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Chapter 4

Speed regulation

4.1 Introduction

In the previous chapter, optimal scheduling shows a better start for the design of a
closed-loop controller for train handling. An LQR closed-loop controller is designed
to verify the advantage of optimal scheduling. However, the closed-loop controller is
based on full state feedback, which is not practical in train handling to measure all
states. If partial states are measured, an observer can be designed to supplement the
LQR controller. This is, however, not the approach employed in this chapter. Instead,
output regulation with measurement feedback is adopted for the full ECP/iDP mode
subject to the assumption that only speed measurement of locomotives is available:
while optimality is retained in open loop control design, closed-loop control is done by
employing a nonlinear system regulator theory.

In this chapter, the output regulation of nonlinear systems with measured output
feedback is first formulated and solved for the global version and the local version. Then
the result of the local version is applied to train control. The simulation result shows the
feasibility of such a speed regulator with only measurement of the locomotives’ speeds,
in terms of its simplicity, cost-effectiveness and its implementation convenience.

4.2 Output regulation with measured output feed-
back

The output regulation problem in linear systems has been studied in [30, 31, 32]. The
internal model principle is proposed in [30], enabling the conversion of output regulation
problems into stabilization problems. The details on the solvability of the problem can
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be found in [31, 32].

The internal model principle is extended to nonlinear systems in [33], which shows
that the error-driven controller of the output tracking necessarily incorporates the
internal model of the exosystem. The conditions of the existence of regulators for
nonlinear systems are detailed for different kinds of exosystems with bounded signals in
[34, 35, 36]. The necessary and sufficient conditions are given in [37] for the local output
regulation problem of nonlinear systems, which is the solvability of regulator equations.
With an assumption added to the conditions in [37], the results in [37] have been
improved in [38]. A differential vector space approach is used in [39] to develop solutions
of state feedback for nonlinear systems with both bounded and unbounded exogenous
signals. An approach for robust local output regulation problems is presented in [40]
in a geometric insight. In [41], an output regulation problem of a class of single-
input single-output (SISO) nonlinear systems is reformulated into an output feedback
stabilization problem.

The robust version of output regulation problem of nonlinear systems with uncertain
parameters is studied in [42]. Furthermore, the output regulation problem of nonlinear
systems driven by linear, neutrally stable exosystems with uncertain parameters is
presented in [72], in terms of the parallel connection of a robust stabilizer and an
internal model, which has recently been in [73]. Recently, the concept of the steady-
state generator has been advanced in [43] as well as that of the internal model candidate.
Based on these dynamic systems, a framework for global output regulation of nonlinear
systems with autonomous exosystems is proposed in [43] for bounded signals, in [44]
for unbounded signals, and in [47] for nonlinear exosystems. The frameworks are in
the form of output feedback or plus (partial) state feedback.

All the controller design approaches in these papers cannot be extended directly
to the form of measurement (measured output) feedback. Measurement feedback is
considered in this chapter instead of the output feedback, because generally the mea-
surable output is different from the output to regulate. For example in this study, in
the handling of heavy-haul trains, the outputs to be regulated are all the cars’ speeds;
however, only part of the speeds (for example, the first and last locomotives’ speeds)
can be practically measured. On the other hand, the measurable output covers the
form of the output or output plus (partial) state, as considered in [44].

In the above papers, an important idea is to design an internal model to eliminate
the effect of the unknown states of the exosystem. In the controllers of [37] for the
local version of output regulation problem, the internal model is given together with the
stabilizer directly. In the global version, it is proposed in [43] and [44] firstly to design
an internal model candidate, and thus the solvability of the output regulation problem
is transformed into the solvability of the stabilization problem. This is a very smart
technique to deal with the output regulation problem. The internal model candidates
incorporate the output (or plus [partial] state, dependent on the measurability of the
state) and the input to design. It does not incorporate the information of the stabilizer,
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which will be known in the controller. In this chapter, another approach is proposed
to solve output regulation problems. Similar to [43] and [44], an output regulation
problem is transformed into a stabilization problem of a simplified system with the
assumption that the states of the exosystem are known, and a stabilizer is designed
for it. It will be shown that the existence of the stabilizer is sometimes necessary for
the solvability of the output regulation problem. Then an internal model with respect
to the stabilizer for the original system is constructed. Specifically, the internal model
can incorporate the information of the stabilizer. This approach is more natural than
the ones in [43] and [44], where the internal model is a prerequisite and first designed.
It can be seen that the existence of the internal model is sometimes not necessary.
However, the existence of the stabilizer is necessary when the output zeroing manifold
is unique, which is the case in all the examples given in [43, 44] and examples 1, 2 and
4 in this chapter.

The definition of the output regulation problem of nonlinear systems in [44] is bor-
rowed, but the feedback is in the form of measurement feedback. A stabilizer for the
simplified system is firstly designed. Then with respect to the stabilizer, an internal
model is constructed to estimate the exosystem states. If successful, the output regu-
lation problem is solved. In this study, the exosystem may be linear or nonlinear, the
signals of which may be bounded or unbounded. The results for both the global ver-
sion and the local version of dynamic measurement feedback output regulation problem
(DMFORP) are reported.

4.2.1 Problem formulation and preliminaries

In this chapter, as well as in the subsequent chapter, extensive use of the differential
geometric concepts and notations will be made to show the application of two most
recent nonlinear control techniques in the case of heavy haul trains. The prerequisite
for these two chapters are [45] and [46], A. Isidori’s classic books.

Consider a nonlinear system,

T = f(z,u,w),
e @1
Ym = hm(x’ )

The first equation describes the original system, with state z € X C R", and input
u € U C R™. The second one defines an exosystem, with state w € W with W € R* a
compact set. The exosystem models the class of disturbance and/or reference signals
taken into consideration. The third one is the error equation. The fourth one is the
measured output y,, € RP™. The vector fields f(z,u,w) and s(w) are smooth, and the
mappings h(z,w) and h,,(z,w) are smooth, too.
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It is assumed that f(0,0,0) = 0, s(0) = 0, h(0,0) = 0, i.e., the system (4.1) has
the equilibrium state col(x,w) = col(0,0) for u = 0 with zero track error h(0,0) = 0.

Before the problem is formulated, some concepts in [45, 46] are stated firstly.

A continuous function f : [0,a) — [0, +00) is a class-K function if f(0) = 0 and it
is strictly increasing.

A continuous function f : [0, +00) — [0, +00)is a class-L function if it is decreasing
and
lim f(t) = 0.

t—o00

The function f(r, s) is a class-ICL function if f(-,s) € K for all s > 0, and f(r,-) € £
for all r > 0.

The equilibrium z = 0 of the system & = f(x) with f(0) = 0 is said to be globally
(locally) asymptotically stable in the sense of L functions if from any initial state
xo € R™ (some initial state o € X with X C R™ through the origin), the solution of
system satisfies ||z|| < o(||zol|,?) for some class-KCL functions of-, -).

A system of & = f(z,u),y = h(z), with f(0,0) = 0 is said to be globally (locally)
stabilizable if there exists a control law 2 = n(z,y),u = ¥(z,y) satisfying 1(0,0) =
0,9(0,h(0)) = 0 so that the origin of the closed-loop system & = f(z,9(z, h(x))), 2 =
n(z, h(z)) is globally (locally) asymptotically stable in the sense of KL functions.

The dynamic measurement feedback output regulation problem of the system (4.1)
considered here is to design a controller, in the form of

u = 19(2,7 ym)?

2 =n(2,Ym).

(4.2)

An advantage of a controller in the form of (4.2) is that it depends only on the cur-
rent values of the measured variables, instead of differentiated signals of the measured
variables, as introduces noise, and stably filtered signals of the measured variables. As
a result, the closed-loop system can be written as

l"c = fc($cyw)7
w = S(U)),
e = he(xe,w), (43)

Ym = hmc (ZL’C, w)7

where x. = col(z, 2), fo(xe,w) = col(f(z,9(2,Ym), w),n(2,Ym)), he(xe, w) = h(x,w),
B (Te, w) = by (2, w).
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The formulation of the output regulation problem involves two requirements from
the closed-loop system (4.3). One is the asymptotical convergence to zero of the error
output, that is,

P1
lim e(t) = lim A(z(t),w(t)) = 0.

t—o0 t—o0

This property reflects the objective of the output regulation problem.

The other one is the internal stability of the closed-loop system (4.3). The sys-
tem (4.3) is said to be globally (locally) asymptotically stable, irrespective of w, when
for all w(0) € W with W any (a) compact set (containing the origin), the subsys-
tem, parameterized by w, of the first equation of the system (4.3) is globally (locally)
asymptotically stable in the sense of KL functions.

When the local version of the output regulation problem is considered, assuming
the exosystem is Poisson stable at the origin (neutrally stable), the internal stability
is given in [37] by

P2 the equilibrium of the closed-loop system (4.3) with w = 0 is asymptotically
stable (or exponentially stable).

Actually, this property guarantees the boundedness of the trajectories of the closed-
loop system with sufficiently small exosystem signals. But once the signals of the
exosystem are large, the boundedness may not be kept [44].

Example Consider the following system

I.‘l = —I +U,

.’tg = —T9 + Tow, (4 4)
W =0, '
e=T1 —W.

The solution is
11 = (21(0) —w)e " +w,
Ty = x9(0)el 1T (4.5)
e = (21(0) —w)e™".

It is easy to check that the condition P2 is satisfied, but when w > 1, the state x5
approaches infinity. So P2 cannot be used for the global version of output regulation
problem. The internal stability of a global version of output regulation problem is
given in [43] as
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P3 for all w € W with W any compact set, the trajectories of the closed-loop system
(4.3) starting from any initial state z., exist and are bounded for all ¢ > 0.

This interpretation of internal stability is meaningful if the states of the exosystem
are bounded. When they are unbounded, the condition is modified [44] as the following
two properties:

P4 for all wy € W, there exists a sufficiently smooth functions 7.(w) with 7.(0) = 0
satisfying
om.(w)
ow

(4.6)

P5 for all wy € W, z. = m.(w) of the closed-loop system of (4.3) is globally asymp-
totically stable, irrespective of w, in the sense of some class KL functions.

The property P4 actually defines an invariant flow for the closed-loop system (4.3),
on which the output error is exactly zero. The property P5 is about the asymptotical
convergence of the invariant flow. From any initial state, the trajectories will converge
to the invariant flow.

When the exosystem is neutrally stable, a closed-loop system satisfying properties
P4 and P5 satisfies the properties P1 and P2.

If the P4 is fulfilled, then there exists an invariant manifold x. = 7.(w), on which
the output is exactly zero. And for 7.(0) = 0, and from P5

lze = me(w)]| < o([|ze(0) — me(wo)]], t)

for some class-KCL functions o(+, ), one has [|z.|| < o(||z.(0)||,t) when w = 0. Thus the
asymptotical stability of P2 is satisfied. With the continuity of the output hA(z,w),
. — m(w) as t — 0, and w is bounded, P1 is satisfied. So the property P2 can be
interpreted by

P4’ for some compact set W through the origin, there exists sufficiently smooth func-
tions 7.(w) with 7.(0) = 0 satisfying the equations of (4.6).

P5’ the equilibrium z. = 7w .(w(t)) of the closed-loop system (4.3) is locally asymp-
totically stable, irrespective of w, in the sense of KL functions.

It is pointed out that the asymptotical stability in the sense of JCL functions is more
general than the exponential stability. So the properties P4” and P5’ are more general
than the requirement P2 in [37].
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The properties P4 and P5 are also sufficient conditions for the property P3 when
the exosystem is Poisson stable. Because the 7.(w) is bounded, and from the asymp-
totically stability, the state x.(t) is also bounded.

The global DMFORP is to find, if possible, a controller in a form (4.2) that allows
the closed-loop system (4.3) to satisfy the properties P1, P4 and P5 for any compact
set W C R°.

The local DMFORP is to find, if possible, a controller in a form (4.2) that allows
the closed-loop system (4.3) to satisfy P1, P4’ and P5’ for a compact set W C R*®
through the origin.

In the problem formulation, measurement feedback, instead of output feedback, is
considered because the measured output is usually different from the output to regu-
late, and measurement feedback is more universal than output or plus (partial) state
feedback. If measured output is the output error to regulate, then measurement feed-
back is output feedback. If it is just partial output, the feedback is in the form of partial
output feedback, as in example 1. If the measurement includes the (partial) state, then
the feedback includes (partial) state feedback. It is common for the measurement to be
completely different from the output or/and state. When only measurement feedback
can be used, such as in example 2 and example 3, the output regulation problem cannot
be solved with output feedback or plus partial state feedback.

Remark 1 The zeroing output is guaranteed by the property P1. The properties P4
and P5 usually imply P1. However, when the state of erosystem is unbounded, the
output cannot be definitely zero sometimes, which can be seen in [{4].

Remark 2 The exosystem considered in this study is given as w = s(w). In the global
version of DMFORP, the exosystem may be Poisson stable or not, linear or nonlinear,
bounded or unbounded. However, in the local version, the exosystem is required to be
neutrally stable.

Remark 3 FEven though the exosystem may be unbounded in global version, a con-
straint should be put on the exosystem. The state of the exosystem should not vary too
quickly. This is because in that case it is difficult to design an observer to estimate or
track the state of the exosystem w = s(w).

4.2.2 Assumptions

In this chapter, one makes some assumptions. The first one is as follows:
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A1 There exist sufficiently smooth functions 7(w) and ¢(w) with 7(0) = 0 and ¢(0) =
0, for all w € R?, satisfying,
om(w)
ow

(4.7)

Remark 4 The above assumption is a standard one. It is a necessary condition for the
solvability of the output regulation problem [37]. The equation (4.7) is called regulator
equation.

With this assumption, the original system can be written as the following (called
simplified system) with the coordinate change ¥ = = — w(w), u = u — c(w),

W(he§e f)(f,ﬂ,w) = f(Z + m(w), c(w) + u,w) — f(m(w),c(w),w), hp(Z,w) = hy(z +

Furthermore, one makes another assumption.

A2 The above simplified system is globally stabilizable, irrespective of w, by a con-
troller in the form of measurement feedback.

With this assumption, there exists a (dynamic) measurement feedback stabilizer in the
form of - _
z1 = nl(zbym?w)? Th(07hm(07w)7w) - 07
'L_L:w1<21,ym,w), ¢1(O, hm(0>w)7w) :Oa

with which the equilibrium col(Z, z1) = col(0,0) of the closed-loop simplified system
composed of (4.8) and (4.9), for any w € W, is globally asymptotically stable, irre-
spective of w, in the sense of KL functions.

(4.9)

Remark 5 The assumption A2 is also necessary for the solvability of the output reg-
ulation problem on the zeroing output manifold {(z,w) | v = w(w),w € W}. It is
obvious that in this case, the state of the exosystem is assumed to be known. This is
a middle case between full information feedback and output feedback [37], where the
measurement s the output.

The necessity is as follows:
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Lemma 6 If the global output regulation problem is solvable with a unique output ze-
roing manifold {(z,w)|zr = w(w),w € W}, then there must exist a stabilizer in the
form of (4.9) such that for any w € W, the equilibrium col(Z,z) = col(0,0) of the
closed-loop simplified system is globally asymptotically stable, irrespective of w, in the
sense of ICL functions.

Proof: Assume the condition P4 is satisfied, then there exists sufficiently smooth
function col(x, z) = m.(w) = col(w(w), z*(w)) satisfying

8755;0) s(w) = f(m(w), " (w), hy(7(w),w)), w),
aza* i}w) s(w) = n(2* (W), hy (7(w), w), w)
0= h(r(w),w)
Choosing
5=z 2(w),

c(w) =" (w), him(7(w), w)),
U1(21, Ym, w) = V(21 + 25 (W), Y, w) — c(w),
M1 (215 Yy w) = N(21 + 27 (W), Ym) — (2" (W), hon (7 (W), w)),

one has the equation of (4.9) and the system (4.8).

Furthermore if the condition P5 is fulfilled, i.e, for all wg € W, the trajectories of
the closed-loop system (4.3) starting from any initial state z.(0) exist for all £ > 0, and
satisfying

[ze(t) — me(w(t)]| < o(l|2e(0)) = me(wO)|[, 1),

which can be written as ||col(Z, z1)|| < o(||col(Zg, z1,)||, ).

Thus the equilibrium col(Z, z1) = col(0, 0) of the closed-loop simplified system com-
posed of (4.8) and (4.9), is globally asymptotically stable, irrespective of w, in the
sense of KL functions.

Remark 7 The above necessity is true when the original system has a unique output
zeroing manifold. It is not difficult to give some conditions under which the output
zeroing manifold is unique. For example, if the maximal output zeroing manifold of
(4.1) takes the form N* = {x — ¢(w) = 0} for some smooth functions ¢(w), then
uniqueness is guaranteed. This, together with more general cases, are under separate
study. It is nevertheless worth noting that all examples given in [43, 44] and Exam-
ple 1, 2 and 4 given in this chapter admit unique output zeroing manifolds. When
the original system has more than one output zeroing manifold, there are more than
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one corresponding simplified system. The existence of the stabilizer for one simplified
system may be unnecessary for the solvability of DMFORP. However, if the DMFORP
15 solvable on a specific output zeroing manifold, there must exist a stabilizer for the
corresponding simplified system. It is demonstrated in Example 3.

For the observability of the states of the exosystem, one makes the following as-
sumption.

A3 there exist mappings 0(w) : R* — R% o : R* — R% 3 : R? — R*® satisfying

db(w) _
—a b)), (4.10)

Remark 8 The dynamic system of (4.10) is very similar to the definition of the
steady-state generator in [43]. The difference is that the output of (4.10) is exactly
the state of the exosystem while it is the steady input or input plus (partial) state of
the original system of (4.1) in [43] and [44]. With the output of this dynamic system,
all the steady input and state of the original system can be generated. In this study it
is therefore still called steady-state generator.

When it comes to the local DMFORP, the first two assumptions are as follows:

A1’ There exist sufficiently smooth functions z = 7(w), u = c¢(w) with 7(0) = 0,
c(0) = 0, satisfying, Vw € W with W a neighbourhood of the origin, regulator
equation (4.7) is solved.

A2’ The system (4.8) is locally stabilizable, irrespective of w, by a controller in the
form of measurement feedback.

With the assumption A2’ there exists a dynamic measurement feedback control
law in the form of (4.9) with which the closed-loop simplified system composed of
the simplified system (4.8) and the stabilizer (4.9) is locally asymptotically stable at
col(Z, z1) = col(0,0) for all w € W.

4.2.3 Solution of the global DMFORP

Definition 1: An internal model candidate with respect to the stabilizer (4.9) and the
steady-state generator (4.10) is as (4.11) satisfying 12(0, 8(w), hp,(7(w), w)) = a(B(w)).

2o = Ma(21, 22, Ym)- (4.11)
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Remark 9 This definition is consistent with the one in [{3] and [44], which also re-
quires 1m2(0, 0(w), by, (T(w), w), w)) = a(f(w)) when hy,(m(w),w) = e = 0. Here the
concept is extended to the case of the measurement feedback form. Furthermore, this
internal model candidate incorporates the information of the stabilizer, which is differ-

ent from that in [43] and [44).

The following system is called the closed-loop stabilized system in this chapter,

i' = fi}(‘f721722aw)a
231 == T}Zl(i’721,,§2,w), (412)

52 = 77]22 (:E> 21, 22) UJ),

where fz(Z1, 21, 22, w) = f(T 4+ m(w), u,, w) — f(w(w), c(w),w), u, = c(B(Z2 + 6(
1(21, hi (T 4 m(w), w), B(Z2 + 0(w))), 1., (T, 21, Z2, w) = M1 (21, A (T + 7(W), W),
Q(M)))7 7722(‘%7 21, %2, w) - nQ(Zlv 2o+ 9(11)), hm(j_’_ﬂ-(w):w)) - 772(07 Q(w 7hm(7r(w

Definition 2: The internal model candidate (4.11) is called a global (local) internal
model with respect to the stabilizer (4.9) and the steady-state generator (4.10) for the
original system (4.1), if for any w € W, the closed-loop stabilized system of (4.12) is
globally (locally) asymptotically stable, irrespective of w, in the sense of ICL functions

Q('a')'

Remark 10 An additional restriction is added to the internal model candidate. Thus
the candidate becomes a “real one”. The restriction gives an approach to modify the
candidate to get a real internal model.

In the original system, the output function h(x,w) is globally Lipschitz with respect
to x if there exists a class-K function [y such that for all 2!, 2% € R", w € R®,

Ih(2", w) = h(a®, w)| < lo(||2" = 27[)). (4.13)

Theorem 11 If A1, A2, A3 hold, there exists a global internal model (4.11) with
respect to the stabilizer (4.9) and the steady-state generator (4.10), and the output
function h(z,w) is globally Lipschitz with respect to x, then the global DMFORP of the
original system (4.1) is solvable.

Proof Consider the following controller,

21 = nl(zlvymvﬁ<22))7
2y = M2(21, 22, Ym), (4.14)
u = c(B(22)) + 1(21, Ym, B(22)).
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Given any compact set W, the origin of the closed-loop stabilized system of (4.12)
is globally asymptotically stable from initial state (Zg, z1,, Z2,, Wo). The state of the
augmented system composed of the original system (4.1) and the controller (4.14) is
x. = col(x, z1, z9), and the state of system (4.12) is z, = col(Z, z1, Z2), with a relation

col(x, 21, z2) = col(Z, z1, Z2) + col(m(w), 0, 0(w)).

It is easy to verify that m.(w) = col(m(w),0,0(w)) satisfies the equations (4.6) for the
augmented system composed of the original system (4.1) and the controller (4.14).
Thus the condition P4 is satisfied.

On the other hand, x. — 7.(w) = col(z, z1, 22) — col(m(w), 0,0(w)) = col(Z, z1, Z3) =
T, and from the definition of the internal model, one has ||z.(t)|| < o(||z.(0)||, %), then
[ze(t) = me(w ()] < o(l|ze(0) = me(wo)l], ?).
The condition P5 is satisfied.

With the Lipschitz condition, and Z(¢t) — 0 as t — 0,

Jim Je(8)] = Jim A(a(t) + w(w).w) = h(r(w). v)
. ) (4.15)
< Jim lo(1a]) = .

i.e., the requirement P1 of the asymptotical convergence to zero of the error output is
satisfied.

Thus the global DMFORP is solvable.

Remark 12 In the theorem, if the solution of (4.12) satisfies
7:lim (h(z + m(w),w) — h(r(w),w)) =0 (4.16)

for any w € W, the Lipschitz condition is not necessary for the solvability of DMFORP.

Remark 13 This theorem gives an approach to solve the output regulation problem.
The first step is to design a stabilizer for the simplified system on the assumption that
the states of the exosystem are known. Then an internal model candidate is constructed
with respect to the stabilizer and a steady-state generator for the exosystem. If the
internal model is found and the condition of (4.16) is satisfied, then the DMFORP is
solved.

Remark 14 If w is not explicit in ¥y (21, Ym, w) + c(w) and the mapping n1 (21, Ym, w),
the internal model is unnecessarily constructed, and the dynamic measurement feedback
output regulation problem is solved by the following controller.

21 = 77?(2’17 ym)>

w = 00(z1, ), (4.17)
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where 1221, Ym) = M (21, Ym, W), V21, Ym) = V1(21, Ym, w) + c(w). From the proof of
the above proposition, one can see that the internal model is to estimate the functions in
the stabilized system related to w. So in the steady-state generator definition, the output
of the generator can be just the functions related to w. This is also consistent with the
origin of the internal model candidate, which is to estimate the unknown parameters in
the controller. The internal model can be thought of as an observer for the exosystem
and its design can be thought of as an observer design for nonlinear systems, which is
another problem. So the design techniques of the internal model are not detailed in this
thesis.

Proposition 15 If the output regulation problem is solvable by the approach proposed
in [43] and [44] with the measurement being the outpul or the output plus the (partial)
state, it 1s also solvable with the above theorem.

Proof In [43] and [44], output regulation problem of the following system
j: = f<x7 u7 w)7

4.18
e = h(z,u,w), ( )
is solved by the controller
0=z, u,e),
§:C(j17 7jda§7e)a (419)

u = 6u(77) + /{?(.fl, ce ,i’d,f,e),
where the solution of the regulator equation is z = m(w), u = ¢(w), and
df
P _ (o),
col(m (w), -+ ma(w), c(w)) = B(O(w)),
ﬁu = COl(ﬁdJrl’ ce 7ﬁd+m)7
V(0(w), 7(w), e(w), 0) = a(b(w)),
k(0,---,0,0,0) = 0, g(o -++,0,0,0) =0,
T; =T — 62(> - 72’“'7d'

With the approach proposed in this chapter, the stabilizer for the simplified system
can be chosen as

V(1 21, -+, Ta, w),
C(rf’ -, Za, €, e), (4.20)
( )+k(x17 : 7§d7€7€) _C(w)a

S e I
Il

where
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V@, wg,w) = (7 +0(w), Ty, - Ta, t + a(B(w)), €) — a(f(w)).

In the closed-loop stabilized system, only the function 6(w) is related to w. So
the output of the internal model can be just the function #(w). It is obvious that the
dynamic system 1 = (1, z,u, e) is naturally the internal model candidate. Actually
this candidate is a “real one”. This internal model is principally the same as part of
the stabilizer. Combining the stabilizer and the internal model, the controller of (4.19)
solves the global DMFORP.

All in all, if an output regulation problem is solvable by the approach proposed in
[43] and [44], it must be solvable by the approach proposed in this chapter.

4.2.4 Solution of the local DMFORP

Similar to the global version, there is a theorem for the local DMFORP.

Theorem 16 If A1’ A2’ and A3 hold, the exosystem is neutrally stable, and if there
exists a local internal model with respect to a stabilizer (4.9) and a steady-state gener-
ator (4.10), then the local DMFORP is solvable.

Proof Consider the controller (4.14). The closed-loop stabilized system of (4.12)
is locally asymptotically stable from the initial state Zy, z1,, Z2,, wo. The state of the
augmented system composed of the original system (4.1) and the controller (4.14) is
x. = col(x,z1,22), and the state of the system (4.12) is Z, = col(Z, 21, Z5), with a
relation

col(x, z1, z9) = col(Z, z1, Z2) + col(m(w), 0, 0(w)).

It is easy to verify that m.(w) = col(m(w),0, 0(w)) satisfies the equations (4.6) for the
augmented system composed of the original system (4.1) and the controller (4.14).
Thus the condition P4’ is satisfied.

On the other hand, =, — 7.(w) = col(z, z1, z2) — col(m(w), 0, 8(w)) = col(z, 21, Z2) =
Z., and from the definition of the local internal model, one has ||Z.(t)|| < o(||Z(0)]|, ),
then

[2(t) — me(w(®))]| < o(||7c(0) — me(wo)l], ).
The condition P5’ is satisfied.

With continuity of h(x,w), z(t) — 0 as t — 0, and with w bounded,

lim e(t) = lim A(Z(t) + 7m(w), w) = h(w(w),w) = 0,

t—o00 t—o00

that is, the requirement P1 is satisfied.
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Thus the DMFORP is solved by the controller (4.14). If the state w of the exosys-
tem is not explicit in the mapping 7; (21, Ym, w) and the controller v = 1 (21, Ym, w) +
c(w), then the internal model need not be constructed.

For a nonlinear system (4.1), one has the notations:

0f(0,0,0) _  Os Oy of
A_ (933 ’ S_ aw(0)7 Om - 8.’£ (070)7 P = 8w(0’0’0)’
of oh oh Oh,

Proposition 17 For (4.1), if the exosystem is neutrally stable, (A, B) is controllable

[28] and
(1o &]emen)

is detectable [28], furthermore the condition A1’ is satisfied, then the local DMFORP
s solvable.

Proof With the assumption A1’, using the coordinate change & = x — 7(w), @ =
u — c(w), the simplified system (4.8) can be stabilized by the following controller.

2 = fzn + m(w), c(w) + @, 212 + w) — f(7(w), c(w), w)
+ G1(hn(Z 4+ m(w), w) — Ay (211 + m(W), 212 + w)),
212 = 5(2z12 +w) — s(w) (4.21)
+ Go(hm (T + m(w), w) — hp (211 + 7(w), 212 + w)),
u=c(z12+w)+ H(z11 + 7(w) — 7(212 + w)) — c(w),

where H, G, G5 are chosen such that
A+ BH

and
A—-G.C,, P—GiQ,

_GQOm S — GQQm
are Hurwitz, which guarantees the following Jacobian matrix of the closed-loop simpli-
fied system is Hurwitz [28].

A BH BK
G\C, A+ BH—G,C,, P+ BK—GQ,, |, (4.22)
GQCm _GQCm S - GQQm

where K = (22) _ 2mw)y) o Since the pair of (A, B) is controllable and the pair of

ow ow

([ 151 g } ,[Cm, Qm]) is detectable, it is possible to choose H, G, G5 satisfying the

above conditions. With the Lyaponov theory, the Hurwitz Jacobian matrix means the

Electrical, Electronic and Computer Engineering 67



University of Pretoria etd — Zhuan, X (2007)

Chapter 4 Speed regulation

system is exponentially stable, which leads to asymptotical stability in the sense of KL
functions. So the above controller can be thought of as a stabilizer. The assumption
A2’ is satisfied.

Now the steady state generator is chosen as f(w) = [ WS}U) } , BO(w)) = w,

and the internal model candidate 29 = 1(29, 211, 212, b (Z, w)) is constructed. If one
chooses zo = col(za1, 222) satisfying z91 = 211 + w(w), 2922 = 212 + w, then one gets

Zo1 = f(211, Uz, 291) + G1 (Y, — hin (221, 212)),
Zo9 = S(222) + G2(Ym — him (201, 222)), (4.23)
u, = c(222) + H(221 — m(212),

The stabilizer (4.21) is rewritten as (4.24).

d(z1 + m(w)) = f(z11 + m(w), u, 210 + w)

dt
+ Gi(hp(T 4+ 7(w), w) — hp(z11 + (W), 212 + W)),
d(z15 + w) B (4.24)
— = $(z12 + w)

+ G2 (hin (T + m(w), w) = hyp (211 + (W), 212 + W),
u=c(z12 +w) + H(z11 + m(w) — (212 + w)).

With the internal model candidate (4.23), replacing the functions z1; +m(w), z12+w
in the stabilizer (4.24) with z9; = Zo1 + m(w) = 211 + 7(w) and 299 = Zos + W = 215 +w,
respectively, the closed-loop stabilized system can be written as

z = f(7+m(w),u,w) — f(r(w),c(w),w),
Z11 = f(z11 + m(w), u, 212 + w) — f(m(w), c(w), w)
+ G1(Ym — hin (211 + (W), 212 + W), (4.25)
212 = $(z12 + w) — s(w) + G2 (Ym — him (211 + T(W), 212 + W)),
u=c(z12 + w) + H(z11 + m(w) — w(z12 + w),

whose Jacobian matrix is the same as (4.22). That is, the internal model candidate
(4.23) is a “real one”.

It is noticed that in the closed-loop stabilized system (4.25), the dynamics of the
internal model disappears because when one changes the coordinates of the internal
model candidate, and replaces the functions of w in the stabilizer, the dynamics of the
stabilizer is the same as the internal model candidate.

With the theorem 16, the local DMFORP is solved by the controller (4.23).
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Remark 18 From the proof, it can be seen that the problem is locally solved by the
following controller,

Zo1 = f(z11) + g(z11)us + p(211) 222 + G1(Yim — hum (221, 212)),
299 = $(292) + Go(Ym — hm(221, 222)), (4.26)
u, = c(2902) + H(221 — m(212)),

where H, G, Go can simply be chosen such that
A+ BH

and

A-GC,, P—-GQn
_G2Cm S - G2Qm
are Hurwitz, which guarantees the following Jacobean matriz of the closed-loop simpli-
fied system is Hurwitz,

A BH BK
G.C,, A+BH—-GC,, P+ BK —-G1Q,, |,
GQCm _G2Cm S - G2Qm
where De(uw) o)
c(w T (w
K= ow " ow wso.

In particular, when the state of the exosystem w is known, for example, vy, =
col(yl , w), the problem can be solved by

= f(2) +9(2)u+p()w+ Gi(yy, — hu(z,w)),
u = clw)+ H(z—m(w)), (4.27)

where Gy, H are chosen such that A+ BH and A—G,C}, are Hurwitz (C} = w.)

Remark 19 The parameters K (H), G can be chosen with different kinds of methods,
such as with pole placement or a linear-quadratic state-feedback regulator approach.
Although K (H), G are chosen with a linear system theory, the nonlinear regulator
problem is solved by the controller (4.26) with them.

If the measurement is the output, the above proposition leads to the theorem in
[37]. However, Theorem 16 is not limited to processing the case of the proposition; as
can be seen in Ezample 4, this theorem can process a nonlinear system whose closed-
loop simplified system has a Jacobian matrix which is not Hurwitz but is stable in the
sense of some class KL functions.

Consider a simplified system

T = f(z,u,w)
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can be stabilized by a stabilizer
2= nl(zlyymyw)y
u= ¢1(21> Ym,s ’LU)

The Jacobian matrix of the closed-loop simplified system at the origin is not Hurwitz,
but it is still stable in the sense of some class KL functions.

(4.28)

Assuming an internal model candidate Zo = 15(21, 22, Y ) With respect to the above
stabilizer and a steady-state generator daé;”) = a(f(w)), w = B(A(w)) is a “real one”,
and with a coordinate change Zs = z5 — 0(w), the closed-loop stabilized system can be

written as

r = f(z,1,w),
=1 (1aym:ﬁ(22+9( ),

% =121, 22 + 0(w), ym) — a(0(w)), (4.29)
a:?l(zlayma (22+9< )))7
Ym = hum (l‘ w)

When z; = 0 in (4.29), it is the closed-loop simplified system, which is stable
although its Jacobian matrix is not Hurwitz. So according to the reduction principle
[45], it is possible to find a linear change of coordinates col(py, ps) = T'col(T, z1) + K Zs,
with 7" nonsingular, such that the closed-loop stabilized system (4.29) can be rewritten
as

p1 = F1p1 + g1(p1, p2, Z2),
P2 = Foip1 + Fapy + GaZa + g2(p1, p2, 22), (4.30)

Zy = Aip1 + Aopa + AZy + g3(p1, p2, 22),
where F has all the eigenvalues with zero real part, F; has all the eigenvalues with
negative real part, and the functions gy, g2, g3 vanish at (pi, pa, Z2) = (0,0,0) together
with their first order derivatives.

When Z, = 0 in (4.30), the first two equations are as follows.

p1 = Fip1 + g1(p1, pe, 0),
P2 = Fo1p1 + Fopa + g2(p1, p2, 0),

which is the transformation of the closed-loop simplified system with the linear change
of coordinates col(py, p2) = Tcol(Z, z1). For the origin col(Z, z1) = col(0, 0) of the closed-
loop simplified system is locally asymptotically stable in the sense of XL functions, the
origin col(p1,p2) = col(0,0) of the (4.31) is also locally asymptotically stable in the
sense of ICL functions. So according to the reduction principle, there must exist a
center manifold py = mo(p;) for the system (4.31) and the origin = 0 of the reduced
system & = Fyxz+ g1 (z, mo(z), 0) is necessarily locally asymptotically stable in the sense
of KL functions.

(4.31)

If Ajzy + Agma(2z1) + g3(21, m2(21),0) = 0 and 52 fif is Hurwitz, then p, =
2
mo(p1), Z2 = 0 is a center manifold for the system (4.30) and the reduced system
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is the same as that of the system (4.31), the origin of which is locally asymptot-
ically stable in the sense of KL functions. According to the reduction principle,
col(p1,p2,22) = (0,0,0) of the system (4.30) is locally asymptotically stable in the
sense of KL functions. In addition, 7" is nonsingular in the linear change of coordi-
nates, the origin col(Z, z1, Z2) = col(0, 0, 0) of the closed-loop stabilized system is locally
asymptotically stable in the sense of KL functions. According to the definition of the
internal model, the internal model candidate is a “real one”, that is, the aforementioned
assumption is true. According to Theorem 16, the local DMFORP is solved.

The above analysis gives an approach to check if the observer (internal model can-
didate) is a “real one” in the local DMFORP.

Remark 20 The above condition is sufficient for the solvability of the local DMFORP.

4.2.5 Examples

Four examples are employed to show the application cases of the proposed theories.
Example 1 will show the solution of DMFORP with partial output feedback (static
stabilizer and measured output being partial of the regulated output), Example 2
will show the solution of DMFORP with measured output feedback (static stabilizer
and measured output being different from the regulated output) and Example 3 will
show the solution of DMFORP with measured output feedback (dynamic stabilizer and
measured output being different from the regulated output). These three examples are
application cases of Theorem 10 while Example 4 is an application case of Theorem 15.

Example 1 Here, consider the system [44],

i‘l =21 + ug,
jfg = —Z9 + 12([L’1 — ’lU) + 0.3U2,

w = 2w,
(4.32)
€1 =T — W,
ey = T 1Ty — 0.211)2,
Yn = €1 = T1 — W.
The solution of the regulator equation is z = w(w) = { Olgw } , u = clw) =

[ 55} } . One can get the following simplified system with z = z — 7(w), @ = u— c(w),
T =1+ 'l_L,

_ _ _ (4.33)
Ty = —To9 + 1.271 + 0.3uUs.
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It is obvious that the above linear system is globally asymptotically stable if one chooses
the stabilizer u; = —k17; = _klyma Uy = 0, ki > 1.

One considers a steady-state generator with #(w) = w, f(6(w)) = O(w), and an
internal model candidate with respect to the stabilizer in the form of 2, = ky,, + 220 =
kxi + 229,k € R. Then one can get the following closed-loop stabilized system with
22 = 29 — G(w),

i‘l = (1 — kl)l'l + 22,
Ty = 1.22 — Ty + 0.629, (4.34)
Zy = kT1 + 2%,

If k1, k is chosen such that ky —3 > 0, k+2(k; —1) < 0, for example, k; =7, k = —15,
the above system is globally asymptotically stable and thus zy = ky,,+225 is an internal
model with respect to the stabilizer. Then the output regulation problem of (4.32) is
solved by

22 - kym + 2227
Uy = —k1Ym + 22, (4.35)
U = 22’2.

Remark 21 This ezample is in the form of (partial) output feedback. And the stabi-
lizer is designed for a linear system. Some parameters in the stabilizer can be tuned
together with some parameters in the internal model such that the origin of the closed-
loop stabilized system is globally asymptotically stable in the sense of some class-K L
functions.

Example 2 Consider the following system with some changes in the above exam-
ple,
Ty =21 + ug,
jfg = —Z9 + 12([L’1 — UJ) + O.3U27
w = 2w,
(4.36)
€1 =T — W,
ey = T 1Ty — 0.211)2,

Ym = T1 — w/2.

The solution of the regulator equation and the simplified system are the same as
in Ezample 1. But the stabilizer is in the form of 4y = —k1Z; = —ki(ym — w/2), Uz =
0, ki > 1.

One considers a steady-state generator with #(w) = w, 8(6(w)) = O(w), and an
internal model candidate with respect to the stabilizer in the form of 2, = ky,, —
kzo/2 + 229 = kZy — k2o/2 + kw/2 + 229,k € R. Then one can get the following
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closed-loop stabilized system with zy = 25 — 0(w),

fl = (1 — ]{31)1’1 + (]_ + k‘l/Q)Zg,
Ty = 1271 — Ty + 0.629, (4.37)
22 = kil —|— (2 - k‘/Q)ZQ

If k1, k is chosen such that ky > 1, ky — 3+ k/2 >0, —3k/2—2(k; — 1) <0, for
example, k; = 10, k = —13, the above system is globally asymptotically stable. Then
the output regulation problem of (4.36) is solved by

uy = —/ﬁym + (1 + k1/2)2’2, (438)

Uo = 222.

Remark 22 From the above examples, one can see that not all stabilizers have the
corresponding internal model such that the closed-loop stabilized system is globally as-
ymptotically stable. It should be pointed out that all the examples in [44] can be dealt
with in the framework proposed in this chapter with stabilizers in the form of static
feedback. Next, a system that cannot be stabilized by a static measurement feedback
controller is considered.

Example 3 Consider the following system

T1 = —2x1 — To + u + 3w,

To = 21 + 319 — 3w,

W= w, (4.39)
e =TTy — W,

Ym = T2.

A solution of the regulator equation is x = m(w) = col(w,w),u = ¢(w) = w. One can
get the following simplified system with 7 = x — 7(w), 2 = u — c¢(w),

ig :f1+3f2, .

with measurement y,, = T2 + w. This system cannot be stabilized by a static feedback
controller even if w is known. However, it can be globally stabilized by a dynamic
feedback controller,

211 = —(Ym —w) = 8211 — 29212 = —Ty — 8211 — 29219,
212 = 95(ym — w) + 211 — 6.5212 = 95!2‘2 + 211 — 6.5212, (441)
U= —6211 — 29212,
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Consider a steady-state generator with §(w) = w, 3(#(w)) = 6(w), and an internal
model candidate 22 = ]{31 (ym — 212 — ZQ) + 20 = k@g - k1212 — kl (22 - w) + 29, ]{71 € R.
Then one can get the closed-loop stabilized system with Zy = 2o — 6(w),

Ty = —2%T1 — Ty — 6211 — 29219 + 2o,

Ty = Ty + 37,

211 = —(Ym — 22) — 8211 — 29219 = — Ty — 8211 — 29219 + 2o, (4.42)
219 = 9.5(Ym — 22) + 211 — 6.5212 =9.5T9 + 211 — 6.5219 — 9.529,

Zy = k1To — ky212 + (1 — k1) Zs.

If &y = —3, the above system is globally asymptotically stable and the internal
model candidate is a “real one”. So the output regulation problem is solved by
211 = —(Ym — 22) — 8211 — 29212,
Z12 = 9.5(Ypy — 29) + 211 — 6.5219,
%2 (y 2) 11 12 (4.43)
29 = —3(Ym — 212 — 22) + 22,
u = —6211 - 29212 + 29.

Another solution of the regulator equation is z = 7(w) = col(2w, 0.5w), u = c¢(w) =
3.5w. With a similar approach, one can get another solution of the output regulation
problem as follows,

Z11 = —(Ym — 0.522) — 8211 — 29219,
219 = 9.5(Ym — 0.529) + 211 — 6.5219,
2o = —6(Ym — 212 — 0.522) + 29,

u = —062z11 — 29219 + 3.529.

(4.44)

From this example, one can see that the DMFORP may be solved on different
manifolds.

Remark 23 Not all stabilizers have the corresponding internal model such that the
closed-loop stabilized system s globally asymptotically stable. It should be pointed out
that all the examples in [{4] can be processed by the framework proposed in this chapter
with stabilizers in the form of static feedback. The output requlation problem in this
example cannot be solved by a static measurement feedback even if the state w of the
exosystem s known. When a dynamic measurement feedback controller is considered,
it is possible to find an internal model to incorporate the exosystem. In the example,
the design of the stabilizer is not detailed, for there are a number of methods to go about
it. Howewver, it really concerns the example of how to apply the idea of this chapter to
solve dynamic measurement feedback output requlation problems.
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Example 4 Consider the following system,
Z).L’l = _$513’

To = x1(x2 — W) + T2 + u + 2w,

W =0, (4.45)
e=xy—w,
Ym = T2.
The unique solution of the regulator equation is 7(w) = col(0,w), c(w) = —3w.

A1’ holds. With z =z — m(w), u = u — ¢(w), the simplified system is

- -3
noT (4.46)
To = X9 + X122 + U.

It can be stabilized by a static controller © = —kyy,, + k1w, k; > 1. A2’ holds. Consider
a steady-state generator f(w) = w,a(f(w)) = 0,3(w) = w, and an internal model
candidate 22 = kam - ]{5222 = k?gff’g - k’Q(ZQ - U)) With 2o = 29 — w, the stabilized
closed-loop system is

I = —13,
Ty = (1—k1)@y+ (k1 — 3) 22 + T1 29, (4.47)

22 - kgiz'z - kzgg.

The above system is actually locally asymptotically stable in the sense of KL func-
tions when k; > 1,ks > 0. The internal model is a “real one”. According to The-
orem 16, the local DMFORP is solvable. With w in the stabilizer v = @ + ¢(w) =
(—k1Ym + k1w) — 3w replaced by z,, the controller is as follows,

Zo = kolYm — koo, ko >0,

4.48
u = —klym+(k1—3)227 ]{31 > 1. ( )

4.3 Speed regulation

In the previous chapter, it is shown that optimal scheduling can improve the perfor-
mance of the closed-loop controller, and that the 2-2 strategy, the ECP/iDP mode, is
the best of all the strategies.

In this section, one considers the application of output regulation of nonlinear sys-
tems with measured output feedback to the control of heavy haul trains. Optimal
scheduling is still based on “trading off” the equilibria. Thus the balance between en-
ergy consumption and in-train forces is still maintained. For closed-loop control, speed
regulation is imposed. This approach to design is practically feasible and manageable,
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and by its nature, is also easily integrable with human drivers. Instead of the linear
system theory, a nonlinear system theory is adopted so that without a linear approxi-
mation philosophy, the control is closer to reality. Another advantage of the approach
is the assumption that only the locomotives’ speeds are available for measurement.

4.3.1 Application of output regulation in heavy haul trains

The mathematical model of train is repeated as follows,

msbszus+fin5,1_fins_fasa 821,2,"'7’0,

, (4.49)
Tj = Vj — VUjq1, ]:1,2,"',”—1,

For the model of a train (4.49), some changes are required to be made for the
application of output regulation. On the one hand, the origin is not an equilibrium
of the system (4.49). On the other hand, there are many trajectories to annihilate
the output (to regulate the output to the reference). However, for train handling, the
choice of trajectories involves the balance between energy consumption and in-train
forces. So in the application scheme, a quadratic programming algorithm is firstly
applied to calculate the equilibrium of the system (4.49) with the reference speed held.
Then, based on the equilibrium, a difference system between state of the origin system
(4.49) and the equilibrium is formed, which can be stabilized with output regulation
in the form of measurement feedback.

Optimal scheduling is referred to in section 3.4.2, where the equilibrium calcula-
tion is a quadratic programming problem. The performance function, considering the
“trade-off” between the in-train forces and the energy consumption, is as (3.15).

In open loop control, the dynamic process in the train is ignored and the train is
assumed to be in its steady state with the reference speed maintained, that is,

dv;
=0, i=12-.n,
dx? (4.50)
d—tjzo, 1=1,2,--- ,n—1
Applying (4.50) to (4.49), one has
Us + finsq - fms — fas = 0, S = 1, 2, s, M. (4.51)
In practical operations, u; and f;,, have some constraints.
QZSUZSU“ z:1,2,,n,
— . (4.52)
Ez’nj < finj < Finja J=12-- ,n—-1,
where U, U; are the upper and the lower constraints for the ith input, and Emj,ﬁmj

are the upper and lower constraints for the jth in-train force, respectively. For wagons,
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U; = 0 and the values of U; depend on the braking capacities of the wagons. For
locomotives, the constraints U;, U; depend on the locomotives’ capacities in traction
efforts and the running states. The constraints F, , Flin; are limited because of the

requirement of safe operation and low maintenance cost.

Thus optimal scheduling is a standard quadratic programming (QP) problem with
objective function (3.15), equality constraints (4.51) and inequality constraints (4.52).
The input operation limits are not considered. When the inputs are applied to the
model, an anti-windup technique, detailed later, is applied.

With the above scheduling, the equilibrium can be denoted as f3, (2), v (v), uf,
j=12,--- n—14i=1,2,--- n, which are the in-train forces (static displacement
of coupler), the velocities (reference velocity) and the efforts of the cars. Then one can

rewrite the train model as:
(51')5: 5u5+(5m7 —5”13—(3 ag)/Mmg, 3:1’...7717
o = (8t + B fin, = Ofin, = )/ .
5xj:5'l)j—(5vj+1, ']:1’...’77/_17

0

_ 0 _ _ 0 _ _ 0
where 0v, = vy — V] = Vs — Uy, OUg = Us — Ug, O fin, = fin, — fin.» 0T; = 15 — ;.

Thus in the controller design, the system (4.53) can be rewritten as

X = J(X) + g(X)U, (4.54)
where
X = col(0vy, -+ , 06Uy, 621, -+, 0Tp_1);
U = col(duy, - ,duy);
1
fz(X) = _(ki—an—i-i—l — kzXn—H) — (Ci1 + 2CZ'21)7«)XZ‘ — CZ‘2X1'2, 1= ]., 2. , N,

7

fn""i(X):Xi_Xi—l-l, Z:1727’n_1,
diag(L+,---, 2+
g(z) = [ & o) } .

O(nfl)xn

The outputs to regulate are the cars’ speeds, i.e., assuming the reference speed is
wy, which is to be designed later, e; = v; —w; = X; + v, — w;. The measured output is
part of the cars’ speeds, i.e., Y, = Cpn(X +v,), where Cy,, = (Cij)p,. x(2n—1) and all the
entries of the row vectors of (), are zeros, only except one of the first n ones, which
1 00

010 --- 0 } if only the first two cars’ speeds are

is one. For example, C), = [

measured.
Notice that the measured output is different from the output error.

The linearized system of (4.54) has system matrixes

A Ag
A pummy
{ Ay Ag } ’
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Ay = —diag(cy, + 2,0, -+ 01, + Co,Ur),
-k -0 0

ko kL 0 0
mo mo
A = o )
0 0 kn72 knfl
L 0 0 0 =]
1 -1 0 0 0
1 -1 0 O
A21 - .« .. ’
0O 0 O 1 -1

Az = 0n—1)x(n-1)>

: 1 1
B— dlag(m_lv"' 7m") :| )
O(nfl)xn

It can be verified that the above linearized pair (A, B) is controllable and (4, Cy,)
is observable with the PBH criterion in [28]. First one verifies the controllability.

A=A | Mwn—An—Aw diag() ]
| A Mu—1)x(n-1) Om-1)xn
N [ A, n — Apq — A I }
—Ag Mum—1)x(n-1) Om—1)xn
~ On—lxn—l 0 Onx(n—l) Inxn :|
| Tn-xn-1) 0 Mu-1yxm-1) Om—1)xn |’

from which one can get rank ([A\l — A | B]) = 2n—1, and the pair (A, B) is controllable
according to the PBH criterion.

When it comes to observability, if the first or the last car’s speed is measured, the
pair (A, C,,) is observable. Assuming, for example, the first car’s speed is available,
one has

A— NI A = M Az T2n—1)x(2n—1)
c = A —Mp—1)xm-1) | ~ 0 :
m 1 0 . 0 le(nfl) 1><(2n—1)
. A— M . .
from which one knows that rank C = 2n — 1, and the pair (A4,C,,) is

observable according to the PBH criterion. Actually the first car of a train is usually
a locomotive, which is often a leader and whose speed is available. So the above
assumption does not lose generality.
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4.3.2 Trajectory design of heavy haul trains

As described, only the speed maintenance phase, speed acceleration and speed dece-
leration phases are discussed in this study. The cars’ speeds are the subject of regula-
tion.

To apply Theorem 16 into train control, the trajectory of the reference speed should
satisfy the condition of neutral stability. It can be designed as

’l,i)l = awa,
wg = —a(w1 - w3>, (455)
w3 = 07

whose solution is
wy = w3(0) + Asin(at + ¢y),

wy = Acos(at + ¢y), (4.56)
w3 = ’LUg(O),

where A and ¢, are determined by the initial conditions (w;(0), w2(0), ws(0)).

Within the cruise phase, the initial conditions are chosen as

(w1(0), w2(0), w3(0)) = (vr, 0, 0,),

where v, is the cruise speed.

Assuming the reference speed before acceleration/deceleration is v,, and the refer-
ence speed after acceleration/deceleration is v,,, then the initial conditions are chosen
such that w3(0) = vy, ¢o = 0, 4 = /2(vy, — vy,).

The variable a in (4.55) is chosen considering the acceleration limit a, or dece-
leration limit a. of the train, which is determined by the effort capacity of the train.
In simulation, a = % within the acceleration phase and a = % within the deceleration
phase. For example, one chooses a, = 0.07 m/s?, a. = —0.2 m/s?, ¢y = 0, and the time
interval Ty = - as acceleration/deceleration phase. The modified speed file according
to the speed profile is shown in Fig. 4.1.

The coefficient matrix of (4.55) is constant and its eigenvalues obviously lie on the
imaginary axis, so the above designed trajectories are neutrally stable.

4.3.3 Speed regulation controller design

From the above designed trajectories, the conditions in Proposition 17 are satisfied if
the regulator equations (4.7) are solved. Actually, one can verify that X = n(w) =
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Figure 4.1: Modified speed profile

(w1 — w3)[(Lixcn, O1x(n—ny] ", U = c(w) = wo Byt - 1,1 — Byt fH{(w(w)), where f! is the
first n entries of f and By is the first n rows of B, is a solution of (4.7).

According to Remark 18, the output regulating controller with measurement feed-
back is _
&= f(Z) + g(Z>U + Gl(ym - Omz)a

U=cw)+ K(z—7(w)),
where GG1, K are chosen such that A+ BK and A — G1C,,, are Hurwitz.

(4.57)

Based on the optimal scheduling and the output regulating controller, the complete
closed-loop controller is

u=U+u’. (4.58)

In simulation, one chooses K with a linear quadratic algorithm in [15], where the
performance function is

n—1 n n
§J = / (X'QX + U'RU) dt = / (Z Koa? + ) Koui+ > K,fjévf) dt,
=0 =0 =0

in which the variables K%, K., K7 are the weights for in-train forces, energy consump-
tion and velocity tracking, respectively. The different choices of the values of the
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weights lead to speed emphasized control, in-train force emphasized control and en-
ergy consumption emphasized control, respectively.

The parameter (G is also obtained by a quadratic programming algorithm in simu-
lation where the weights for all the entries are equal.

These choices of K and G are consistent with Remark 19.

4.3.4 Simulation of speed regulation
Simulation setting

The simulation setting and parameters are the same as those in the previous chapter
except that the deceleration limit is —0.2 m/s%.

The weights for in-train forces, energy and velocity are Ky, K., K,, respectively,
and K¢ = 3x10°K, K7 = 5x 10°K,,, which leads to the same quantities of the items of
the in-train forces, speed and input in (4.3.3) when dz = 0.01 m,dv = 0.1 m/s?, du =
200 N with Ky = K. = K,.

The acceleration limit a, is 0.07 m/s?. This value is calculated on the assumption
that the train is running on a flat track and all the traction power of the locomotives
is used to accelerate. The maximum acceleration can be 760 x 2/(252 x 2 + 417 X
50) = 0.07118 m/s?. The absolute value of the deceleration a, is more than that of the
acceleration.

The observer is designed on the assumption that the front and rear locomotive
group speeds are available. Since the exosystem is designed and its state is known,
the observer is just to estimate the running state of the train model (deviations of the
cars’ speeds and the displacements of the couplers). The initial states of the observer
are set to be zeros.

The observer is designed based on the difference system (4.53), which is related to
ws of the exosystem. When w3 is changed, the observer needs some time to track the
state of the difference system. So in the control design, when wjs is changed, the closed-
loop controller is disabled (i.e., only open loop scheduling is used) for some interval,
during which the observer will track more closely to the state of the difference system.
In simulation the interval is assumed to be a distance interval, whose length is equal
to 15 x ws.
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Simulation result

A simulation result is shown in Fig. 4.2 with the optimal parameters Ky = 1, K,, =
1,K.=1.

16
—~ | --ref speed R
n ! o
€ 14 front speed : /”” ! 7
T 1o rearspeed S D /4 A
© °| mean speed : T
? 10 R S ]
= 1000 . :
é --'max in—train force
Q 5ol min in-train force S ; ; §
S ——mean in—train force i ekl .
T P 7
E 500 :
4| front notch ! R ‘ , , ]
< |-~ rear notch R - -
8 27 e S - I -
8 . e R L [
0- R R S b e I s e

_ | | | | | |
g4000 -2000 0 2000 4000 6000 8000 10000
distance (m)

Figure 4.2: Output regulation with measurement feedback

In comparing the results shown in the above figure with Fig. 3.10 and Fig. 3.14, it
can be seen that the oscillation is most obvious in open loop scheduling, while it is least
in the output regulation with measurement feedback. The steady state error exists in
open loop scheduling while it is smaller in optimal control with state feedback and
output regulation with measurement feedback. However, it tracks the reference speed
more quickly with state feedback than with measurement feedback. This is because
of the application of the observer in the latter, which needs some time to track the
state of the train. Coincidentally for the same reason, the in-train forces in Fig. 4.2
are smaller than those of the other two in the steady state. This is because the slower
response of the observer leads to more gentle output.

Table 4.1 shows the simulation results of the state feedback controllers S;,i =
1,2, 3,4 advanced in Section 3.5 and measurement feedback controllers M;,i = 1,2, 3,4
proposed in this chapter with different tuning parameters. The indices 1,2,3,4 de-
note the different sets of parameters (K., Kr, K,)) = (1,1,1), (K., Ky, K,) = (1,1, 10),
(K., Ky, K,,) = (1,10,1), (K., Ky, K,,) = (100, 1,1). |09] is the absolute value of the
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Table 4.1: Performance comparison
55](m/s) Jul(N) B

max mean std ~max mean std (MJ)
S1  3.0182 0.3166 0.48 454.50 97.40 86.44 16,528
S2  3.0225 0.2443 0.50 408.70 74.07 76.34 16,524
S3 3.0090 0.3667 0.47 405.70 70.77 78.04 15,007
S4  3.2470 0.4918 047 29727 7890 63.27 13,422
M1 29827 0.3250 0.53 322.02 56.49 63.54 12,400
M2 29801 0.2969 0.53 329.39 54.28 65.28 12,713
M3 29692 0.3290 0.52 329.00 56.74 64.14 12,570
M4 3.6094 0.8942 0.62 405.34 98.41 73.50 10,493

difference between the reference velocity and the mean value of all the cars’ velocities
at a specific point. |f;,| is the mean value of the absolute values of all the couplers’
in-train forces at a specific point. The items max, mean and std are the maximum

value, mean value and standard deviation of the statistical variable.

These data reflect the working of the optimization parameters. From Table 4.1, it
can be seen that more energy is consumed in the optimal controller with state feedback
than in output regulating controller with measurement feedback, no matter which group
of the optimal parameters is chosen. This is because the optimal controllers of state
feedback are sensitive to the state deviation from the equilibrium, and the energy
optimization is local, thus the locomotives’ traction efforts and the cars’ braking are
more frequent, which leads to the consumption of more energy.

For speed tracking, the optimal controller with state feedback is a little better than
the output regulating controller with measurement feedback, and for in-train forces,

the former is worse than the latter. This confirms the above result, by comparing
Fig. 3.14 and Fig. 4.2.

In the above chapter, it is said that the length of the track does not affect the result
in this thesis. To show this, the above speed regulator will be simulated on a longer
track (27 km), as indicated in Fig. 4.3. The simulation result is reflected in Fig. 4.4.

From Fig. 4.4, it can be seen that the train tracks the reference speed well except
within the distance from 18 km to 21 km, where the train speed is much lower than
the reference speed. This is because the train is passing over a hill during this period,
which can be seen from Fig. 4.3. Because of the operational constraint (the time delay
between two notch changes), the train has enough traction power to maintain or be
closer to the reference speed.
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Figure 4.3: A longer track profile
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Figure 4.4: Speed regulation on a longer track profile
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4.4 Conclusion

In this chapter, a framework is introduced to solve the output regulation problem using
measurement feedback.

The measurement feedback is considered because the measurement can cover the
output and/or (partial) state, even some measurable output different from the output
and state, that is, it is more general.

This framework can also incorporate different kinds of exosystems with bounded
signal or unbounded signal, Poisson stable or not. Some assumptions in this chapter
are necessary.

Similar to [43] and [44], the solvability of the output regulation problem is trans-
formed to the solvability of the corresponding stabilization problem. The difference is
that in this chapter a stabilizer is firstly designed assuming the states of the exosystem
are known, and then an internal model is designed with respect to this stabilizer and
a steady-state generator. The internal model is in nature an observer of the state of
the exosystem. The existence of the stabilizer is sometimes a necessary condition for
the solvability of the output problem. The properties of the internal model, in which
the state of the stabilizer and the measurement of the original system can appear, are
also given.

It should be pointed out that not all stabilizers have the corresponding internal
models. Sometimes the parameters in the stabilizer and the internal model candidate
need to be tuned. The design techniques of the internal model, in essence an observer
for nonlinear systems, are not detailed, nor are the design techniques of the stabilizer,
which are out of the scope of this study.

The application of output regulation of nonlinear systems with measured output
feedback to the control of heavy haul trains is investigated in section 4.3. The optimal
scheduling of the open loop controller is still based on “trading off” the equilibria. Thus
the balance between energy consumption and in-train forces is still maintained. For
closed-loop control, speed regulation is imposed. This approach to design is practically
feasible and manageable, and by its nature, is also easily integrable with human drivers,
because the human drivers drive the train according to the train’s speed.

Instead of the linear system theory, a nonlinear system theory is adopted so that
without a linear approximation philosophy, the control is closer to the reality. Another
advantage of the approach is the assumption that only the locomotives’ speeds are
available for measurement.

A controller of speed regulator is designed based on the result mentioned in the first
part of this chapter. The conditions of the application are verified. In the controller
design, Optimal scheduling is retained in the control of output regulation. It is noted
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that when the difference system is changed with the variation of the reference speed,
the state of the observer is changed suddenly and sufficient time should be given to the
observer to track the state of the difference system, and thus the control of the output
regulation is disabled during this period. Simulation shows the feasibility of the output
regulating controller with only measurement of the locomotive speeds, in terms of its
simplicity, cost-effectiveness and its implementation convenience.
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