed. In that case,
the FDI will further identify a gain fault lower than 1 to correct the false acceptance.
It is in the way of “negative feedback” to track the real value of the gain. Such an
approach in Fig. 5.1 does not obviously affect the train performance. That can be seen
from the simulation results of an FTC in a faultless system.

In this thesis, the two possibilities from theoretic viewpoints will not be discussed,
nor will the time delay between the fault occurrence and fault isolation. Instead, they
will be discussed on the basis of the simulation results.

5.5.2 Controller redesign in the case of a locomotive fault

As described before, fault detection and isolation of locomotive faults are not studied
in this thesis. Here, only the fault-tolerant control of a locomotive fault is considered.

In the following simulation, one assumes the fault is detected and identified 60 sec-
onds after it occurs. When it is identified, the controller will be redesigned. According
to the fault, the parameters of the train are modified and then the controller is re-
designed with the new parameters. For example, assuming the coefficient of its input
in the train model is Bt(i, :), if the locomotive group u(i) loses half its effort, the new
coefficient is Bt(i, :)/2.
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Figure 5.1: Sensor fault detection and isolation programme
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5.5.3 FDI and FTC in the case of a wagon fault

When a wagon fault is detected and identified, similar to the case of a locomotive fault,
the controller will be redesigned according to the updated parameters of the train. The
key is fault detection and isolation. In the current simulation, this is done following
the approach proposed in section 5.4.2.

In this approach, one employs the algorithm as Fig. 5.2 to detect and identify the
fault; this is executed once a second. In the figure, the matrix Bb is the coefficient
matrix of the brake inputs in the train model, which is equal to diag(1/mi) when the
braking system is faultless. The variables vm, vr are the measured speed and reference
speed, respectively. The variable Kf

brake is a ten-dimension array used to store the past

ten estimated fault signals, while N f
brake is a counter number of the continuous violation

of fault condition.

There are the same possibilities in the FDI of a wagon fault as in the FDI of a
sensor fault. Similar to the latter, the FDI of wagon faults is also “negative feedback”
to track the real value of the wagon actuator. The effect of false acceptance on the
train performance will not be discussed in a theoretic way, but is discussed with the
simulation results. The time delay between the fault occurrence and fault isolation will
not be discussed either.

5.6 Simulation

The simulation setting of the train is the same as previous chapters as well as the speed
profile and track profile. When all sensors and actuators are faultless, the controller is
the speed regulator with Ke = 1, Kf = 1, Kv = 1, designed in part 4.3. When a fault
occurs, the controller will be redesigned. The controller redesign includes two parts:
the redesign of the optimal scheduling and the redesign of the speed regulator.

5.6.1 Simulation of sensor faults

In simulation, the sensor fault detection and isolation programme is only working
during the cruise phase. The simulation setting is the same as in section 4.3. The fault
diagnosis parameter setting is as in Fig. 5.1.

There are two kinds of errors with the gains of speed sensors. One is a random
error, which depends on the accuracy of speed sensor. The other one is a systematic
error with gain, which is a real fault and should be corrected. From the simulation, it
will be seen that the former has little impact on the performance of controllers, while
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Figure 5.2: Wagon fault detection and isolation programme
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the latter has much greater impact.

In the following description, the accuracy 1±α% of a speed sensor means the output
of the sensor is randomly 1 ± α% of the measured speed, while the gain fault β% of
a sensor means the output of the sensor is 1 + β% of the measured speed with the
accuracy 1.

The effects of the random errors of the speed sensors on the non-FTC (a controller
without fault-tolerant capacity) and the FTC (a controller with fault-tolerant capacity)
are discussed firstly. The following three groups of figures are the simulation results
with non-FTC of a faultless system, FTC of a faultless system and FTC of a faulty
system, respectively.

Fig. 5.3 and Fig. 5.4 are the simulation results of a faultless system with non-FTC.
All sensors in the former case have accuracies of 100%, while those in the latter have
accuracies of 1 ± 5% from the beginning.
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Figure 5.3: Non-FTC (sensor accuracy of 100%)

Fig. 5.5 and Fig. 5.6 are simulation results of a faultless system with an FTC.
All sensors in the former case have accuracies of 100%, while those in the latter have
accuracies of 1 ± 5% from the beginning.

Fig. 5.7 and Fig. 5.8 are the simulation results of a faulty system (the second sensor
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Figure 5.4: Non-FTC (sensor accuracy of 1 ± 5%)
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Figure 5.5: FTC (sensor accuracy of 100%)
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Figure 5.6: FTC (sensor accuracy of 1 ± 5%)

is faulty with a gain fault +5%). All sensors in the former case have accuracies of 100%
while those in the latter have accuracies of 1 ± 5%.

Comparing Fig. 5.3 with Fig. 5.4, one can see that the random error has very
little effect on the speed regulators without fault-tolerant capacity when there is no
fault with the sensors. Comparing Fig. 5.5 with Fig. 5.6, it can be seen that the
random error makes the performance a little worse with the fault-tolerant controller
even though no fault occurs. The effects are, however, very small. The performance
index is referred to in Table 5.1. From a comparison of Fig. 5.7 with Fig. 5.8, one sees
that the random errors of sensors have little impact on the performance of the fault-
tolerant controllers when a fault occurs with the second sensor. From a comparison of
the last two pairs, it is concluded that random errors have effects on the performance of
the fault-tolerant controllers, but the effects are limited. The result is still acceptable.
In the following simulation of this study, one therefore seldom considers the random
errors of the sensors. From the above discussion, it is clear the results are not affected.

A discussion of the effects of the FTC on the performance of a speed regulator is
as below.

The figures from Fig. 5.3 to Fig. 5.9 are compared. Fig. 5.9 is the simulation result
of a faulty system (the second sensor is faulty with a gain fault +5%) with all sensors
having accuracies of 1 ± 5%. The controller in this simulation is a non-FTC.
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Figure 5.7: FTC (sensor accuracy of 1 + 0% and second sensor gain fault of +5% )
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Figure 5.8: FTC (sensor accuracy of 1 ± 5% and second sensor gain fault of +5%)
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Figure 5.9: Non-FTC (sensor accuracy of 1± 5% and 2nd sensor gain fault of +5%)

One first compares Fig. 5.3 with Fig. 5.5, in which the sensors have accuracies of
100% and the system is faultless. The former is controlled with a non-FTC while
the latter is controlled with an FTC. From these two figures, one can see that the
performance is visually very similar although from Table 5.1 the last one appears to
be slightly worse.

Then Fig. 5.4 is compared with Fig. 5.6, in which the sensors have accuracies of
1± 5% and the system is faultless. The former is controlled with a non-FTC while the
latter is controlled with an FTC. The speed performance of the latter is a little worse
than that of the former, and even the latter has a steady speed error. This is because
the random errors of the sensors have an effect on the performance of an FTC. Even
so, the FTC does not explicitly worsen the performance of the speed regulator. The
result is still acceptable.

The advantage of an FTC can be seen when a fault occurs. Fig. 5.9 and Fig. 5.8
represent simulation of a faulty system (all sensors with accuracies of 1 ± 5% and the
second one has a gain fault of +5%) with a non-FTC and with an FTC, respectively.
It is seen that the speed performance of the latter is obviously better than that of the
former. That is the contribution of the FTC. From the above comparison, one can
conclude that

1) When no fault occurs and all sensors have accuracies of 100%, the speed perfor-
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mance of an FTC is very similar to that of a non-FTC.

2) When no fault occurs and all sensors have accuracies of 1±5%, the speed perfor-
mance of an FTC is a little worse than that of a non-FTC. However, the result
is still thought as a good result.

3) When a small fault (the second sensor has a gain fault of +5%) occurs and all
sensors have accuracies of 1 ± 5%, the speed performance of an FTC is much
better than that of a non-FTC.

From the above, it is concluded that the FTC for the sensors’ faults is suitable.

In the above simulations, only the FTC for the second sensor fault is given. In the
following, one can see the FTC applied in the faults of the third and fourth sensors,
and in the concurrent faults of the second and fourth ones. Since the accuracy of a
sensor does not explicitly affect the performance of the controller, without a special
description, the sensor accuracy is assumed to be 100% in the rest of this thesis.

Fig. 5.10 shows an FTC with the third sensor having a gain fault of +7% from the
beginning. Fig. 5.11 shows an FTC with the fourth sensor having a gain fault of −20%
from the beginning. Fig. 5.12 shows an FTC with the fourth sensor having a gain fault
of +20% from the beginning.

A kind of concurrent fault (the second sensor has a gain fault of +43% and the
fourth one has a gain fault of +12% from the beginning) is shown in Fig. 5.13 with an
FTC. Another kind of concurrent fault (the second sensor has a gain fault of +30%
from the distance of 2, 000 m and the fourth one has a gain fault of −30% from the
distance of 4, 000 m) is shown in Fig. 5.14 with an FTC.

The comparison of these figures in performance is shown in Table 5.1. The statistical
items are the same as those in the Table 4.1.

From an analysis of the figures and a comparison with Table 5.1, one can conclude
that the application of FTC of sensor faults in the speed regulation explicitly improves
performance in the case of fault occurrence and does not explicitly worsen performance
in the case of a faultless train.

5.6.2 Simulation of locomotive faults

In the previous parts, fault detection and isolation of locomotive faults are assumed to
be done by other approaches and only fault-tolerant control is considered in this thesis.
The fault signal is assumed to be given when a fault occurs.

In the train setting of simulation, there are two groups of locomotives at the front
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Figure 5.10: FTC (third sensor with a gain fault of +7%)
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Figure 5.11: FTC (fourth sensor with a gain fault of −20%)
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Figure 5.12: FTC (fourth sensor with a gain fault of +20%)
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Figure 5.13: FTC (concurrent faults)
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Figure 5.14: FTC (concurrent faults)

Table 5.1: Comparison of non-FTC and FTC of sensor faults

|δv̄|(m/s) |fin|(kN) E
max mean std max mean std (MJ)

Fig. 5.3 2.9813 0.3277 0.5321 331.1579 58.5970 63.0519 12,400
Fig. 5.4 2.9102 0.3163 0.5129 323.3944 56.4624 63.8505 12,200
Fig. 5.9 3.5348 0.7831 0.5225 343.8927 57.7336 63.6908 13,100
Fig. 5.8 3.0783 0.3329 0.4672 316.3416 59.3843 65.0268 12,600
Fig. 5.7 2.9780 0.3718 0.5181 343.3660 59.7467 63.4535 12,900
Fig. 5.5 2.9812 0.3324 0.5288 331.1538 59.5132 63.5522 12,800
Fig. 5.6 3.1587 0.4667 0.5230 338.3691 55.7556 65.5126 13,200
Fig. 5.10 2.9825 0.3902 0.5132 338.7165 58.7065 64.1423 13,000
Fig. 5.11 2.9782 0.5067 0.5788 28.4991 60.5036 63.3990 12,600
Fig. 5.12 2.9810 0.4066 0.5102 343.1219 58.9628 64.1343 13,100
Fig. 5.13 2.9840 0.6170 0.5842 336.3811 63.6549 62.9222 13,400
Fig. 5.14 3.3412 0.6047 0.6593 345.4785 65.6464 62.0612 13,500
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and at the rear, respectively. Every group is composed of two locomotives. In simu-
lation of an FTC, one assumes that the fault is that one locomotive in a locomotive
group does not work. When the two locomotive in a group do not work, distributed
power control cannot apply, which is not discussed in this study. So, in the simulation,
it is assumed that the fault is detected 60 second after it happens and the controller is
then redesigned. There are three types of faults:

1) Front-loco-fault: one locomotive of the front locomotive group does not work;

2) Rear-loco-fault: one locomotive of the rear locomotive group does not work;

3) Both-loco-fault: one locomotive of the front locomotive group and one of the rear
group do not work;

Fig. 5.15 and Fig. 5.16 are simulation results of Front-loco-fault with an FTC and
a non-FTC, respectively. One of the locomotives at the front does not work from the
distance 1, 500m.

Fig. 5.17 and Fig. 5.18 are simulation results of rear-loco-fault with an FTC and
a non-FTC, respectively. One of the locomotives at the rear does not work from the
distance 1, 500m.

Fig. 5.19 and Fig. 5.20 are simulation results of Both-loco-fault with an FTC and
a non-FTC, respectively. One locomotive at the front and one at the rear do not work
from the distance 1, 500m.

From comparing Fig. 5.15 and Fig. 5.16, it can be seen that the performance of an
FTC is better than that of a non-FTC during the period when the train is passing over
a hill. (In these figures, the track profile is the same as that of previous simulation
and is not shown.) That can also be seen from the front locomotive effort. When the
effort of the front locomotive group is zero, then there is no difference between the
FTC and non-FTC. When the front locomotive group uses traction power, the speed
performance of the FTC is better.

The above conclusion is also clear from a comparison of Fig. 5.17 with Fig. 5.18
and Fig. 5.19 with Fig. 5.20. The performance comparison of these figures is shown in
Table 5.2.

The advantage of an FTC in the locomotive fault does not seem obvious in the above
simulation. This is because the locomotive groups make no effort (unpowered) during
most of the travel period. When the locomotive groups make efforts, the advantage is
obvious.
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Figure 5.15: Front-loco-fault with an FTC
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Figure 5.16: Front-loco-fault with a non-FTC
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Figure 5.17: Rear-loco-fault with an FTC
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Figure 5.18: Rear-loco-fault with a non-FTC
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Figure 5.19: Both-loco-fault with an FTC
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Figure 5.20: Both-loco-fault with a non-FTC
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Table 5.2: Comparison of non-FTC and FTC of locomotive faults

|δv̄|(m/s) |fin|(kN) E
max mean std max mean std (MJ)

Fig. 5.15 3.0302 0.4068 0.56 338.40 56.57 65.32 11,600
Fig. 5.16 2.9863 0.4061 0.55 361.80 60.19 65.19 10,800
Fig. 5.17 2.9773 0.3498 0.54 339.61 64.53 63.98 12,200
Fig. 5.18 2.9786 0.4505 0.65 372.29 64.31 65.98 9,680
Fig. 5.19 3.0244 0.4180 0.57 370.39 60.00 64.87 11,400
Fig. 5.20 3.1717 0.5349 0.73 355.97 58.80 66.31 7,800

5.6.3 Simulation of wagon faults

In previous sections, an approach of calculation of the steady-state speed difference as
an FDI of the wagons’ brake fault was proposed. In simulation, all faults occur from
the distance 1, 500 m. The simulation results are shown below.

Fig. 5.21 depicts the simulation of an FTC of the wagon braking system with a
faultless system. The corresponding simulation of a non-FTC is the same as Fig. 4.2.
In comparing these two figures, one can see that the FTC does not explicitly worsen
the performance of the speed regulator.

Fig. 5.22 and Fig. 5.23 represent the simulation results of an FTC and a non-FTC
when the braking system makes only 97% of the expected braking efforts. This fault is
very small. From a comparison of the FTC and the non-FTC, the difference between
them is very small. Also from comparing Fig. 5.22 with Fig. 5.21, one knows such a
small fault does not affect the performance of the speed regulator.

When a more serious fault occurs (the braking system makes 70% of the expected
braking efforts), the difference between the FTC and the non-FTC is obvious, which
can be seen from a comparison of Fig. 5.24 with Fig. 5.25. The former is with an FTC
and the latter with a non-FTC.

When only part of the braking efforts are faulty, the performance of an FTC is also
better than that of a non-FTC, although the FTC is designed for the whole braking
system, which can be seen from a comparison of Fig. 5.26 with Fig. 5.27. In Fig. 5.26
and Fig. 5.27, the outputs of wagons numbered from 2 to 31 are 70% of the expected.
The performance comparison is shown in Table 5.3.

From the above comparison, one can draw the following conclusions:

1) A small fault in the braking system has very little effect on the performance of
the speed regulator.

2) The application of an FTC together with a speed regulator does not explicitly
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Figure 5.21: Faultless train with an FTC of braking system
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Figure 5.22: Small fault in an FTC of braking system
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Figure 5.23: Small fault in a non-FTC
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Figure 5.24: Big fault in an FTC of braking system
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Figure 5.25: Big fault in a non-FTC
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Figure 5.26: Partial fault in an FTC of braking system
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Figure 5.27: Partial fault in a non-FTC

Table 5.3: Comparison of non-FTC and FTC of wagon faults

|δv̄|(m/s) |fin|(kN) E
max mean std max mean std (MJ)

Fig. 5.21 2.9227 0.3480 0.49 323.89 56.64 63.99 12,300
Fig. 4.2 2.9863 0.4061 0.55 361.80 60.19 65.19 10,800
Fig. 5.22 2.8723 0.3458 0.48 321.31 55.86 63.70 12,300
Fig. 5.23 2.8913 0.3299 0.50 321.64 56.79 63.51 12,299
Fig. 5.26 2.7629 0.3728 0.47 315.71 78.30 66.15 12,256
Fig. 5.27 3.6407 0.5251 0.56 322.02 75.93 63.79 11,957
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worsen the performance of the speed regulator when the system is faultless.

3) When a small fault occurs, there is little difference between the application of an
FTC and a non-FTC.

4) The application of an FTC can improve the performance when a big fault of the
braking system occurs.

5) Even if a fault occurs in part of the braking system, which is different from the
assumed fault in (5.25) (fault with the whole braking system), the application of
an FTC can improve the performance of the speed regulator.

5.7 Conclusion

In this chapter, the fault-tolerant control of the handling of heavy haul trains is dis-
cussed. The discussion is based on the redesign of the speed regulator with measure-
ments proposed in chapter 4.

The FDIs for the gain faults of the sensors and the braking system are respectively
studied, while the FDI of the locomotive fault is not studied in this thesis, but can
be done following some other approaches, such as one proposed in [69]. The FDI of
sensor faults is based on a geometric approach proposed in [61]. The FDI of a braking
system is based on observation of the steady-state speed. From the difference of the
steady speed between the fault system and the faultless system, one can get the fault
information.

These two kinds of FDIs are studied separately, but need to be studied further
together. In the opinion of the researcher, it is possible to apply them together, because
the FDI of a sensor fault is based on the difference between the measured speed of a
sensor and the estimated speed of the observer while the FDI of a braking fault is based
on the difference between the measured speeds (steady-state speeds) and the reference
speed. In the former, a necessary condition for the diagnosis of a fault is that there are
differences among the measured speeds while in the latter, a necessary condition for a
diagnosis of a fault is that there are nearly no differences among the measured speeds
(because a steady state is assumed). This is, however, just a theoretical discussion. In
fact, because of the accuracy of the sensor and the ideal assumption of a steady state,
the judgement of the difference among the measured speeds depends on a threshold.
This is a difficult problem. The setting of a threshold affects the performance of the
two FDIs, which is not discussed in this chapter.

In simulation, tests were conducted on the suitability of the two FDIs and the
redesign of speed regulators according to the fault signals from the FDIs of sensor
faults and braking system faults, and the FDI (not included in this study) of locomotive
faults.
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Simulation shows that the random errors of the speed sensors have very little impact
on the train’s performance. It is also shown that the proposed fault-tolerant controller
does not explicitly worsen the performance of the speed regulator in the case of a
faultless system, while it obviously improves the performance of the speed regulator in
the case of a faulty system. It should be pointed out that the approach in this chapter
cannot guarantee performance in the case of the occurrence of a serious fault.
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Chapter 6

Conclusions

6.1 Summary

The objective of the study is to find optimal driving methodologies for an implementa-
tion of the desired speed profile with energy consumption and in-train forces considered.

Firstly, three control strategies are proposed in this study for train handling.Keeping
in mind the characteristics of traditional pneumatic braking systems and ECP braking
systems, a simulation study of optimal open loop controllers is undertaken. The re-
sult shows that ECP braking systems demonstrate superb performance compared with
pneumatic braking systems, especially together with iDP control.

Then, the study mainly deals with the control of a heavy haul train equipped with an
ECP braking system. It is shown that there are redundancies in designing an open loop
controller. An optimization procedure is applied to schedule cruise control by taking
in-train forces and energy consumption into initial design consideration. Optimal open
loop scheduling presents a better starting point for a closed-loop controller design. A
type of LQR controller with state feedback is simulated to verify the above result.

However, the closed-loop control law is designed based on the full state feedback,
which is not practical, since not all the states can be measured.

An observer could be designed to supplement the LQR controller if partial states
are measured. This is, however, not the approach taken in this study. Instead, the
application of output regulation of nonlinear systems with measured output feedback
to the control of heavy haul trains is considered. Optimal scheduling of the open loop
controller is still based on “trading off” the equilibria. Thus the balance between energy
consumption and in-train forces is still maintained. For closed-loop control, speed
regulation is imposed. This approach to design is practically feasible and manageable,
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and by its nature, is also easily integrable with human drivers. Instead of a linear system
theory, a nonlinear system theory is adopted so that without a linear approximation
philosophy, control is closer to reality. Another advantage of the approach is the
assumption that only the locomotives’ speeds are available for measurement.

In this study, the existing result of output regulation of nonlinear systems is also
extended. The output regulation problem of nonlinear systems with measured output
feedback is formulated in this study and solved for the local version and global version.
For its application to train control, some application issues of the output regulation
of nonlinear systems with measured output feedback to train handling are discussed.
Based on the proposed theory, a speed regulator for train control is designed. Simula-
tion result shows its applicability.

Lastly, this study concentrates on the fault-tolerant capacity of the speed regula-
tor. Two kinds of fault modes are considered. Fault detection and identification for
sensor faults and braking system faults are examined. Controller redesign is also given.
Simulation results show that the FTC speed regulator proposed in this thesis has a
fault-tolerant capacity to corresponding faults.

6.2 Assessment

It is should be pointed out that a speed profile is assumed first in the study. This
assumption is a prerequisite for the study. The optimization between energy consump-
tion and in-train force are only done at a point of the track on the assumption that the
train is running at the reference speed. Firstly, this optimization is only local and is not
global (considering the dynamics of the train). Secondly, this optimization does not
consider the optimization of the speed profile, which is rather a problem of a “golden
run” in terms of travelling speed.

The cruise phase of train handling is studied, as well as the speed acceleration/
deceleration phases. The start phase and stop phase of train handling are not studied
because the models of the train within those phases are different from those in this
thesis and more aspects related to safe handling need to be considered. However,
considering a train is running at cruise phase or acceleration/deceleration phases most
of the travel period, the study of this thesis is significant.

The fault-tolerant control in chapter 5 is currently proposed for sensor gain fault,
locomotive actuator fault and braking system fault, respectively. The FDI of locomo-
tive faults is not discussed, which is also a study subject in the literature. The FDIs of
sensor faults and wagon faults are discussed separately. As pointed out at the end of
chapter 5, it is possible to study them or combine the two approaches to them. How-
ever, this combination is not finished because of difficulties in tuning the thresholds
related to them. Nevertheless, this study is a good start to such an FTC problem.
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The simulation in this study is undertaken on a short track (12 km long). It is
enough for the test of a driving profile, which can be seen from the good speed tracking
performance on such a track. However when the objective is to test the optimization
combination of a driving profile and a reference speed profile, a longer track might be
necessary. On the other hand, the track is largely downhill, which is the case with
the COALink of Spoornet when the train is loaded. When the unloaded train travels
back inland, because of the larger ratio of traction effort to mass, it is relatively easy
to drive, which is not simulated in this thesis. Even on such a largely downhill track,
the loaded train runs well when it passes over some hills on the track with a carefully
designed speed profile.

6.3 Future work

To extend the research in this thesis further, the following directions are noted:

1) The optimization problem of the speed profile. Various papers [6, 7, 8, 9] have
studied such a problem, with energy consumption considered. The problem con-
sidering the optimization of energy consumption and in-train forces is still open
in an extremely long train.

2) The optimal scheduling problem with the dynamics of the train. Optimal schedul-
ing in this thesis is done in ignorance of the dynamics of the train. Methods
considering the dynamics of the system, such as model predictive control (MPC),
might be able to improve the performance of optimal scheduling.

3) A uniform FDI design problem for the faults of sensors and actuators. The tuning
criterion of the parameters of the FDIs for sensor faults and braking system faults
needs to be studied further, as well as the FDI of the locomotive faults.

4) The optimization problem of the train composition structure. On the basis of this
study, the researcher is of the opinion that the train structure (composition and
sequence of locomotives and wagons) has a significant impact on the performance,
besides the controller. The optimization of the train composition structure needs
to be considered in future studies. However, the logistics of restructuring the
train impose a much bigger constraint than any other technical ones.
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