#### **11 LIST OF REFERENCES**

Adams, J.D., 1990. Fundamental stocks of knowledge and productivity growth. Journal of political economy, Vol. 98, pp. 673-702.

Arrow K.J., 1962. The economic implications of learning by doing. Review of economic studies, Vol. 29, No. 3, pp. 155-173.

Aghion, J., Howitt, P., 1992. A model of Growth through Creative Destruction. *Econometrica*, Vol. 60, pp. 323-351.

Aghion, J., Howitt, P., 1998. Endogenous Growth Theory. Cambridge, Mass.: MIT Press

Anandakrishnan, M., Morita-Lou, H., 1984. *Indicators and Technology for Development*. In: Morita-Lou, Hiroko, 1984. *Science and Technology Indicators for Development*. London: Westview Press, pp. 25-33.

Archibugi D., Howells J., Michie, J., 1999. Innovation policy in a global economy. Cambridge University Press.

Archibugi D., Michie J., 1997. Technological Globalisation or National Systems of Innovation? *Futures*, Vol. 29, No. 2, pp.121-137.

Arthur W. B., 1994. *Increasing returns and path dependency in the economy*. The University of Michigan Press: Ann Arbor.

Balzat, M., 2002. *Theoretical basis and the theoretical treatment of National Innovation Systems*. University of Augsburg, Institute for Economics, Beitrag nr 232.

Barlas, Y., 1989. Multiple tests for validation of system dynamics type of simulation models, *European Journal of Operational Research*, Vol 42, No. 1, pp. 59-87.

Barlas, Y. 1990. An autocorrelation function-test for output validation, *Simulation*, Vol. 55, No. 1, pp. 7-16.

Barlas, Y., 1996. Formal aspects of model validity and validation in system dynamics. *System Dynamics Review*, Vol. 12, No. 3, pp.183-210.

Blanchard, B.S., Fabrycky W.J., 1998. *Systems Engineering and Analysis*, Prentice Hall, New Jersey.

Blalock, H.M., 1961. *Causal Inferences in Nonexperimental Research*. Toronto Library - University of North Carolina press.

Botha, A., 1997. *The Development of a system dynamics model to simulate the dynamic behaviour of technology substitution*. Dissertation, (MBA), University of Pretoria.

Bozeman, B., 2000. Technology transfer and public policy: a review of research theory. *Research Policy*, Vol. 29, pp. 627-655.

Bozeman, B., Rogers, J.D., 2000. A churn model of scientific knowledge value: Internet researchers as a knowledge value collective. *Research Policy*, Vol.31, pp. 769-794.

Brush, G. G., 1988. *Volume 12: How to choose the proper sample size*. American Society for quality control, ASQC Quality Press. Milwaukee, Wisconsin.

Buys A. 2001, *Technological decolonisation of South Africa by backwards integration of the national system of innovation*. Pretoria: Department of Engineering and Technology Management, University of Pretoria.

Buys A., 2002. *Industrial development in South Africa by backwards integration of the National system of Innovation*. Pretoria: Department of Engineering and Technology Management, University of Pretoria.

Buys A., 2004. *Characterization of the South African National System of Innovation*. Pretoria: Department of Engineering and Technology Management, University of Pretoria.

Bifani, P., 1984. Environment and Indicators of Technological Development: Methodological Considerations. In: Morita-Lou, Hiroko, 1984. Science and Technology Indicators for Development. London: Westview Press, pp. 61 – 76.

Blankley, W., Kahn, M., 2005. *The history of research and experimental development measurement in South Africa and some current issues*. South African Journal of Science, Vol. 101, March/April 2005.

Bochet, J., 1984. Intrinsic Indicators of Technological Development: Preliminary Outline of the Issues Involved. In: Morita-Lou, Hiroko, 1984. Science and Technology Indicators for Development. London: Westview Press. p. 77-106.

Boshoff, N., Mouton, J., 2003. HRD review, Chapter nine, *Science Policy indicators*, pp. 209 – 233.

Carlsson, B., 1995. *Technological Systems and Economic Performance: The Case of Factory Automation*. Kluwer Academic Publishers, Boston, Dordrecht.

Carlsson, B., 1997. *Technological Systems and Industrial Dynamic*. Kluwer Academic Publishers, Boston, Dordrecht.

Carlsson, B., Stankiewicz, R., 1995. On the nature, function and composition of technological systems. In Carlsson, B., 1995. *Technological Systems and Economic* 

*Performance: The Case of Factory Automation.* Kluwer Academic Publishers, Boston, Dordrecht.

Carlsson, B., Jacobsson, S., Holmen, M., Rickne, A., 2002. Innovation Systems: analytical and methodological issues. *Research Policy*, Vol.31, pp. 233-245.

CENIS, 2000. *Science in South Africa: History institutions and statistics*. University of Stellenbosch.

Christensen J.L., 1992. *The Role of Finance in National Systems of Innovation*. In: Lundvall B. A., 1992. *National Systems of Innovation*., Pinter: London, pp. 116-127.

Cohen, W.M., Levinthal D.A., 1990. Absorptive Capacity: A new perspective on learning and innovation, *Administrative Science Quarterly*, vol. 35, pp. 128-152.

Coyle R.G., 1996. System Dynamics Modelling. Chapman & Hall:London.

Coyle, G. 2000. Qualitative and quantitative modeling in system dynamics: some research questions. *System Dynamics Review*, Vol. 16, No. 3, pp. 225–244.

CPROST, 1997. The Use Of National Systems Of Innovation Models To Develop Indicators Of Innovation And Technological Capacity. Report 6, Simon Fraser University at Harbour Centre

Crush, J. et al., 2000. Losing out minds: Skills migration and the South African brain drain. *SAMP Migration Policy Series*, No. 18, pp.43-59.

DST, 2004. *High Level Key Results. South African National Survey of Research and Experimental Development*. Department of Science and Technology, South Africa.

DACST, 2002. *South African Science and Technology: Key facts and figures*, National Advisory Council on Innovation (NACI), submitted to Branch: Science and Technology, Department of Arts, Culture, Science and Technology (DACST).

DACST, July 2002. *South Africa's National Research and Development Strategy*. Government of the Republic of South Africa.

DACST, 4 September 1996. *White Paper on Science and Technology: Preparing for the 21st century*, submitted to Department Arts, Science, Culture and Technology.

Dangerfield, B., Roberts, C., 1996. An overview of strategy and Tactics in System Dynamics Optimization. *Journal of the Operational Research Society*, Vol. 47, pp. 405-423.

Department of Finance, 1996. Growth Employment and Redistribution Strategy. Pretoria

De Wet, 2001. *Emerging from the technology colony: A view from the South. Pretoria*. Department of Engineering and Technology Management, University of Pretoria

DTI, 2002. Accelerated Growth and Development: The contribution of an Integrated Manufacturing Strategy, Pretoria.

Du Toit, C., Koekemoer, R., Ground, M., 2004. *Estimating technical progress for South Africa*. Ninth annual conference on econometric modelling for Africa.

Edquist C., 1997. Systems of Innovation: Technologies, Institutions and Organizations. A Cassel Imprint, Wellington house, London.

Eksteen, M., 2001. *Growth and Innovation Report. National Science & Technology forum.* CSIR, Pretoria.

Fabian Y., 1979. Conceptual and Methodological Concerns in the Development of International S&T Indicators: the OECD Science and Technology Indicators System, Seminar on Research Needs and Applications for Indicators Based on the Scientific and Technical Literature, Philadelphia, Institute for Scientific Information.

Fedderke, J., 2002. Toward an Understanding of the Growth Absence: Reviewing the Evidence that can Account for the Poor Growth Performance of the South African Economy. TIPS working paper

Fedderke, J., De Kadt, R.H.J., & Luiz, J., 2003, A Capstone Tertiary Educational system: Inefficiency, Duplication and Inequity in South Africa's Tertiary Education System, 1910-93, *Cambridge Journal of Economics*, Vol. 27, No. 3, pp. 377-400.

Foray D., Generation and Distribution of Technological knowledge: Incentives, Norms, and Institutions. In: Edquist, C., 1997, Systems of innovation: technologies, institutions and organisations. London: Pinter, pp. 64-82

Forrester J. W., 1961. Industrial dynamics. John Wiley & Sons: New York.

Forrester, J. W. 1968. Principles of Systems. Cambridge MA: Productivity Press.

Forrester, J.W., 1973. *Confidence in Models of social behaviour – With emphasis on System Dynamics Models*. MIT System Dynamics Group Memo D-1967, Cambridge, MA 02139 (unpublished)

Forrester J.W., Senge, P., 1980. *Tests for building confidence in System Dynamics models*. In: Legasto A.A., Forrester J.W., Lyneis J.M., 1980. System Dynamics. Studies in the Management sciences, *System Dynamics*, Vol. 14, pp. 11-21.

Forrester J.W., Lyneis J.M., 1980. System Dynamics. Studies in the Management sciences. *System Dynamics*, Vol.14. pp. 209-228.

FRD, 1993. South African Science and Technology indicators – 1993. Directorate for Science and Technology Policy, Pretoria.

FRD, 1990. South African Science and Technology indicators – 1990. Directorate for Science and Technology Policy, Pretoria.

Freeman C., 1987. *Technology Policy and Economic Performance. Lessons from Japan.* Pinter: London.

Galli, R., Teubal M., 1997. *Paradigmatic shifts in national innovation systems*. In: Edquist, C., 1997, *Systems of innovation: technologies, institutions and organisations*. London: Pinter, pp. 343-370.

Gelsing, L., 1992. *Innovation and the Development of industrial networks*. In: Lundvall B. A., 1992. *National Systems of Innovation*. Pinter: London, pp. 116-127.

Godin, B., 2006. The Knowledge based economy: Conceptual framework or buzzword?. *The Journal of Technology Transfer*. Vol. 31, No. 1, pp 17-30.

Griliches, Z., 2000. *R&D*, *Education and Productivity*. Cambridge, Mass.: Harvard University Press.

Grilliches, Z., 1979. Issues in Assessing the Contribution of Research and Development to Productivity Growth. *The Bell Journal of Economics*, Vol. 10, pp.92-116.

Grossman, G., Helpman, E., 1991a. Innovation and Growth in the Global Economy. Cambridge, Mass.: MIT Press.

Grossman, G., Helpman, E., 1991b. Quality Ladders in the Theory of Growth. Quarterly Journal of Economics, vol. 106 p. 557-586.

Grossman, G., Helpman, E., 1991c. *Quality Ladders in the Theory of Growth*. Rev. Economic Studies, vol. 58 p. 43-61.

Gunasekara, C., 2006. *Reframing the Role of Universities in the Development of Regional Innovation Systems*. The Journal of Technology Transfer. Vol. 31, No. 1, pp. 101 - 113

Guerrieri, P., Tylecote, A., 1997. Inter-industry differences in technical change and national patterns of technological accumulation. In: Edquist, C., 1997, Systems of innovation: technologies, institutions and organisations. London: Pinter., pp. 107-125.

Guilhon, B. 2001. *Technology and markets for knowledge: Knowledge creation, diffusion and exchange within a growing economy*. Boston/Dordrecht/London: Kluwer Academic Publisher

Hall, H., Jaffe, A.B., Trajtenberg, M., October 2001. *The NBER patent citation data file: Lessons, Insights and methodological issues.* Working Paper 8498. http://www.nber.org/papers/w848. National Bureau of Economic Research.

Hall, B., Van Reenen J., 2000. How effective are fiscal incentives for R&D? A review of the evidence. *Research Policy*, Vol. 29, p. 449-469.

Hamilton, J.D., 1994. *Time Series Analysis*. Princeton University Press, Princeton, New Jersey.

Hill, C., Roessner, J.D., 2000. *New directions in federal laboratory partnerships with industry*. Report to the Jet propulsion Laboratory.

Hilmola, O., Helo, P., Kekale, T., 2004. *Economic Dynamics of R&D: Analysis of Technology and Development*. System Dynamics Conference 2004

Hofstede, G.H., 1991. *Cultures and Organisations: Software of the mind*. McGraw-Hill, London.

Howells J., 1999, *Regional systems of innovation?*. In: Archibugi D., Howells J., Michie, J., 1999. *Innovation policy in a global economy*. Cambridge University Press, pp. 67-92

HSRC, 2004. South African National Survey of Research and Experimental Development 2001/02.

IDRC, 1993. *Towards a Science and Technology Policy for a Democratic South Africa*. Ottawa: International Development Resource Centre.

Jan, T-S., Jan C-G, 2000. Development of weapon systems in developing countries: a case study of long range strategies in Taiwan. *Journal of the Operational Research Society*, Vol. 51, pp. 1041-1050.

Janszen F. H. A., Degenaars G. H., January 1998. A dynamic analysis of the relations between the structure and the process of National Systems of Innovation using computer simulation; the case of the Dutch biotechnological sector. *Research Policy*, Vol. 27, No. 38.

Johnson B. Institutional Learning. In: Lundvall B. A., 1992. National Systems of Innovation. Pinter: London, pp. 23-45

Jones, C.I., 1995. R&D based models of economic Growth. *Journal of Political economy*, Vol. 103 No. 4.

Kaplan, D.E. 1999. *On the literature of the economics of technological change*. The South African Journal of Economics, Vol. 67, No. 4.

Kleinbaum, D.G., Kupper, L.L., et al, 1998. *Applied Regression Analysis and Multivariate Methods*. Duxbury Press.

Kleijnin J. P. C., 1995. Sensitivity analysis and optimization of system dynamics models: Regression analysis and statistical design of experiments, *System Dynamics Review*, Vol. 11, No. 4, pp. 275-288.

Kline S.J., 1985. "Innovation is not a Linear Process". *Research Management*, Vol. 28, pp. 36-45.

Kline S.J. and Rosenberg N., 1986. An Overview of Innovation in the Positive Sum Strategy: Harnessing Technology for Economic Growth, The National Academy Press, Washington D.C.

Kahn, M., 2004. *Then and now: an innovation system in transition*. Human Science Research Council, Cape Town.

Kaplan, D., 1995. *The sate of Science in South Africa: New priorities, new policies*. Development Policy Research Unit Working Paper, University of Cape Town

Karlsson, C., Flensburh, P., Horte, S., 2004. *Knowledge spillovers and knowledge Management*. Edward Elgar, Cheltenham, UK.

Koekemoer, R., Du Toit, C., Ground, M., 2004. *Estimating Technological Progress for South Africa*. Ninth annual conference for econometric modelling for Africa.

Lall, S. 2003. *Indicators of the relative importance of IPRs in developing countries. Research Policy*. Working Papers qehwps85, Queen Elizabeth House, University of Oxford

Lane, D.C., 1998. *Can we have confidence in generic structures?*. Journal of the Operational Research Society, Vol. 49, pp. 936-947.

Legasto A.A., Forrester J.W., Lyneis J.M., 1980. System Dynamics. Studies in the Management sciences: *System Dynamics*, Vol.14.

Levinthal D., Myatt J., Winter 1994. Co-evolution of capabilities and industry: The evolution of mutual fund processing. *Strategic Management Journal*, Vol. 15, pp. 45-62.

Luna-Reyes F. L., Andersen D. L., Winter 2003. Collecting and analyzing qualitative data for system dynamics: methods and models. *System Dynamics Review*, Vol. 19, No. 4, p. 271.

Lundvall, B.A., Andersen, E.S., Dalum, B., 2002. National systems of production, innovation and competence building. *Research Policy*, Vol. 3 pp. 1213–1231.

Lundvall B. A., 1992. National Systems of Innovation. Pinter: London.

Mani, S., 2001. *Government and Innovation Policy: An analysis of the South African experience since 1994.* The United Nations University, UNU/INTECH Discussion Papers, ISSN 1564-8370.

Mansfield, E., 1986. The R&D Tax credit an Other Technology Policy Issues. *The American Economic Review*, Vol 76, No. 2, pp. 190-194.

Marais, H.C., 1999. *Perspectives on Science Policy in South Africa*. Network publishers, Menlo Park. South Africa.

Matthew R. McGrail, Claire M. Rickard, Rebecca Jones, 2006. Publish or perish: a systematic review of interventions to increase academic publication rates. *Higher Education Research and Development*, Vol. 1, No. 25, pp. 19 – 35.

McKelvey, M., 1991. *How do national systems of innovation differ?: a critical analysis of Porter, Freeman, Lundvall and Nelson.* In: Hodgson, G.M., E. Screpanti, 1991, *Rethinking economics. Markets, technology, and economic evolution.* London: Edward Elgar, pp. 117-137.

Meyer, M., 2002. Tracing knowledge flows in innovation systems. Jointly published by Akademiai Kiado, Budapest and Kluwer Academic Publishers, Dordrecht. *Scientometrics* Vol. 54, No. 2, pp. 193 – 212.

Meadows D. L., 1974, Behrens W. W. et al., *Dynamics of growth in a finite world*. Wright-Allen Press: Cambridge, Massachusetts.

Milling, P.M., 2002. Understanding and managing innovation processes. *System Dynamics Review*, Vol. 18, no 1, p. 73;

Moles R., O'Regan B., January 2003. Modelling policies and decisions: A case study in mineral extraction. Information & Management, Vol. 40, No. 3, pp. 147-157.

Morecroft J. D. W., 1998. System dynamics and micro worlds for policymakers. *European Journal of Operational Research*, Vol. 1, No. 59, pp. 9-27.

Morita-Lou, Hiroko, 1984. *Science and Technology Indicators for Development*. London: Westview Press.

Mouton J., Boshoff, S.C., 2001. *South African Science in Transition*. CENIS: Stellenbosch

Mowery D. C., Rosenberg N., 1989. *Technology and the pursuit of Economic Growth*. Cambridge University Press.

NACI, 2004. A profile of Postgraduate Higher Education and Academic Research Community in South Africa. National Advisory Council on Innovation (NACI).

NACI, 2002. South African Science and Technology: Key facts and figures, National Advisory Council on Innovation (NACI).

Nasierowski, W., Arcelus, F.J., 1999. Interrelationships among elements of national innovation systems: A statistical evaluation. *European Journal of Operational Research*, Vol. 119, pp. 235-253.

NCHE, 1996. A Framework for Transformation, Department of Education, Pretoria.

Nelson, R., R. N. 1993. *Technical innovation and national systems*. In: Nelson R.R., 1993. *National Innovation Systems: A comparative Analysis*. Oxford University Press: Oxford.

Nelson R.R., 1993. *National Innovation Systems: A comparative Analysis*. Oxford University Press: Oxford.

Nelson, R., 1995. Recent evolutionary theorizing about economic change. *Journal of economic literature*, Vol. 33, pp. 48-90.

Nelson, R.R. and Winter S.G., 1982. *An evolutionary theory of economic change*, Cambridge M.A: The Belknap press of Harvard university Press

Nicolis G., Prigogine L., November 2004. *The University. Facing up its European responsibilities*. The fourth European Framework program and research on complex systems.

Niosi J., February 2002. National systems of innovations are "x-efficient" (and x-effective). *Research Policy*, Vol. 31, No. 2, pp. 291-302.

North D.C. June 1994. Economic Performance Through Time. The American Economic Review, pp. 359-368.

OECD, 1992. Technology and the Economy: The key relationships, OECD, Paris.

OECD, 1994 b. *Using patent data as science and technology indicators, patent manual.* OECD, Paris.

OECD, 1996. *The OECD Jobs Strategy – Technology, Productivity and Job Creation*, Volume 1, OECD, Paris.

OECD, 1997. *Manual on the measurement of human resources devoted to S&T*, "Canberra Manual", OECD, Paris.

OECD, 2002 a. Frascati Manual. Proposed Standard practice for surveys on research and experimental development, OECD, Paris.

OECD, 2002 b. The Measurement of Scientific and Technological Activities: Proposed guidelines for collecting and interpreting technological innovation data, Oslo manual. OECD, Paris.

OECD, 2002 c. STI Outlook 2000, Science, Technology and Innovation: Recent Policy Development in South Africa. OECD, Paris.

OECD, 2002 d. Dynamising National Innovation Systems. OECD, Paris.

Oerlemans L. A. G., Pretorius M. W. et al., December 2003. *South African Innovation Survey 2001*. University of Pretoria, Eindhoven University of Technology, report no. 120.

Oliva R., Dec 2003. Model calibration as a testing strategy for system dynamics models. *European Journal of Operational Research*, Vol. 151, pp. 552-568.

Page C., Meyer D., 2000. *Applied research design for business and management*. McGraw-Hill Company: Australia, NSW.

Park, H., Oh, S., Kim, S., 2004. Leverage Strategy to National R&D Investment in Korea: A System Dynamics Approach. System Dynamics Conference 2004

Porter M., 1990. Competitive advantage of nations. Free Press: New York.

Pouris, 1995. Science and Technology policy in South Africa: A system in transition. In: Van der Berg, H., Prinsloo, R., Pienaar, D., 1995. Directory of human sciences research organizations and professional associations in South Africa., Human Sciences Research Council, South Africa.

Pouris A., February 1992. Perspectives on the Institutional Framework for Science and Technology Policy-Making, *South African Journal of Science*, Vol 88.

Pouris, A., 2003. Towards a South African R&D tax incentives scheme: fiscal policies and social benefits. *South African Journal of Science*, Vol. 99, No.5, pp.195-1999.

Pouris, A., 2005. Technological performance judged by American patents awarded to South African inventors. *South African Journal of Science*, Vol. 101, pp.23-26.

Pouris, A., 2006. Assessing scientific strengths of academic institutions: the example of the University of Pretoria. *South African Journal of Science*, Vol. 102, pp.23-26.

Prinsloo, C., January 1997. An analysis of the links between academic research, competitiveness and the National System of Innovation of South Africa, ITI working paper, no.97-1.

Repenning, N.P., 1999. A Simulation-Based Approach to Understand the Dynamics of Innovation Implementation. Sloan school of Management, MIT.

Roberts, R, June 1998. Managing innovation: The pursuit of competitive advantage and the design of innovation intense environments. *Research Policy*, Vol. 27, No. 2, pp.159-175.

Roberts, E.B. 1978. *Managerial Applications of system dynamics*. MIT Press/Wright – Allen series.

Richardson, G.P., 1999. Reflections for the future of system dynamics. *Journal of the Operational Research Society*, Vol. 50, pp. 440-449.

Romer, P.M., 1990. Endogenous Technological Change. *Journal of Technological Economy*. Vol. 98, pp. 71-102.

Rosenberg, N. 1976. *Perspectives on Technology*. Cambridge: Cambridge University Press.

RSA, 1998. Act 23 of 1998, The National Research Foundation Act, South Africa

Rubinstein M.F., Firstenberg I.R., 1995. *Patterns of Problem Solving*. Prentice Hall, Englewood, New Jersey.

SAS Institute Inc., 1995. SAS/ETS software: time series forecasting system: version 6. Cary, NC.

Saviotti, P. P., 1997. *Innovation systems and evolutionary theories*. In: Edquist, C., 1997, *Systems of innovation: technologies, institutions and organisations*. London: Pinter, pp. 180-222.

Smith, K. 1998. *Science, Technology and Innovation indicators – A guide for policy makers*. IDEA Report 5.

Smits P., den Hertog, P., van der Schaft, E., May 1992. *Initiatives to Strengthen the Interface Between EC&RD and Society*. TNO Centre for Technology and Policy Studies.

STATSSA, September 2003. *Labour force Survey–March 2003*. Statistics South Africa: Pretoria.

Sterman John, D., 2000. *Business Dynamics: Systems Thinking and Modeling for a Complex World*. Irwin McGraw-Hill

Sundbo, J., 1998. *The theory of innovation: entrepreneurs, technology and strategy*. Edward Elgar Publishers

UNESCO, 1998. World Science Report 1998, France.

UNDP, 2003. South Africa Human Development Report. The Challenge of Sustainable Development in South Africa: Unlocking People's Creativity. Oxford University Press: Oxford.

UP, 2005. University of Pretoria Bureau for Institutional Research and planning.

Van der Berg, H., Prinsloo, R., Pienaar, D., 1995. Directory of human sciences research organizations and professional associations in South Africa., Human Sciences Research Council, South Africa.

Verbeek, A., Debackere, K., Luwel, M., Van Looy, B., Andries, P., Van Hulle, M., Deleus, F., 2000. Linking science to technology: Using bibliographic references in patents to build linkage schemes. *Scientometrics*, Vol. 54, No. 3, pp.399–420

Verspagen, B., 2005. *The impact of Academic Knowledge on Macroeconomic productivity Growth. An exploratory study.* Eindhoven Centre of Innovation Studies. A study commissioned by the Adviesraad voor Wetenschaps- en Technologiebeleid (AWT)

Weil, B.H., Bergan, T.A., Roberts, E,B., *The Dynamics of R&D strategy*. In: Roberts, E.B. 1978. *Managerial Applications of system dynamics*. MIT Press/Wright –Allen series.

Werker, C., Brenner, T., 2004. *Empirical Calibration of Simulation Models*. ECIS, Eindhoven, Netherlands, Working Paper 04.13.

Wolstenholme EF, Coyle RG. 1983. The development of system dynamics as a rigorous procedure for system description. *Journal of the Operational Research Society*, Vol. 34, pp.569–581.

Wolstenholme E.F., 1999. Qualitative vs Quantitative modeling: The evolving balance. *Journal of the Operational Research Society*, Vol. 50, pp. 422-428.

Yaffe, R., MacGee, M., 2000. Introduction to time series analysis and forecasting with applications in SAS and SPSS. Academic Press, San Diego, California

Zhang, S., Qu, R., 2004. *Research on the System Dynamics Model for the Development and Operation of the Sustainable Regional Innovation System*. Proceedings of Globelics conference 2004, Beijing.

# 12 APPENDIX A

### **12.1** South Africa's Patenting at the USPTO

The database used for data analysis on the patenting statistics of South Africa at the United States Patent Office was obtained from the National Bureau of Economic Research (NBER) in Cambridge, Massachusetts in the Unite States of America. This is available for free download at the following location: http://www.nber.org/patents/

The main data set extends from January 1, 1963 through December 30, 1999 (37 years), and includes (Hall et al, 2001):

- All the *utility* patents granted during that period, totalling 2,923,922 patents
- The citations file, includes all citations made by patents granted in 1975-1999, totalling 16,522,438 citations.
- Data on inventors and assignees.

The following table includes fields in the database, which are relevant to the information extracted in this study. For a more detailed account of what is included in the database, see NBER (2001).

| Field Name                                                                      | Field Used |
|---------------------------------------------------------------------------------|------------|
| Patent number                                                                   |            |
| Grant year                                                                      |            |
| Grant date6                                                                     |            |
| Application year (starting in 1967)                                             | Used       |
| Country of first inventor                                                       | Used       |
| State of first inventor (if U. S.)                                              |            |
| Assignee identifier, if the patent was assigned (starting in 1969)              |            |
| Assignee type (i.e., individual, corporate, or government; foreign or domestic) | Used       |
| Technological category                                                          |            |
| Technological sub-category                                                      |            |
| Number of citations made                                                        | Used       |
| Number of citations received                                                    | Used       |
| Percent of citations made by this patent to patents granted since 19637         |            |
| Measure of "generality"                                                         |            |

 Table 12-1: Field included in the database relevant to the analysis for this study

Each patent document includes the date when the inventor filed for the patent (the

*application* date), and the date when the patent was granted. The data contains the grant *date* and the grant *year* of all patents in the file (i.e., of all utility patents granted since 1963) and the application *year* for patents granted since 1967. The grant date depends upon the review process at the Patent Office, which takes on average about 2 years with a significant variance (NBER, 2001).

For the analysis, the actual timing of the patented inventions is closer to the application date than to the (subsequent) grant date. This is so because inventors have a strong incentive to apply for a patent as soon as possible following the completion of the innovation.

The following table lists the Patents filed where the first inventor was a South African. For

the purpose of this discussion, from this point forward this subset of data within the database is referred to as "SA Patents" .The "References" column lists the summation of all the citations made from the patent to prior art.

| Application Year | World patent output | SA patents registered<br>at USPTO | References |
|------------------|---------------------|-----------------------------------|------------|
| 1980             |                     |                                   |            |
| 1981             | 63910               | 71                                | 426        |
| 1982             | 65009               | 78                                | 502        |
| 1983             | 61563               | 74                                | 424        |
| 1984             | 67071               | 90                                | 504        |
| 1985             | 71442               | 89                                | 622        |
| 1986             | 75088               | 89                                | 692        |
| 1987             | 81458               | 130                               | 908        |
| 1988             | 90134               | 95                                | 654        |
| 1989             | 96077               | 124                               | 839        |
| 1990             | 99254               | 98                                | 733        |
| 1991             | 100016              | 88                                | 619        |
| 1992             | 103307              | 96                                | 765        |
| 1993             | 106848              | 143                               | 1272       |
| 1994             | 120380              | 138                               | 1204       |
| 1995             | 137661              | 98                                | 922        |
| 1996             | 131450              | 107                               | 928        |
| 1997             | 114881              | 81                                | 739        |
| 1998             | 33780               | 25                                | 217        |
| 1999             | 1560                | 2                                 | 25         |
| 2000             | -                   | -                                 | -          |
| 2001             | -                   | -                                 | -          |

Hall et al (NBER ,2001) warns against *truncation* problem: as the time series move closer to the last date in the data set, patent data timed according to the application date will increasingly suffer from missing observations consisting of patents filed in recent years that have not yet been granted. This issue is dealt with by only making use of the time series up to 1996.

#### Type of assignees

The USPTO classifies patents according to the type of assignees (owners of the patent rights), into the following seven categories (the figures are the percentages of each of these categories in our data):

 Table 12-3: USPTO Assignee type categories

| Assignee # | Assignee type                                            |
|------------|----------------------------------------------------------|
| 1          | Unassigned                                               |
| 2          | US non-government organization (mostly corporations)     |
| 3          | Non-US non-government organization (mostly corporations) |
| 4          | US individuals                                           |
| 5          | Non-US individuals                                       |
| 6          | US Federal Government                                    |
| 7          | Non US Government                                        |

"Unassigned" patents are those for which the inventors have not yet granted the rights to the invention to a legal entity such as a corporation, university or government agency, or to other individuals. The original inventors thus still owned these patents at the time of patenting, and they may or may have not transferred their patent rights at a later time (the NBER do not

have data on transfers done after the grant date).

The SA Patent dataset was now further analysed, the analysis yields the following distribution of patents to the assignee types. The year is the application year – the date earliest to the actual invention date.

|      |    |    | Cat | tegory num | ber |   |   |       |
|------|----|----|-----|------------|-----|---|---|-------|
| Year | 1  | 2  | 3   | 4          | 5   | 6 | 7 | Total |
| 1977 | 43 | 1  | 26  | 0          | 4   | 0 | 0 | 74    |
| 1978 | 39 | 4  | 40  | 0          | 4   | 0 | 0 | 87    |
| 1979 | 42 | 2  | 44  | 0          | 6   | 0 | 0 | 94    |
| 1980 | 35 | 6  | 42  | 0          | 3   | 0 | 0 | 86    |
| 1981 | 28 | 1  | 37  | 0          | 4   | 0 | 1 | 71    |
| 1982 | 25 | 2  | 49  | 0          | 1   | 0 | 1 | 78    |
| 1983 | 28 | 3  | 42  | 0          | 1   | 0 | 0 | 74    |
| 1984 | 38 | 1  | 46  | 0          | 5   | 0 | 0 | 90    |
| 1985 | 28 | 3  | 56  | 0          | 2   | 0 | 0 | 89    |
| 1986 | 34 | 1  | 47  | 0          | 7   | 0 | 0 | 89    |
| 1987 | 66 | 2  | 57  | 0          | 4   | 0 | 1 | 130   |
| 1988 | 43 | 2  | 46  | 1          | 3   | 0 | 0 | 95    |
| 1989 | 48 | 4  | 65  | 0          | 5   | 0 | 2 | 124   |
| 1990 | 38 | 5  | 50  | 0          | 3   | 0 | 2 | 98    |
| 1991 | 38 | 3  | 44  | 0          | 2   | 0 | 1 | 88    |
| 1992 | 36 | 5  | 53  | 0          | 2   | 0 | 0 | 96    |
| 1993 | 62 | 3  | 74  | 0          | 4   | 0 | 0 | 143   |
| 1994 | 53 | 8  | 74  | 0          | 3   | 0 | 0 | 138   |
| 1995 | 39 | 5  | 47  | 0          | 7   | 0 | 0 | 98    |
| 1996 | 32 | 5  | 61  | 1          | 8   | 0 | 0 | 107   |
| 1997 | 29 | 11 | 62  | 0          | 1   | 0 | 0 | 103   |
| 1998 | 31 | 11 | 64  | 0          | 3   | 0 | 0 | 109   |
| 1999 | 30 | 4  | 73  | 1          | 5   | 0 | 0 | 113   |

 Table 12-4: South African Patent counts at the USPTO

It can be noticed from the above table that the two groups with the most patents are the "unassigned" group as well as the "Non-US non-government organization (mostly corporations)" group.

Certain assumptions are made regarding the assignee classifications and the implications on categorising it to the three sectors in the model developed in this study (Higher Education sector, Public sector and Private sector)

- All patents in category 2 and 3 are patents originating from companies in the "Private sector"
- An assumption is made that the unassigned entities will never be assigned and will remain in the names of the inventors who originally submitted the application for patents.

These assignee codes are then assigned to one of three categories.

- No Sector: Unassigned (1) and Individuals (4,5)
- Private sector: Non governmental organisations (2, 3)
- Governmental organisations (7) Public sector

This yields the following result:

| Patents | No sector | Private sector | Public sector | Total |
|---------|-----------|----------------|---------------|-------|
| 1977    | 47        | 27             | 0             | 74    |
| 1978    | 43        | 44             | 0             | 87    |
| 1979    | 48        | 46             | 0             | 94    |
| 1980    | 38        | 48             | 0             | 86    |
| 1981    | 32        | 38             | 1             | 71    |
| 1982    | 26        | 51             | 1             | 78    |
| 1983    | 29        | 45             | 0             | 74    |
| 1984    | 43        | 47             | 0             | 90    |
| 1985    | 30        | 59             | 0             | 89    |
| 1986    | 41        | 48             | 0             | 89    |
| 1987    | 70        | 59             | 1             | 130   |
| 1988    | 47        | 48             | 0             | 95    |
| 1989    | 53        | 69             | 2             | 124   |
| 1990    | 41        | 55             | 2             | 98    |
| 1991    | 40        | 47             | 1             | 88    |
| 1992    | 38        | 58             | 0             | 96    |
| 1993    | 66        | 77             | 0             | 143   |
| 1994    | 56        | 82             | 0             | 138   |
| 1995    | 46        | 52             | 0             | 98    |
| 1996    | 41        | 66             | 0             | 107   |
| 1997    | 30        | 73             | 0             | 103   |
| 1998    | 34        | 75             | 0             | 109   |
| 1999    | 36        | 77             | 0             | 113   |

 Table 12-5: Patent count analysis of South African Patents at the USPTO

### 12.1.1 Absorption of knowledge from the USPTO database

Table 12-6: South African Patent reference counts at the USPTO

.

|      |     |     | Categ | gory nun | nber |   |    |       |
|------|-----|-----|-------|----------|------|---|----|-------|
|      | 1   | 2   | 3     | 4        | 5    | 6 | 7  | Total |
| 1977 | 256 | 30  | 144   | 0        | 18   | 0 | 0  | 448   |
| 1978 | 272 | 30  | 243   | 0        | 26   | 0 | 0  | 571   |
| 1979 | 302 | 12  | 294   | 0        | 45   | 0 | 0  | 653   |
| 1980 | 226 | 30  | 233   | 0        | 13   | 0 | 0  | 502   |
| 1981 | 201 | 5   | 178   | 0        | 31   | 0 | 11 | 426   |
| 1982 | 180 | 15  | 299   | 0        | 5    | 0 | 3  | 502   |
| 1983 | 172 | 22  | 223   | 0        | 7    | 0 | 0  | 424   |
| 1984 | 225 | 10  | 240   | 0        | 29   | 0 | 0  | 504   |
| 1985 | 199 | 39  | 368   | 0        | 16   | 0 | 0  | 622   |
| 1986 | 279 | 3   | 377   | 0        | 33   | 0 | 0  | 692   |
| 1987 | 494 | 21  | 358   | 0        | 32   | 0 | 3  | 908   |
| 1988 | 284 | 11  | 333   | 11       | 15   | 0 | 0  | 654   |
| 1989 | 331 | 37  | 451   | 0        | 19   | 0 | 1  | 839   |
| 1990 | 265 | 49  | 388   | 0        | 18   | 0 | 13 | 733   |
| 1991 | 284 | 4   | 312   | 0        | 19   | 0 | 0  | 619   |
| 1992 | 324 | 42  | 388   | 0        | 11   | 0 | 0  | 765   |
| 1993 | 546 | 24  | 632   | 0        | 70   | 0 | 0  | 1272  |
| 1994 | 446 | 165 | 575   | 0        | 18   | 0 | 0  | 1204  |
| 1995 | 351 | 79  | 418   | 0        | 74   | 0 | 0  | 922   |
| 1996 | 336 | 44  | 469   | 4        | 75   | 0 | 0  | 928   |

| 1 | 1997 | 159 | 120 | 460 | 0 | 0 | 0 | 0 | 739 |
|---|------|-----|-----|-----|---|---|---|---|-----|
|   | 1998 | 45  | 15  | 157 | 0 | 0 | 0 | 0 | 217 |

| Patents | No sector | Private sector | Public sector | Total |
|---------|-----------|----------------|---------------|-------|
| 1977    | 274       | 174            | 0             | 448   |
| 1978    | 298       | 273            | 0             | 571   |
| 1979    | 347       | 306            | 0             | 653   |
| 1980    | 239       | 263            | 0             | 502   |
| 1981    | 232       | 183            | 11            | 426   |
| 1982    | 185       | 314            | 3             | 502   |
| 1983    | 179       | 245            | 0             | 424   |
| 1984    | 254       | 250            | 0             | 504   |
| 1985    | 215       | 407            | 0             | 622   |
| 1986    | 312       | 380            | 0             | 692   |
| 1987    | 526       | 379            | 3             | 908   |
| 1988    | 310       | 344            | 0             | 654   |
| 1989    | 350       | 488            | 1             | 839   |
| 1990    | 283       | 437            | 13            | 733   |
| 1991    | 303       | 316            | 0             | 619   |
| 1992    | 335       | 430            | 0             | 765   |
| 1993    | 616       | 656            | 0             | 1272  |
| 1994    | 464       | 740            | 0             | 1204  |
| 1995    | 425       | 497            | 0             | 922   |
| 1996    | 415       | 513            | 0             | 928   |
| 1997    | 159       | 580            | 0             | 739   |
| 1998    | 45        | 172            | 0             | 217   |
| 1999    | 36        | 77             | 0             | 113   |

 Table 12-7: Patent reference count analysis of South African Patents at the USPTO

## 12.1.2 South Africa's Patenting at the South African Patent Office

The South African Patent office works differently from the United States Patent Office. Patents are not examined in order to be granted by the South African Patent Office.

This by implication has the effect that the patents therefore is not necessarily novel, in relation to existing art. It does not necessary indicates a degree of inventiveness as is necessary to patent at the European or United States Patent Office. Since patenting at the USPTO is extremely expensive and only a very small number of South African patents are granted on a yearly basis, the possibility of making use of the South African patent office data was examined.

Finding reliable data on the South African patent database, specifically to find data on patents granted to South Africans proved to be a very frustrating and almost impossible task. Unlike the NBER database that exists for the USPTO, no such database exists at present for the South African Patent Office.

On acceptance of a patent by the patent office, the patent description is published in the South African Patent Journal. The patent is granted on the publication date of the appropriate issue of the Patent Journal. The Patent journal is published every month.

A file system with the patent journals scanned in (viewable only in pdf format) was obtained

from Hahn & Hahn Patent attorneys. The patent journals (published monthly) for the period 1986 to 2004 were examined. All patent granted to a South African entity (priority country must be South Africa).

The *priority country* is the country where the patent is filed the first time. It is therefore assumed that the great majority of South Africans patenting will first patent in South Africa after which they might or might not patent their ideas in other countries. It is acknowledged that this approach has it's weaknesses, but still is the most simplified and the only feasible option to be able to search for South African patents in the South African Patent Journal.

This approach however also has it stronger points since by looking at patent published in the Patent Journal, only granted patents are taken into account. Although this is not examined, the process of self-elimination by patentees is used as a filter mechanism.

|      | company | individual | university | government | Total |
|------|---------|------------|------------|------------|-------|
| 1985 | 402     | 357        | 2          | 20         | 781   |
| 1988 | 410     | 471        | 1          | 16         | 898   |
| 1990 | 391     | 438        | 2          | 30         | 861   |
| 1993 | 364     | 374        | 3          | 27         | 768   |
| 1995 | 407     | 316        | 7          | 34         | 764   |
| 1998 | 431     | 385        | 19         | 22         | 857   |
| 2000 | 320     | 296        | 15         | 18         | 649   |
| 2001 | 353     | 355        | 16         | 14         | 738   |
| 2004 | 331     | 359        | 15         | 18         | 723   |

Table 12-8: Patent data gathered from the South African Patent Office journal

The following trends can be seen from the data gathered from the South African patent journal.

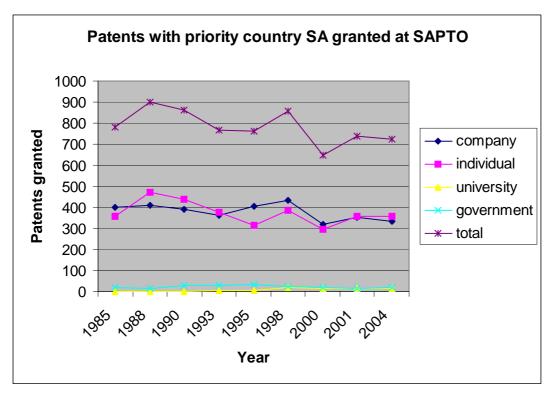



Figure 12-1 Patents granted at the South African Patent Office

## 12.2 South Africa's Publication data: Data gathering and Analysis

#### **12.2.1** The Database of scientific papers originating from South Africa

A Database of all scientific papers in the ISI Web of science written by at least one author with a South African address was constructed from data. The database is constructed from text files downloaded from the ISI web of science database (Science Citation Index, Social Sciences Citation Index, Arts and Humanities Citation Index). These text files were then imported into an excel spreadsheet. The scientific publication was included in the database if the author's address or the Reprint address is a South African address.

The data was gathered from access to the ISI Web of science via the following organisations:

- Years 1987-2004 from Eindhoven University of Technology, Netherlands
- Years 1981-1986 from the Radboud University, Netherlands

The most important fields included in the data downloaded are listed in the following table.

| Name of Field | Description                                                    |  |  |  |
|---------------|----------------------------------------------------------------|--|--|--|
| AU            | Author names                                                   |  |  |  |
| TI            | Title                                                          |  |  |  |
| SO            | Journal Name                                                   |  |  |  |
| C1            | Author address: Addresses of authors writing scientific        |  |  |  |
|               | Publication                                                    |  |  |  |
| RP            | Reprint address: Address where permission must be asked if the |  |  |  |
|               | article is to be reprinted                                     |  |  |  |
| CR            | List of References made in the Journal                         |  |  |  |
| NR            | Number of References made in the Journal                       |  |  |  |
| TC            | Times Cited                                                    |  |  |  |
| PY            | Publication Year                                               |  |  |  |
| SC            | Scientific Field                                               |  |  |  |

 Table 12-9: Fields in Database of South African Scientific Output

Field important for the analysis of the data are the

- RP and CI (Reprint address and the Author's address): According to these addresses the paper is categorised into either the Higher Education sector, Public sector and the Private sector. In the case when the addresses referring to a specific scientific publication has two sectors, each sector is awarded a 0.5 publication.
- NR: The number of references to other scientific output from the scientific publication
- TC: Times the paper has been cited by another author publishing scientific output

#### **12.2.2** Analysis of the scientific publication data in the database

An analysis is conducted on the database to establish the distribution of publication rates per year for the three sectors modelled in the model building study. In other words the sampling exercise is executed to find answers to the following questions:

*Q1:* From the years 1981 to 2001 what was the amount of papers published in ISI journals by people from the Higher Education sector, Public sector and Private sector respectively?

Q2: From the years 1981 to 2001 what was the amount of references made in scientific publications created in the Higher Education sector, Public sector and Private sector respectively?

Since the amount of papers included in the database is too large to analyse the information by examining every single record, a sampling strategy is followed. Since much variation in the address names exist, the safest option of obtaining and categorising the journals into one of the sectors, was through inspection of the addresses.

The error margin cannot be controlled for in these circumstances. Whereas by following the strategy of doing a sample on the data, we can get a pretty good idea of the inaccuracy introduced though the whole process.

## Methodology

A stratified random sample was taken from the database. In the Excel database, every 20<sup>th</sup> paper was extracted to a new "Sample database". This led to the following number of papers being extracted to a second excel spreadsheet. The column with the "References in papers" is a summed total of the references made in the papers that have been sampled.

| Year  | Total # Papers | Total # References<br>made in papers | Stratified Random sample size |
|-------|----------------|--------------------------------------|-------------------------------|
| 1981  | 3075           | 39113                                | 153                           |
| 1982  | 3518           | 41868                                | 175                           |
| 1983  | 3581           | 43009                                | 179                           |
| 1984  | 3461           | 46950                                | 173                           |
| 1985  | 3968           | 56568                                | 198                           |
| 1986  | 4694           | 66769                                | 234                           |
| 1987  | 4758           | 66235                                | 239                           |
| 1988  | 4632           | 65301                                | 231                           |
| 1989  | 4183           | 62072                                | 209                           |
| 1990  | 3949           | 66850                                | 197                           |
| 1991  | 4134           | 73512                                | 206                           |
| 1992  | 4000           | 72629                                | 200                           |
| 1993  | 4195           | 73382                                | 209                           |
| 1994  | 4291           | 84125                                | 214                           |
| 1995  | 4503           | 85292                                | 224                           |
| 1996  | 4479           | 96584                                | 224                           |
| 1997  | 4398           | 100120                               | 220                           |
| 1998  | 4498           | 103269                               | 225                           |
| 1999  | 4755           | 112023                               | 237                           |
| 2000  | 4461           | 109612                               | 223                           |
| 2001  | 4691           | 122392                               | 234                           |
| Total | 88224          | 1587675                              | 4404                          |

 Table 12-10: Sample taken for analysis of the distribution of Publications

The selected entries in the sample database was then categorised into the three sectors through the classification system as discussed in the Frascati manual:

- Higher Education sector (Universities and Technikons, Academic Hospitals etc.)
- Public sector (Science Councils, National Facilities)
- Private sector (Companies)

 Table 12-11: Results from the Sample

|      | # HES<br>papers | # Pub<br>papers | # Bus<br>papers | <br># HES<br>references | # Pub<br>references | # Bus<br>references |  |
|------|-----------------|-----------------|-----------------|-------------------------|---------------------|---------------------|--|
| 1981 | 113             | 32              | 15              | 1371                    | 385                 | 150                 |  |
| 1982 | 126             | 44              | 16              | 1509                    | 539                 | 200                 |  |

| 1983 | 128 | 49 | 10 | 1426 | 616  | 18  |
|------|-----|----|----|------|------|-----|
| 1984 | 137 | 36 | 7  | 1684 | 528  | 40  |
| 1985 | 149 | 49 | 10 | 2040 | 740  | 77  |
| 1986 | 178 | 56 | 15 | 3031 | 798  | 71  |
| 1987 | 189 | 64 | 6  | 2359 | 571  | 41  |
| 1988 | 192 | 54 | 7  | 2596 | 740  | 23  |
| 1989 | 164 | 59 | 4  | 2557 | 908  | 19  |
| 1990 | 155 | 51 | 8  | 2562 | 704  | 89  |
| 1991 | 166 | 50 | 11 | 2878 | 910  | 46  |
| 1992 | 168 | 42 | 8  | 3564 | 468  | 120 |
| 1993 | 176 | 42 | 8  | 3286 | 572  | 90  |
| 1994 | 174 | 47 | 8  | 3133 | 412  | 174 |
| 1995 | 191 | 42 | 10 | 3175 | 585  | 114 |
| 1996 | 177 | 52 | 14 | 4129 | 1301 | 126 |
| 1997 | 179 | 44 | 18 | 3785 | 678  | 144 |
| 1998 | 172 | 52 | 13 | 3854 | 1068 | 237 |
| 1999 | 188 | 43 | 21 | 4857 | 1006 | 309 |
| 2000 | 180 | 45 | 16 | 4781 | 1008 | 273 |
| 2001 | 202 | 35 | 11 | 5004 | 804  | 86  |

R&D in the National System of Innovation: a System Dynamics Model University of Pretoria etd – Grobbelaar, S S (2007)

The Margin of error is computed through the following computation:

By taking a stratified sample, the effective sample size is increased by a factor between n/0.8 to n/0.9 if n denotes the sample size.

Since the sample size is 4404, and taking the design effect computation to be n/0.85 the effective sample size (N) therefore is 5181. To compute the margin of error the following equation is used (Page and Meyer, 2000):

Margin of error = 
$$2 * \sqrt{\frac{p(p-1)}{N}}$$

Die margin of error is therefore computed to make use of the most conservative value for p = 0.5. This results in a Margin of 0.0139 or approximately 1%.

From the sample analysis, the percentage of papers created in the three sectors is computed. The same is done for the percentage of references made in the papers.

Table 12-12: Distribution of scientific paper output and reference counts

|      | HES %<br>papers | Pub %<br>papers | Bus %<br>papers | HES %<br>references | Pub %<br>references | Bus %<br>references |  |
|------|-----------------|-----------------|-----------------|---------------------|---------------------|---------------------|--|
| 1981 | 0.72            | 0.19            | 0.09            | 0.72                | 0.20                | 0.08                |  |
| 1982 | 0.68            | 0.23            | 0.09            | 0.67                | 0.24                | 0.09                |  |
| 1983 | 0.69            | 0.26            | 0.05            | 0.69                | 0.30                | 0.01                |  |
| 1984 | 0.77            | 0.19            | 0.04            | 0.75                | 0.23                | 0.02                |  |
| 1985 | 0.73            | 0.23            | 0.04            | 0.71                | 0.26                | 0.03                |  |
| 1986 | 0.73            | 0.21            | 0.05            | 0.78                | 0.20                | 0.02                |  |
| 1987 | 0.75            | 0.23            | 0.02            | 0.79                | 0.19                | 0.01                |  |
| 1988 | 0.78            | 0.19            | 0.03            | 0.77                | 0.22                | 0.01                |  |
| 1989 | 0.74            | 0.24            | 0.02            | 0.73                | 0.26                | 0.01                |  |
| 1990 | 0.74            | 0.22            | 0.04            | 0.76                | 0.21                | 0.03                |  |
| 1991 | 0.75            | 0.20            | 0.05            | 0.75                | 0.24                | 0.01                |  |
| 1992 | 0.79            | 0.17            | 0.04            | 0.86                | 0.11                | 0.03                |  |
| 1993 | 0.80            | 0.17            | 0.03            | 0.83                | 0.14                | 0.02                |  |
| 1994 | 0.78            | 0.19            | 0.03            | 0.84                | 0.11                | 0.05                |  |

| 1995 | 0.81 | 0.15 | 0.04 | 0.82 | 0.15 | 0.03 |  |
|------|------|------|------|------|------|------|--|
| 1996 | 0.74 | 0.21 | 0.05 | 0.74 | 0.23 | 0.02 |  |
| 1997 | 0.76 | 0.17 | 0.08 | 0.82 | 0.15 | 0.03 |  |
| 1998 | 0.74 | 0.21 | 0.05 | 0.75 | 0.21 | 0.05 |  |
| 1999 | 0.77 | 0.16 | 0.08 | 0.79 | 0.16 | 0.05 |  |
| 2000 | 0.77 | 0.17 | 0.06 | 0.79 | 0.17 | 0.05 |  |
| 2001 | 0.84 | 0.12 | 0.04 | 0.85 | 0.14 | 0.01 |  |

R&D in the National System of Innovation: a System Dynamics Model University of Pretoria etd – Grobbelaar, S S (2007)

The next step now is to apply these findings to the total population to get an estimation of the total papers produced in the different sectors by year from 1981 to 2001. The percentages computed and displayed in Table 12-12: is used to find an estimate of how many papers were created in a sector for the whole population.

|      | HES<br>papers | Pub<br>papers | Bus<br>papers | HES<br>references | Pub<br>references | Bus<br>references |  |
|------|---------------|---------------|---------------|-------------------|-------------------|-------------------|--|
| 1981 | 2214          | 584           | 277           | 28161             | 7823              | 3129              |  |
| 1982 | 2392          | 809           | 317           | 28052             | 10048             | 3768              |  |
| 1983 | 2471          | 931           | 179           | 29676             | 12903             | 430               |  |
| 1984 | 2665          | 658           | 138           | 35213             | 10799             | 939               |  |
| 1985 | 2897          | 913           | 159           | 40163             | 14708             | 1697              |  |
| 1986 | 3427          | 986           | 235           | 52080             | 13354             | 1335              |  |
| 1987 | 3569          | 1094          | 95            | 52326             | 12585             | 662               |  |
| 1988 | 3613          | 880           | 139           | 50282             | 14366             | 653               |  |
| 1989 | 3095          | 1004          | 84            | 45313             | 16139             | 621               |  |
| 1990 | 2922          | 869           | 158           | 50806             | 14039             | 2006              |  |
| 1991 | 3101          | 827           | 207           | 55134             | 17643             | 735               |  |
| 1992 | 3160          | 680           | 160           | 62461             | 7989              | 2179              |  |
| 1993 | 3356          | 713           | 126           | 60907             | 10273             | 1468              |  |
| 1994 | 3347          | 815           | 129           | 70665             | 9254              | 4206              |  |
| 1995 | 3647          | 675           | 180           | 69939             | 12794             | 2559              |  |
| 1996 | 3314          | 941           | 224           | 71472             | 22214             | 1932              |  |
| 1997 | 3342          | 748           | 352           | 82098             | 15018             | 3004              |  |
| 1998 | 3329          | 945           | 225           | 77452             | 21686             | 5163              |  |
| 1999 | 3661          | 761           | 380           | 88498             | 17924             | 5601              |  |
| 2000 | 3435          | 758           | 268           | 86593             | 18634             | 5481              |  |
| 2001 | 3940          | 563           | 188           | 104033            | 17135             | 1224              |  |

 Table 12-13: Scientific paper publication counts and reference counts

It is clear from the data that the Business sector makes a much smaller contribution in terms of scientific paper output than the HES or Public sector. For this reason the production of paper in the Business sector is not included in the model.

## **12.2.3** The Depreciation of knowledge

Adams (1990) developed a production function model to measure the impact of 'fundamental stocks of knowledge' productivity growth at the sectoral level. In this model he makes use of stocks of publication data. Adams also made use of an accumulated stock of knowledge in his model.

$$N_t = N_{t-1}(1 - \delta) + P_t$$
 12-1

where N stands for the stock of knowledge in period t (or t-1),  $\delta$  is a depreciation factor (estimated to be equal to 0.13), and P is the number of papers published in year t.

In a study conducted by Cabellero and Jaffe, the found that the rate of ideas' obsolescence has increased from 3% in the 1900's to up to 12% in 1990. This percentage is also close to the estimated value form Adams' (1990) study.

The depreciation rate is also used for the rates of depreciation of stocks of knowledge in the model developed in this study. As citation data is available for the South African papers, it is used to check this estimation for the purpose of this model.

The citation pattern of the Papers generated in South Africa is investigated. This analysis is done from the database of papers generated in South Africa. It is assumed that the citation pattern can be used for the papers generated in all the sectors. i.e. it is assumed that the difference in citation patterns between sectors is negligible.

|      | # Papers | # citations received | avg # citations<br>received per paper |
|------|----------|----------------------|---------------------------------------|
| 1981 | 3075     | 25229                | 8.20                                  |
| 1982 | 3518     | 29365                | 8.35                                  |
| 1983 | 3581     | 27855                | 7.78                                  |
| 1984 | 3461     | 28404                | 8.21                                  |
| 1985 | 3968     | 31722                | 7.99                                  |
| 1986 | 4694     | 35210                | 7.50                                  |
| 1987 | 4758     | 34459                | 7.24                                  |
| 1988 | 4632     | 35926                | 7.76                                  |
| 1989 | 4183     | 31896                | 7.63                                  |
| 1990 | 3949     | 36425                | 9.22                                  |
| 1991 | 4134     | 36418                | 8.81                                  |
| 1992 | 4000     | 33066                | 8.27                                  |
| 1993 | 4195     | 33580                | 8.00                                  |
| 1994 | 4291     | 33835                | 7.89                                  |
| 1995 | 4503     | 33971                | 7.54                                  |
| 1996 | 4479     | 31217                | 6.97                                  |
| 1997 | 4398     | 29101                | 6.62                                  |
| 1998 | 4498     | 29776                | 6.62                                  |
| 1999 | 4755     | 27818                | 5.85                                  |
| 2000 | 4461     | 23627                | 5.30                                  |
| 2001 | 4691     | 20726                | 4.42                                  |
| 2002 | 5068     | 14893                | 2.94                                  |
| 2003 | 4990     | 9553                 | 1.91                                  |

Table 12-14: Citations received by South African Scientific journals.

When the data is presented as a curve the following can be seen.

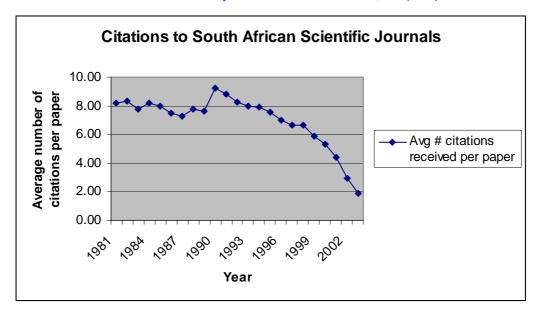
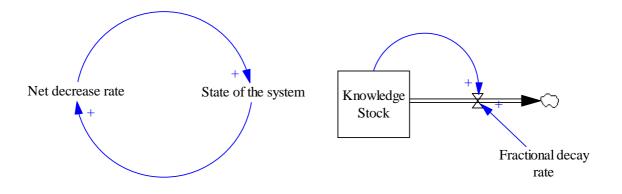




Figure 12-2 Citations to South African scientific papers and journals

It seems that the citations curve reaches an average maximum at around 1994 to 1992. From 2005 this is about 10 to 13 years. It can therefore be concluded that the estimation from Adams' model is a realistic assumption for the system.

From this reasoning the paper citation graph for South African scientific papers is therefore used to estimate an average period scientific knowledge remains relevant to the scientific community. The time knowledge remains relevant is approximated to be about 10 years (after which the citation curve seems to flatten).



#### Figure 12-3 Dynamic structure of the decay of knowledge

The decay rate of knowledge is modelled through a first order material delay.

Outflow = Knowledge Stock/AT, where AT is the average delay time.

## **13** APPENDIX B

#### 13.1 Inputs to R&D

The Frascati manual is devoted to measuring R&D inputs. This includes formal R&D in formal R&D units as well as informal or occasional R&D in other units. For statistical purposes the following R&D inputs are measured (OECD, 2002:20):

- Full-time-equivalent or person years spent on R&D
- Expenditures for R&D performed within a statistical unit or sector in the economy (Intramural expenditures).
  - Current costs: labour costs and other current costs.
  - Capital expenditures: annual gross expenditures on gross fixed assets.
- Extramural expenditures, which cover payment of R&D performed outside the statistical unit sector.

R&D is an activity involving significant transfers of resources among units, organisations and sector (especially between government and other performers). The aim of the Frascati manual is to establish specifications for R&D input data and therefore to establish specifications for the collection of the data.

In order to facilitate the collection of data, the description of flows of R&D funds and the interpretation of R&D data, the data gathered from reporting units (units from where data is collected) are grouped into sectors of the economy (OECD, 2002:53). The sectors the aggregates for R&D data is grouped and includes the following:

- Business enterprise sector
- Government
- Private non-profit
- Higher education
- Abroad

International aggregate expenditure comparisons are done on the gross domestic expenditure on R&D (GERD) performed on national territory in a given year. This includes R&D financed from abroad but excludes R&D funds performed abroad.

#### **13.1.1** Types of research

In the description of the South African R&D system, reference will be made to different types of R&D performed within different sectors. These concepts are therefore shortly defined as in the Frascati manual (OECD, 2002 a):

**Basic Research:** Basic research is experimental or theoretical work undertaken primarily to acquire new knowledge of the underlying foundations of phenomena and observable facts, without any particular application or use in view.

*Pure Basic Research* is carried out for the advancement of knowledge without seeking long-term economic or social benefits or making any effort to apply the results to practical problems or to transfer the results to sectors responsible for their

application.

*Oriented Basic Research (Strategic Research)* is carried out with the expectation that it will produce a broad base of knowledge likely to form the basis of the solution to recognised or expected, current or future problems or possibilities.

*Applied Research:* Applied research is an original investigation undertaken in order to acquire new knowledge. It is however, directed primarily towards a specific practical aim or objective.

*Experimental Development:* Experimental development is systematic work, drawing on knowledge gained from research and practical experience that is directed to new processes, systems and services; or to improving substantially those already produced or installed.

## **13.1.2 Measurement of R&D output**

The reason interest in R&D depends more on the social and economic effects through the acquisition of new knowledge than on the activity itself. R&D output indicators are far more complicated to determine, define and produce.

The Output of R&D or science and technology (S&T) in general can be measured in several ways (OECD, 2002 a):

- Innovation surveys or existing data sources are methods of measuring the effects of the innovation process of which R&D plays an important role.
- Existing data sources such as bibliometrics, patent data, and the analysis of trade data in terms of "technology intensity" of products or industries concerned.

There has been only one Oslo-type innovation survey carried out by the University of Pretoria in co-operation with the Eindhoven University of Technology in the Netherlands (Oerlemans L. A. G., Pretorius M. W. et al, 2003)

Since time series data is important for the successful completion of the study, R&D outputs will be measured through existing data sources. The use of these sources is however not without problems. The following sections deals with limitations of the use of these indicators.

## 13.1.3 South African Frascati style R&D surveys

Blankley and Kahn (2005) published a paper on the history of South Africa's Frascati style surveys. The following sector discusses the methodological issues and measurement issues that exist in the time series data of the SA R&D survey data as well as the measurement of R&D in general.

## Definition has expanded

Blankley and Kahn (2005) published a paper on the history of South Africa's Frascati style surveys. R&D is not as well defined and it is not easy to establish its boundaries as one would like to have it. There is a global debate about what qualifies as R&D;

this debate shifts as global changes occur regarding economic activity. Changes have occurred in the definition of R&D over the past 30 years. Where it was mainly hard technologies that were measured about 30 years ago, the measurement The definition has been expanded in some instances from only including 30 years ago only hard technologies now also includes services and software development.

### Who does the reporting?

Measurement of the R&D is also influenced by who does the reporting. Researchers, managers and financial people are unlikely to report the same estimates of R&D spending – they all have different approaches. This may also influence the accuracy with which the survey is conducted.

### South Africa's R&D surveys and changes in methodology

South Africa has been conducting Frascati-style R&D surveys since shortly after the first manual was released in 1963 (Boshoff *et al*, 2003). The first R&D survey based on OECD guidelines was conducted in 1966 and over the next 25 years up to 1993/4, South Africa conducted 18 regular official surveys. Social sciences R&D expenditure have only been included in the survey since 1977/78

The CSIR in partnership with the HSRC started to conducted survey fieldwork. The survey has been conducted under the auspices of different bodies until 1991.

- The CSIR conducted the R&D survey for Natural sciences
- The HSRC was responsible for the gathering of data for social sciences from 1977/8.

In general the 1991/2 survey was more thorough than the surveys from prior years. 57% increase in R&D expenditure from 1989/90 to 1991/2 in comparison with an increase of 34% between 1987/8 to 1989/90. This is largely so because of the companies surveyed. The register with the businesses surveyed in the Business sector was revised and populated with 44% more enterprises than the 1989 survey. Defence organisations were also included in the survey which was not included in the 1989 survey. The defence R&D expenditure made up roughly 15% of the R&D budget in 1991.

The CSIR in partnership with the HSRC started to conducted survey fieldwork. The survey has been conducted under the auspices of different bodies until 1991. The survey was put open on tender from after 1991/2. After 1991 it was of lower priority to the state resulting in the 1993 and 1997 tenders were being awarded to private consultancies. Kahn (2004) comments on the inconsistency in the time series data after 1991 as follows: "Unfortunately instability after 1991 led to the conduct of the Survey migrating across a number of agencies with consequent inconsistency of methodology, gaps in the time series; and loss of institutional memory and capacity. However the Surveys are the only series of R&D data and therefore must be used. In addition to the Frascati data one has higher education, grant maker and bibliometric databases that can be used to corroborate evidence."

The survey was carried out on biannual basis until 1993/4. No survey was carried out in the 1995/6 (possibly because of the National Research and Technology Audit) or

1999/2000 cycles, leaving gaps in the time series data (HSRC, 2003: 211; Boshoff, 2003). The 1993/4 and 1997/8 R&D surveys used a different methodology from the R&D surveys conducted in the past. The survey was handed over to a private consultant for the 1993/4 and 1997/8 survey years. In the 1993/4 R&D surveys a similar approach of previous years were followed. Yet more companies were added to the register of companies surveyed. Pouris (2006) states that the 1993/4 and 1997/8 methodology is comparable to the methodology used in the previous years when considering the data gathered for the Private and Public sector. The main methodological differences in the surveys exist for the 1997/8 survey with regards to the Higher Education Sector.

Up to 1997 SAPSE data was used for the calculation of HR data in the HES. Higher Education institutions were also surveyed regarding the time spent on R&D and R&D expenditure in these institutions. In the 1997 survey another approach was followed. The SAPSE data was utilised but the percentage time spent by researchers on R&D was estimated by making use of research coefficients. Universities were arranged in high, medium and low intensity groups. Research coefficients were used to estimate the research time spent in these institutions as well as the R&D expenditure in these institutions. In some instances the Non-profit and Public sector is combined as the Services sector. This however does not have a big impact since the non-profit sector makes a very small contribution to R&D expenditure.

Pouris states the following regarding the 1993/4 and 1997/8 surveys: "During the surveys I supervised dip-stick surveys were undertaken of the remaining enterprises in order to identify new-comers. Each time approximately 1000 enterprises were approached. Businesses are included according to various criteria, namely:

1) on the basis that they were included in previous surveys,

- 2) if they received R&D funds from government programmes,
- 3) they are identified by respondents as contractors of research
- 4) have been identified by journals, popular press etc as undertaking R&D. "

Mouton (2001:44) reports a suspicion that the 1997/8 R&D survey might underestimate R&D spending in South Africa.

No survey was carried out in the 1995/6 (possibly because of the National Research and Technology Audit) or 1999/2000 cycles, leaving gaps in the time series data (HSRC, 2003: 211). Another inconsistency with the methodology followed in the 1997/8 R&D Survey is that it does not discriminate between the Non-profit and Public sector.

For the years 2001/2 R&D survey, the responsibility of executing the survey was handed to the HSRC. The methodology followed in these surveys is comparable to that followed in the 1991 survey. The Higher Education sector was again fully surveyed as with the pre-1997 surveys.

Again the register with businesses has been updated with more businesses known to conduct R&D. In the 2001/2 survey a number of 139 Business BERD questionnaires were received back. The register was increased and 2003/4 a number of 339 non-nil response BERD questionnaires were received.

It can however be argued that although the increase in businesses surveyed no doubt leads to a potentially more accurate survey, the top 20 business sector performers accounted for 79% of business expenditure. Therefore we can conclude that a change in the size of the sample will add to accuracy but that the general level of R&D expenditure should not be affected too much.

We can therefore conclude from this discussion that there were some methodological changes in the surveys. Concentration however aids in the accuracy of the different surveys.

There are definite methodological inconsistencies in the survey method for the Higher Education Sector over the time period in consideration. For this reason the Higher Education Sector model does not make use of the Survey data, but makes use of HEMIS data in terms of Academic and Research staff employed in the system.

# **13.1.4 The HEMIS data base**

A telephonic interview was conducted with Jean Skene the director of HEMIS at the Department of Education on 14 March 2006. In this interview it was formally confirmed that the comparison of the data in the HEMIS database between different years is appropriate.

The data is gathered from the Higher Education Institutions with the categories of the human resources identified as by the Department of Education. The definitions of the fields of data gathered from the Higher Education institutions remained consistent over the time period in consideration. No changes in definitions of the HR component have been made in the time series data.

From 1986 to 1998 Public Higher Education Institutions were required to submit data in the format of aggregated tables for headcounts, graduates and full time equivalent students and staff as specified by the Department of Education. The submission of data was stream lined in 1999: From 1999 the Public Higher Education Institutions were required to submit unit record databases for students and staff. These institutional databases are then loaded into a National database from which the Department of Education generates the aggregated tables.

From this can therefore be concluded that the use of time series data in the HEMIS database is therefore appropriate for the purpose of this study.

## **13.2** The Higher Education Sector

## **13.2.1 R&D Expenditure in the HES**

R&D Survey data is gathered from the R&D Surveys (1977 to 2003). The following table reflects figures for R&D spending in the Higher Education sector. This is referred to in the main body of the thesis.

#### Table 13-1: Sector Source funding (Financiers) of the HES

| Year | HES (R)   | Public sector (R) | Private sector (R) |
|------|-----------|-------------------|--------------------|
| 1977 | 30126000  | 8196000           | 1909000            |
| 1979 | 47409000  | 10222000          | 2903000            |
| 1981 | 72671136  | 15263000          | 5408000            |
| 1983 | 120989000 | 17489000          | 10403000           |
| 1985 | 239731000 | 40818000          | 22346000           |
| 1987 | 261135000 | 43874000          | 31151000           |
| 1989 | 406693000 | 56570000          | 51742000           |
| 1991 | 552457000 | 68914000          | 65882000           |
| 1993 | 336708000 | 46462000          | 29574000           |
| 1995 | N/A       | N/A               | N/A                |
| 1997 | 40600000  | 33000000          | 57000000           |
| 1999 | N/A       | N/A               | N/A                |
| 2001 | 581560000 | 1187075000        | 380075000          |
| 2003 | 346132000 | 848,554,000       | 478734000          |

R&D in the National System of Innovation: a System Dynamics Model University of Pretoria etd – Grobbelaar, S S (2007)

 Table 13-2: R&D expenditure in the Higher Education sector

| Year  | R&D<br>investment (R) | Expenditure<br>HR | %<br>Expenditure<br>HR | Expenditure on<br>Capital | % Expenditure on Capital |
|-------|-----------------------|-------------------|------------------------|---------------------------|--------------------------|
| 1977  | 40944000              | 20481000          | 50.02%                 | 2311000                   | 5.64%                    |
| 1979  | 62109000              | 33306000          | 53.63%                 |                           | 0.00%                    |
| 1981  | 94424210              | 34053000          | 36.06%                 | 5618240                   | 5.95%                    |
| 1983  | 151352000             | 53124000          | 35.10%                 | 5985000                   | 3.95%                    |
| 1985  | 306534000             | 173232000         | 56.51%                 | 13496000                  | 4.40%                    |
| 1987  | 339194000             | 175463000         | 51.73%                 | 14826000                  | 4.37%                    |
| 1989  | 517566000             | 258324000         | 49.91%                 | 35879000                  | 6.93%                    |
| 1991  | 690439000             | 341904000         | 49.52%                 | 30062000                  | 4.35%                    |
| 1993  | 415648000             | 230435000         | 55.44%                 | 15669000                  | 3.77%                    |
| 1995  | N/A                   | N/A               | N/A                    | N/A                       | N/A                      |
| 1997  | 49600000              | 253100000         | 51.03%                 | N/A                       | N/A                      |
| 1999  | N/A                   | N/A               | N/A                    | N/A                       | N/A                      |
| 2001  | 1896156000            | 1127710000        | 59.47%                 | 115953000                 | 6.12%                    |
| 2003  | 2071351000            | 925255000         | 44.67%                 | 162380000                 | 7.84%                    |
| Avera | ge                    |                   | 49.42%                 | Average                   | 4.85%                    |
| Stand | ard Deviation         |                   | 7.51%                  | St Dev                    | 2.07%                    |

.

|      | Total HR         |                  |        |                  |        |                  |       |
|------|------------------|------------------|--------|------------------|--------|------------------|-------|
|      | Spending         | Researcher       |        | Technicians      |        | Support          |       |
| Year | ( <b>R'000</b> ) | ( <b>R'000</b> ) | %      | ( <b>R'000</b> ) | %      | ( <b>R'000</b> ) | %     |
| 1977 | 20480            | 17721            | 86.53% | 2232             | 10.90% | 527              | 2.57% |
| 1979 | 33306            | 28014            | 84.11% | 4445             | 13.35% | 847              | 2.54% |
| 1981 | 34052            | 25814            | 75.81% | 6903             | 20.27% | 1335             | 3.92% |
| 1983 | 53124            | 43357            | 81.61% | 7715             | 14.52% | 2052             | 3.86% |
| 1985 | 173232           | 146712           | 84.69% | 17995            | 10.39% | 8525             | 4.92% |
| 1987 | 175463           | 159281           | 90.78% | 10783            | 6.15%  | 5399             | 3.08% |
| 1989 | 258324           | 225510           | 87.30% | 25230            | 9.77%  | 7584             | 2.94% |
| 1991 | 341904           | 323377           | 94.58% | 13179            | 3.85%  | 5348             | 1.56% |
| 1993 | 230435           | 220381           | 95.64% | 5734             | 2.49%  | 4320             | 1.87% |
| 1995 | N/A              | N/A              | N/A    | N/A              | N/A    | N/A              | N/A   |

| R&D in the National System of Innovation: a System Dynamics Model |
|-------------------------------------------------------------------|
| University of Pretoria etd – Grobbelaar, S S (2007)               |
| Oniversity of Freiona eta - Orobbelaar, 5.5 (2007)                |

| 1997    | 253100             | 240445  | 95.00% | 7593  | 3.00% | 5062  | 2.00% |
|---------|--------------------|---------|--------|-------|-------|-------|-------|
| 1999    | N/A                | N/A     | N/A    | N/A   | N/A   | N/A   | N/A   |
| 2001    | 1127710            | 1071325 | 95.00% | 33831 | 3.00% | 22554 | 2.00% |
| Average |                    | 88.28%  |        | 8.88% |       | 2.84% |       |
|         | Standard Deviation |         |        |       | 5.76% |       | 1.04% |

#### Table 13-4: R&D spending on type of research

| Year                  | R&D<br>investmen<br>t (R'000) | Basic<br>Researc<br>h<br>(R'000) | %          | Applied<br>Researc<br>h<br>(R'000) | %          | Experimenta<br>l<br>Development<br>(R'000) | %          |
|-----------------------|-------------------------------|----------------------------------|------------|------------------------------------|------------|--------------------------------------------|------------|
|                       |                               |                                  | 57.32      |                                    | 35.89      |                                            |            |
| 1979                  | 62109                         | 35598                            | %          | 22289                              | %          | 4757                                       | 7.66%      |
| 1981                  | 94424                         | 50381                            | 53.36<br>% | 36807                              | 38.98<br>% | 7325                                       | 7.76%      |
| 1983                  | 151352                        | 83124                            | 54.92<br>% | 56200                              | 37.13<br>% | 12027                                      | 7.95%      |
| 1985                  | 306534                        | 170941                           | 55.77<br>% | 107237                             | 34.98<br>% | 28357                                      | 9.25%      |
| 1987                  | 339194                        | 176415                           | 52.01<br>% | 132168                             | 38.97<br>% | 30612                                      | 9.02%      |
| 1989                  | 517566                        | 242332                           | 46.82<br>% | 210725                             | 40.71<br>% | 64508                                      | 12.46<br>% |
| 1991                  | 690439                        | 359788                           | 52.11<br>% | 273757                             | 39.65<br>% | 56895                                      | 8.24%      |
| 1993                  | 415648                        | 207319                           | 49.88<br>% | 172351                             | 41.47<br>% | 35978                                      | 8.66%      |
| 1995                  | N/A                           | N/A                              | N/A        | N/A                                | N/A        | N/A                                        | N/A        |
| 1997                  | 496000                        | N/A                              | 49.80<br>% | N/A                                | 38.00<br>% | N/A                                        | 12.20<br>% |
| 1999                  | N/A                           | N/A                              | N/A        | N/A                                | N/A        | N/A                                        | N/A        |
| 2001                  | 1896156                       | 862067                           | 45.46<br>% | 706108                             | 37.24<br>% | 234529                                     | 12.37<br>% |
| 2003                  | 2071351                       | 915971                           | 44.22<br>% | 827,209                            | 39.94<br>% | 328170                                     | 15.84<br>% |
| Average               | 51.06%                        |                                  | 38.45<br>% |                                    | 10.13<br>% |                                            |            |
| Standard<br>Deviation | 4.27%                         |                                  | 2.01%      |                                    | 2.68%      |                                            |            |

#### 13.2.2 Human Resources in the HES

.

The Following table reflects figures for the FTE researchers employed in the Higher Education system. From the figures can be seen that by far the greatest share of FTE research personnel are FTE researchers.

 Table 13-5: Human Resource data from the R&D Surveys

|      | Total | НС          |        | НС          |        | НС      |        |
|------|-------|-------------|--------|-------------|--------|---------|--------|
|      | HC    | Researchers | %      | Technicians | %      | Support | %      |
| 1977 | 6425  | 5053        | 78.65% | 926         | 14.41% | 446     | 6.94%  |
| 1979 | 8181  | 6406        | 78.30% | 1272        | 15.55% | 503     | 6.15%  |
| 1981 | 6116  | 4044        | 66.12% | 1456        | 23.81% | 616     | 10.07% |

| 1983               | 11465 | 8841   | 77.11% | 1523   | 13.28% | 1101   | 9.60%  |
|--------------------|-------|--------|--------|--------|--------|--------|--------|
| 1985               | 17889 | 13588  | 75.96% | 2156   | 12.05% | 2145   | 11.99% |
| 1987               | 19943 | 15417  | 77.31% | 1645   | 8.25%  | 2881   | 14.45% |
| 1989               | 19682 | 13978  | 71.02% | 2758   | 14.01% | 2946   | 14.97% |
| 1991               | 16514 | 14540  | 88.05% | 962    | 5.83%  | 1012   | 6.13%  |
| 1993               | 10835 | 9916   | 91.52% | 511    | 4.72%  | 408    | 3.77%  |
| 1995               | N/A   | N/A    | N/A    | N/A    | N/A    | N/A    | N/A    |
| 1997               | N/A   | N/A    | N/A    | N/A    | N/A    | N/A    | N/A    |
| 1999               | N/A   | N/A    | N/A    | N/A    | N/A    | N/A    | N/A    |
| 2001               | 15767 | 12626  | 80.08% | 827    | 5.25%  | 2314   | 14.68% |
| 2003               | 19377 | 14055  | 72.53% | 2594   | 13.39% | 2728.5 | 14.08% |
| Average            |       | 77.88% |        | 11.87% |        | 10.26% |        |
| Standard Deviation |       |        | 7.17%  |        | 5.62%  |        | 4.06%  |

R&D in the National System of Innovation: a System Dynamics Model University of Pretoria etd – Grobbelaar, S S (2007)

Table 13-6: Full time equivalent researchers in the HES

|        | Amount<br>of R&D |             |        |             |        | FTE       |        |
|--------|------------------|-------------|--------|-------------|--------|-----------|--------|
|        | workers          | FTE         |        | FTE         |        | Support   |        |
| Year   | (FTE)            | Researchers | %      | Technicians | %      | Personnel | %      |
| 1977   | 2555             | 1938        | 75.85% | 447         | 17.50% | 170       | 6.65%  |
| 1979   | 3216             | 2399        | 74.60% | 623         | 19.37% | 194       | 6.03%  |
| 1981   | 2253             | 1425        | 63.25% | 627         | 27.83% | 200       | 8.88%  |
| 1983   | 4128             | 3384        | 81.98% | 532         | 12.89% | 212       | 5.14%  |
| 1985   | 6810             | 5183        | 76.11% | 928         | 13.63% | 699       | 10.26% |
| 1987   | 6610             | 5780        | 87.44% | 473         | 7.16%  | 357       | 5.40%  |
| 1989   | 6353             | 5160        | 81.22% | 837         | 13.17% | 355       | 5.59%  |
| 1991   | 6533             | 5984        | 91.60% | 289         | 4.42%  | 260       | 3.98%  |
| 1993   | 4450             | 4096        | 92.04% | 234         | 5.26%  | 120       | 2.70%  |
| 1995   | N/A              | N/A         | N/A    | N/A         | N/A    | N/A       | N/A    |
| 1997   | 4693             | N/A         | N/A    | N/A         | N/A    | N/A       | N/A    |
| 1999   | N/A              | N/A         | N/A    | N/A         | N/A    | N/A       | N/A    |
| 2001   | 4042             | 3425        | 84.74% | 217         | 5.37%  | 401       | 9.92%  |
| 2003   | 4553.99          | 3373.78     | 74.08% | 763.33      | 16.76% | 416.88    | 9.15%  |
| Averaş | ge               |             | 80.26% |             | 13.03% |           | 6.70%  |
| Standa | rd Deviation     |             | 8.60%  |             | 7.22%  |           | 2.51%  |

Table 13-7: Data from HEMIS database for years 1986 to 2003<sup>1</sup>

.

|      | Academic and<br>Research<br>Personnel | Professional<br>Personnel | Total Personnel<br>at Universities |
|------|---------------------------------------|---------------------------|------------------------------------|
| 1986 | 9271                                  | 11232                     | 29061                              |
| 1987 | 9392                                  | 11252                     | 30362                              |
| 1988 | 9665                                  | 11697                     | 31261                              |
| 1989 | N/A                                   | N/A                       | N/A                                |
| 1990 | 9615                                  | 11614                     | 32618                              |
| 1991 | 9971                                  | 12181                     | 33855                              |
| 1992 | 10211                                 | 12501                     | 33819                              |
| 1993 | 10357                                 | 12758                     | 33864                              |
| 1994 | 10268                                 | 12720                     | 33745                              |
| 1995 | 10489                                 | 12994                     | 34181                              |
| 1996 | 10567                                 | 13263                     | 34368                              |

<sup>&</sup>lt;sup>1</sup> Data from the universities of Transkei, Northwest and Venda are not included as they are not available in the HEMIS database. Durban Westville is not included for 1990.

| 1007 | 1077.4 | 12:00 | 21100 |
|------|--------|-------|-------|
| 1997 | 10774  | 13606 | 34400 |
| 1998 | 10415  | 13108 | 32525 |
| 1999 | N/A    | N/A   | N/A   |
| 2000 | 10390  | 13460 | 31226 |
| 2001 | 10010  | 13028 | 28482 |
| 2002 | 10552  | 13686 | 30048 |
| 2003 | 10641  | 13977 | 30211 |

R&D in the National System of Innovation: a System Dynamics Model University of Pretoria etd – Grobbelaar, S S (2007)

#### Table 13-8: HEMIS data of Ageing if the researchers

|      | < 25 | 25 - 34 | 35 - 44 | 45 – 54 | 55 + |
|------|------|---------|---------|---------|------|
| 1986 | 138  | 2502    | 3284    | 2307    | 1039 |
| 1987 | 116  | 2364    | 3387    | 2447    | 1078 |
| 1988 | 104  | 2452    | 3346    | 2666    | 1097 |
| 1989 | 117  | 2393    | 3340    | 2650    | 1084 |
| 1990 | 129  | 2383    | 3494    | 2831    | 1171 |
| 1991 | 97   | 2255    | 3438    | 2941    | 1240 |
| 1992 | 97   | 2197    | 3477    | 3077    | 1363 |
| 1993 | 96   | 2109    | 3593    | 3219    | 1340 |
| 1994 | 88   | 2071    | 3558    | 3212    | 1339 |
| 1995 | 122  | 2220    | 3708    | 3333    | 1522 |
| 1996 | 140  | 2236    | 3667    | 3356    | 1618 |
| 1997 | 141  | 2265    | 3793    | 3380    | 1670 |
| 1998 | 86   | 2138    | 3486    | 3292    | 1658 |
| 1999 | NA   | NA      | NA      | NA      | NA   |
| 2000 | 174  | 2392    | 3500    | 3525    | 1524 |
| 2001 | 177  | 2120    | 3036    | 3084    | 1373 |
| 2002 | 195  | 2367    | 3415    | 3563    | 1680 |
| 2003 | 151  | 2329    | 3404    | 3631    | 1747 |

#### **13.2.3** Students in the Higher Education system

The following table documents data in Student enrolment in the South African Higher Education System (Universities only) gathered from two main sources namely:

- "1990 SA science and technology indicators" for years 1980 1988 (FRD, 1990).
- HEMIS database for years 1986 to 2003 (HEMIS, 2005)

The Model input column reflects the values used as model input by integration of the two sources.

|      | Student Numbers (H | EMIS, 2005) Student Numbers (FF | RD, 1990) Model input |
|------|--------------------|---------------------------------|-----------------------|
| 1980 |                    | 152346                          | 144000                |
| 1981 |                    | 154833                          | 154000                |
| 1982 |                    | 158834                          | 164000                |
| 1983 |                    | 173116                          | 174000                |
| 1984 |                    | 185261                          | 184000                |
| 1985 |                    | 211756                          | 198000                |
| 1986 | 211593             | 233625                          | 211593                |
| 1987 | 223720             | 247694                          | 223720                |
| 1988 | 242067             | 267608                          | 242067                |
| 1989 | 257355             |                                 | 257355                |

#### Figure 13-1 Students in the Higher Education sector

| 1990 | 270399 | 270399   |
|------|--------|----------|
| 1991 | 282779 | 282779   |
| 1992 | 310384 | 310384   |
| 1993 | 318517 | 318517   |
| 1994 | 338470 | 338470   |
| 1995 | 361371 | 361371   |
| 1996 | 379825 | 379825   |
| 1997 | 412795 | 412795   |
| 1998 | 421316 | 421316   |
| 1999 | 431478 | 431478   |
| 2000 | 439810 | 439810   |
| 2001 | 426684 | 426684   |
| 2002 | 440204 | 440203.9 |
| 2003 | 435567 | 435567.4 |

R&D in the National System of Innovation: a System Dynamics Model University of Pretoria etd - Grobbelaar, S S (2007)

The following is a graphical representation of the data presented in the table above, including the approximation of an integration of the two datasets, which is used as an input to the model.

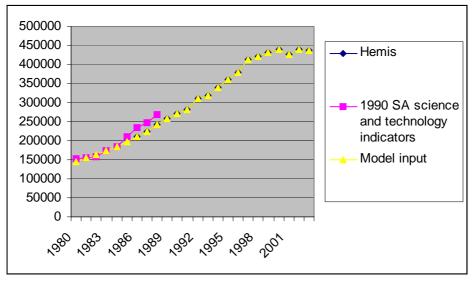



Figure 13-2 Student enrolment in South Africa's HES

## 13.2.4 The Student-Staff relationship

Figure 13-3 Student-to-staff relationship at HAU<sup>2</sup> and HDU<sup>3</sup> in South Africa

|      | HAU   | HDU   |
|------|-------|-------|
| 1986 | 26.15 | 21.49 |
| 1987 | 27.33 | 24.15 |
| 1988 | 27.69 | 30.24 |
| 1989 | 28.15 | 34.49 |
| 1990 | 28.62 | 38.74 |
| 1991 | 30.46 | 35.38 |

 <sup>&</sup>lt;sup>2</sup> HAU – Historically Advantaged Universities
 <sup>3</sup> HDU – Historically Disadvantaged Universities

| 1992 | 31.22 | 34.10 |
|------|-------|-------|
| 1993 | 32.10 | 32.57 |
| 1994 | 33.59 | 34.59 |
| 1995 | 34.78 | 34.59 |
| 1996 | 35.06 | 31.49 |
| 1997 | 35.42 | 27.11 |
| 1998 | 36.70 | 27.90 |
| 1999 | 38.36 | 25.41 |
| 2000 | 40.02 | 22.92 |
| 2001 | 43.58 | 31.00 |
| 2002 | 45.59 | 28.91 |
| 2003 | 46.99 | 31.66 |

R&D in the National System of Innovation: a System Dynamics Model University of Pretoria etd – Grobbelaar, S S (2007)

Since roughly 90% of all R&D output is created in HAU, this analysis will only focus on the HAU. For this reason we use the student-to-staff ratio of these universities.

## 13.2.5 % time spent n R&D

The data from the Survey is used to find the percentage of the recorded HC spent on R&D to find the FTE. This figure is then used in the model and a regression is performed in order to model the effect the student staff relationship has on the percentage time Academic and Research staff have left to perform R&D duties.

|      |              |                 | Amount of |        |             |             |        |
|------|--------------|-----------------|-----------|--------|-------------|-------------|--------|
|      |              |                 | R&D       |        |             |             |        |
|      | Professional |                 | workers   |        | НС          | FTE         |        |
|      | Personnel    | <b>Total HC</b> | (FTE)     | %      | Researchers | Researchers |        |
| 1977 |              | 6425            | 2555      | 39.77% | 5053        | 1938        | 38.35% |
| 1979 |              | 8181            | 3216      | 39.31% | 6406        | 2399        | 37.45% |
| 1981 |              | 6116            | 2253      | 36.84% | 4044        | 1425        | 35.24% |
| 1983 |              | 11465           | 4128      | 36.01% | 8841        | 3384        | 38.28% |
| 1985 | 11232        | 17889           | 6810      | 38.07% | 13588       | 5183        | 38.14% |
| 1987 | 11368        | 19943           | 6610      | 33.14% | 15417       | 5780        | 37.49% |
| 1989 |              | 19682           | 6353      | 32.28% | 13978       | 5160        | 36.92% |
| 1991 | 12181        | 16514           | 6533      | 39.56% | 14540       | 5984        | 41.16% |
| 1993 | 12758        | 10835           | 4450      | 41.07% | 9916        | 4096        | 41.31% |
| 1995 | 13425        | 13425           | 4571.5    | 34.05% | 11017       | N/A         | N/A    |
| 1997 | 14128        | 14128           | 4693      | 33.22% | 10655       | N/A         | N/A    |
| 1999 |              | 14128           | 4367.5    | 30.91% | 10665       | N/A         | N/A    |
| 2001 | 13774        | 15767           | 4042      | 25.64% | 12626       | 3425        | 27.13% |
| 2003 | 14697        | 19377           | 4553.99   | 23.50% | 14055       | 3374        | 24.01% |

 Table 13-9: Student-to-staff ratio and the % time spent on R&D

As far as possible the Survey data is used for the computation of the percentage time spent on R&D. There is evidence that the definitions used in the surveys have changed, it is however still the best source of time-series data of the past 20 years.

As no data values are available for the 1995 to 1999 surveys, these values are extrapolated. By now incorporating these values, the following time series data is used for the analysis.

#### Table 13-10: Constructed time series data for % time spent on R&D activities.

|      |                |                        | Percentage time |
|------|----------------|------------------------|-----------------|
| Year | HC Researchers | <b>FTE Researchers</b> | spent           |
| 1985 | 13588          | 5183                   | 38.14%          |
| 1987 | 15417          | 5780                   | 37.49%          |
| 1989 | 13978          | 5160                   | 36.92%          |
| 1991 | 14540          | 5984                   | 41.16%          |
| 1993 | 12758          | 4450                   | 34.88%          |
| 1995 | 13425          | 4571.5                 | 34.05%          |
| 1997 | 14128          | 4693                   | 33.22%          |
| 1999 | 13951          | 4367.5                 | 31.31%          |
| 2001 | 12626          | 3425                   | 27.13%          |
| 2003 | 14055          | 3374                   | 24.01%          |

R&D in the National System of Innovation: a System Dynamics Model University of Pretoria etd – Grobbelaar, S S (2007)

.

# 13.3 R&D data: Public sector

# **13.3.1 R&D** expenditure

## Table 13-11: R&D funding according to source

|      | Total expenditure<br>in Sector | Source funding from HES | Funding Sourced from<br>Private sector |
|------|--------------------------------|-------------------------|----------------------------------------|
| 1977 | 114371000                      | 236000                  | 7868000                                |
| 1979 | 144293000                      | 137000                  | 7939000                                |
| 1981 | 243617580                      | 10763                   | 6401610                                |
| 1983 | 246780000                      | 215203                  | 7718000                                |
| 1985 | 347357000                      | 168000                  | 12112000                               |
| 1987 | 482567000                      | 232000                  | 24497000                               |
| 1989 | 578008000                      | 322000                  | 49047000                               |
| 1991 | 755018000                      | 0                       | 77147000                               |
| 1993 | 810618000                      | 169000                  | 109220000                              |
| 1995 | N/A                            | N/A                     | N/A                                    |
| 1997 | 1591000000                     | 3000000                 | 222000000                              |
| 1999 | N/A                            | N/A                     | N/A                                    |
| 2001 | 1497564000                     | 0                       | 241860000                              |
| 2003 | 2210860000                     | 2716000                 | 258426000                              |

#### Table 13-12: R&D Expenditure in the Public sector

|      | R&D investment |                    |                  | Expenditure | % Expenditure |
|------|----------------|--------------------|------------------|-------------|---------------|
| Year | ( <b>R</b> )   | Expenditure HR     | % Expenditure HR | on Capital  | on Capital    |
| 1977 | 114371000      | 62625000           | 54.76%           | N/A         | N/A           |
| 1979 | 144293000      | 50458000           | 34.97%           | N/A         | N/A           |
| 1981 | 243617580      | 86322000           | 35.43%           | 27976397    | 11.48%        |
| 1983 | 246780000      | 93906000           | 38.05%           | 27889000    | 11.30%        |
| 1985 | 347357000      | 130664000          | 37.62%           | 38792000    | 11.17%        |
| 1987 | 482567000      | 188457000          | 39.05%           | 43395000    | 8.99%         |
| 1989 | 578008000      | 253622000          | 43.88%           | 46470000    | 8.04%         |
| 1991 | 755018000      | 334622000          | 44.32%           | 37042000    | 4.91%         |
| 1993 | 810618000      | 408281000          | 50.37%           | 36393000    | 4.49%         |
| 1995 | N/A            | N/A                | N/A              | N/A         | N/A           |
| 1997 | 1591000000     | 731300000          | 45.96%           | 65950000    | 4.15%         |
| 1999 | N/A            | N/A                | N/A              | N/A         | N/A           |
| 2001 | 1497564000     | 657678000          | 43.92%           | 79783000    | 5.33%         |
| 2003 | 2210860000     | 1088712000         | 49.24%           | 183881000   | 8.32%         |
|      |                | Average            | 43.13%           |             | 7.82%         |
|      | 1              | Standard Deviation | 6.28%            |             | 2.94%         |

#### Table 13-13: Expenditure on Human Resources by type of resources

|      | R ('000) | Researchers | %      | Techn | icians % | Support |        |
|------|----------|-------------|--------|-------|----------|---------|--------|
| 1977 | 62625    | 25112       | 40.10% | 11653 | 18.61%   | 25860   | 41.29% |
| 1979 | 50458    | 23416       | 46.41% | 15847 | 31.41%   | 11195   | 22.19% |
| 1981 | 86322    | 52726       | 61.08% | 27564 | 31.93%   | 6032    | 6.99%  |
| 1983 | 93906    | 62134       | 66.17% | 24493 | 26.08%   | 7279    | 7.75%  |
| 1985 | 130664   | 85907       | 65.75% | 33154 | 25.37%   | 11603   | 8.88%  |

|      | Standa  | ard Deviation | 8.80%  |        | 3.86%  |       | 10.67% |
|------|---------|---------------|--------|--------|--------|-------|--------|
|      |         | Average       | 56.34% |        | 26.87% |       | 16.79% |
| 2003 | 1088712 | N/A           | N/A    | N/A    | N/A    | N/A   | N/A    |
| 2001 | 657678  | N/A           | N/A    | N/A    | N/A    | N/A   | N/A    |
| 1999 | N/A     | N/A           | N/A    | N/A    | N/A    | N/A   | N/A    |
| 1997 | 731300  | N/A           | N/A    | N/A    | N/A    | N/A   | N/A    |
| 1995 | N/A     | N/A           | N/A    | N/A    | N/A    | N/A   | N/A    |
| 1993 | 408280  | 216432        | 53.01% | 111757 | 27.37% | 80091 | 19.62% |
| 1991 | 334622  | 184977        | 55.28% | 89964  | 26.89% | 59681 | 17.84% |
| 1989 | 253620  | 144231        | 56.87% | 70935  | 27.97% | 38454 | 15.16% |
| 1987 | 188457  | 117649        | 62.43% | 49324  | 26.17% | 21484 | 11.40% |

R&D in the National System of Innovation: a System Dynamics Model University of Pretoria etd – Grobbelaar, S S (2007)

# Table 13-14: Investment in Research by type

|      | Total    | Basic     | %      | Applied | %      | Development | %      |
|------|----------|-----------|--------|---------|--------|-------------|--------|
| 1979 | 144293   | 16674     | 11.56% | 85867   | 59.51% | 41752       | 28.94% |
| 1981 | 243617.6 | 28796     | 11.82% | 115703  | 47.49% | 69493       | 28.53% |
| 1983 | 234779   | 39637     | 16.88% | 133451  | 56.84% | 61689       | 26.28% |
| 1985 | 347357   | 50164     | 14.44% | 188689  | 54.32% | 108505      | 31.24% |
| 1987 | 482567   | 107057    | 22.18% | 252188  | 52.26% | 123322      | 25.56% |
| 1989 | 578008   | 80323     | 13.90% | 367204  | 63.53% | 130481      | 22.57% |
| 1991 | 755018   | 98081     | 12.99% | 384481  | 50.92% | 269966      | 35.76% |
| 1993 | 810618   | 82414     | 10.17% | 464640  | 57.32% | 263564      | 32.51% |
| 1995 | N/A      | N/A       | N/A    | N/A     | N/A    | N/A         | N/A    |
| 1997 | N/A      | N/A       | N/A    | N/A     | N/A    | N/A         | N/A    |
| 1999 | N/A      | N/A       | N/A    | N/A     | N/A    | N/A         | N/A    |
| 2001 | 1497564  | 432260    | 28.86% | 704864  | 47.07% | 360109      | 24.05% |
| 2003 | 2210860  | 694769    | 31.43% | 1036447 | 46.88% | 479644      | 21.69% |
|      |          | Average   | 17.42% |         | 53.61% |             | 27.71% |
|      | Standard | Deviation | 7.52%  |         | 5.70%  |             | 4.54%  |

# **13.3.2 Human Resources**

Table 13-15: Recorded HC Research personnel in Frascati R&D Surveys

|      |          | НС            |        |         |        | HD      |        |
|------|----------|---------------|--------|---------|--------|---------|--------|
|      | total HC | Researchers   | %      | HC Tech | %      | Support | %      |
| 1977 | 10202    | 2709          | 26.55% | 2008    | 19.68% | 5485    | 53.76% |
| 1979 | 9268     | 2596          | 28.01% | 2784    | 30.04% | 3888    | 41.95% |
| 1981 | 7355     | 3703          | 50.35% | 2294    | 31.19% | 1358    | 18.46% |
| 1983 | 5764     | 3029          | 52.55% | 1763    | 30.59% | 972     | 16.86% |
| 1985 | 7306     | 3739          | 51.18% | 2049    | 28.05% | 1518    | 20.78% |
| 1987 | 8990     | 5114          | 56.89% | 2030    | 22.58% | 1846    | 20.53% |
| 1989 | 8854     | 3564          | 40.25% | 2791    | 31.52% | 2499    | 28.22% |
| 1991 | 8419     | 3116          | 37.01% | 2129    | 25.29% | 3174    | 37.70% |
| 1993 | 8854     | 3113          | 35.16% | 2392    | 27.02% | 3348    | 37.81% |
| 1995 | N/A      | N/A           | N/A    | N/A     | N/A    | N/A     | N/A    |
| 1997 | N/A      | N/A           | N/A    | N/A     | N/A    | N/A     | N/A    |
| 1999 | N/A      | N/A           | N/A    | N/A     | N/A    | N/A     | N/A    |
| 2001 | 8012     | 2774          | 34.62% | 1762    | 21.99% | 3476    | 43.38% |
| 2003 | 8805     | 3343          | 37.97% | 1934    | 21.96% | 3528    | 40.07% |
|      |          | Average       | 41.26% |         | 26.79% |         | 31.95% |
|      | Standa   | ard Deviation | 10.77% |         | 4.24%  |         | 12.70% |

|      | Total |                |        | Technical |        | Support   |        |
|------|-------|----------------|--------|-----------|--------|-----------|--------|
|      | FTE   | Researchers    | %      | personnel | %      | personnel | %      |
| 1977 | 8512  | 2222           | 26.10% | 1721      | 20.22% | 4569      | 53.68% |
| 1979 | 7678  | 2095           | 27.29% | 2195      | 28.59% | 3388      | 44.13% |
| 1981 | 5563  | 2601           | 46.76% | 2015      | 36.22% | 947       | 17.02% |
| 1983 | 4848  | 2457           | 50.68% | 1564      | 32.26% | 827       | 17.06% |
| 1985 | 5216  | 2510           | 48.12% | 1692      | 32.44% | 1014      | 19.44% |
| 1987 | 6374  | 3173           | 49.78% | 1896      | 29.75% | 1305      | 20.47% |
| 1989 | 6426  | 2547           | 39.64% | 2209      | 34.38% | 1670      | 25.99% |
| 1991 | 6654  | 2419           | 36.35% | 1810      | 27.20% | 2425      | 36.44% |
| 1993 | 7060  | 2303           | 32.62% | 1923      | 27.24% | 2834      | 40.14% |
| 1995 | N/A   | N/A            | N/A    | N/A       | N/A    | N/A       | N/A    |
| 1997 | 6400  | 2295           | 35.86% | 1749      | 27.33% | 2356      | 36.81% |
| 1999 | N/A   | N/A            | N/A    | N/A       | N/A    | N/A       | N/A    |
| 2001 | 5171  | 2134           | 41.27% | 1195      | 23.11% | 1842      | 35.62% |
| 2003 | 5389  | 1900           | 35.25% | 1304      | 24.19% | 2186      | 40.56% |
|      |       | Average        | 39.14% |           | 28.58% |           | 32.28% |
|      | Stan  | dard Deviation | 8.40%  |           | 4.73%  |           | 12.01% |

Table 13-16: Recorded FTE Research personnel in Frascati R&D Surveys

For 2003, only the Science Council data is included – not available for other organisations in the Government sector

|      | Total |                       | Total   | FTE         |             |               |
|------|-------|-----------------------|---------|-------------|-------------|---------------|
|      | HC    | <b>HC Researchers</b> | FTE     | Researchers | % All staff | % Researchers |
| 1977 | 10202 | 2709                  | 8512    | 2222        | 83.43%      | 82.02%        |
| 1979 | 9268  | 2596                  | 7678    | 2095        | 82.84%      | 80.70%        |
| 1981 | 7355  | 3703                  | 5563    | 2601        | 75.64%      | 70.24%        |
| 1983 | 5764  | 3029                  | 4848    | 2457        | 84.11%      | 81.12%        |
| 1985 | 7306  | 3739                  | 5216    | 2510        | 71.39%      | 67.13%        |
| 1987 | 8990  | 5114                  | 6374    | 3173        | 70.90%      | 62.05%        |
| 1989 | 8854  | 3564                  | 6426    | 2547        | 72.58%      | 71.46%        |
| 1991 | 8419  | 3116                  | 6654    | 2419        | 79.04%      | 77.63%        |
| 1993 | 8854  | 3113                  | 7060    | 2303        | 79.74%      | 73.98%        |
| 1995 | N/A   | N/A                   | N/A     | N/A         | N/A         | N/A           |
| 1997 | N/A   | N/A                   | 6400    | 2295        | N/A         | N/A           |
| 1999 | N/A   | N/A                   | N/A     | N/A         | N/A         | N/A           |
| 2001 | 8012  | 2774                  | 5171    | 2134        | 64.54%      | 76.93%        |
| 2003 | 8805  | 3343                  | 5389.41 | 2503        | 61.21%      | 74.87%        |
|      |       |                       |         |             | 75.04%      | 74.38%        |
|      |       |                       |         |             | 7.68%       | 6.26%         |

## Table 13-18: Human Resources time spent on R&D analysis

|      |          |                  |              | HC          | FTE         |              |
|------|----------|------------------|--------------|-------------|-------------|--------------|
|      | total HC | <b>Total FTE</b> | % time spent | Researchers | Researchers | % time spent |
| 1977 | 10202    | 8512             | 83.43%       | 2709        | 2222        | 82.02%       |
| 1979 | 9268     | 7678             | 82.84%       | 2596        | 2095        | 80.70%       |
| 1981 | 7355     | 5563             | 75.64%       | 3703        | 2601        | 70.24%       |
| 1983 | 5764     | 4848             | 84.11%       | 3029        | 2457        | 81.12%       |
| 1985 | 7306     | 5216             | 71.39%       | 3739        | 2510        | 67.13%       |
| 1987 | 8990     | 6374             | 70.90%       | 5114        | 3173        | 62.05%       |

| 1989 | 8854 | 6426           | 72.58% | 3564 | 2547 | 71.46% |
|------|------|----------------|--------|------|------|--------|
| 1991 | 8419 | 6654           | 79.04% | 3116 | 2419 | 77.63% |
| 1993 | 8854 | 7060           | 79.74% | 3113 | 2303 | 73.98% |
| 1995 | N/A  | N/A            | N/A    | N/A  | N/A  | N/A    |
| 1997 | N/A  | 6400           | N/A    | N/A  | 2295 | N/A    |
| 1999 | N/A  | N/A            | N/A    | N/A  | N/A  | N/A    |
| 2001 | 8012 | 5171           | 64.54% | 2774 | 2134 | 76.93% |
| 2003 | 8805 | 5389           | 61.21% | 3343 | 2503 | 74.87% |
|      |      | Average        | 75.04% |      |      | 74.38% |
|      | Stan | dard Deviation | 7.68%  |      |      | 6.26%  |

R&D in the National System of Innovation: a System Dynamics Model University of Pretoria etd – Grobbelaar, S S (2007)

# 13.4 R&D Data: Private sector

# 13.4.1 R&D investment

|      | Total          | Source        |           | Funding   |                       |
|------|----------------|---------------|-----------|-----------|-----------------------|
|      | expenditure in | funding       | % funding | Sourced   | % funding from Public |
|      | Sector         | from HES      | from HES  | from Pub  | sector                |
| 1977 | 68141000       | 0             | 0.00%     | 3443000   | 5.05%                 |
| 1979 | 100594000      | 0             | 0.00%     | 2625000   | 2.61%                 |
| 1981 | 185180000      | 0             | 0.00%     | 2989340   | 1.61%                 |
| 1983 | 378550100      | 55813         | 0.01%     | 1846236   | 0.49%                 |
| 1985 | 413462000      | 61000         | 0.01%     | 3185000   | 0.77%                 |
| 1987 | 495836000      | 74000         | 0.01%     | 3333000   | 0.67%                 |
| 1989 | 656951000      | 0             | 0.00%     | 13257000  | 2.02%                 |
| 1991 | 1297602000     | 709000        | 0.05%     | 133766000 | 10.31%                |
| 1993 | 1336227000     | 828000        | 0.06%     | 60861000  | 4.55%                 |
| 1995 | N/A            | N/A           | N/A       | N/A       | N/A                   |
| 1997 | 2216000000     | 1000000       | 0.05%     | 186000000 | 8.39%                 |
| 1999 | N/A            | N/A           | N/A       | N/A       | N/A                   |
| 2001 | 4023576000     | 0             | 0.00%     | 392614000 | 9.76%                 |
| 2003 | 5591325000     | 5133000       | 0.09%     | 354504000 | 6.34%                 |
|      |                | Average       | 0.02%     |           | 4.38%                 |
|      | Stand          | ard Deviation | 0.03%     |           | 3.60%                 |

Table 13-19: R&D expenditure by sources of funding in the Private sector

### Table 13-20: R&D Expenditure in the Private sector

|      | Total expenditure |                 |        |                     |           |
|------|-------------------|-----------------|--------|---------------------|-----------|
|      | in Sector         | Salary HR       | % HR   | Spending on Capital | % Capital |
| 1977 | 68141000          | 36628000        | 53.75% | 9287000             | 13.63%    |
| 1979 | 100594000         | 43916000        | 43.66% | N/A                 | N/A       |
| 1981 | 185180000         | 91956000        | 49.66% | 33250000            | 17.96%    |
| 1983 | 378550100         | 165828000       | 43.81% | 43816000            | 11.57%    |
| 1985 | 413462000         | 212679000       | 51.44% | 32751000            | 7.92%     |
| 1987 | 495836000         | 258214000       | 52.08% | 60277000            | 12.16%    |
| 1989 | 656951000         | 302719000       | 46.08% | 70283000            | 10.70%    |
| 1991 | 1297602000        | 703578000       | 54.22% | 171137000           | 13.19%    |
| 1993 | 1336227000        | 682289000       | 51.06% | 135991000           | 10.18%    |
| 1995 | N/A               | N/A             | N/A    | N/A                 | N/A       |
| 1997 | 2216000000        | 1294600000      | 58.42% | 627000000           | 2.83%     |
| 1999 | N/A               | N/A             | N/A    | N/A                 | N/A       |
| 2001 | 4023576000        | 1718373000      | 42.71% | 782323000           | 19.44%    |
| 2003 | 5591325000        | 2488458000      | 44.51% | 775849000           | 13.88%    |
|      |                   | Average         | 49.28% |                     | 14.35%    |
|      | Sta               | ndard Deviation | 5.06%  |                     | 9.88%     |

## Table 13-21: R&D expenditure by type of R&D in the Private sector

|      | Total  | Basic | %     | Applied | %      | Development | %      |
|------|--------|-------|-------|---------|--------|-------------|--------|
| 1979 | 100594 | 4948  | 4.92% | 35668   | 35.46% | 59978       | 59.62% |
| 1981 | 185178 | 3164  | 1.71% | 44650   | 24.11% | 137364      | 74.18% |
| 1983 | 378550 | 9437  | 2.49% | 94560   | 24.98% | 274553      | 72.53% |
| 1985 | 413462 | 28053 | 6.78% | 135383  | 32.74% | 250026      | 60.47% |
| 1987 | 495837 | 34664 | 6.99% | 224048  | 45.19% | 237125      | 47.82% |

| 1989 | 656950  | 32645         | 4.97%  | 266940  | 40.63% | 357365  | 54.40% |
|------|---------|---------------|--------|---------|--------|---------|--------|
| 1991 | 1297622 | 68633         | 5.29%  | 514449  | 39.65% | 714540  | 55.07% |
| 1993 | 1336227 | 22617         | 1.69%  | 406738  | 30.44% | 906872  | 67.87% |
| 1995 | N/A     | N/A           | N/A    | N/A     | N/A    | N/A     | N/A    |
| 1997 | 2215900 | 225200        | 10.16% | 668800  | 30.18% | 1322000 | 59.66% |
| 1999 | N/A     | N/A           | N/A    | N/A     | N/A    | N/A     | N/A    |
| 2001 | 3736605 | 663819        | 17.77% | 1397968 | 37.41% | 1674818 | 44.82% |
| 2003 | 5591325 | 759345        | 13.58% | 1883082 | 33.68% | 2948898 | 52.74% |
|      |         | Average       | 6.62%  |         | 34.43% |         | 58.95% |
|      | Stand   | ard Deviation | 5.22%  |         | 6.72%  |         | 9.98%  |

R&D in the National System of Innovation: a System Dynamics Model University of Pretoria etd – Grobbelaar, S S (2007)

# 13.4.2 Human Resources

| Table 13-22: Human Resources Headcount en | nployed in the Business sector |
|-------------------------------------------|--------------------------------|
|-------------------------------------------|--------------------------------|

|      |          | НС              |        | НС   |        | HD      |        |
|------|----------|-----------------|--------|------|--------|---------|--------|
|      | total HC | Researchers     | %      | Tech | %      | Support | %      |
| 1977 | 6569     | 1790            | 27.25% | 1742 | 26.52% | 3037    | 46.23% |
| 1979 | 6091     | 2180            | 35.79% | 1685 | 27.66% | 2226    | 36.55% |
| 1981 | 7185     | 2403            | 33.44% | 2098 | 29.20% | 2694    | 37.49% |
| 1983 | 8834     | 2676            | 30.29% | 3203 | 36.26% | 2955    | 33.45% |
| 1985 | 9565     | 2744            | 28.69% | 4040 | 42.24% | 2781    | 29.07% |
| 1987 | 9828     | 3000            | 30.53% | 4005 | 40.75% | 2823    | 28.72% |
| 1989 | 7446     | 2396            | 32.18% | 1960 | 26.32% | 3090    | 41.50% |
| 1991 | 11791    | 4688            | 39.76% | 3444 | 29.21% | 3659    | 31.03% |
| 1993 | 9768     | 5157            | 52.79% | 2585 | 26.46% | 2026    | 20.74% |
| 1995 | N/A      | N/A             | N/A    | N/A  | N/A    | N/A     | N/A    |
| 1997 | 8111     | 4113            | 50.71% | 2208 | 27.22% | 1790    | 22.07% |
| 1999 | N/A      | N/A             | N/A    | N/A  | N/A    | N/A     | N/A    |
| 2001 | 8284     | 3753            | 45.30% | 2488 | 30.03% | 2043    | 24.66% |
| 2003 | 11608    | 5058            | 43.57% | 3430 | 29.55% | 3120    | 26.88% |
|      |          | Average         | 37.53% |      | 30.95% |         | 31.53% |
|      | Star     | ndard Deviation | 8.75%  |      | 5.61%  |         | 7.80%  |

Table 13-23: FTE Human Resources employed in the Business sector

|      | Total |                |        | Technical |        | Support   |        |
|------|-------|----------------|--------|-----------|--------|-----------|--------|
|      | FTE   | Researchers    | %      | personnel | %      | personnel | %      |
| 1977 | 4237  | 1375           | 32.45% | 1342      | 31.67% | 1520      | 35.87% |
| 1979 | 4088  | 1380           | 33.76% | 1207      | 29.53% | 1501      | 36.72% |
| 1981 | 5494  | 1937           | 35.26% | 1738      | 31.63% | 1819      | 33.11% |
| 1983 | 6771  | 1990           | 29.39% | 2646      | 39.08% | 2135      | 31.53% |
| 1985 | 7196  | 2130           | 29.60% | 3328      | 46.25% | 1738      | 24.15% |
| 1987 | 7257  | 2372           | 32.69% | 3132      | 43.16% | 1753      | 24.16% |
| 1989 | 5008  | 2001           | 39.96% | 1431      | 28.57% | 1576      | 31.47% |
| 1991 | 8481  | 3396           | 40.04% | 2785      | 32.84% | 2300      | 27.12% |
| 1993 | 7649  | 4341           | 56.75% | 1869      | 24.43% | 1439      | 18.81% |
| 1995 | N/A   | N/A            | N/A    | N/A       | N/A    | N/A       | N/A    |
| 1997 | N/A   | N/A            | N/A    | N/A       | N/A    | N/A       | N/A    |
| 1999 | N/A   | N/A            | N/A    | N/A       | N/A    | N/A       | N/A    |
| 2001 | 6209  | 2952           | 47.54% | 1916      | 30.86% | 1341      | 21.60% |
| 2003 | 9132  | 4153           | 45.48% | 2605      | 28.53% | 2374      | 26.00% |
|      |       | Average        | 38.45% |           | 33.32% |           | 28.23% |
|      | Stan  | dard Deviation | 8.57%  |           | 6.69%  |           | 5.90%  |

|      |          | FTE         |        | HC            | FTE           |        |
|------|----------|-------------|--------|---------------|---------------|--------|
|      | HC (all) | (All)       |        | (Researchers) | (Researchers) |        |
| 1977 | 6569     | 4237        | 64.50% | 1790          | 1375          | 76.82% |
| 1979 | 6091     | 4088        | 67.12% | 2180          | 1380          | 63.30% |
| 1981 | 7185     | 5494        | 76.46% | 2403          | 1937          | 80.61% |
| 1983 | 8834     | 6771        | 76.65% | 2676          | 1990          | 74.36% |
| 1985 | 9565     | 7196        | 75.23% | 2744          | 2130          | 77.62% |
| 1987 | 9828     | 7257        | 73.84% | 3000          | 2372          | 79.07% |
| 1989 | 7446     | 5008        | 67.26% | 2396          | 2001          | 83.51% |
| 1991 | 11791    | 8481        | 71.93% | 4688          | 3396          | 72.44% |
| 1993 | 9768     | 7649        | 78.31% | 5157          | 4341          | 84.18% |
| 1995 | N/A      | N/A         | N/A    | N/A           | N/A           | N/A    |
| 1997 | 8111     | N/A         | N/A    | 4113          | N/A           | N/A    |
| 1999 | N/A      | N/A         | N/A    | N/A           | N/A           | N/A    |
| 2001 | 8284     | 6209        | 74.95% | 3753          | 2952          | 78.66% |
| 2003 | 11608    | 9132        | 78.67% | 5058          | 4153          | 82.11% |
|      |          | Average     | 73.17% |               |               | 77.52% |
|      | Standard | l Deviation | 4.86%  |               |               | 5.94%  |

Table 13-24: Research staff data in the Business sector

## **13.5** The time value of money.

Inflation causes a currency's actual value to depreciate. In order to be able to make a meaningful comparison over the years regarding R&D investment and expenditure, it makes sense to look at it in terms of a constant Rand value. The consumer price index (StatsSA, 2005) was used to find the factor each year has to be multiplied with to find the 2001 Rand value. If one wants to express amount y from year Y in terms of Rand value in year x the following formula is used:

$$Factor = \frac{Index_{yearX}}{Index_{yearY}}$$
13-1

| Year | Index | Factor for 2001 Rand |
|------|-------|----------------------|
| 1977 | 7.6   | 13.90789             |
| 1978 | 8.4   | 12.58333             |
| 1979 | 9.5   | 11.12632             |
| 1980 | 10.8  | 9.787037             |
| 1981 | 12.5  | 8.456                |
| 1982 | 14.3  | 7.391608             |
| 1983 | 16.1  | 6.565217             |
| 1984 | 17.9  | 5.905028             |
| 1985 | 20.8  | 5.081731             |
| 1986 | 24.7  | 4.279352             |
| 1987 | 28.7  | 3.682927             |
| 1988 | 32.4  | 3.262346             |
| 1989 | 37.1  | 2.849057             |
| 1990 | 42.4  | 2.492925             |
| 1991 | 49.0  | 2.157143             |
| 1992 | 55.7  | 1.897666             |
| 1993 | 61.2  | 1.727124             |
| 1994 | 66.6  | 1.587087             |
| 1995 | 72.4  | 1.459945             |

 Table 13-25: Time value of money computed from consumer price index (StatsSA, 2005)

| 1996 | 77.7  | 1.36036  |
|------|-------|----------|
| 1997 | 84.4  | 1.25237  |
| 1998 | 90.2  | 1.17184  |
| 1999 | 94.9  | 1.113804 |
| 2000 | 100.0 | 1.057    |
| 2001 | 105.7 | 1        |

R&D in the National System of Innovation: a System Dynamics Model University of Pretoria etd – Grobbelaar, S S (2007)

### 14 APPENDIX C

#### 14.1 Absorption of Knowledge (HES)

The rate at which the system is able to produce new knowledge output is computed through the contribution made form different stocks in the system. The following expression is formulated for the R&D knowledge absorption rate in the system:

- $R_{Absorptionr}$ : Absorption rate of knowledge in the system
- $S_{R\&Doutput} * S_{FTE}$ : RD output stock interacting with the presence of full time equivalent people who can draw on the stocks of knowledge in system
- $S_{World} / S_{HC}$ : Available external knowledge stock per Headcount personnel employed in the system

A multiplicative model is developed for the absorption rate per full time person working in the system:

$$\frac{R_{Absorptionr}}{R_{Absorption}^*} = f * \left(\frac{S_{R\&Doutput}}{S_{R\&Doutpu}^*} * \frac{S_{FTE}}{S_{FTE}^*}\right)^d * \left(\frac{S_{World}}{S_{World}^*} / \frac{S_{HC}}{S_{HC}^*}\right)^e$$
14-1

This expression is linearised by taking the log-linear form:

$$\ln(\frac{R_{Absorptionr}}{R_{Absorption}^*}) = f + d * \ln(\frac{S_{R\&Doutput}}{S_{R\&Doutput}^*} * \frac{S_{FTE}}{S_{FTE}^*}) + e * \ln(\frac{S_{World}}{S_{World}^*} / \frac{S_{HC}}{S_{HC}^*})$$
14-2

This is the expression used to perform the regression for estimating the parameters d, e and f.

The section describes the variables included in the model to estimate the rate of knowledge absorption in the system. The following SAS program was used.

Table 14-1: SAS code for stationarity tests in variables AbsorbedR, rdfte and wsperhc

```
goptions reset=all cback=white colors=(black) lfactor=2
border;
title1 'Trend Plot';
proc gplotb data = HES.hesloglin;
plot (AbsorbedR rdfte wsperhc)*year;
plot AbsorbedR * (rdfte wsperhc);
run;
* test for stationarity of the 3 series using arima procedure
*;
proc arima data=hes.loglin;
identify var= AbsorbedR stationarity=(phillips=(0,1));
identify var=rdfte stationarity=(phillips=(0,1));
```

The following sections document and explain the output obtained from the SAS program.

# 14.1.1 Absorption rate of knowledge in the system

The following is the time plot output from the SAS program for the absorption rate per full time equivalent researchers in the system.

Trend Plot

AbsorbedR 1.4 1.3 1.2 1.1 1.0 0.9 0.8 + 0.7 0.6 0.5 + 0.4 0.3 + 0.2 0.1 0.0 -0.1 1980 1990 2000 Year

Figure 14-1 Time plot of the absorption rate in the Higher Education system

From Figure 14-1 can be seen that the time plot shows an upward trend line. We therefore make use of the "Trend" specification in the stationarity test output results.

| Table 14-2: Phillips-Perro | n test output for variable "AbsorbedR" |
|----------------------------|----------------------------------------|
|----------------------------|----------------------------------------|

|           |         | The ARIMA                                | Procedure          |                |                    |  |
|-----------|---------|------------------------------------------|--------------------|----------------|--------------------|--|
|           | Nam     | e of Variab                              | le = AbsorbedR     | 2              |                    |  |
|           | Standa  | f Working S<br>rd Deviatio<br>of Observa | n 0.393            |                |                    |  |
|           | Phi I I | ips-Perron                               | Unit Root Test     | s              |                    |  |
| Туре      | Lags    | Rho                                      | Pr < Rho           | Tau            | Pr < Tau           |  |
| Zero Mean | 0<br>1  | 1.3497<br>1.3478                         | 0. 9411<br>0. 9409 | 2. 23<br>2. 21 | 0. 9912<br>0. 9909 |  |

| Single Mean | 0<br>1 | -0. 8467<br>-0. 7612 | 0.8869<br>0.8944 | -0. 74<br>-0. 71 | 0. 8157<br>0. 8224 |  |
|-------------|--------|----------------------|------------------|------------------|--------------------|--|
| Trend       | Ó      | -10. 2431            | 0. 3187          | -2.46            | 0.3408             |  |
|             | 1      | -10. 4180            | 0.3065           | -2.48            | 0.3337             |  |

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

 $Pr < Tau = 0.3408 \text{ for } \ell = 0 \text{ en}$  $Pr < Tau = 0.3337 \text{ for } \ell = 1.$ 

Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that AbsorbedR has a unit root and is non-stationary.

# 14.1.2 R&D Knowledge Stock and FTE researchers

The following is the time plot output from the SAS program for the interaction of Full time equivalent personnel in the system with the R&D Knowledge stock.

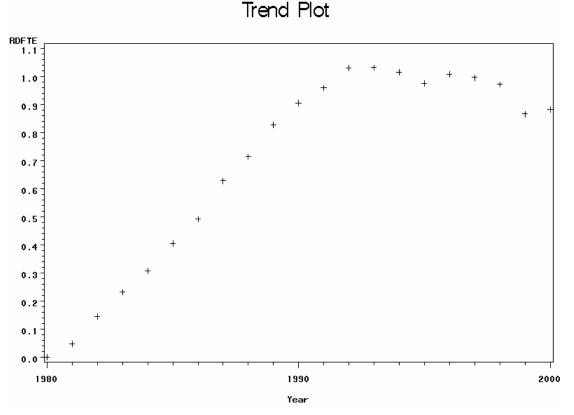


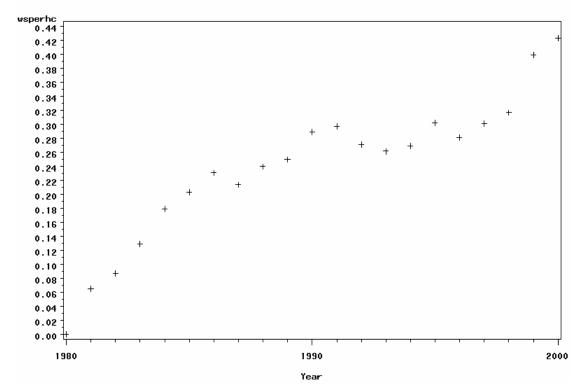

Figure 14-2 Time plot - FTE researcher interacting with R&D knowledge

From Figure 14-2 can be seen that the time plot shows an upward trend line. We therefore make use of the "Trend" specification in the stationarity test output results.

Table 14-3: Phillips-Perron test output for variable "RDFTE"

The ARIMA Procedure

|                          | Name of Variable = RDFTE                                                                    |                                        |                                          |                                |                                          |  |  |
|--------------------------|---------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------|--------------------------------|------------------------------------------|--|--|
|                          | Mean of Working Series 0.701877<br>Standard Deviation 0.347422<br>Number of Observations 22 |                                        |                                          |                                |                                          |  |  |
|                          | Philli                                                                                      | ps-Perron U                            | nit Root Test                            | S                              |                                          |  |  |
| Туре                     | Lags                                                                                        | Rho                                    | Pr < Rho                                 | Tau                            | Pr < Tau                                 |  |  |
| Zero Mean<br>Single Mean | 0<br>1<br>0<br>1                                                                            | 0.7167<br>0.6539<br>-2.0640<br>-2.1431 | 0. 8424<br>0. 8288<br>0. 7546<br>0. 7448 | 1.65<br>1.15<br>-3.08<br>-2.72 | 0. 9717<br>0. 9302<br>0. 0438<br>0. 0876 |  |  |
| Trend                    | 0<br>1                                                                                      | -0. 7058<br>-0. 9342                   | 0. 9868<br>0. 9839                       | -0. 49<br>-0. 59               |                                          |  |  |


From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

 $Pr < Tau = 0.9750 \text{ for } \ell = 0 \text{ en}$  $Pr < Tau = 0.9684 \text{ for } \ell = 1.$ 

Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that RDFTE has a unit root and is non-stationary.

### 14.1.3 The World knowledge stock

The following is the time plot output from the SAS program for the World Knowledge Stock per Headcount person employed in the Higher Education system.



Trend Plot

Figure 14-3 Time plot of the World stock of knowledge per HC researcher

From Figure 14-3 can be seen that the time plot shows an upward trend line. We therefore make use of the "Trend" specification in the stationarity test output results.

Table 14-4: Phillips-Perron test output for variable "wsperhc"

|             | The ARIMA Procedure                                                                         |                      |                    |                |                    |  |  |  |  |
|-------------|---------------------------------------------------------------------------------------------|----------------------|--------------------|----------------|--------------------|--|--|--|--|
|             | Name of Variable = wsperhc                                                                  |                      |                    |                |                    |  |  |  |  |
|             | Mean of Working Series 0.247072<br>Standard Deviation 0.105268<br>Number of Observations 22 |                      |                    |                |                    |  |  |  |  |
|             | Phillips-Perron Unit Root Tests                                                             |                      |                    |                |                    |  |  |  |  |
| Туре        | Lags                                                                                        | Rho                  | Pr < Rho           | Tau            | Pr < Tau           |  |  |  |  |
| Zero Mean   | 0<br>1                                                                                      | 1. 1493<br>1. 1216   | 0.9175<br>0.9137   | 2.10<br>1.87   | 0. 9884<br>0. 9815 |  |  |  |  |
| Single Mean | 0<br>1                                                                                      | -2.3311<br>-2.4006   | 0. 7210<br>0. 7122 | -2.00<br>-1.96 | 0. 2838<br>0. 3021 |  |  |  |  |
| Trend       | 0<br>1                                                                                      | -7. 5941<br>-8. 1564 | 0. 5431<br>0. 4906 | -2.70<br>-2.70 | 0. 2457<br>0. 2456 |  |  |  |  |

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that wsperhe has a unit root and is non-stationary.

### 14.1.4 Colinearity tests

First however we should make sure that the variables are not collinear. The following is the test results obtained from SAS for the Colinearity test.

Table 14-5: Colinearity diagnostics for the model variables

|             | Colli                   | nearity Diagn                    | ostics                         |                                  |
|-------------|-------------------------|----------------------------------|--------------------------------|----------------------------------|
|             | Number                  | Ei genval ue                     | Condi ti or<br>I ndex          | -                                |
|             | 1<br>2<br>3             | 2. 86046<br>0. 11563<br>0. 02392 | 1.00000<br>4.97380<br>10.93637 | )                                |
|             | Colli                   | nearity Diagn                    | osti cs                        |                                  |
| Number      | Interc                  |                                  | f Variation<br>RDFTE           | wsperhc                          |
| 1<br>2<br>3 | 0. 01<br>0. 87<br>0. 10 | 833 0.                           | 11364                          | 0. 00480<br>0. 02912<br>0. 96608 |

Larger values suggest potential near colinearity. Belsley, Kuh and Welsch (2000) recommend interpreting the Condition index greater or equal than 30 to reflect moderate

to severe colinearity, worthy of further investigation. Since all the Condition indexes from the regression model are much smaller than 30, the conclusion can be made that colinearity is not a problem in this case.

## **Proportion of Variation**

The variance proportion indicates for each predictor the proportion of total variance of its estimated regression coefficients associated with a particular principal component. The variance proportions suggest colinearity problems if more than one predictor has high variance proportions of at least 0.5, such a component suggest a problem. One should definitely be concerned when two or more ladings greater than 0.9 appear on a component with a large condition index (>30). This also does not seem to be a problem since the condition indexes are all smaller than 30.

# 14.1.5 Model estimation - Absorption rate (HES)

As all three variables are non-stationary, we should now fit a model and then test for cointegration in the residual to prove that the modelled relationship is non-spurious.

 Table 14-6: SAS code for the model estimation procedure

```
proc autoreg data= HES.hesloglin;
model absorbedR = rdFTE wsperhc
/ method= ml nlag=1 dwprob;
output out=b r=residual;
run;
```

Table 14-7: SAS output for the model estimation of Absorptive capacity in the HES

```
The AUTOREG Procedure
                   Dependent Variable
                                       AbsorbedR
                   Ordinary Least Squares Estimates
                        0.27533496 DFE
    SSE
                                                               19
                        0.01449 Root MSE
-24.671383 AIC
    MSE
                                                        0.12038
                                                       -27.94451
    SBC
                           0.9193 Total R-Square
                                                          0.9193
    Regress R-Square
    Durbin-Watson
                           1.0282 Pr < DW
                                                           0.0014
    Pr > DW
                           0.9986
NOTE: Pr<DW is the p-value for testing positive autocorrelation, and
     Pr>DW is the p-value for testing negative autocorrelation.
                           Phillips-Ouliaris
                          Cointegration Test
                   Lags
                                 Rho
                                               Tau
                             -11.8653
                                           -2.9582
                      1
                                    Standard
                                                             Approx
```

| Variable                                                                                                    | DF        | Estimate      | Error                          | t Value      | Pr >  t           |
|-------------------------------------------------------------------------------------------------------------|-----------|---------------|--------------------------------|--------------|-------------------|
|                                                                                                             | 1         | 0 1 5 1 5     | 0 0 0 5 5                      |              | 0 01 67           |
| Intercept                                                                                                   | 1         | -0.1717       | 0.0655                         | -2.62        | 0.0167            |
| RDFTE                                                                                                       | 1         | 0.2663        | 0.1444                         | 1.84         | 0.0809            |
| wsperhc                                                                                                     | 1         | 2.8038        | 0.4767                         | 5.88         | <.0001            |
|                                                                                                             | Q and     | LM Tests for  | ARCH Disturk                   | Dances       |                   |
| Order                                                                                                       | Q         | Pr > Q        | LM                             | Pr > LM      |                   |
| 1                                                                                                           | 0.1107    | 0.7393        | 0.0064                         | 0.9360       |                   |
| 2                                                                                                           | 1.0439    | 0.5934        | 0.6325                         | 0.7289       |                   |
| 3                                                                                                           | 2.1377    | 0.5443        | 1.4751                         | 0.6880       |                   |
| 4                                                                                                           | 5.2369    |               | 3.5521                         | 0.4700       |                   |
| 5                                                                                                           | 6.1404    |               | 3.5763                         |              |                   |
| 6                                                                                                           | 6.3389    |               | 3.8539                         |              |                   |
| 7                                                                                                           | 8.5847    |               | 4.9011                         |              |                   |
| 8                                                                                                           | 13.1218   |               | 11.4069                        |              |                   |
| 9                                                                                                           | 13.8131   |               | 13.0194                        |              |                   |
| 10                                                                                                          |           |               |                                |              |                   |
|                                                                                                             | 14.6261   |               | 13.0194                        |              |                   |
| 11                                                                                                          | 14.7742   |               | 13.0199                        |              |                   |
| 12                                                                                                          | 15.2048   | 0.2304        | 13.0824                        | 0.3631       |                   |
|                                                                                                             | Ма        | ximum Likelił | hood Estimate                  | es           |                   |
| SSE                                                                                                         |           | 0.18500614    | DFE                            |              | 18                |
| MSE                                                                                                         |           | 0.01028       |                                |              | 0.10138           |
| SBC                                                                                                         |           | -29.491802    |                                | -33          | 3.855972          |
| Regress R                                                                                                   | -Square   | 0.6812        | Total R-Sc                     |              | 0.9458            |
| Durbin-Wa                                                                                                   |           | 2.0372        | Pr < DW                        | 1            | 0.4148            |
| Pr > DW                                                                                                     |           | 0.5852        |                                |              |                   |
| NOTE: Pr <dw is<="" td=""><td></td><td></td><td>ng positive a<br/>ng negative a</td><td></td><td></td></dw> |           |               | ng positive a<br>ng negative a |              |                   |
| FI/DW IS                                                                                                    | the p-var | ue ioi testii | ng negative a                  | aucocorrerat |                   |
|                                                                                                             |           |               | Standard                       |              | Approx            |
| Variable                                                                                                    | DF        | Estimate      | Error                          | t Value      | Pr >  t           |
| Intercept                                                                                                   | 1         | -0.0443       | 0.1432                         | -0.31        | 0.7606            |
| RDFTE                                                                                                       | 1         | 0.6165        | 0.2642                         | 2.33         | 0.0314            |
| wsperhc                                                                                                     | 1         | 1.4308        | 0.6667                         | 2.15         | 0.0457            |
| AR1                                                                                                         | 1         | -0.7526       | 0.1944                         | -3.87        | 0.0011            |
|                                                                                                             | Autoregre | ssive paramet | ters assumed                   | given.       |                   |
|                                                                                                             | -         | -             |                                |              |                   |
| Variable                                                                                                    | DF        | Estimate      | Standard<br>Error              | t Value      | Approx<br>Pr >  t |
| Variabie                                                                                                    |           |               |                                | c value      |                   |
| Intercept                                                                                                   | 1         | -0.0443       | 0.1431                         | -0.31        | 0.7606            |
| RDFTE                                                                                                       | 1         | 0.6165        | 0.2303                         | 2.68         | 0.0154            |
| wsperhc                                                                                                     | 1         | 1.4308        | 0.6188                         | 2.31         | 0.0328            |
|                                                                                                             |           |               |                                |              |                   |

From the model estimation output obtained we can make the following conclusion:

The test for autocorrelation use is the Durban Watson test statistic. The Durbin Watson

test statistic is 2.0372 with (Pr < DW = 0.4148) > 0.05 and (Pr < DW = 0.5852) < 0.95. This indicates that we can we therefore can conclude that the model does not have autocorrelation.

Due to the small sample size and the limited number of data points available, the heteroscedasticity test (Q and LM test for ARCH disturbances) is only interpreted up to 2 time lags. The probability for arch disturbances in the model for lags 1 and 2 are larger than 0.05. We can therefore conclude that the modelled relationship does not suffer from heteroscedasticity.

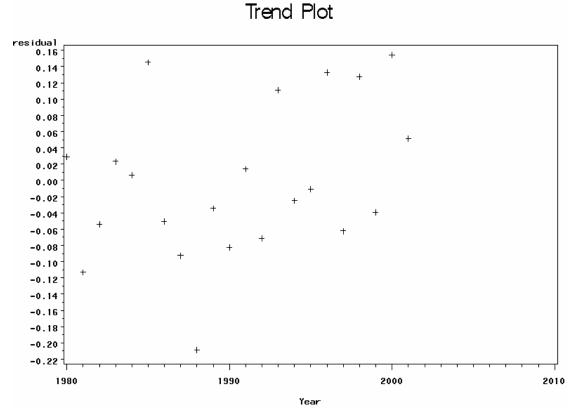



Figure 14-4: Time plot for the residual of the HES knowledge absorption

From Table 14-4 can be seen that the time plot seems to be scattered around 0. From the results we van also read the Mean of Working Series -0.00219. We therefore make use of the "Zero mean" specification in the stationarity test output results.

Table 14-8: Phillips Perron tests output for the residual

| Name of Variable = residualMean of Working Series<br>Standard Deviation<br>Number of Observations-0.00219<br>0.091676<br>22Phillips-Perron Unit Root TestsTypeLagsRhoPr < Rho                                                                                                                                                                   | The ARIMA Procedure         |        |             |               |       |          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------|-------------|---------------|-------|----------|--|--|
| Standard Deviation         0.091676<br>Number of Observations         22           Phillips-Perron Unit Root Tests           Type         Lags         Rho         Pr < Rho         Tau         Pr < Tau           Zero Mean         0         -21.4679         0.0001         -4.55         0.0001           1         -21.7305         <.0001 | Name of Variable = residual |        |             |               |       |          |  |  |
| Type         Lags         Rho         Pr < Rho         Tau         Pr < Tau           Zero Mean         0         -21.4679         0.0001         -4.55         0.0001           1         -21.7305         <.0001                                                                                                                              | Standard Deviation 0.091676 |        |             |               |       |          |  |  |
| Zero Mean         0         -21.4679         0.0001         -4.55         0.0001           1         -21.7305         <.0001                                                                                                                                                                                                                    |                             | Phi l  | lips-Perron | Unit Root Tes | ts    |          |  |  |
| Single Mean1-21.7305<.0001-4.550.00010-21.51160.0008-4.440.00231-21.79780.0007-4.440.0023Trend0-24.54720.0018-5.170.0024                                                                                                                                                                                                                        | Туре                        | Lags   | Rho         | Pr < Rho      | Tau   | Pr < Tau |  |  |
| Trend 0 -24.5472 0.0018 -5.17 0.0024                                                                                                                                                                                                                                                                                                            |                             | 1      | -21.7305    | <. 0001       | -4.55 | 0.0001   |  |  |
|                                                                                                                                                                                                                                                                                                                                                 | Single Mean                 | 0<br>1 |             |               |       |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                 | Trend                       | 0<br>1 |             |               |       |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                 |                             |        |             |               |       |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                 |                             |        |             |               |       |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                 |                             |        |             |               |       |          |  |  |

Since an intercept is included in the model fitted, an intercept is included. For (n-1) = 2, the values are obtained from the Critical values for the Phillips Z Statistic or the Dickey Fuller t Statistic when applied to Residuals from Spurious Cointegration Regression (See **Error! Reference source not found.**). The critical value for the 1% level is -4.31.

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

Tau = -4.55 for  $\ell = 0$  en Tau = -4.55 for  $\ell = 1$ .

This means that we can therefore reject the null hypothesis of unit root since the  $T_{AU}$  values are smaller than the critical value. The residues can be deemed stationary and the variables are cointegrated. We can therefore conclude that the regression is not spurious.

### 14.2 Creation of new knowledge (HES)

The rate at which the system is able to produce new knowledge output is computed through the contribution made form different stocks in the system. The following expression is formulated for the R&D output productivity per FTE researcher working in the system:

- $R_{Paper} / S_{FTE}$ : R&D output rate per FTE researcher person on the system
- $S_{Experience} / S_{HC}$ : Average Experience Stock of the people in the system.
- $S_{Absorbed} / S_{HC}$ : Average Absorbed knowledge per person in the system.

A multiplicative model is developed for the development rate of papers per full time person working in the system:

$$\frac{R_{Paper}}{R_{Paper}^{*}} / \frac{S_{FTE}}{S_{FTE}^{*}} = c * \left(\frac{S_{Experience}}{S_{Experience}^{*}} / \frac{S_{HC}}{S_{HC}^{*}}\right)^{a} * \left(\frac{S_{Absorbed}}{S_{Absorbed}^{*}} / \frac{S_{HC}}{S_{HC}^{*}}\right)^{b}$$
14-3

This expression is linearised by taking the log-linear form:

$$\ln(\frac{R_{Paper}}{R_{Paper}^{*}}/\frac{S_{FTE}}{S_{FTE}^{*}}) = \ln(c) + a * \ln(\frac{S_{Experience}}{S_{Experience}^{*}}/\frac{S_{HC}}{S_{HC}^{*}}) + b * \ln(\frac{S_{Absorbed}}{S_{Absorbed}^{*}}/\frac{S_{HC}}{S_{HC}^{*}})$$
14-4

This is then the expression used to perform the regression for estimating the parameters a, b and c.

The section describes the variables included in the model to estimate the rate of knowledge creation in the system. The following SAS program was used:

 Table 14-9: SAS code for stationarity tests in variables prperfte, expperhc and absperhc

```
goptions reset=all cback=white colors=(black) lfactor=2
border;
title1 'Trend Plot';
proc gplot hes.rdloglin;
plot (prperfte expperhc absperhc)*year;
plot prperfte*(expperhc absperhc);
run;
* test for stationarity of the 3 series using arima procedure
*;
proc arima hes.rdloglin;
identify var=prperfte stationarity=(phillips=(0,1));
identify var=absperhc stationarity=(phillips=(0,1));
identify var=absperhc stationarity=(phillips=(0,1));
run;
```

The following sections document and explain the output obtained from the SAS program.

#### 14.2.1 R&D output produced per FTE researcher

The following is the time plot output from the SAS program for the R&D output (papers) created per full time equivalent researcher in the system.

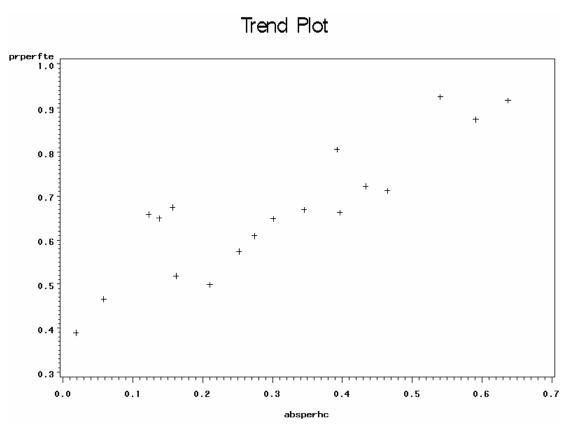



Figure 14-5 Time plot of the Knowledge creation rate per FTE

Lags

0

1

0

1

0 1

From Figure 14-5 can be seen that the time plot shows an upward trend line. We therefore make use of the "Trend" specification in the stationarity test output results.

| The ARIMA Procedure                                                                         |
|---------------------------------------------------------------------------------------------|
| Name of Variable = prperfte                                                                 |
| Mean of Working Series 0.669785<br>Standard Deviation 0.163311<br>Number of Observations 19 |

Phillips-Perron Unit Root Tests

Pr < Rho

0.8229

0.8338

0.4187

0.4788

0. 1682 0. 1749 Tau

0.99

1.23

-1.83 -1.78

-3.03 -3.02 Pr < Tau

0. 9068

0.9372

0.3767

0. 1527 0. 1543

0.

3549

Rho

0.6424

0.6918

4.7059

-4.1852

-12. 4121 -12. 2779

| Table 14-10: SAS output for Phillips Perron test for variable "prperfte" |
|--------------------------------------------------------------------------|
|--------------------------------------------------------------------------|

| From the Phillips Perron test output obtained from SAS we read the following values for | • |
|-----------------------------------------------------------------------------------------|---|
| the probability statistics.                                                             |   |

 $Pr < Tau = 0.1527 \text{ for } \ell = 0 \text{ en}$  $Pr < Tau = 0.1543 \text{ for } \ell = 1.$ 

Туре

Trend

Zero Mean

Single Mean

Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that prperfte has a unit root and is non-stationary.

### 14.2.2 Absorbed Stock per Headcount

The following is the time plot output from the SAS program for the absorbed knowledge stock in the system.

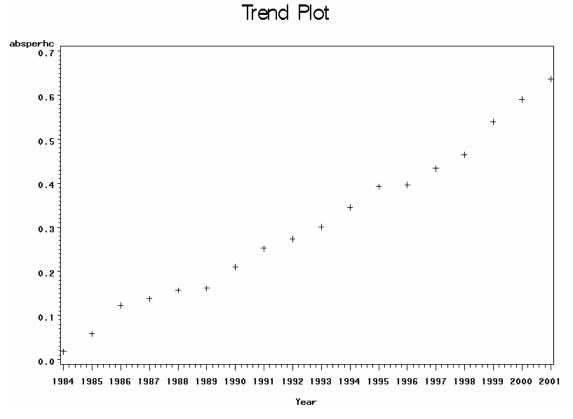



Figure 14-6 Time plot of the Absorbed knowledge stock per Headcount personnel

From Figure 14-6 can be seen that the time plot shows an upward trend line. We therefore make use of the "Trend" specification in the stationarity test output results.

Table 14-11: SAS output for Phillips Perron test for variable "absperhc"

|                                   |                       | The ARIMA                                                    | Procedure     |     |                            |
|-----------------------------------|-----------------------|--------------------------------------------------------------|---------------|-----|----------------------------|
|                                   | Nam                   | ne of Variab                                                 | le = absperhc |     |                            |
|                                   | Standa                | of Working S<br>Ird Deviatio<br>of Observa                   |               |     |                            |
|                                   | Phi I I               | ips-Perron                                                   | Unit Root Tes | ts  |                            |
| Туре                              | Lags                  | Rho                                                          | Pr < Rho      | Tau | Pr < Tau                   |
| Zero Mean<br>Single Mean<br>Trend | 0<br>1<br>0<br>1<br>1 | 1.2929<br>1.2825<br>-0.3848<br>-0.3868<br>-8.8861<br>-9.1435 | 0. 4103       |     | 0.7625<br>0.7645<br>0.2440 |

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

 $Pr < Tau = 0.244 \text{ for } \ell = 0 \text{ en}$  $Pr < Tau = 0.241 \text{ for } \ell = 1.$ 

Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that absperbe has a unit root and is non-stationary.

# 14.2.3 Experience Stock per Headcount

The following is the time plot output from the SAS program for the Experience stock per Headcount in the system.

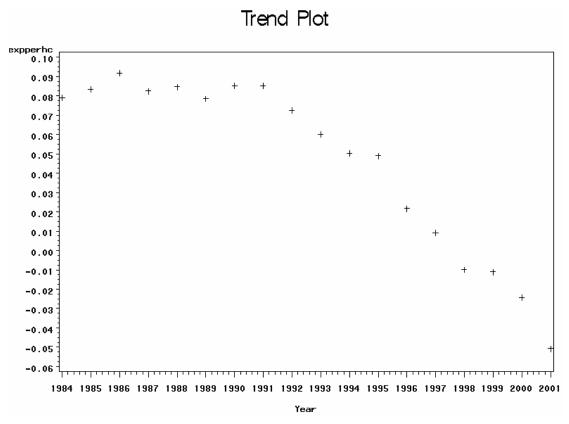



Figure 14-7 Time plot for the "Exptotal" variable in the system

From Figure 14-7 can be seen that the time plot shows a downward trend line. We therefore make use of the "Trend" specification in the stationarity test output results.

|                                   |                       | The ARIMA P                                                    | rocedure      |                |                               |
|-----------------------------------|-----------------------|----------------------------------------------------------------|---------------|----------------|-------------------------------|
|                                   | Nam                   | e of Variab                                                    | le = expperhc |                |                               |
|                                   | Standa                | f Working S<br>rd Deviatio<br>of Observa                       | n 0.02        |                |                               |
|                                   | Phi I I               | ips-Perron                                                     | Unit Root Tes | ts             |                               |
| Туре                              | Lags                  | Rho                                                            | Pr < Rho      | Tau            | Pr < Tau                      |
| Zero Mean<br>Single Mean<br>Trend | 0<br>1<br>0<br>1<br>1 | -0.0565<br>-0.0591<br>-4.5748<br>-5.1400<br>-5.4205<br>-5.0065 |               | -1.66<br>-2.37 | 0. 4732<br>0. 4324<br>0. 3785 |

From the Phillips Perron test output obtained from SAS we read the following values for

the probability statistics. Pr < Tau = 0.3785 for  $\ell = 0$  en Pr < Tau = 0.3588 for  $\ell = 1$ .

Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that experise has a unit root and therefore is non-stationary.

## 14.2.4 Colinearity tests

First however we should make sure that the variables are not collinear. The following is the test results obtained from SAS for the Colinearity test.

Table 14-13: Colinearity diagnostics for the model variables

|                          | Col I i                 | nearity Diag                     | nostics                     |                                  |  |  |
|--------------------------|-------------------------|----------------------------------|-----------------------------|----------------------------------|--|--|
|                          | Number                  | Ei genval ue                     | Conditio<br>Inde            |                                  |  |  |
|                          | 1<br>2<br>3             | 2. 28975<br>0. 70033<br>0. 00992 | 1.0000<br>1.8081<br>15.1905 | 8                                |  |  |
| Collinearity Diagnostics |                         |                                  |                             |                                  |  |  |
| Number                   | Interd                  | Proportion<br>cept ab            |                             | expperhc                         |  |  |
| 1<br>2<br>3              | 0.00<br>0.00007<br>0.99 | 7497 0                           | 00460<br>01905<br>97634     | 0. 00696<br>0. 05398<br>0. 93906 |  |  |

Larger values suggest potential near colinearity. Belsley, Kuh and Welsch (2000) recommend interpreting the Condition index greater or equal than 30 to reflect moderate to severe colinearity, worthy of further investigation. Since all the Condition indexes from the regression model is much smaller than 30, the conclusion can be made that colinearity is not a problem in this case.

### **Proportion of Variation**

The variance proportion indicates for each predictor the proportion of total variance of its estimated regression coefficients associated with a particular principal component. The variance proportions suggest colinearity problems if more than one predictor has a high variance proportions of at least 0.5 for such a components suggest a problem. One should definitely be concerned when two or more ladings greater than 0.9 appear on a component with a large condition index (>30). This also does not seem to be a problem since the condition indexes all have small values.

## 14.2.5 Model estimation the rate of Paper Development in the HES

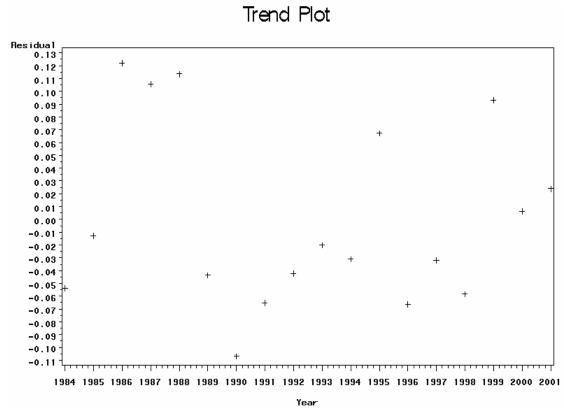
As all three variables are non-stationary, we should now fit a model and then test for cointegration in the residual

#### Table 14-14: SAS code for the model estimation procedure

```
proc autoreg data= HES.hesloglin;
model prperfte = absperhc Expperhc
/ method= ml dwprob nlag = 1;
output out=b r=residual;
run;
* consider residual *;
proc gplot data=b;
plot residual*year;
run;
* test for cointegration using arima procedure *;
proc arima data=b;
identify var=residual
stationarity=(phillips=(0,1));
run;
```

| Table 14-15: SAS output for the mo | del estimation of Absor  | ntive canacity in the HES   |
|------------------------------------|--------------------------|-----------------------------|
| Table 14-13. SAS output for the mo | Juci estimation of Absol | prive capacity in the files |

|                                        | Th                         | e AUTOREG Pr                | rocedure           |                    |                    |  |
|----------------------------------------|----------------------------|-----------------------------|--------------------|--------------------|--------------------|--|
|                                        | Depend                     | ent Variable                | e prperf           | te                 |                    |  |
|                                        | ·                          |                             |                    |                    |                    |  |
|                                        | Ordi nar                   | y Least Squa                | ares Estima        | tes                |                    |  |
| SSE<br>MSE                             |                            | 12108175<br>0. 00637        | DFE<br>Root MSE    |                    | 19<br>). 07983     |  |
| SBC<br>Regress R                       | -Square                    |                             | AIC<br>Total R-Sq  |                    | 018004<br>0. 9020  |  |
| Durbin-Wa<br>Pr > DW                   |                            | 0. 9014<br>0. 9997          | Pr < DW            |                    | 0. 0003            |  |
| NOTE: Pr <dw is<br="">Pr&gt;DW is</dw> | the p-value<br>the p-value |                             |                    |                    |                    |  |
|                                        |                            | Dhilling O                  | lionio             |                    |                    |  |
|                                        |                            | Phillips-Ou<br>Cointegratic |                    |                    |                    |  |
|                                        | Lags                       | Rho                         |                    | Tau                |                    |  |
|                                        | 1                          | -10. 1658                   | -2.5               | 256                |                    |  |
|                                        |                            | ç                           | Standard           |                    | Approx             |  |
| Vari abl e                             | DF Es                      | timate                      | Error              | t Value            | Pr >  t            |  |
| l ntercept<br>absperhc                 |                            | 0. 0673<br>0. 6672          | 0.0578<br>0.0683   | 1. 16<br>9. 77     | 0. 2586<br><. 0001 |  |
| expperhc                               |                            | 1. 1926                     | 0. 3490            | 3. 42              | 0. 0029            |  |
|                                        | Q an                       | d LM Tests f                | or ARCH Di         | sturbances         |                    |  |
|                                        | Order                      | Q                           | Pr > Q             | LN                 | 1 Pr > LM          |  |
|                                        | 1                          | 2.6944                      | 0. 1007            | 2.3836             |                    |  |
|                                        | 2<br>3                     | 3.2668<br>3.2901            | 0. 1953<br>0. 3490 | 2.5181<br>2.5182   | 0. 4720            |  |
|                                        | 4<br>5                     | 3. 6991<br>5. 3127          | 0. 4483<br>0. 3789 | 3. 3194<br>4. 9323 | 0. 4242            |  |
|                                        | 6<br>7                     | 8. 1806<br>12. 5365         | 0. 2252<br>0. 0842 | 5.0488<br>5.6996   | 0. 5752            |  |
|                                        | 8<br>9                     | 13. 8929<br>14. 4766        | 0. 0846<br>0. 1064 | 5.7748<br>6.0550   | 0.7344             |  |
|                                        | 10<br>11                   | 16. 1185<br>16. 2700        | 0. 0963<br>0. 1314 | 6. 8146<br>7. 3181 | 0.7728             |  |
|                                        | 12                         | 16. 4044                    | 0. 1734            | 7.3242             | 0. 8355            |  |


|                                           |                  | Maximum Likel                                                                                        | ihood Estima                             | tes                            |                                      |  |
|-------------------------------------------|------------------|------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------|--------------------------------------|--|
|                                           | son<br>sthep     | 0.08224994<br>0.00457<br>-47.714313<br>0.8178<br>1.8688<br>0.7573<br>-value for tes<br>for testing r |                                          | -52<br>uare<br>e autocorre     |                                      |  |
| Vari abl e                                | DF               | Estimate                                                                                             | Standar<br>Error                         | d<br>t Value                   | Approx<br>Pr >  t                    |  |
| l ntercept<br>absperhc<br>expperhc<br>AR1 | 1<br>1<br>1<br>1 | -0. 004500<br>0. 6998<br>1. 5280<br>-0. 6004                                                         | 0. 0807<br>0. 1220<br>0. 4756<br>0. 1938 | -0.06<br>5.73<br>3.21<br>-3.10 | 0.9562<br><.0001<br>0.0048<br>0.0062 |  |
|                                           | Autor            | egressi ve para                                                                                      | meters assum                             | ed gi ven.                     |                                      |  |
| Vari abl e                                | DF               | Estimate                                                                                             | Standard<br>Error                        | t Value                        | Approx<br>Pr >  t                    |  |
| l ntercept<br>absperhc<br>expperhc        | 1<br>1<br>1      | -0. 004500<br>0. 6998<br>1. 5280                                                                     | 0. 0797<br>0. 1186<br>0. 4756            | -0. 06<br>5. 90<br>3. 21       | 0. 9556<br><. 0001<br>0. 0048        |  |

From the model estimation output obtained we can make the following conclusion:

The **R-Square 0.8178** statistic indicate that the model accounts for 81% of the variation of the percentage time spent by staff on R&D activities.

The test for autocorrelation use is the Durban Watson test statistic. The Durbi n Watson test statistic is 1.8688 with (Pr < DW = 0.2427 > 0.05 and (Pr < DW = 0.7573) < 0.95. This indicates that we therefore can conclude that the autoregressive model does not have autocorrelation.

Due to the small sample size and the limited number of data points available, the heteroscedasticity test (Q and LM test for ARCH disturbances) is only interpreted up to 2 time lags. The probability for arch disturbances in the model for lags 1 and 2 are larger than 0.05. We can therefore conclude that the modelled relationship does not suffer from heteroscedasticity.



#### Figure 14-8 Time plot of the residual

From Figure 14-8 can be seen that the time plot seems to be scattered around 0. From the results we van also read the Mean of Working Series is -0.0003. We therefore make use of the "Zero mean" specification in the stationarity test output results.

The ARIMA Procedure Name of Variable = residual Mean of Working Series -0.00327 Standard Deviation 0.065914 Number of Observations 18 Phillips-Perron Unit Root Tests Pr < Rho Туре Lags Rho Tau Pr < Tau Zero Mean 0 -15.4783 0.0015 -3.66 0.0011 -15.2356 0.0017 -3.66 0.0011 -3.57 -3.56 Single Mean 0 -15.6068 0.0079 0.0187 -15.3372 0.0089 0.0190 1 Trend 0 -15.4989 0.0571 -3.42 0.0822 -15.1530 0.0649 -3.40 0.0841 1

For (n-1) = 2, the values are obtained from the Critical values for the Phillips Z Statistic

or the Dickey Fuller t Statistic when applied to Residuals from Spurious Cointegration Regression (See **Error! Reference source not found.**). The critical value for the 7.5% level is -3.58.

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

Tau = -3.66 for  $\ell = 0$  en Tau = -3.66 for  $\ell = 1$ .

This means that we can therefore reject the null hypothesis of unit root with a 10% significance level, since the  $T_{au}$  values are smaller than the critical value. The residues can be deemed stationary and the variables are cointegrated. We can therefore conclude that the regression is not spurious.

#### 14.3 Student-to-Staff ratio and the % time spent on R&D model

The section describes the variables included in the model to estimate the percentage time staff has left as a function of the student-to-staff relationship. The following SAS program was used.

Table 14-17: SAS code for stationarity tests in variables "Percentage" and "studentstaff"

```
goptions reset=all cback=white colors=(black) lfactor=2
border;
title1 'Trend Plot';
proc gplotb data = hes.studstaff;
plot (Percentage studentstaff)*year;
plot Percentage*(studentstaff);
run;
proc arima data=hes.studstaff;
identify var=Percentage stationarity=(phillips=(0,1));
identify var=studentstaff stationarity=(phillips=(0,1));
run;
```

The following sections document and explain the output obtained from the SAS program.

#### 14.3.1 Student to Staff ratio in the Higher Education system

The following is the time plot output from the SAS program for the absorption rate per full time equivalent researchers in the system.

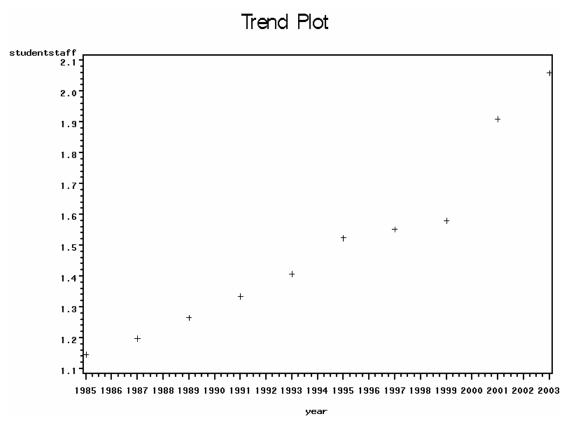
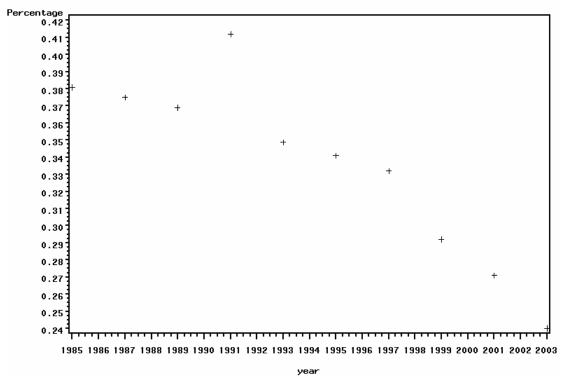



Figure 14-9 Time plot of the Student to staff ratio in the Higher Education system

From Figure 14-9 can be seen that the time plot shows an upward trend line. We therefore make use of the "Trend" specification in the stationarity test output results.

| r |             |             |                               |                                       |                         |                    |  |
|---|-------------|-------------|-------------------------------|---------------------------------------|-------------------------|--------------------|--|
|   |             |             |                               |                                       |                         |                    |  |
|   | Туре        | Lags        |                               | ron Unit Roo <sup>-</sup><br>Pr < Rho |                         | Pr < Tau           |  |
|   | Zero Mean   | Lug3<br>0   | 0. 6552                       | 0. 8026                               | 3. 57                   | 0. 9984            |  |
|   | Single Mean | 1<br>0<br>1 | 0. 6573<br>1. 4296<br>1. 6149 | 0. 8030<br>0. 9825                    | 3. 87<br>1. 15<br>1. 59 | 0. 9989<br>0. 9933 |  |
|   | Trend       | 0<br>1      | -3.8832<br>-3.9095            |                                       | -0. 95<br>-0. 95        |                    |  |
|   |             |             |                               |                                       |                         |                    |  |
|   |             |             |                               |                                       |                         |                    |  |
|   |             |             |                               |                                       |                         |                    |  |
|   |             |             |                               |                                       |                         |                    |  |


From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

Pr < Tau = 0.8959 for  $\ell = 0$  en Pr < Tau = 0.8949 for  $\ell = 1$ .

Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that studentstaff has a unit root and is non-stationary.

### 14.3.2 Percentage time spent on R&D

The following is the time plot output from the SAS program for the RD Knowledge stock with Full time equivalent personnel in the system.



Trend Plot

Figure 14-10 Time plot - FTE researcher interacting with R&D knowledge

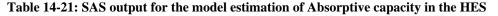
From Figure 14-10 can be seen that the time plot shows an upward trend line. We therefore make use of the "Trend" specification in the stationarity test output results.

| Table 14-19: | Phillips-Perron | test output for | variable "RDFTE" |
|--------------|-----------------|-----------------|------------------|
|--------------|-----------------|-----------------|------------------|

|      | The ARIMA Procedure                                                                        |
|------|--------------------------------------------------------------------------------------------|
|      | Name of Variable = Percentage                                                              |
|      | Mean of Working Series 0.33618<br>Standard Deviation 0.050983<br>Number of Observations 10 |
|      | Phillips-Perron Unit Root Tests                                                            |
| Туре | Lags Rho Pr < Rho Tau Pr < Tau                                                             |

| Zero Mean   | 0 | -0. 3958 | 0. 5676 | -1.57 | 0. 1021 |
|-------------|---|----------|---------|-------|---------|
|             | 1 | -0.3875  | 0.5693  | -1.82 | 0.0649  |
| Single Mean | 0 | 0.3426   | 0.9506  | 0.15  | 0. 9501 |
| 5           | 1 | 1. 1173  | 0.9762  | 0.70  | 0. 9830 |
| Trend       | 0 | -6. 4884 | 0. 5616 | -1.89 | 0.5778  |
|             | 1 | -5.3570  | 0. 6993 | -1.76 | 0.6379  |
|             |   |          |         |       |         |

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.


Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that Percentage has a unit root and is non-stationary.

### 14.3.3 Model estimation – The time spent on R&D

As both variables are non-stationary, we should now fit a model and then test for cointegration in the residual.

 Table 14-20: SAS code for the model estimation procedure

```
proc autoreg data= HES.hesloglin;
model absorbedR = rdFTE wsperhc
/ method= ml nlag=1 dwprob;
output out=b r=residual;
run;
```



|                                                                                                                                                      |              | The AUTOREG                        | Procedure                                                      |         |                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------|----------------------------------------------------------------|---------|--------------------------------------------------------------------|
|                                                                                                                                                      | Depe         | ndent Variable                     | e Percent                                                      | tage    |                                                                    |
|                                                                                                                                                      | 0rdi         | nary Least Squ                     | ares Estima                                                    | ates    |                                                                    |
| SSE<br>MSE<br>SBC<br>Regress R-Squ<br>Durbin-Watson<br>Pr > DW<br>NOTE: Pr <dw for<br="" is="" p-value="" the="">for testing negative autocorre</dw> | n<br>r testi | 2.1775<br>0.5387<br>ng positive au | DFE<br>Root MSE<br>AIC<br>Total R-Sc<br>Pr < DW<br>Hocorrelati | quare   | 8<br>0.02174<br>6.421244<br>0.8545<br>0.4613<br>>DW is the p-value |
|                                                                                                                                                      |              | Phillips-C<br>Cointegrati          |                                                                |         |                                                                    |
|                                                                                                                                                      | Lags         | Rhc                                | )                                                              | Tau     |                                                                    |
|                                                                                                                                                      | 1            | -9.7900                            | ) -3.2                                                         | 2686    |                                                                    |
| Vari abl e                                                                                                                                           | DF           | Estimate                           | Standard<br>Error                                              | t Value | Approx<br>Pr >  t                                                  |
| Intercept<br>studentstaff                                                                                                                            | 1<br>1       | 0. 5859<br>-0. 1668                | 0. 0371<br>0. 0243                                             |         | <. 0001<br>0. 0001                                                 |
|                                                                                                                                                      | The          | REG Procedure                      | <b>)</b>                                                       |         |                                                                    |

|                                   |                                                 | Model: MODEL1<br>t Variable: F       |                         |                        |         |
|-----------------------------------|-------------------------------------------------|--------------------------------------|-------------------------|------------------------|---------|
|                                   | Ana                                             | lysis of Vari                        | ance                    |                        |         |
| Source                            | DF                                              | Sum of<br>Squares                    | Mean<br>Square          | F Value                | Pr > F  |
| Model<br>Error<br>Corrected Total | 1<br>8<br>9                                     | 0. 02221<br>0. 00378<br>0. 02599     | 0. 02221<br>0. 00047279 | 46.98                  | 0. 0001 |
| Dep                               | t MSE<br>endent Mean<br>ff Var                  | 0. 02174<br>0. 33618<br>6. 46789     | R-Square<br>Adj R-Sq    | 0. 8545<br>0. 8363     |         |
|                                   | Par                                             | ameter Estima                        | ates                    |                        |         |
| Vari abl e                        |                                                 | meter S<br>mate                      | Standard<br>Error t Va  | lue Pr>                | t       |
| Intercept<br>studentstaff         |                                                 |                                      |                         | . 80 <. 0<br>. 85 0. 0 |         |
|                                   |                                                 | Procedure<br>MODEL1<br>iable: Percer | ntage                   |                        |         |
|                                   | Durbin-Watson<br>Number of Obs<br>1st Order Aut | ervati ons                           | 2. 177<br>10<br>-0. 115 |                        |         |

From the model estimation output obtained we can make the following conclusion:

The test for autocorrelation use is the Durban Watson test statistic. The Durbi n Watson test statistic is 2.177 with (Pr < DW = 0.4613) > 0.05 and (Pr < DW = 0.5387) < 0.95. This indicates that we can we therefore can conclude that the model does not have autocorrelation.

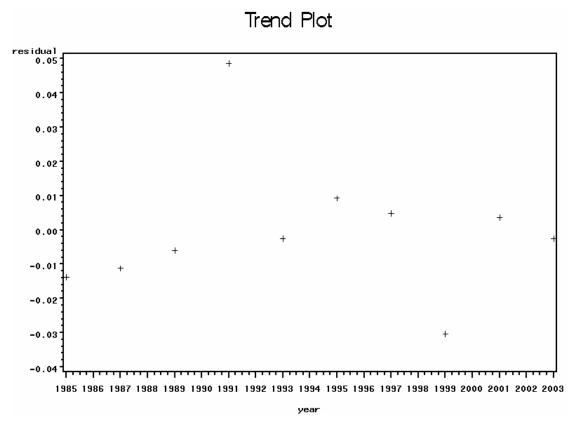



Figure 14-11 Time plot - residual of the HES knowledge absorption

From Figure 14-11 can be seen that the time plot seems to be scattered around 0. From the results we van also read the Mean of Working Series 5.8E-17. We therefore make use of the "Zero mean" specification in the stationarity test output results.

| Single Mean         1         -9.7900         0.0092         -3.27         0.0044           0         -10.0445         0.0378         -3.06         0.0683           1         -9.7461         0.0445         -3.07         0.0676 |             | Stand<br>Numbe | of Working S<br>dard Deviatic<br>er of Observa<br>lips-Perron U | n 0.01   | 8E-17<br>9448<br>10<br>S |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|-----------------------------------------------------------------|----------|--------------------------|----------|
| Single Mean         1         -9.7900         0.0092         -3.27         0.0044           0         -10.0445         0.0378         -3.06         0.0683           1         -9.7461         0.0445         -3.07         0.0676 | Туре        | Lags           | Rho                                                             | Pr < Rho | Tau                      | Pr < Tau |
| Single Mean         0         -10.0445         0.0378         -3.06         0.0683           1         -9.7461         0.0445         -3.07         0.0676                                                                         | Zero Mean   | 0<br>1         |                                                                 |          |                          |          |
|                                                                                                                                                                                                                                    | Single Mean | 0<br>1         | -10.0445                                                        | 0.0378   | -3.06                    | 0.0683   |
| Trend 0 -10.0642 0.1852 -2.89 0.2062<br>1 -9.4754 0.2329 -2.90 0.2032                                                                                                                                                              | Trend       | 0<br>1         |                                                                 |          | -2.89                    | 0.2062   |

Table 14-22: Phillips Perron tests output for the residual

Since an intercept is included in the model fitted, an intercept is included. For (n-1) = 1, the values are obtained from the Critical values for the Phillips Z Statistic or the Dickey Fuller t Statistic when applied to Residuals from Spurious Cointegration Regression (See table Table 14-22). The critical value for the 7.5% level is -3.20.

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

Tau = -3.26 for  $\ell = 0$  en Tau = -3.27 for  $\ell = 1$ .

This means that we can therefore reject the null hypothesis of unit root since the Tau values are smaller than the critical value. The residues can be deemed stationary and the variables are cointegrated. We can therefore conclude that the regression is not spurious.

# 15 APPENDIX D

# 15.1 Absorption of Knowledge (Pub)

The rate at which the system is able to produce new knowledge output is computed through the contribution made form different stocks in the system. The following expression is formulated for the R&D knowledge absorption rate in the system:

- $R_{Absorptionr}$ : Absorption rate of knowledge in the system
- $S_{R\&Doutput}$ : RD output stock in the system
- $S_{FTE}$ : Stock of Full Time Equivalent people in the system
- $S_{world}$ : Available external knowledge stock (Patents)
- $S_{HC}$ : Headcount personnel employed in the system

A multiplicative model is developed for the absorption rate per Full Time Equivalent person working in the system:

$$\frac{R_{Absorptionr}}{R_{Absorption}^*} = f * \left(\frac{S_{R\&Doutput}}{S_{R\&Doutput}^*} * \frac{S_{FTE}}{S_{FTE}^*}\right)^d * \left(\frac{S_{World}}{S_{World}^*} / \frac{S_{HC}}{S_{HC}^*}\right)^e$$
15-1

This expression is linearised by taking the log-linear form:

$$\ln(\frac{R_{Absorptionr}}{R_{Absorption}^*}) = f + d * \ln(\frac{S_{R\&Doutput}}{S_{R\&Doutput}^*} * \frac{S_{FTE}}{S_{FTE}^*}) + e * \ln(\frac{S_{World}}{S_{World}^*} / \frac{S_{HC}}{S_{HC}^*})$$
15-2

This is the expression used to perform the regression for estimating the parameters d, e and f. The regression is executed and the following estimates for the parameters are obtained:

The section describes the variables included in the model to estimate the rate of knowledge absorption in the system. The following SAS program was used.

# Table 15-1: SAS code for stationarity tests

```
goptions reset=all cback=white colors=(black) lfactor=2
border;
titlel 'Trend Plot';
proc gplot data=Pub.paploglinear;
plot (absorbedR RDftetype wsfte)*year;
plot absorbedR*(RDftetype wsfte);
run;
* test for stationarity of the 3 series using arima procedure
*;
proc arima data=Pub.paploglinear;
identify var=absorbedR stationarity=(phillips=(0,1));
identify var=RDftetype stationarity=(phillips=(0,1));
identify var=wsfte stationarity=(phillips=(0,1));
run;
```

The following sections document and explain the output obtained from the SAS program.

# 15.1.1 Absorption rate of knowledge in the system

The following is the time plot output from the SAS program for the absorption rate per full time equivalent researchers in the system.

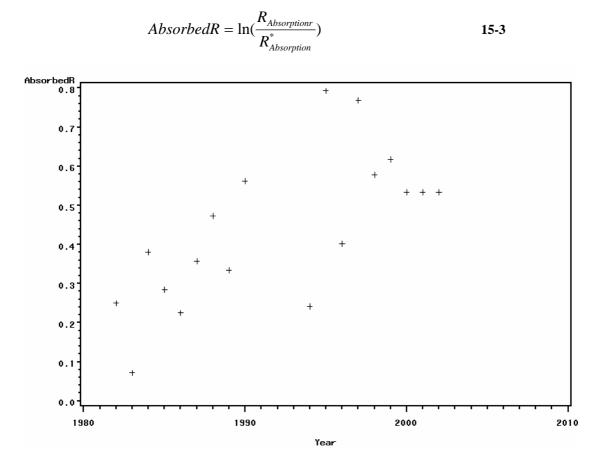



Figure 15-1 Time plot of the absorption rate in the Public sector

From Figure 15-1 can be seen that the time plot shows an upward trend. We therefore make use of the "Trend" specification in the stationarity test output results.

Table 15-2: Phillips-Perron test output for variable "AbsorbedR"

R&D in the National System of Innovation: a System Dynamics Model University of Pretoria etd – Grobbelaar, S S (2007)

|                          |                                                                                             | The ARI                                    | MA Procedure             | е              |                  |
|--------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------|----------------|------------------|
|                          | I                                                                                           | Name of Vari                               | able = Abso              | rbedR          |                  |
|                          | Mean of Working Series 0.286634<br>Standard Deviation 0.274244<br>Number of Observations 21 |                                            |                          |                |                  |
|                          |                                                                                             | The ARIM                                   | A Procedure              |                |                  |
|                          | P                                                                                           | hillips-Perr                               | on Unit Roo <sup>.</sup> | t Tests        |                  |
| Туре                     | Lags                                                                                        | Rho                                        | Pr < Rho                 | Tau            | Pr < Tau         |
| Zero Mean<br>Single Mean | 0<br>1<br>0<br>1                                                                            | -3.7431<br>-2.4229<br>-12.1070<br>-11.0751 | 0. 0420<br>0. 0603       |                | 0.0793<br>0.0922 |
| Trend                    | 0<br>1                                                                                      | -15. 3530<br>-15. 0457                     |                          | -3.27<br>-3.25 |                  |
|                          |                                                                                             |                                            |                          |                |                  |
|                          |                                                                                             |                                            |                          |                |                  |

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

 $Pr < Tau = 0.1006 \text{ for } \ell = 0 \text{ en}$  $Pr < Tau = 0.1036 \text{ for } \ell = 1.$ 

Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that AbsorbedR has a unit root and is non-stationary.

# 15.1.2 R&D Knowledge Stock and FTE researchers interaction

The following is the time plot output from the SAS program for the RD Knowledge stock with Full time equivalent personnel in the system.

$$RDfte = \ln(\frac{S_{R\&Doutput}}{S_{R\&Doutput}^*} * \frac{S_{FTE}}{S_{FTE}^*})$$
15-4

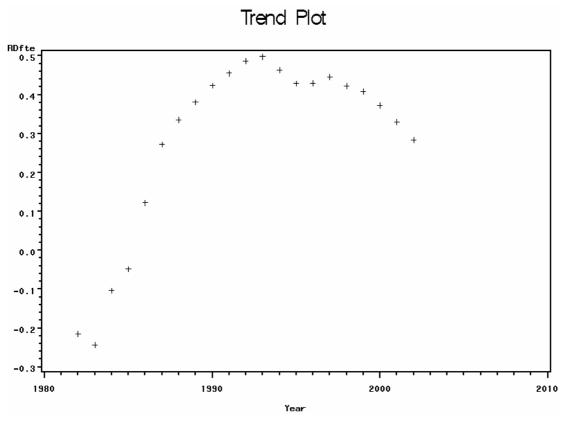



Figure 15-2 Time plot - FTE researcher interacting with R&D knowledge

From Figure 15-2 can be seen that the time plot shows a trend. We therefore make use of the "Trend" specification in the stationarity test output results.

 Table 15-3: Phillips-Perron test output for variable "RDFTE"

| Name of Variable = RDfte |        |                      |                    |                  |                    |  |  |  |
|--------------------------|--------|----------------------|--------------------|------------------|--------------------|--|--|--|
|                          |        |                      |                    |                  |                    |  |  |  |
|                          |        | Phillips-P           | erron Unit Ro      | ot Tests         |                    |  |  |  |
| Туре                     | Lags   | Rho                  | Pr < Rho           | Tau              | Pr < Tau           |  |  |  |
| Zero Mean                | 0<br>1 | -0. 2185<br>-0. 4416 | 0.6177<br>0.5695   | -0. 26<br>-0. 41 | 0. 5806<br>0. 5217 |  |  |  |
| Single Mean              | 0      | -3.0877              | 0.6216             | -2.94<br>-2.71   | 0.0584             |  |  |  |
| Trend                    | 0      | -0. 4260<br>-0. 4173 | 0. 9895<br>0. 9896 | -0. 30<br>-0. 30 |                    |  |  |  |
|                          | 1      | -0.4173              | 0. 9896            | -0.30            | 0. 9844            |  |  |  |

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

 $\label{eq:pr_state} \begin{array}{l} {\sf Pr} \ < \ {\sf Tau} \ = \ 0.\ 9842 \ for \ \ell \ = \ 0 \ en \\ {\sf Pr} \ < \ {\sf Tau} \ = \ 0.\ 9844 \ for \ \ell \ = \ 1. \end{array}$ 

Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that RDFTE has a unit root and is non-stationary.

# 15.1.3 The external knowledge stock per headcount

The following is the time plot output from the SAS program for the World Knowledge Stock

per R&D staff in the system.

$$Patwsperhc = \ln(\frac{S_{World}}{S_{World}^{*}} / \frac{S_{HC}}{S_{HC}^{*}})$$

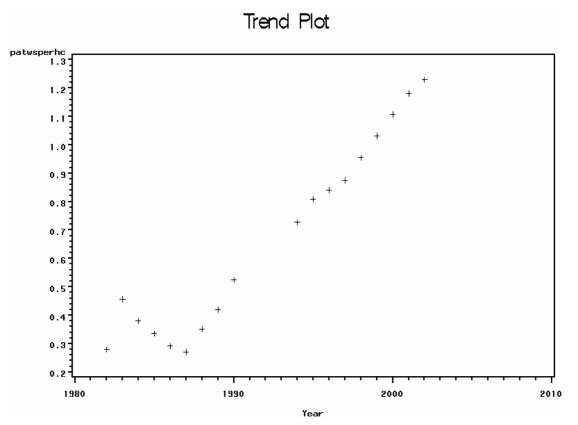



Figure 15-3 Time plot - World stock of knowledge per HC researcher

From Figure 15-3 can be seen that the time plot shows an upward trend line. We therefore make use of the "Trend" specification in the stationarity test output results.

Table 15-4: Phillips-Perron test output for variable "Patwsperhc"

| Name of Variable = patwsperhc |             |                                                                                            |                               |                      |                               |  |  |
|-------------------------------|-------------|--------------------------------------------------------------------------------------------|-------------------------------|----------------------|-------------------------------|--|--|
|                               | Standar     | Mean of Working Series 0.665825<br>Standard Deviation 0.30554<br>Number of Observations 21 |                               |                      |                               |  |  |
|                               | Phi I I i   | ps-Perron U                                                                                | nit Root Test                 | S                    |                               |  |  |
| Туре                          | Lags        | Rho                                                                                        | Pr < Rho                      | Tau                  | Pr < Tau                      |  |  |
| Zero Mean<br>Single Mean      | 0<br>1<br>0 | 1. 3564<br>1. 3514<br>0. 6846                                                              | 0. 9413<br>0. 9408<br>0. 9750 | 3.59<br>3.45<br>0.73 | 0. 9996<br>0. 9994<br>0. 9897 |  |  |
| Trend                         | 1<br>0      | 0.6380<br>-4.5243                                                                          | 0. 9736<br>0. 8265            | 0. 64<br>-1. 53      | 0. 9872<br>0. 7840            |  |  |
|                               | 1           | -4.7594                                                                                    | 0.8075                        | -1.57                | 0. 7697                       |  |  |

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

Pr < Tau = 0.7840 for  $\ell = 0$  en Pr < Tau = 0.7697 for  $\ell = 1$ . Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that patwsperhe has a unit root and is non-stationary.

# **15.1.4** Colinearity tests

First however we should make sure that the variables are not collinear. The following is the test results obtained from SAS for the Colinearity test.

|                       | Collinearity Dia                                 | agnosti cs                                                 |                                                          |
|-----------------------|--------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|
| Number                | Ei genval ue                                     | Condi ti on<br>I ndex                                      |                                                          |
| 1<br>2<br>3           | 2.68537<br>0.23340<br>0.08123                    | 1. 00000<br>3. 39199<br>5. 74964                           |                                                          |
| Number<br>1<br>2<br>3 | Pr<br>Intercept<br>0.02158<br>0.23617<br>0.74226 | roportion of Vai<br>RDfte<br>0.03438<br>0.80117<br>0.16444 | ri ati on<br>patwsperhc<br>0.01676<br>0.02376<br>0.95948 |

 Table 15-5: Colinearity diagnostics for the model variables

Larger values suggest potential near colinearity. Belsley, Kuh and Welsch (2000) recommend interpreting the Condition index greater or equal than 30 to reflect moderate to severe colinearity, worthy of further investigation. Since all the Condition indexes from the regression model are much smaller than 30, the conclusion can be made that colinearity is not a problem in this case.

## **Proportion of Variation**

The variance proportion indicates for each predictor the proportion of total variance of its estimated regression coefficients associated with a particular principal component. The variance proportions suggest colinearity problems if more than one predictor has a high variance proportions of at least 0.5 for such a components suggest a problem. One should definitely be concerned when two or more ladings greater than 0.9 appear on a component with a large condition index (>30). This also does not seem to be a problem since the condition indexes are all smaller than 30.

## 15.1.5 Model estimation - Absorption rate

As all three variables are non-stationary, we should now fit a model and then test for cointegration in the residual.

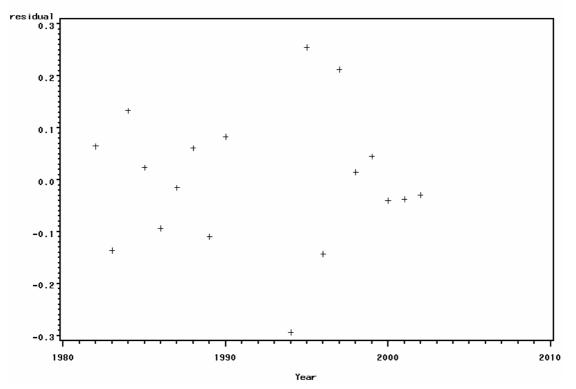
 Table 15-6: SAS code for the model estimation procedure

```
proc reg data = Pub.paploglinear ;
model arperftecontract = RDftetype worldS
/tol vif collin;
output out=a r=residual;
run;
```

 Table 15-7: SAS output for the model estimation of Absorptive capacity in the HES

```
The SAS System 13:11 Monday, January 23, 2006 7
The AUTOREG Procedure
```

R&D in the National System of Innovation: a System Dynamics Model University of Pretoria etd – Grobbelaar, S S (2007)


|                                                                                                                                                | Dependent                                                                                                                     | t Variable                                                                                      | Absorbed                                                                | R                                                                                                                                                                                                                                                |                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                                                                                                                |                                                                                                                               |                                                                                                 | ares Estimat                                                            |                                                                                                                                                                                                                                                  |                                                                    |
| SSE<br>MSE<br>SBC<br>Regress R-S<br>Durbin-Wats<br>Pr > DW<br>NOTE: Pr <dw fo<br="" is="" p-value="" the="">for testing negative autocorr</dw> | 0.2<br>(<br>-14.<br>quare<br>on<br>r testing pos                                                                              | 2953922<br>0.01969<br>223913<br>0.5317<br>3.3536<br>0.0021                                      | DFE<br>Root MSE<br>AIC<br>Total R-Squ<br>Pr < DW                        | -16<br>are                                                                                                                                                                                                                                       | 15<br>0.14033<br>.895028<br>0.5317<br>0.9979<br>W is the p-value   |
| Tor testing negative autocorr                                                                                                                  |                                                                                                                               | osts for A                                                                                      | RCH Disturba                                                            | nces                                                                                                                                                                                                                                             |                                                                    |
| Order                                                                                                                                          |                                                                                                                               | $\frac{1}{2} \operatorname{Pr} > Q$                                                             |                                                                         | LM Pr>                                                                                                                                                                                                                                           | LM                                                                 |
| 1                                                                                                                                              | 3. 2076                                                                                                                       | 0.0733                                                                                          |                                                                         |                                                                                                                                                                                                                                                  |                                                                    |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                                                         | 3. 7507<br>3. 8340<br>7. 5941<br>10. 4175<br>13. 7073<br>15. 7191<br>15. 7699<br>15. 8418<br>15. 8851<br>16. 1797<br>16. 2023 | 0. 1533<br>0. 2800<br>0. 1076<br>0. 0642<br>0. 0331<br>0. 0278<br>0. 0458<br>0. 0703<br>0. 1030 | 2.99<br>2.99<br>6.01<br>6.36<br>6.87<br>8.34<br>10.24<br>13.40<br>14.59 | 94         0.2           94         0.3           03         0.1           93         0.3           009         0.3           65         0.4           67         0.4           84         0.3           42         0.2           44         0.2 | 232<br>917<br>984<br>034<br>840<br>418<br>004<br>308<br>019<br>018 |
| Vari abl e                                                                                                                                     | DF Est                                                                                                                        | timate                                                                                          | Standard<br>Error                                                       | t Value                                                                                                                                                                                                                                          | Approx<br>Pr >  t                                                  |
| Intercept<br>RDfte<br>patwsperhc                                                                                                               | 1 (                                                                                                                           | D. 2143<br>D. 3880<br>D. 1936                                                                   | 0. 0750<br>0. 1719<br>0. 1211                                           | 2.86<br>2.26<br>1.60                                                                                                                                                                                                                             | 0. 0120<br>0. 0393<br>0. 1308                                      |
| patwsperfic                                                                                                                                    |                                                                                                                               |                                                                                                 | ocorrel ati on                                                          |                                                                                                                                                                                                                                                  | 0. 1306                                                            |
| Lag Covari ance Corr                                                                                                                           |                                                                                                                               |                                                                                                 | 5 4 3 2 1 0                                                             |                                                                                                                                                                                                                                                  | 67891                                                              |
| 0 0.0164 1.                                                                                                                                    | 000000                                                                                                                        |                                                                                                 | *******                                                                 | * * * * * * * * * *                                                                                                                                                                                                                              | ******                                                             |
|                                                                                                                                                | 685361                                                                                                                        |                                                                                                 | I.                                                                      |                                                                                                                                                                                                                                                  |                                                                    |
| The SAS S                                                                                                                                      | -                                                                                                                             |                                                                                                 | day, January                                                            | 23, 2006                                                                                                                                                                                                                                         | 8                                                                  |
|                                                                                                                                                |                                                                                                                               | AUTOREG P<br>nary MSE                                                                           | 0. 00870                                                                |                                                                                                                                                                                                                                                  |                                                                    |
|                                                                                                                                                |                                                                                                                               | 5                                                                                               | essive Param                                                            | eters                                                                                                                                                                                                                                            |                                                                    |
|                                                                                                                                                |                                                                                                                               | , nator ogr                                                                                     | Standard                                                                |                                                                                                                                                                                                                                                  |                                                                    |
| La                                                                                                                                             | g Coeffic                                                                                                                     | ci ent                                                                                          | Error                                                                   | t Value                                                                                                                                                                                                                                          |                                                                    |
|                                                                                                                                                |                                                                                                                               | 35361                                                                                           | 0. 194621                                                               | 3.52                                                                                                                                                                                                                                             |                                                                    |
| Algorithm co                                                                                                                                   | 5                                                                                                                             |                                                                                                 |                                                                         |                                                                                                                                                                                                                                                  |                                                                    |
| CCF                                                                                                                                            |                                                                                                                               |                                                                                                 | od Estimates                                                            | i                                                                                                                                                                                                                                                | 1.4                                                                |
| SSE<br>MSE<br>SBC<br>Regress R-S<br>Durbin-Wats<br>Pr > DW                                                                                     | (<br>-22.<br>quare                                                                                                            | 5202524<br>D. 01086<br>691358<br>0. 8553<br>1. 9361<br>0. 7588                                  | DFE<br>Root MSE<br>AIC<br>Total R-Squ<br>Pr < DW                        | -26                                                                                                                                                                                                                                              | 14<br>0. 10421<br>. 252845<br>0. 7590<br>0. 2412                   |
| NOTE: Pr <dw fo<br="" is="" p-value="" the="">for testing negative autocorr</dw>                                                               |                                                                                                                               |                                                                                                 | ocorrel ati on                                                          | , and Pr>D                                                                                                                                                                                                                                       | W is the p-value                                                   |
| Vari abl e                                                                                                                                     | DF Est                                                                                                                        | timate                                                                                          | Standard<br>Error                                                       | t Value                                                                                                                                                                                                                                          | Approx<br>Pr >  t                                                  |
| Intercept<br>RDfte                                                                                                                             |                                                                                                                               | D. 1991<br>D. 3787                                                                              | 0.0350<br>0.0819                                                        | 5.70<br>4.62                                                                                                                                                                                                                                     | <. 0001<br>0. 0004                                                 |
| patwsperhc<br>AR1                                                                                                                              | 1 (                                                                                                                           | ). 2187<br>). 6712                                                                              | 0. 0577<br>0. 1909                                                      | 3. 79<br>3. 52                                                                                                                                                                                                                                   | 0. 0020<br>0. 0034                                                 |
| A                                                                                                                                              | utoregressi ve                                                                                                                | e paramete                                                                                      | rs assumed g                                                            | i ven.                                                                                                                                                                                                                                           |                                                                    |
| .,                                                                                                                                             | DF -                                                                                                                          |                                                                                                 | Standard                                                                |                                                                                                                                                                                                                                                  | Approx                                                             |
| Vari abl e                                                                                                                                     |                                                                                                                               | timate                                                                                          | Error                                                                   | t Value                                                                                                                                                                                                                                          | Pr >  t                                                            |
| Intercept<br>RDfte<br>patwsperhc                                                                                                               | 1 (                                                                                                                           | D. 1991<br>D. 3787<br>D. 2187                                                                   | 0. 0350<br>0. 0819<br>0. 0576                                           | 5.70<br>4.62<br>3.79                                                                                                                                                                                                                             | <. 0001<br>0. 0004<br>0. 0020                                      |

.

From the model estimation output obtained we can make the following conclusion:

The test for autocorrelation use is the Durban Watson test statistic. The Durbi n Watson test statistic is 1.9054 with (Pr < DW = 0.2205) > 0.05 and (Pr < DW = 0.7795) < 0.95. This indicates that we can we therefore can conclude that the autoregressive model does not have autocorrelation.

Due to the small sample size and the limited number of data points available, the heteroscedasticity test is only interpreted up to 2 time lags. The probability for arch disturbances in the model for lags 1 and 2 are larger than 0.05. We can therefore conclude that the modelled relationship does not suffer from heteroscedasticity.



Trend Plot

Figure 15-4 Time plot - residual of the HES knowledge absorption

From Figure 15-4 can be seen that the time plot seems to be scattered around 0. From the results we van also read the Mean of Working Series -0.00167. We therefore make use of the "Zero mean" specification in the stationarity test output results.

 Table 15-8: Test for stationarity of the residual

|                                   | The ARIMA Procedure   |                                                                            |               |                                                    |          |  |  |
|-----------------------------------|-----------------------|----------------------------------------------------------------------------|---------------|----------------------------------------------------|----------|--|--|
|                                   | Name                  | of Variable =                                                              | = residual    |                                                    |          |  |  |
|                                   | Standard              | Working Series<br>Deviation<br>f Observations                              | 0. 128104     | ļ                                                  |          |  |  |
|                                   | Phi                   | llips-Perron l                                                             | Jnit Root Tes | sts                                                |          |  |  |
| Туре                              | Lags                  | Rho                                                                        | Pr < Rho      | Tau                                                | Pr < Tau |  |  |
| Zero Mean<br>Single Mean<br>Trend | 0<br>1<br>0<br>1<br>0 | -28. 6839<br>-29. 0391<br>-28. 6795<br>-29. 0411<br>-28. 7210<br>-29. 0497 |               | -9.39<br>-9.15<br>-9.10<br>-8.86<br>-8.85<br>-8.64 | 0.0005   |  |  |
|                                   | ·                     | 27.0477                                                                    |               | 0.04                                               | 0.0005   |  |  |

Since an intercept is included in the model fitted, an intercept is included in the analysis. For (n-1) = 2, the values are obtained from the Critical values for the Phillips Z Statistic or the Dickey Fuller t Statistic when applied to Residuals from Spurious Cointegration Regression (See **Error! Reference source not found.**). The critical value for the 1% level is -4.31.

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

Tau = -4.84 for  $\ell = 0$  en Tau = -4.84 for  $\ell = 1$ .

This means that we can therefore reject the null hypothesis of unit root since the  $T_{AU}$  values are smaller than the critical value. The residues can be deemed stationary and the variables are cointegrated. We can therefore conclude that the regression is not spurious.

# **15.2** Creation of new knowledge – Scientific papers (Public sector)

The rate at which the system is able to produce new knowledge output is computed through the contribution made form different stocks in the system. The following expression is formulated for the R&D output produced by human resources in the Public sector:

- $R_{Paper}$ : Rate at which R&D output is generated in the system (Papers)
- $S_{FTE}$ : Ratio of full time equivalent R&D staff in the system
- $S_{Absorbed}$ : Absorbed knowledge stock in the system.
- $A_{Contract}$ : The ration of research directed towards contract research
- $A_{Basi\&Applied}$ : The ratio of research directed toward Basic and Applied research

A multiplicative model is developed for the development rate of papers per full time person working in the system:

$$\frac{R_{Paper}}{R_{Paper}^{*}} = d^{*} \left(\frac{S_{Absorbed}}{S_{Absorbed}} * \frac{S_{FTE}}{S_{FTE}^{*}} * \frac{A_{Basic \& Applied}}{A_{Bsic \& Applied}^{*}}\right)^{a} \left(\frac{A_{State}}{A_{State}^{*}}\right)^{b} \left(\frac{S_{FTE}}{S_{FTE}^{*}}\right)^{c}$$

$$15-5$$

This expression is linearised by taking the log-linear form:

$$\ln(\frac{R_{Paper}}{R_{Paper}^*}) = \ln(d) + a * \ln(\frac{S_{Absorbed}}{S_{Absorbed}^*} * \frac{S_{FTE}}{S_{FTE}^*} * \frac{A_{Basic \& Applied}}{A_{Bsic \& Applied}^*}) + b * \ln(\frac{A_{State}}{A_{State}^*}) + \mathbf{c} * \ln(\frac{S_{FTE}}{S_{FTE}^*})$$
 15-6

This is then the expression used to perform the regression for estimating the parameters a, b, c and d. The regression is executed and the following estimates for the parameters are obtained:

The section describes the variables included in the model to estimate the rate of knowledge creation in the system. The following SAS program was used.

Table 15-9: SAS program code for stationarity tests and trend plots

```
goptions reset=all cback=white colors=(black) lfactor=2 border;
title1 'Trend Plot';
proc gplot data=Pub.paploglinear;
plot (RDpapersr absftetype ftetot percstate)*year;
run;
* test for stationarity of the 3 series using arima procedure *;
proc arima data=Pub.paploglinear;
identify var=RDpapersr stationarity=(phillips=(0,1));
identify var=absftetype stationarity=(phillips=(0,1));
identify var=ftetot stationarity=(phillips=(0,1));
identify var=percstate stationarity=(phillips=(0,1));
run;
```

The following sections document and explain the output obtained from the SAS program.

# 15.2.1 R&D output produced

The following is the time plot output from the SAS program for the R&D output (papers) created in the system.

$$RDPapersR = \ln(\frac{R_{Paper}}{R_{Paper}^*})$$
15-7

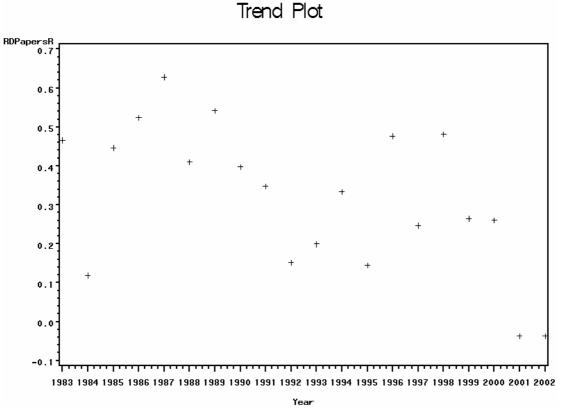



Figure 15-5 Time plot of the Knowledge creation rate per FTE

From Figure 15-5 can be seen that the time plot shows a downward trend. We therefore make use of the "Trend" specification in the stationarity test output results.

Table 15-10: SAS output for Phillips Perron test for variable "RDpapersr"

| The ARIMA Procedure<br>Name of Variable = RDPapersR |             |                                     |                                       |                              |          |  |  |  |
|-----------------------------------------------------|-------------|-------------------------------------|---------------------------------------|------------------------------|----------|--|--|--|
|                                                     |             | Standard De                         | king Series<br>viation<br>bservations | 0. 318457<br>0. 182812<br>20 |          |  |  |  |
|                                                     |             | The A                               | RIMA Procedu                          | re                           |          |  |  |  |
|                                                     |             | Phillips-Per                        | ron Unit Roo                          | t Tests                      |          |  |  |  |
| Туре                                                | Lags        | Rho                                 | Pr < Rho                              | Tau                          | Pr < Tau |  |  |  |
| Zero Mean<br>Single Mean                            | 0<br>1<br>0 | -3.5094<br>-2.5793<br>-11.6431      |                                       | -2.46                        | 0. 1399  |  |  |  |
| Trend                                               | 1<br>0<br>1 | -11. 1338<br>-16. 0664<br>-15. 6509 |                                       |                              |          |  |  |  |
|                                                     |             |                                     |                                       |                              |          |  |  |  |

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

 $Pr < Tau = 0.1040 \text{ for } \ell = 0 \text{ en}$  $Pr < Tau = 0.1085 \text{ for } \ell = 1.$ 

Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that RDpapersR has a unit root and is non-stationary.

# 15.2.2 Absorbed Knowledge stock

The variable is the Absorbed knowledge stock and FTE R&D staff multiplied with the % time they are spending on Basic and Applied research.

$$Variable = absftetype = \ln(\frac{S_{Absorbed}}{S_{Absorbed}} * \frac{S_{FTE}}{S_{FTE}^*} * \frac{A_{Basic \& Applied}}{A_{Bsic \& Applied}^*})$$
15-8

The following is the time plot output from the SAS program for the Absorbed Knowledge stock and the interaction with the FTE R&D staff focussing on Basic and Applied research.

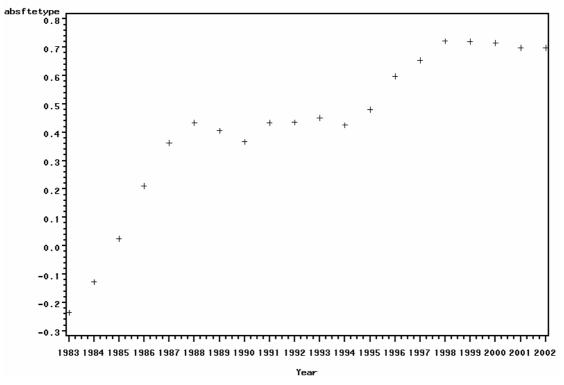



Figure 15-6 Time plot - Absorbed knowledge stock per HC

From Figure 15-6 can be seen that the time plot shows a trend line. We therefore make use of the "Trend" specification in the stationarity test output results.

### Table 15-11: SAS output for Phillips Perron test for variable "Absftetype"

| Name of Variable = absftetype                                                               |                            |                                                                    |            |            |                    |  |
|---------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------|------------|------------|--------------------|--|
| Mean of Working Series 0.424206<br>Standard Deviation 0.269425<br>Number of Observations 20 |                            |                                                                    |            |            |                    |  |
|                                                                                             |                            |                                                                    | Phillips-P | erron Unit | Root Tests         |  |
| Туре                                                                                        | Lags                       | Rho                                                                | Pr < Rho   | Tau        | Pr < Tau           |  |
| Zero Mean<br>Single Mean<br>Trend                                                           | 0<br>1<br>0<br>1<br>0<br>1 | 0. 6314<br>0. 4476<br>-3. 2008<br>-3. 3340<br>-4. 9511<br>-5. 6666 | 0.5878     | -2.38      | 0. 0274<br>0. 3754 |  |

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

 $Pr < Tau = 0.7748 \text{ for } \ell = 0 \text{ en}$  $Pr < Tau = 0.7764 \text{ for } \ell = 1.$ 

Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that Absftetype has a unit root and is non-stationary.

# 15.2.3 FTE total

The following is the time plot output from the SAS program for the Full time equivalent R&D staff in the system.

$$FTEtot = \ln(\frac{S_{FTE}}{S_{FTE}^*})$$
15-9

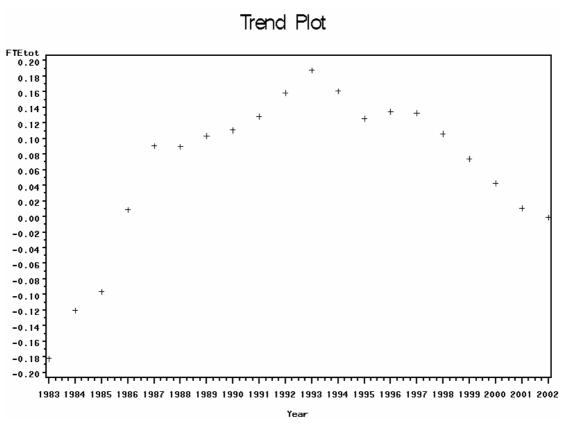



Figure 15-7 Time plot for the FTE variable in the system

From Figure 15-7 can be seen that the time plot shows a trend line. We therefore make use of the "Trend" specification in the stationarity test output results.

|             |        | Name of            | Variable = F                          | TEtot                        |                    |
|-------------|--------|--------------------|---------------------------------------|------------------------------|--------------------|
|             |        |                    | king Series<br>viation<br>bservations | 0. 063345<br>0. 097222<br>20 |                    |
|             |        | Phillips-          | Perron Unit R                         | oot Tests                    |                    |
| Туре        | Lags   | Rho                | Pr < Rho                              | Tau                          | Pr < Tau           |
| Zero Mean   | 0<br>1 | -2.2394<br>-2.8032 | 0. 2915<br>0. 2372                    | -1.59<br>-1.58               | 0. 1021<br>0. 1037 |
| Single Mean | 0<br>1 | -4.5078<br>-4.9578 | 0. 4436<br>0. 3943                    | -3.11<br>-2.83               |                    |
| Trend       | 0<br>1 | -2.0418<br>-2.0614 |                                       | -1.55<br>-1.54               |                    |
|             |        |                    |                                       |                              |                    |
|             |        |                    |                                       |                              |                    |
|             |        |                    |                                       |                              |                    |
|             |        |                    |                                       |                              |                    |

| Table 15-12. SAS output for Philli | ps Perron test for variable "Ftetot" |
|------------------------------------|--------------------------------------|
| Table 15-12: SAS output for Philli | ps Perron test for variable "Fieldt" |

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

 $Pr < Tau = 0.7748 \text{ for } \ell = 0 \text{ en}$  $Pr < Tau = 0.7764 \text{ for } \ell = 1.$  Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that FTEtot has a unit root and therefore is non-stationary.

# **15.2.4** Percentage R&D funding from the State

The following is the time plot output from the SAS program for the percentage of total funding directed towards non-contract research.

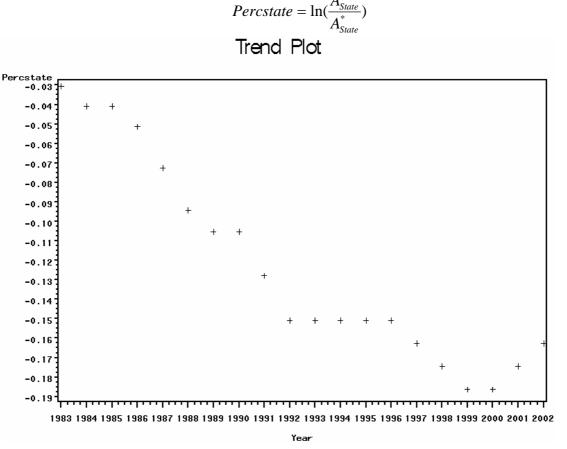



Figure 15-8 Time plot - "Percentage non-contract funding" variable

From Figure 15-8 can be seen that the time plot shows a downwards trend line. We therefore make use of the "Trend" specification in the stationarity test output results.

Table 15-13: SAS output for Phillips Perron test for variable "Percstate"

|                   | Name of                                                                                     | ° Variable                     | = Percstate                   |                          |                               |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------|--------------------------------|-------------------------------|--------------------------|-------------------------------|--|--|--|
|                   | Mean of Working Series -0.12347<br>Standard Deviation 0.050749<br>Number of Observations 20 |                                |                               |                          |                               |  |  |  |
|                   | Phillip                                                                                     | os-Perron U                    | nit Root Tests                | S                        |                               |  |  |  |
| Туре              | Lags                                                                                        | Rho                            | Pr < Rho                      | Tau                      | Pr < Tau                      |  |  |  |
| Zero Me<br>Single | 1                                                                                           | 0. 9546<br>0. 9006<br>-0. 9254 | 0. 8874<br>0. 8779<br>0. 8793 | 1. 91<br>1. 49<br>-1. 20 | 0. 9825<br>0. 9610<br>0. 6507 |  |  |  |
| Trend             | Mean 0<br>1<br>0<br>1                                                                       | -0. 9873<br>-1. 5686           | 0. 8735<br>0. 9723            | -1.16<br>-0.59           | 0. 6694<br>0. 9680            |  |  |  |
|                   | I                                                                                           | -2.3244                        | 0. 9512                       | -0. 80                   | 0. 9483                       |  |  |  |
|                   |                                                                                             |                                |                               |                          |                               |  |  |  |
|                   |                                                                                             |                                |                               |                          |                               |  |  |  |
|                   |                                                                                             |                                |                               |                          |                               |  |  |  |

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

 $Pr < Tau = 0.9680 \text{ for } \ell = 0 \text{ en}$  $Pr < Tau = 0.9483 \text{ for } \ell = 1.$ 

Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that Percstate has a unit root and therefore is non-stationary.

# **15.2.5** Colinearity tests

First however we should make sure that the variables are not collinear. The following is the test results obtained from SAS for the Colinearity test.

| Collinearity Diagnostics   |                                                            |                     |                                                                     |  |             |                                                |  |  |
|----------------------------|------------------------------------------------------------|---------------------|---------------------------------------------------------------------|--|-------------|------------------------------------------------|--|--|
| Numb<br>1<br>2<br>3<br>4   | er Eigen<br>3.39<br>0.48<br>0.10<br>0.01                   | 433<br>561<br>669   | Condi ti<br>I ndex<br>1. 00000<br>2. 64383<br>5. 64036<br>15. 93298 |  |             |                                                |  |  |
| Number<br>1<br>2<br>3<br>4 | I ntercept<br>0. 00675<br>0. 05268<br>0. 35634<br>0. 58423 | absft<br>0.003<br>( | etype                                                               |  | Perc<br>0.0 | state<br>0176<br>0.00162<br>0.00892<br>0.98771 |  |  |

Larger values suggest potential near colinearity. Belsley, Kuh and Welsch (2000) recommend interpreting the Condition index greater or equal than 30 to reflect moderate to severe colinearity, worthy of further investigation. Since all the Condition indexes from the regression model is much smaller than 30, the conclusion can be made that colinearity is not a problem in this case.

## **Proportion of Variation**

The variance proportion indicates for each predictor the proportion of total variance of its estimated regression coefficients associated with a particular principal component. The variance proportions suggest colinearity problems if more than one predictor has a high

variance proportions of at least 0.5 for such a components suggest a problem. One should definitely be concerned when two or more ladings greater than 0.9 appear on a component with a large condition index (>30). This also does not seem to be a problem since the condition indexes are all small values.

### 15.2.6 Model estimation the rate of Paper Development in the PubS

As all three variables are non-stationary, we should now fit a model and then test for cointegration in the residual.

#### Table 15-15: SAS code for the model estimation procedure

```
/*r2 = 58 all p's significant*/
proc reg data = Pub.paploglinear ;
model RDPapersR = absftetype ftetot percstate
/tol vif collin spec dw;
output out=b r=residual;
run;
proc reg data = Pub.paploglinear ;
model RDPapersR = absftetype ftetot percstate
/tol vif collin spec dw;
output out=b r=residual;
run;
proc gplot data=b;
plot residual*year;
run;
proc arima data=b;
identify var=residual
stationarity=(phillips=(0,1));
run;
```

Table 15-16: SAS output for the model estimation of Absorptive capacity in the HES

| Dependent Variable: RDPapersR                          |                                                            |                                              |                                  |                                          |                                  |                                       |  |  |
|--------------------------------------------------------|------------------------------------------------------------|----------------------------------------------|----------------------------------|------------------------------------------|----------------------------------|---------------------------------------|--|--|
|                                                        | Number of Observations Read20Number of Observations Used20 |                                              |                                  |                                          |                                  |                                       |  |  |
|                                                        |                                                            |                                              | Anal ysi s                       | of Variance                              |                                  |                                       |  |  |
| Source                                                 | DF                                                         | Sum o<br>Squa                                | f<br>ares                        | Mean<br>Square                           | F Value                          | Pr > F                                |  |  |
| Model<br>Error<br>Corrected Total                      | 3<br>16<br>19                                              | 0.3                                          | 2021<br>4820<br>6840             | 0. 10674<br>0. 02176                     | 4.90                             | 0. 0133                               |  |  |
|                                                        | Root<br>Depen<br>Coeff                                     | dent Mean                                    |                                  | 1846 Adj                                 |                                  | . 4791<br>. 3814                      |  |  |
|                                                        |                                                            |                                              | Parameter                        | Esti mates                               |                                  |                                       |  |  |
| Vari abl e DF                                          | Parameter<br>Estimate                                      | Standard<br>Error                            | t Value                          | Pr >  t                                  | Vari ance<br>Tol eranc           |                                       |  |  |
| Intercept 1<br>absftetype 1<br>FTEtot 1<br>Percstate 1 | 0. 69529<br>0. 49421<br>0. 87438<br>5. 19868               | 0. 10741<br>0. 33156<br>0. 45615<br>1. 70890 | 6. 47<br>1. 49<br>1. 92<br>3. 04 | <. 0001<br>0. 1555<br>0. 0733<br>0. 0078 | 0. 13636<br>0. 55327<br>0. 14467 | 0<br>7. 33352<br>1. 80744<br>6. 91208 |  |  |
|                                                        |                                                            | Т                                            | est of Fir                       | st and Secor                             | nd                               |                                       |  |  |

|                                                      |                  | Moment Specif                                | ication                                  |                                  |                                          |
|------------------------------------------------------|------------------|----------------------------------------------|------------------------------------------|----------------------------------|------------------------------------------|
|                                                      | DF               | Chi -Square                                  | Pr > Chi                                 | i Sq                             |                                          |
|                                                      | 9                | 11.97                                        | 0. 2                                     | 151                              |                                          |
|                                                      | Number           | Watson D<br>of Observation<br>er Autocorrela | S                                        | . 959<br>20<br>. 117             |                                          |
|                                                      | Depen            | dent Variable                                | RDPapers                                 | R                                |                                          |
|                                                      | 0rdi n           | ary Least Squa                               | res Estimate                             | es                               |                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |                  |                                              |                                          |                                  |                                          |
|                                                      |                  | Phillips-Ou<br>Cointegratio                  |                                          |                                  |                                          |
|                                                      | Lags             | Rho                                          | Та                                       | au                               |                                          |
|                                                      | 1                | -22.9280                                     | -4.76                                    | 53                               |                                          |
| Vari abl e                                           | DF               | Estimate                                     | Standard<br>Error                        | t Value                          | Approx<br>Pr >  t                        |
| Intercept<br>absftetype<br>FTEtot<br>Percstate       | 1<br>1<br>1<br>1 | 0. 6953<br>0. 4942<br>0. 8744<br>5. 1987     | 0. 1074<br>0. 3316<br>0. 4561<br>1. 7089 | 6. 47<br>1. 49<br>1. 92<br>3. 04 | <. 0001<br>0. 1555<br>0. 0733<br>0. 0078 |

From the model estimation output obtained we can make the following conclusion:

The R-Square 0.4791 statistic indicate that the model accounts for 47.9% of the variation of the papers produced in the Public sector.

The test for autocorrelation use is the Durban Watson test statistic. The Durbin Watson test statistic is 1.9593 with (Pr < DW = 0.1850 > 0.05 and (Pr < DW = 0.8150) < 0.95. This indicates that we therefore can conclude that the autoregressive model does not have autocorrelation.

Chi-square tests for the first moment specification indicates that the model does not have heteroscedastic errors. The SPEC option performs a model specification test. The null hypothesis for this test maintains that the errors are homoscedastic, independent of the regressor and that several technical assumptions about the model specification are valid. With Pr = 0.2151 we fail to reject the null hypothesis. We can therefore conclude that no heteroscedasticity is present in the model.

Trend Plot

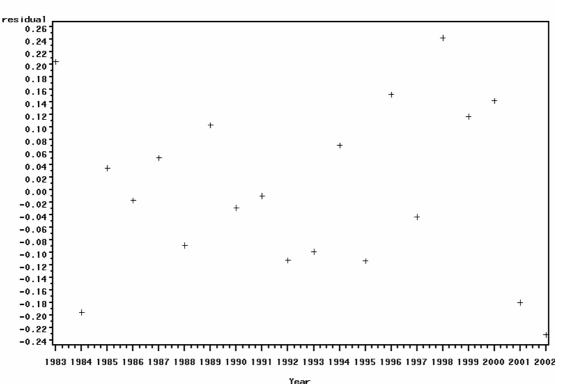



Figure 15-9 Time plot - "Percentage non-contract funding" variable

From **Error! Reference source not found.** can be seen that the time plot seems to be scattered around 0. From the results we van also read the Mean of Working Series is 2.78E-17. We therefore make use of the "Zero mean" specification in the stationarity test output results.

Table 15-17: SAS output for residual stationarity test

The ARIMA Procedure Name of Variable = residual Mean of Working Series 2.78E-17 Standard Deviation Number of Observations 0.131947 20 Phillips-Perron Unit Root Tests Rho Туре Lags Pr < RhoTau Pr < Tau Zero Mean 0 -21.6248 <. 0001 -4.78 <. 0001 -22.9280 <. 0001 -4.77 <. 0001 1 -21. 4877 -22. 8079 Single Mean 0 0.0005 -4.61 0.0020 1 0.0003 -4.60 0.0020 Trend 0 -21.6749 0.0054 -4.50 0.0107 -22.9344 1 0.0028 -4.51 0.0107

For (n-1) = 3, the values are obtained from the Critical values for the Phillips Z Statistic or the Dickey Fuller t Statistic when applied to Residuals from Spurious Cointegration Regression (See table Table 15-17). The critical value for the 5% level is -4.11.

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

Tau = -4.78 for  $\ell = 0$  en Tau = -4.77 for  $\ell = 1$ .

This means that we can therefore reject the null hypothesis of unit root with a 5% significance level, since the  $T_{au}$  values are smaller than the critical value. The residues can be deemed stationary and the variables are cointegrated. We can therefore conclude that the regression is not spurious.

## **15.3** Creation of new knowledge – Patents (Public sector)

The rate at which the system is able to produce new knowledge output is computed through the contribution made form different stocks in the system. The following expression is formulated for the R&D output productivity per FTE researcher working in the system:

- $R_{Patents}$ : R&D output rate in the system (Patents)
- $S_{FTE}$ : FTE researchers in the system
- $A_{ExpDev}$ : Fraction of funding directed towards Experimental Development.
- $A_{State}$ : The ratio of research expenditure funded by the state assumed to be directed towards non-contract research.

A multiplicative model is developed for the development rate of papers per full time person working in the system:

$$\frac{R_{Patent}}{R_{Patent}^*} = b^* \left(\frac{S_{FTE}}{S_{FTE}^*} * \frac{A_{ExpDev}}{A_{ExpDev}^*} * \frac{A_{Statet}}{A_{State}^*}\right)^a$$
15-10

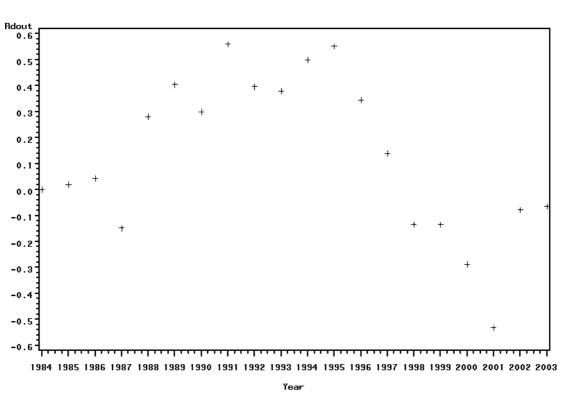
This expression is linearised by taking the log-linear form:

$$\ln(\frac{R_{Patent}}{R_{Patent}^*}) = \ln(b) + a * \ln(\frac{S_{FTE}}{S_{FTE}^*} * \frac{A_{ExpDev}}{A_{ExpDev}^*} * \frac{A_{Statet}}{A_{State}^*})$$
15-11

This is then the expression used to perform the regression for estimating the parameters a and b. The regression is executed and the following estimates for the parameters are obtained:

The section describes the variables included in the model to estimate the rate of knowledge creation in the system. The following SAS program was used.

Table 15-18: SAS program code for stationarity tests and trend plots


```
goptions reset=all cback=white colors=(black) lfactor=2
border;
title1 'Trend Plot';
proc gplot data=Pub.patloglinear;
plot (RDout ftepattypestate )*year;
run;
```

```
* test for stationarity of the 3 series using arima procedure
*;
proc arima data=Pub.patloglinear;
identify var=RDout stationarity=(phillips=(0,1));
identify var=ftepattypestate stationarity=(phillips=(0,1));
run;
```

The following sections document and explain the output obtained from the SAS program.

# 15.3.1 R&D patent output produced

The following is the time plot output from the SAS program for the R&D output (papers) created per full time equivalent researcher in the system.



 $Rdout = \ln(\frac{R_{Patent}}{R_{Patent}^*})$ 15-12

Figure 15-10 Time plot of the Knowledge creation rate per FTE

From Figure 15-7 can be seen that the time plot can be best be described though the "trend" specification. We therefore make use of the "Trend" specification in the stationarity test output results.

 Table 15-19: SAS output for Phillips Perron test for variable "Rdout"

| The ARIMA Procedure    |         | 1 |
|------------------------|---------|---|
| The ARTMA FLOCEdule    |         |   |
| Name of Variable = Rd  | dout    |   |
| Mean of Working Series | 0. 1272 |   |
|                        |         |   |

R&D in the National System of Innovation: a System Dynamics Model University of Pretoria etd – Grobbelaar, S S (2007)

|             |      | andard Devia<br>Imber of Obse |             | 0. 29628<br>20 |          |
|-------------|------|-------------------------------|-------------|----------------|----------|
|             | Phi  | llips-Perron                  | unit Root 1 | ests           |          |
| Туре        | Lags | Rho                           | Pr < Rho    | Tau            | Pr < Tau |
| Zero Mean   | 0    | -3.6847                       | 0. 1738     | -1.39          | 0. 1475  |
|             | 1    | -3.6518                       | 0. 1758     | -1.38          | 0. 1491  |
| Single Mean | 0    | -4.3549                       | 0. 4612     | -1.46          | 0. 5310  |
|             | 1    | -4.3861                       | 0. 4576     | -1.47          | 0. 5284  |
| Trend       | 0    | -5. 5918                      | 0. 7293     | -1.80          | 0. 6669  |
|             | 1    | -5. 4777                      | 0. 7400     | -1.78          | 0. 6740  |

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that RDout has a unit root and is non-stationary.

### 15.3.2 Full time Staff (Experimental development research, non contract)

The following is the time plot output from the SAS program for the FTE people in the system doing Basic and Applied research. The variable is the FTE R&D staff multiplied with the % time they are spending on basic and applied research and the % of funding spent on non-contract related R&D activities.

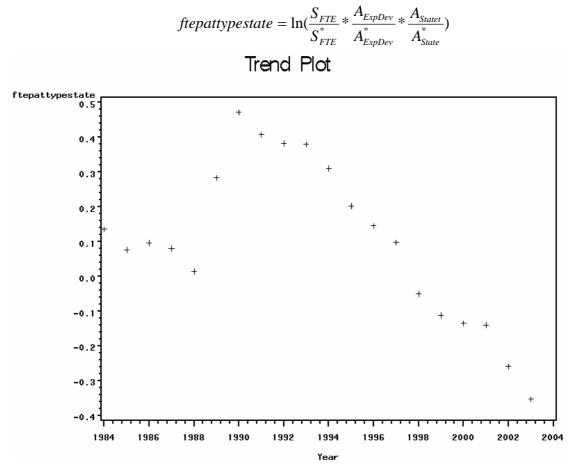



Figure 15-11 Time plot - Absorbed knowledge stock per HC personnel

From **Error! Reference source not found.** can be seen that the time plot shows an upward trend line. We therefore make use of the "Trend" specification in the stationarity test output results.

|                                   |                                                                                           | The ARIMA P  | rocedure           |                  |                            |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------|--------------|--------------------|------------------|----------------------------|--|--|
|                                   | Name of Variable = ftepattypestate                                                        |              |                    |                  |                            |  |  |
|                                   | Mean of Working Series 0.1021<br>Standard Deviation 0.224336<br>Number of Observations 20 |              |                    |                  |                            |  |  |
|                                   | Ph                                                                                        | nillips-Perr | on Unit Root       | Tests            |                            |  |  |
| Туре                              | Lags                                                                                      | Rho          | Pr < Rho           | Tau              | Pr < Tau                   |  |  |
| Zero Mean<br>Single Mean<br>Trend | 0<br>1<br>0<br>1<br>0                                                                     |              | 0. 9328<br>0. 9619 | -0. 11<br>-0. 82 | 0.9654<br>0.9356<br>0.9450 |  |  |

| Table 15-20: SAS output for Phillips Perron test for variable " | 'ftepattypestate'' |
|-----------------------------------------------------------------|--------------------|
|-----------------------------------------------------------------|--------------------|

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that ftepattypestate has a unit root and is non-stationary.

## **15.3.3** Colinearity tests

First however we should make sure that the variables are not collinear. The following is the test results obtained from SAS for the Colinearity test.

 Table 15-21: Colinearity diagnostics for the model variables

|                | Collinearity Diagnostics                |                                             |                                               |                                                          |  |  |  |  |
|----------------|-----------------------------------------|---------------------------------------------|-----------------------------------------------|----------------------------------------------------------|--|--|--|--|
| Numb<br>1<br>2 | er Ei genval ue<br>1. 41424<br>0. 58576 | Condi ti on<br>I ndex<br>1.00000<br>1.55382 | Proporti<br>Intercept<br>0. 29288<br>0. 70712 | on of Variation<br>ftepattypestate<br>0.29288<br>0.70712 |  |  |  |  |

Larger values suggest potential near colinearity. Belsley, Kuh and Welsch (2000) recommend interpreting the Condition index greater or equal than 30 to reflect moderate to severe colinearity, worthy of further investigation. Since all the Condition indexes from the regression model is much smaller than 30, the conclusion can be made that colinearity is not a problem in this case.

## **Proportion of Variation**

The variance proportion indicates for each predictor the proportion of total variance of its estimated regression coefficients associated with a particular principal component. The variance proportions suggest colinearity problems if more than one predictor has a high variance proportions of at least 0.5 for such a components suggest a problem. One should definitely be concerned when two or more ladings greater than 0.9 appear on a component with a large condition index (>30). This also does not seem to be a problem since the condition indexes are all small values.

### 15.3.4 Model estimation the rate of Patent Development in the PubS

As both variables entered in the model to be estimated are non-stationary, we should fit a model and then test for cointegration in the residual.

Table 15-22: SAS code for the model estimation procedure

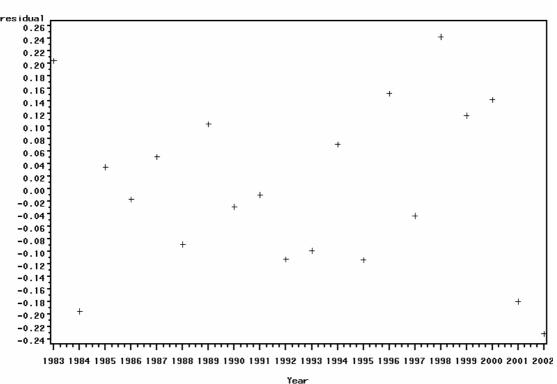
```
proc reg data= Pub.patloglinear;
model Rdout = ftepattypestate
/ collin spec;
run;
/* r=0.60 p 0.00001 */
proc autoreg data= Pub.patloglinear;
model Rdout = ftepattypestate
/ dwprob method= ml archtest ;
output out=b r=residual;
run;
proc gplot data=b;
plot residual*year;
run;
proc arima data=b;
identify var=residual
stationarity=(phillips=(0,1));
run;
```

#### Table 15-23: SAS output for the model estimation of Absorptive capacity in the HES

|  |                                 |                                       | Dej           | The REG Proced<br>Model: MODEL<br>pendent Variable | 1                    |                  |       |         |
|--|---------------------------------|---------------------------------------|---------------|----------------------------------------------------|----------------------|------------------|-------|---------|
|  |                                 |                                       |               | Observations Re<br>Observations Us                 |                      | 20<br>20         |       |         |
|  |                                 |                                       |               | Analysis of Var                                    | i ance               |                  |       |         |
|  | Source                          |                                       | DF            | Sum of<br>Squares                                  | Mea<br>Squar         |                  | al ue | Pr > F  |
|  | Model<br>Error<br>Corrected Tot | al                                    | 1<br>18<br>19 | 1. 05369<br>0. 70194<br>1. 75563                   | 1. 0536<br>0. 0390   |                  | 7.02  | <. 0001 |
|  |                                 | Root MSE<br>Dependent Me<br>Coeff Var | ean           | 0. 19748<br>0. 12720<br>155. 24845                 | R-Square<br>Adj R-Sq | 0.6002<br>0.5780 |       |         |
|  |                                 |                                       |               | Parameter Estim                                    | ates                 |                  |       |         |
|  | Vari abl e                      | DF                                    |               | Parameter<br>Estimate                              | Standard<br>Error    | t Value          | Pr    | · >  t  |

R&D in the National System of Innovation: a System Dynamics Model University of Pretoria etd – Grobbelaar, S S (2007)

|                                                                                                                                                                 | 1                                                                                                                     | 0. 02274<br>1. 02316                                                                                                                                            | 0. 04852<br>0. 19683                                                                                                     | 0. 47<br>5. 20                                                                                                                           | 0. 6450<br><. 0001 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|                                                                                                                                                                 |                                                                                                                       | he REG Proce<br>Model: MODE<br>Ident Variabl                                                                                                                    | L1                                                                                                                       |                                                                                                                                          |                    |
|                                                                                                                                                                 |                                                                                                                       | : of First an<br>ment Specifi                                                                                                                                   |                                                                                                                          |                                                                                                                                          |                    |
|                                                                                                                                                                 | DF                                                                                                                    | Chi-Square                                                                                                                                                      | Pr > ChiSq                                                                                                               |                                                                                                                                          |                    |
|                                                                                                                                                                 | 2                                                                                                                     | 2. 11                                                                                                                                                           | 0. 3488                                                                                                                  |                                                                                                                                          |                    |
|                                                                                                                                                                 | The                                                                                                                   | AUTOREG Proc                                                                                                                                                    | edure                                                                                                                    |                                                                                                                                          |                    |
|                                                                                                                                                                 | Depend                                                                                                                | lent Vari abl e                                                                                                                                                 | Rdout                                                                                                                    |                                                                                                                                          |                    |
|                                                                                                                                                                 | Ordi nary                                                                                                             | / Least Squar                                                                                                                                                   | es Estimates                                                                                                             |                                                                                                                                          |                    |
| SSE<br>MSE<br>SBC<br>Regress R-Squar<br>Durbin-Watson<br>Pr > DW<br>NOTE: Pr <dw for="" is="" p-value="" te<br="" the="">value for testing negative autoco</dw> | -4.<br>re<br>esting po                                                                                                | 0.03900 R<br>2437275 A<br>0.6002 T<br>1.5178 P<br>0.9125<br>ositive autoc                                                                                       | FE<br>oot MSE<br>IC<br>otal R-Square<br>r < DW<br>orrelation, a                                                          | 0.0                                                                                                                                      | 921<br>002<br>875  |
| Q                                                                                                                                                               | and LM T                                                                                                              | ests for ARC                                                                                                                                                    | H Disturbance                                                                                                            | S                                                                                                                                        |                    |
| Order                                                                                                                                                           | C                                                                                                                     | 2 Pr > Q                                                                                                                                                        | LM                                                                                                                       | Pr > LM                                                                                                                                  |                    |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12                                                                                                     | 0. 0215<br>0. 1960<br>0. 9652<br>2. 5335<br>4. 7339<br>5. 0327<br>5. 3684<br>6. 8896<br>8. 8896<br>8. 4369<br>9. 1364 | 0.9067           0.8097           0.6390           0.7714           0.5784           0.6560           0.7176           0.6486           0.5908           0.6737 | 0.0320<br>0.0802<br>0.5220<br>2.3069<br>2.4582<br>5.5867<br>5.7859<br>7.9828<br>10.8254<br>11.1950<br>12.4735<br>12.4735 | $\begin{array}{c} 0.8580\\ 0.9607\\ 0.9140\\ 0.6795\\ 0.7828\\ 0.4710\\ 0.5650\\ 0.4352\\ 0.2879\\ 0.3425\\ 0.3291\\ 0.4084 \end{array}$ |                    |
| Vari abl e                                                                                                                                                      | DF                                                                                                                    | Estimate                                                                                                                                                        | Standard<br>Error                                                                                                        | t Value                                                                                                                                  | Approx<br>Pr >  t  |
| Intercept<br>ftepattypestate                                                                                                                                    | 1<br>1                                                                                                                | 0. 0227<br>1. 0232                                                                                                                                              | 0. 0485<br>0. 1968                                                                                                       | 0. 47<br>5. 20                                                                                                                           | 0. 6450<br><. 0001 |


From the model estimation output obtained we can make the following conclusion:

The **R-Square 0.6002** statistic indicate that the model accounts for 60% of the variation of the papers produced in the Public sector.

The test for autocorrelation use is the Durban Watson test statistic. The Durbi n Watson test statistic is 1.9593 with (Pr < DW = 0.0875 > 0.05 and (Pr < DW = 0.9125) < 0.95. This indicates that we therefore can conclude that the autoregressive model does not have autocorrelation.

The Chi-square test for the first moment specification indicates that the model does not have heteroscedastic errors. The SPEC option performs a model specification test. The null hypothesis for this test maintains that the errors are homoscedastic, independent of the regressor and that several technical assumptions about the model specification are valid. With Pr = 0.3488 we fail to reject the null hypothesis. We can therefore conclude that no heteroscedasticity is present in the model.

Trend Plot



### Figure 15-12 Trend plot for the residual

From Figure 15-12 can be seen that the time plot seems to be scattered around 0. From the results we van also read the Mean of Working Series is -382E-19 in Table 15-24. We therefore make use of the "Zero mean" specification in the stationarity test output results.

| Table 15-24: SAS o | output for residual stationarity test |
|--------------------|---------------------------------------|
|--------------------|---------------------------------------|

|                          |                  | The AR                                           | IMA Procedure                            | 9                                |                            |  |
|--------------------------|------------------|--------------------------------------------------|------------------------------------------|----------------------------------|----------------------------|--|
|                          |                  | Name of Va                                       | riable = resi                            | dual                             |                            |  |
|                          | 9                | Mean of Work<br>Standard Dev<br>Number of Ob     |                                          | -382E-19<br>0. 187342<br>20      |                            |  |
|                          |                  | Phillips-Pe                                      | rron Unit Roo                            | ot Tests                         |                            |  |
| Туре                     | Lags             | Rho                                              | Pr < Rho                                 | Tau                              | Pr < Tau                   |  |
| Zero Mean<br>Single Mean | 0<br>1<br>0      | -15. 4024<br>-15. 7512<br>-15. 3087              | 0.0019<br>0.0016<br>0.0112               | -3.37<br>-3.39<br>-3.25          | 0.0019<br>0.0019<br>0.0325 |  |
| Single Mean<br>Trend     | 0<br>1<br>0<br>1 | -15. 3087<br>-15. 6218<br>-15. 3592<br>-15. 7363 | 0. 0112<br>0. 0098<br>0. 0695<br>0. 0611 | -3.25<br>-3.27<br>-3.17<br>-3.20 |                            |  |
|                          |                  |                                                  |                                          |                                  |                            |  |

For (n-1) = 1, the values are obtained from the Critical values for the Phillips Z Statistic or the Dickey Fuller t Statistic when applied to Residuals from Spurious Cointegration Regression (See table Table 15-24). The critical value for the 5% level is -3.37.

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

Tau = -3.37 for  $\ell = 0$  en Tau = -3.39 for  $\ell = 1$ .

This means that we can therefore reject the null hypothesis of unit root with a 5% significance level, since the  $T_{au}$  values are smaller than the critical value. The residues can be deemed stationary and the variables are cointegrated. We can therefore conclude that the regression is not spurious.

.

#### **16 APPENDIX E**

#### **16.1** Absorption of Knowledge (Private sector)

The rate at which the system is able to produce new knowledge output is computed through the contribution made form different stocks in the system. The following expression is formulated for the R&D knowledge absorption rate in the system:

- $R_{Absorptionr}$ : Absorption rate of knowledge in the system
- $S_{R\&Doutput} * S_{FTE}$ : RD output stock interacting with the presence of people full time equivalent people who can draw on the stocks of knowledge person in system
- $S_{World} / S_{HC}$ : Available external knowledge stock per Headcount personnel employed in the system

A multiplicative model is developed for the absorption rate per full time person working in the system:

$$\frac{R_{Absorptionr}}{R_{Absorption}^*} = f * \left(\frac{S_{R\&Doutput}}{S_{R\&Doutpu}^*} * \frac{S_{FTE}}{S_{FTE}^*}\right)^d * \left(\frac{S_{World}}{S_{World}^*} / \frac{S_{HC}}{S_{HC}^*}\right)^e$$
16-1

This expression is linearised by taking the log-linear form:

$$\ln(\frac{R_{Absorptionr}}{R_{Absorption}^*}) = f + d * \ln(\frac{S_{R\&Doutput}}{S_{R\&Doutput}^*} * \frac{S_{FTE}}{S_{FTE}^*}) + e * \ln(\frac{S_{World}}{S_{World}^*} / \frac{S_{HC}}{S_{HC}^*})$$
16-2

This is the expression used to perform the regression for estimating the parameters d, e and f.

The section describes the variables included in the model to estimate the rate of knowledge absorption in the system. The following SAS program was used.

Table 16-1: SAS code for stationarity tests in variables AbsorbedR, RDfte and wsperhc

```
goptions reset=all cback=white colors=(black) lfactor=2
border;
title1 'Trend Plot';
proc gplotb data = priv.loglin;
plot (arperfte rdfte wsperhc)*year;
plot arperfte *(rdfte wsperhc);
run;
* test for stationarity of the 3 series using arima procedure
*;
proc arima data=priv.loglin;
identify var= arperfte stationarity=(phillips=(0,1));
identify var=wsperhc stationarity=(phillips=(0,1));
```

run;

The following sections document and explain the output obtained from the SAS program.

#### 16.1.1 Absorption rate of knowledge in the system

The following is the time plot output from the SAS program for the absorption rate per full time equivalent researchers in the system.

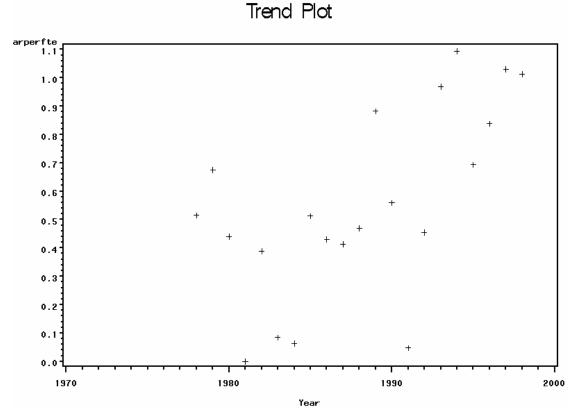



Figure 16-1 Time plot of the absorption rate in the Private sector

From **Error! Reference source not found.** can be seen that the time plot shows an upward trend. We therefore make use of the "Trend" specification in the stationarity test output results.

| The ARIMA Procedure             |                                                                                             |         |          |       |          |  |  |  |
|---------------------------------|---------------------------------------------------------------------------------------------|---------|----------|-------|----------|--|--|--|
|                                 | Name of Variable = arperfte                                                                 |         |          |       |          |  |  |  |
|                                 | Mean of Working Series 0.503147<br>Standard Deviation 0.329908<br>Number of Observations 21 |         |          |       |          |  |  |  |
| The ARIMA Procedure             |                                                                                             |         |          |       |          |  |  |  |
| Phillips-Perron Unit Root Tests |                                                                                             |         |          |       |          |  |  |  |
| Туре                            | Lags                                                                                        | Rho     | Pr < Rho | Tau   | Pr < Tau |  |  |  |
| Zero Mean                       | 0                                                                                           | -1.7376 | 0. 3537  | -0.66 | 0. 4172  |  |  |  |

| Single Mean | 1<br>0 | -1.7138<br>-10.6238    | 0. 3569<br>0. 0704 | -0.65<br>-2.53 | 0. 4202<br>0. 1233 |  |
|-------------|--------|------------------------|--------------------|----------------|--------------------|--|
| Trend       | 1<br>0 | -11. 7998<br>-15. 7939 | 0. 0468<br>0. 0658 | -2.64<br>-3.32 | 0. 1021<br>0. 0921 |  |
|             | 1      | -17. 2017              | 0. 0401            | -3.40          | 0.0800             |  |

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

 $Pr < Tau = 0.0921 \text{ for } \ell = 0 \text{ en}$  $Pr < Tau = 0.0800 \text{ for } \ell = 1.$ 

Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that arperfte has a unit root and is non-stationary.

#### 16.1.2 R&D Knowledge Stock and FTE researchers interaction

The following is the time plot output from the SAS program for the RD Knowledge stock with Full time equivalent personnel in the system.

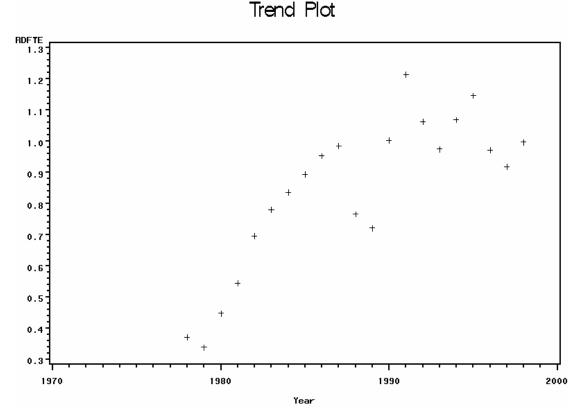
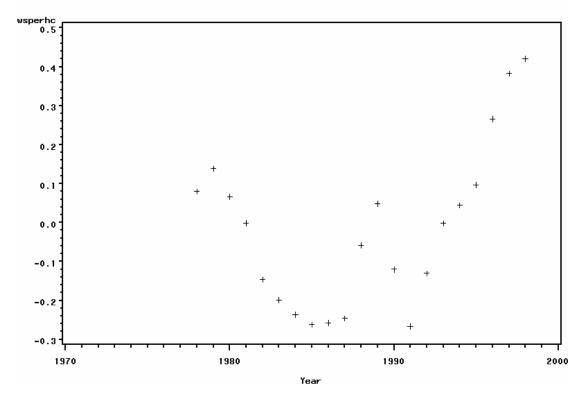



Figure 16-2 Time plot - FTE researcher interacting with R&D knowledge

From Figure 16-2 can be seen that the time plot shows an upward trend. We therefore make use of the "Trend" specification in the stationarity test output results.

Table 16-3: Phillips-Perron test output for variable "RDFTE"

| The ARIMA Procedure                                                                        |        |                      |                    |                |                    |  |  |  |  |
|--------------------------------------------------------------------------------------------|--------|----------------------|--------------------|----------------|--------------------|--|--|--|--|
| Name of Variable = RDFTE                                                                   |        |                      |                    |                |                    |  |  |  |  |
| Mean of Working Series 0.604104<br>Standard Deviation 0.24815<br>Number of Observations 21 |        |                      |                    |                |                    |  |  |  |  |
| Phillips-Perron Unit Root Tests                                                            |        |                      |                    |                |                    |  |  |  |  |
| Туре                                                                                       | Lags   | Rho                  | Pr < Rho           | Tau            | Pr < Tau           |  |  |  |  |
| Zero Mean                                                                                  | 0<br>1 | 0. 1144<br>0. 0630   | 0. 6971<br>0. 6844 | 0. 12<br>0. 06 | 0. 7093<br>0. 6908 |  |  |  |  |
| Single Mean                                                                                | 0<br>1 |                      |                    |                |                    |  |  |  |  |
| Trend                                                                                      | 0      | -8. 7810<br>-9. 9789 | 0. 4304<br>0. 3331 | -2.23          | 0. 4476<br>0. 3874 |  |  |  |  |


From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

 $Pr < Tau = 0.4476 \text{ for } \ell = 0 \text{ en}$  $Pr < Tau = 0.3874 \text{ for } \ell = 1.$ 

Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that RDFTE has a unit root and is non-stationary.

#### 16.1.3 The external knowledge stock

The following is the time plot output from the SAS program for the World Knowledge Stock per Headcount person employed in the Higher Education system.



Trend Plot

#### Figure 16-3 Time plot - World stock of knowledge per HC researcher

From **Error! Reference source not found.** can be seen that the time plot shows an upward trend. We therefore make use of the "Trend" specification in the stationarity test output results.

Table 16-4: Phillips-Perron test output for variable "WSperHC"

|                                           | The ARIMA Procedure                                                                         |                                                                 |                                                     |        |                                                     |  |  |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|--------|-----------------------------------------------------|--|--|--|--|
|                                           | Name of Variable = wsperhc                                                                  |                                                                 |                                                     |        |                                                     |  |  |  |  |
|                                           | Mean of Working Series -0.03798<br>Standard Deviation 0.175669<br>Number of Observations 21 |                                                                 |                                                     |        |                                                     |  |  |  |  |
|                                           | Phillips-Perron Unit Root Tests                                                             |                                                                 |                                                     |        |                                                     |  |  |  |  |
| Type<br>Zero Mean<br>Single Mean<br>Trend | Lags<br>0<br>1<br>0<br>1<br>0                                                               | Rho<br>-1. 4766<br>-3. 2016<br>-0. 7238<br>-2. 6069<br>-1. 2211 | 0. 3903<br>0. 2061<br>0. 8970<br>0. 6844<br>0. 9791 |        | 0. 4856<br>0. 3043<br>0. 9204<br>0. 8227<br>0. 9797 |  |  |  |  |
|                                           | I                                                                                           | -2.3452                                                         | 0.9505                                              | -0. 71 | 0. 9583                                             |  |  |  |  |

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

 $Pr < Tau = 0.9797 \text{ for } \ell = 0 \text{ en}$  $Pr < Tau = 0.9583 \text{ for } \ell = 1.$ 

Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that wsperhe has a unit root and is non-stationary.

#### **16.1.4** Colinearity tests

First however we should make sure that the variables are not collinear. The following is the test results obtained from SAS for the Colinearity test.

Table 16-5: Colinearity diagnostics for the model variables

|                       | Collinearity                                     | Di agnosti cs                                             |                                          |  |
|-----------------------|--------------------------------------------------|-----------------------------------------------------------|------------------------------------------|--|
| Number<br>1<br>2<br>3 | Ei genval ue<br>2. 04882<br>0. 88054<br>0. 07064 | Condi ti on<br>I ndex<br>1. 00000<br>1. 52538<br>5. 38552 |                                          |  |
|                       | Proport                                          | ion of Variatic                                           | n                                        |  |
| Number<br>1<br>2<br>3 | Intercept<br>0.02987<br>0.01250<br>0.95763       | RDFTE<br>0. 02973<br>0. 00486<br>0. 96540                 | wsperhc<br>0.04556<br>0.89138<br>0.06306 |  |

Larger values suggest potential near colinearity. Belsley, Kuh and Welsch (2000) recommend interpreting the Condition index greater or equal than 30 to reflect moderate

to severe colinearity, worthy of further investigation. Since all the Condition indexes from the regression model are much smaller than 30, the conclusion can be made that colinearity is not a problem in this case.

#### **Proportion of Variation**

The variance proportion indicates for each predictor the proportion of total variance of its estimated regression coefficients associated with a particular principal component. The variance proportions suggest colinearity problems if more than one predictor has a high variance proportions of at least 0.5 for such a components suggest a problem. One should definitely be concerned when two or more ladings greater than 0.9 appear on a component with a large condition index (>30). This also does not seem to be a problem since the condition indexes are all smaller than 30.

#### 16.1.5 Model estimation - Absorption rate

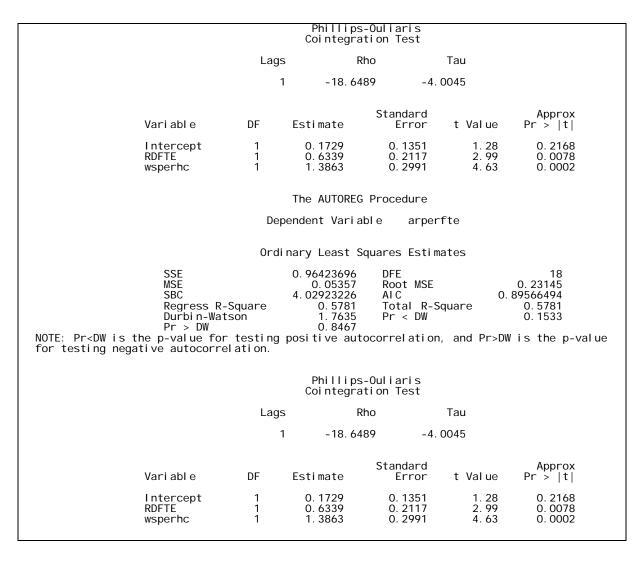

As all three variables are non-stationary, we should now fit a model and then test for cointegration in the residual.

Table 16-6: SAS code for the model estimation procedure

```
proc autoreg data=Priv.loglinear ;
model arperfte = RDFTe wsperhc
/ method=ml dwprob stationarity=(phillips=(1));
output out=abspriv r=residual;
run;
```

Table 16-7: SAS output for the model estimation of Absorptive capacity in the HES

|                                                                                           | Th                   | e AUTOREG          | Procedure            |                         |
|-------------------------------------------------------------------------------------------|----------------------|--------------------|----------------------|-------------------------|
|                                                                                           | Depend               | ent Variab         | le arperfte          |                         |
|                                                                                           |                      |                    |                      |                         |
|                                                                                           | Ordi nar             | y Least Sq         | uares Estimate       | S                       |
| SSE                                                                                       | 0                    | 96423696           | DFE                  | 18                      |
| MSE                                                                                       |                      | 0.05357            | Root MSE             | 0. 23145                |
| SBC                                                                                       |                      | 02923226           | AIC                  | 0.89566494              |
| Regress R-So                                                                              |                      |                    | Total R-Squa         |                         |
| Durbin-Watso<br>Pr > DW                                                                   | חו                   | 1. 7635<br>0. 8467 | Pr < DW              | 0. 1533                 |
| NOTE: Pr <dw for="" is="" p-value="" t<br="" the="">for testing negative autocorrela</dw> | testing pos          |                    | correlation, a       | nd Pr>DW is the p-value |
| Tor testing negative autocorrera                                                          |                      |                    |                      |                         |
| Q                                                                                         | and LM Tes           | ts for ARC         | H Disturbances       |                         |
| Order                                                                                     | Q                    | Pr > Q             | LM                   | Pr > LM                 |
| 1                                                                                         | 0. 2084              | 0. 6481            | 0. 1093              | 0. 7409                 |
| 2                                                                                         | 1. 3994              | 0. 4967            | 1. 4322              | 0. 4887                 |
| 23                                                                                        | 3. 5987              | 0. 3082            | 2.3405               | 0. 5048                 |
| 4 5                                                                                       | 7.0608               | 0.1327             | 10. 3345             | 0.0352                  |
| 5                                                                                         | 7.7103<br>8.4556     | 0. 1729<br>0. 2066 | 10. 4443<br>11. 4023 | 0.0636<br>0.0767        |
| 6<br>7                                                                                    | 9.8622               | 0. 1965            | 11. 4023             | 0. 1203                 |
|                                                                                           | 10.0637              | 0. 2606            | 13. 2544             | 0. 1034                 |
|                                                                                           | 10. 2928             | 0.3273             | 14. 3887             | 0. 1092                 |
| 10                                                                                        | 10.4760              | 0.3998             | 17.8694              | 0.0572                  |
| 11<br>12                                                                                  | 11. 6565<br>12. 1879 | 0. 3900<br>0. 4307 | 18. 3951<br>19. 1378 | 0.0729<br>0.0853        |
| 12                                                                                        | 12.1077              | 0. 4307            | 17. 1370             | 0.0000                  |



From the model estimation output obtained we can make the following conclusion:

The test for autocorrelation use is the Durban Watson test statistic. The Durbi n Watson test statistic is 1.7635 with (Pr < DW = 0.1533) > 0.05 and (Pr < DW = 0.8467) < 0.95. This indicates that we can we therefore can conclude that the autoregressive model does not have autocorrelation.

The heteroscedasticity test (Q and LM test for ARCH disturbances) is only interpreted up to 2 time lags. The probability for arch disturbances in the model for lags 1 and 2 are larger than 0.05. We can therefore conclude that the modelled relationship does not suffer from heteroscedasticity.

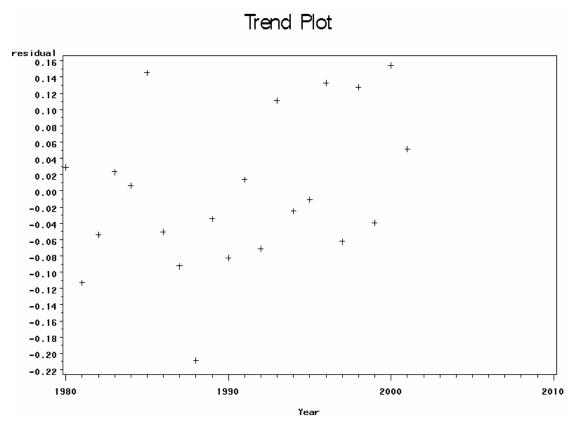



Figure 16-4 Time plot for the residual of the knowledge absorption model

From Figure 16-5 can be seen that the time plot seems to be scattered around 0. From the results we van also read the Mean of Working Series -0.00219 in Table 16-8: . We therefore make use of the "Zero mean" specification in the stationarity test output results.

|                                   |                                                                                            | The ARIMA Pr                                                               | rocedure                      |                                  |                                                     |  |  |  |
|-----------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------|----------------------------------|-----------------------------------------------------|--|--|--|
|                                   | Name                                                                                       | e of Variable                                                              | e = residual                  |                                  |                                                     |  |  |  |
|                                   | Mean of Working Series -889E-19<br>Standard Deviation 0.21428<br>Number of Observations 21 |                                                                            |                               |                                  |                                                     |  |  |  |
| Туре                              | Phi<br>Lags                                                                                | Ilips-Perror<br>Rho                                                        | ו Unit Root Te<br>Pr < Rho    | ests<br>Tau                      | Pr < Tau                                            |  |  |  |
| Zero Mean<br>Single Mean<br>Trend | 0<br>1<br>0<br>1<br>0<br>1<br>0                                                            | -18. 0392<br>-18. 6489<br>-18. 0573<br>-18. 6569<br>-18. 0173<br>-18. 6237 | 0. 0006<br>0. 0004<br>0. 0037 | -3.99<br>-4.00<br>-3.89<br>-3.91 | 0. 0004<br>0. 0004<br>0. 0084<br>0. 0081<br>0. 0424 |  |  |  |
|                                   |                                                                                            |                                                                            |                               |                                  |                                                     |  |  |  |
|                                   |                                                                                            |                                                                            |                               |                                  |                                                     |  |  |  |

Since an intercept is included in the model fitted, an intercept is included. For (n-1) = 2, the values are obtained from the Critical values for the Phillips Z Statistic or the Dickey Fuller t Statistic when applied to Residuals from Spurious Cointegration Regression (See Table 16-8: ). The critical value for the 5% level is -3.77.

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

Tau = -3.99 for  $\ell = 0$  en Tau = -4.00 for  $\ell = 1$ .

This means that we can therefore reject the null hypothesis of unit root since the Tau values are smaller than the critical value. The residues can be deemed stationary and the variables are cointegrated. We can therefore conclude that the regression is not spurious.

#### 16.2 Creation of new knowledge (Private sector)

The rate at which the system is able to produce new knowledge output is computed through the contribution made form different stocks in the system. The following expression is formulated for the R&D output productivity per FTE researcher working in the system:

- $R_{Paper} / S_{FTE}$ : R&D output rate per FTE researcher person on the system
- $S_{Experience} / S_{HC}$ : Average Experience Stock of the people in the system.
- $S_{Absorbed} / S_{HC}$ : Average Absorbed knowledge per person in the system.

A multiplicative model is developed for the development rate of papers per full time person working in the system:

$$\frac{R_{Paper}}{R_{Paper}^{*}} / \frac{S_{FTE}}{S_{FTE}^{*}} = c * \left(\frac{S_{Experience}}{S_{Experience}^{*}} / \frac{S_{HC}}{S_{HC}^{*}}\right)^{a} * \left(\frac{S_{Absorbed}}{S_{Absorbed}^{*}} / \frac{S_{HC}}{S_{HC}^{*}}\right)^{b}$$
16-3

This expression is linearised by taking the log-linear form:

$$\ln(\frac{R_{Paper}}{R_{Paper}^*} / \frac{S_{FTE}}{S_{FTE}^*}) = \ln(c) + a * \ln(\frac{S_{Experience}}{S_{Experience}^*} / \frac{S_{HC}}{S_{HC}^*}) + b * \ln(\frac{S_{Absorbed}}{S_{Absorbed}^*} / \frac{S_{HC}}{S_{HC}^*})$$
16-4

This is then the expression used to perform the regression for estimating the parameters a, b and c.

The section describes the variables included in the model to estimate the rate of knowledge creation in the system. The following SAS program was used.

Table 16-9: SAS code for the stationarity tests procedure for "prperfte", "ftetot", "AbsS"

```
goptions reset=all cback=white colors=(black) lfactor=2
border;
title1 'Trend Plot';
proc gplot priv.loglin;
plot (prperfte ftetot AbsS)*year;
plot prperfte*(ftetot AbsS);
run;
* test for stationarity of the 3 series using arima procedure
*;
proc arima priv.loglin;
identify var=prperfte stationarity=(phillips=(0,1));
identify var=ftetot stationarity=(phillips=(0,1));
identify var=AbsS stationarity=(phillips=(0,1));
run;
```

The following sections document and explain the output obtained from the SAS program.

### 16.2.1 R&D output produced per FTE researcher

The following is the time plot output from the SAS program for the R&D output (papers) created per full time equivalent researcher in the system.

prperfte 0.9 +0.8 0.7 + 0.6 0.5 0.4 0.3 0.2 0.1 0.0 1970 1990 1980 2000 Year

Trend Plot

Figure 16-5 Time plot of the Knowledge creation rate per FTE

From Figure 16-5 can be seen that the time plot although scattered seems to follow an upward trend. We therefore make use of the "Trend" specification in the stationarity test output results.

|                          | TI                                                                                         | he ARIMA Pro                               | cedure                                   |                                      |                                          |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|--------------------------------------|------------------------------------------|--|--|--|
|                          | Nam                                                                                        | e of Variabl                               | e = prperfte                             |                                      |                                          |  |  |  |
|                          | Mean of Working Series 0.475973<br>Standard Deviation 0.22445<br>Number of Observations 21 |                                            |                                          |                                      |                                          |  |  |  |
|                          | Phi                                                                                        | illips-Perro                               | n Unit Root T                            | ests                                 |                                          |  |  |  |
| Туре                     | Lags                                                                                       | Rho                                        | Pr < Rho                                 | Tau                                  | Pr < Tau                                 |  |  |  |
| Zero Mean<br>Single Mean | 0<br>1<br>0<br>1                                                                           | -1.9449<br>-1.5327<br>-13.5207<br>-14.1240 | 0. 3271<br>0. 3821<br>0. 0249<br>0. 0197 | -0. 83<br>-0. 71<br>-2. 82<br>-2. 87 | 0. 3434<br>0. 3965<br>0. 0725<br>0. 0660 |  |  |  |
| Trend                    | 0<br>1                                                                                     | -14. 7705<br>-14. 7723                     | 0. 0918<br>0. 0918                       | -2.87<br>-3.10<br>-3.10              | 0. 1331<br>0. 1331                       |  |  |  |

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

 $Pr < Tau = 0.1331 \text{ for } \ell = 0 \text{ en}$  $Pr < Tau = 0.1331 \text{ for } \ell = 1.$ 

Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that rdperfte has a unit root and is non-stationary.

### 16.2.2 Absorbed Stock

The following is the time plot output from the SAS program for the Absorbed knowledge stock in the system.

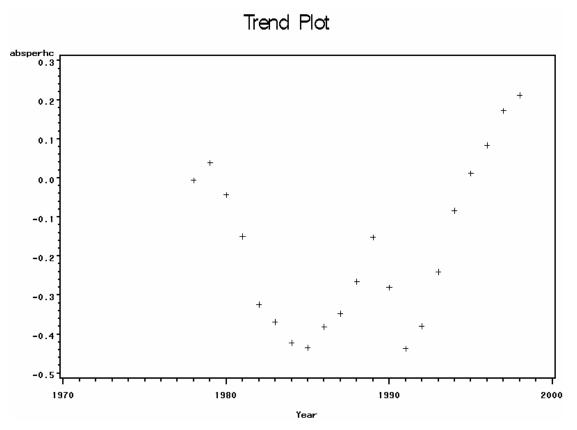
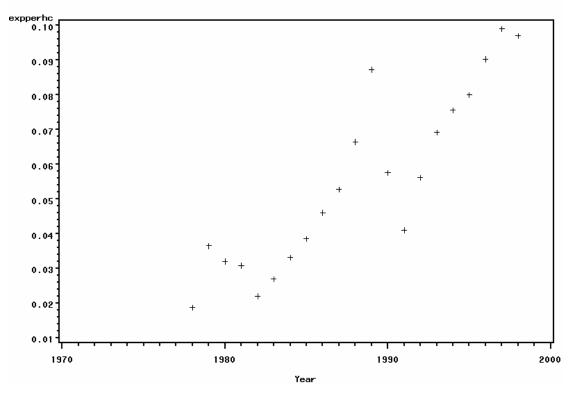



Figure 16-6 Time plot of the Absorbed knowledge stock per HC personnel

From **Error! Reference source not found.** can be seen that the time plot shows a trend line. We therefore make use of the "Trend" specification in the stationarity test output results.

Table 16-11: SAS output for Phillips Perron test for variable "Absperhc"

|                                             | Name of Variable = absperhc                                                                 |                                                                             |                                          |                  |                               |  |  |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------|------------------|-------------------------------|--|--|--|--|
|                                             | Mean of Working Series -0.18065<br>Standard Deviation 0.203145<br>Number of Observations 21 |                                                                             |                                          |                  |                               |  |  |  |  |
|                                             | Phi l                                                                                       | lips-Perron                                                                 | Unit Root Te                             | sts              |                               |  |  |  |  |
| Type<br>Zero Mean<br>Si ngl e Mean<br>Trend | Lags<br>0<br>1<br>0<br>1<br>0<br>1                                                          | Rho<br>-0. 9679<br>-1. 6692<br>-0. 8287<br>-2. 3245<br>-1. 9274<br>-2. 5355 | 0. 3630<br>0. 8880<br>0. 7208<br>0. 9634 | -0. 79<br>-0. 91 | 0. 9020<br>0. 7998<br>0. 9346 |  |  |  |  |


From the Phillips Perron test output obtained from SAS we read the following values for

the probability statistics. Pr < Tau = 0.9346 for  $\ell = 0$  en Pr < Tau = 0.9102 for  $\ell = 1$ .

Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that absperbe has a unit root and is non-stationary.

# **16.2.3** Experience per Headcount in the system

The following is the time plot output from the SAS program for the Full time personnel in the system.



Trend Plot

Figure 16-7 Time plot for the "Expperhc" variable in the system

From Figure 16-7 can be seen that the time plot shows an downward trend line. We therefore make use of the "Trend" specification in the stationarity test output results.

 Table 16-12: SAS output for Phillips Perron test for variable "Expperhc"

|                                   | Name of Variable = expperhc<br>Mean of Working Series 0.0551<br>Standard Deviation 0.024941<br>Number of Observations 21 |                                                                |                               |                  |                               |  |  |  |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------|------------------|-------------------------------|--|--|--|--|
|                                   | F                                                                                                                        | Phillips-Per                                                   | ron Unit Root                 | Tests            |                               |  |  |  |  |
| Туре                              | Lags                                                                                                                     | Rho                                                            | Pr < Rho                      | Tau              | Pr < Tau                      |  |  |  |  |
| Zero Mean<br>Single Mean<br>Trend | 0<br>1<br>0<br>1<br>1                                                                                                    | 0.8955<br>0.8630<br>-2.0219<br>-2.3803<br>-10.7197<br>-12.4559 | 0. 7589<br>0. 7137<br>0. 2812 | -0. 98<br>-2. 48 | 0. 7699<br>0. 7387<br>0. 3342 |  |  |  |  |

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

Pr < Tau = 0.3342 for  $\ell = 0$  en Pr < Tau = 0.2693 for  $\ell = 1$ .

Both *p*-values are greater than 0.05. We therefore cannot reject  $H_0$ : d = 1. We have to conclude that Experise has a unit root and therefore is non-stationary.

# 16.2.4 Colinearity tests

First however we should make sure that the variables are not collinear. The following is the test results obtained from SAS for the Colinearity test.

| C                     | Collinearity Dia                                 | gnostics                                                  |                      |  |
|-----------------------|--------------------------------------------------|-----------------------------------------------------------|----------------------|--|
| Number<br>1<br>2<br>3 | Ei genval ue<br>2. 36140<br>0. 59053<br>0. 04807 | Condi ti on<br>I ndex<br>1. 00000<br>1. 99969<br>7. 00918 |                      |  |
|                       | Propo                                            | rtion of Variat                                           | on                   |  |
| Number                | Intercept                                        | absperhc                                                  | Expperhc             |  |
| 1                     | 0. 01425<br>0. 00357                             | 0. 04170<br>0. 46016                                      | 0. 01752<br>0. 05796 |  |
| 3                     | 0. 98218                                         | 0. 49814                                                  | 0. 92452             |  |

Larger values suggest potential near colinearity. Belsley, Kuh and Welsch (2000) recommend interpreting the Condition index greater or equal than 30 to reflect moderate to severe colinearity, worthy of further investigation. Since all the Condition indexes from the regression model is much smaller than 30, the conclusion can be made that colinearity is not a problem in this case.

# **Proportion of Variation**

The variance proportion indicates for each predictor the proportion of total variance of its estimated regression coefficients associated with a particular principal component. The variance proportions suggest colinearity problems if more than one predictor has a high variance proportions of at least 0.5 for such a components suggest a problem. One should definitely be concerned when two or more ladings greater than 0.9 appear on a component with a large condition index (>30). This also does not seem to be a problem since the condition indexes are all small values.

# 16.2.5 Model estimation the rate of Paper Development in the HES

As all three variables are non-stationary, we should now fit a model and then test for cointegration in the residual

Table 16-13: SAS code for the model estimation procedure

```
proc autoreg data=Priv.loglinear ;
model prperfte = absperhc expperhc
/ method=ml dwprob stationarity=(phillips=(1));
output out=abspriv r=residual;
run;
proc reg data = Priv.loglinear ;
   model prperfte = absperhc expperhc
   /tol vif collin spec dw;
   output out=abspriv r=residual;
run;
* consider residual *;
proc gplot data= abspriv;
plot residual*year;
run;
* test for cointegration using arima procedure *;
proc arima data=abspriv;
identify var=residual
stationarity=(phillips=(0,1));
run;
```

Table 16-14: SAS output for the model estimation of patent output in the Private sector

|                                                                                                                                                                  | The AUTOREG Procedure                  |                                                                           |                                                                    |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                                                                  | Dependent Variab                       | le prperfte                                                               |                                                                    |  |  |  |  |  |
|                                                                                                                                                                  | Ordinary Least Sq                      | uares Estimates                                                           |                                                                    |  |  |  |  |  |
| SSE<br>MSE<br>SBC<br>Regress R-Squa<br>Durbin-Watson<br>Pr > DW<br>NOTE: Pr <dw for="" is="" p-value="" tes<br="" the="">value for testing negative autocor</dw> | 2.3068<br>0.4055<br>ting positive auto | DFE<br>Root MSE<br>AIC<br>Total R-Square<br>Pr < DW<br>correlation, and F | 18<br>0.15741<br>-15.296135<br>0.5784<br>0.5945<br>Pr>DW is the p- |  |  |  |  |  |

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | (                                                | 2 and LM Tes                                                                                         | sts for ARCH                                                                                    | Disturbance                                                                                                        | es                                                                                                         |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Order                                            | Q                                                                                                    | Pr > Q                                                                                          | LM                                                                                                                 | Pr > LM                                                                                                    |          |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | 1.3994<br>3.5987<br>7.0608<br>7.7103<br>8.4556<br>9.8622<br>10.0637<br>10.2928<br>10.4760<br>11.6565 | 0. 4967<br>0. 3082<br>0. 1327<br>0. 2066<br>0. 1965<br>0. 2606<br>0. 3273<br>0. 3998<br>0. 3900 | 1. 4322<br>2. 3405<br>10. 3345<br>10. 4443<br>11. 4023<br>11. 4473<br>13. 2544<br>14. 3887<br>17. 8694<br>18. 3951 | 0. 4887<br>0. 5048<br>0. 0352<br>0. 0636<br>0. 0767<br>0. 1203<br>0. 1034<br>0. 1092<br>0. 0572<br>0. 0729 |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                                  |                                                                                                      |                                                                                                 |                                                                                                                    |                                                                                                            |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                  | Lags                                                                                                 | Rho                                                                                             | -                                                                                                                  | Tau                                                                                                        |          |
| VariableDFEstimateErrort ValuePr $\stackrel{\circ}{>}  t $ Intercept10.47790.11934.010.0008absperhc12.15221.63921.310.2057Dependent Variable:prperfteNumber of Observations Read21Number of Observations Used21Analysis of VarianceSourceDFSquaresMean<br>SquareSourceDFSquaresF ValuePr > FModel20.611950.3059712.350.0004Error180.445990.024780.5784Corrected Total201.057940.47597Adj R-Sq uare0.5784Dependent Mean0.15741R-Square0.5784Dependent Mean0.47597Adj R-Sq0.5316Coeff VarVariable DFParameterStandard<br>ErrorT ValuePr >  t ToleranceVariableDFStandard<br>Error0.0039Adj R-Sq0.53160.201263.310.0039OutputDrest inatesVariable DFParameterStandard<br>ErrorCorrort ValuePr >  t ToleranceInflationIntercept 10.47597                                                                                                                                                                                                   |               |                                                  | 1                                                                                                    | -22.3665                                                                                        | -5.13                                                                                                              | 370                                                                                                        |          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Vari abl e                                       | DF Es                                                                                                |                                                                                                 |                                                                                                                    | t Value Pr                                                                                                 |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | absperhc                                         | 1                                                                                                    | 0.6672                                                                                          | 0. 2013                                                                                                            | 3.31                                                                                                       | 0.0039   |
| Number of Observations Used21Anal ysis of VarianceSourceDFSum of<br>SquaresMean<br>SquareF ValuePr > FModel<br>Error<br>Corrected Total20.61195<br>20.30597<br>0.0247812.350.0004Model<br>Error<br>Corrected Total20.61195<br>20.30597<br>0.0247812.350.0004Model<br>Error<br>Corrected Total0.61195<br>20.30597<br>0.0247812.350.0004Model<br>Error<br>Coeff Var0.15741<br>2R-Square<br>0.47597<br>33.070800.5784<br>R-Sq<br>0.5316Variance<br>InflationParameter<br>Standard<br>Error<br>Coeff Var0.15741<br>0.11925<br>3.1R-Square<br>Pr >  t 0.5784<br>ToleranceVariance<br>InflationIntercept<br>absperhc<br>10.47791<br>0.47791<br>0.212260.11925<br>3.13.00039<br>0.00039<br>0.7058600Intercept<br>absperhc<br>10.47791<br>0.212260.2126<br>3.10.0039<br>0.20570.70586<br>0.705861.41671Intercept<br>absperhc<br>110.47791<br>0.2152180.2057<br>1.639230.70586<br>1.311.41671DFChi -Square<br>Pr > Chi SqPr > Chi SqPr > Chi Sq |               |                                                  | Depende                                                                                              | ent Variable                                                                                    | : prperfte                                                                                                         |                                                                                                            |          |
| SourceDFSquaresMean<br>SquaresF ValuePr > FModel<br>Error<br>Corrected Total20.61195<br>180.30597<br>0.44599<br>1.057940.30597<br>0.0247812.350.0004Root MSE<br>Dependent Mean0.15741<br>0.447597<br>33.07080R-Square<br>Adj R-Sq0.5784<br>0.5316VariableDF<br>EstimateStandard<br>Error<br>t ValuePr >  t Tolerance<br>0.0038Variance<br>InflationIntercept<br>absperhc10.47791<br>0.667150.11925<br>0.201264.01<br>3.310.0008<br>0.00390.70586<br>0.705860.41671<br>1.41671Intercept<br>absperhc10.66715<br>2.152180.20126<br>1.639233.31<br>1.310.2057<br>0.20570.70586<br>0.705861.41671<br>1.41671DFChi -Square<br>VariablePr > lt  Tolerance<br>VariableProver<br>Variable0<br>1.41671                                                                                                                                                                                                                                           |               |                                                  |                                                                                                      |                                                                                                 |                                                                                                                    |                                                                                                            |          |
| Source       DF       Squares       Squares       Square       F Value       Pr > F         Model<br>Error<br>Corrected Total       2       0.61195<br>18       0.30597<br>0.02478       12.35       0.0004         Root MSE<br>Dependent Mean<br>Coeff Var       0.15741<br>0.47597<br>33.07080       R-Square<br>Adj R-Sq       0.5784<br>0.5316         Parameter<br>Variable       Parameter<br>Estimate       Standard<br>Error       t Value       Pr >  t        Tol erance       Variance<br>Inflation         Intercept 1       0.47791       0.11925<br>0.20126       4.01       0.0008<br>3.31       0       0         Intercept 1       0.66715<br>2.15218       0.20126<br>1.63923       3.31       0.20039<br>1.31       0.70586<br>1.41671       1.41671         Test of First and Second<br>Moment Specification       DF       Chi -Square       Pr > Chi Sq       1.41671                                            |               |                                                  | ŀ                                                                                                    | Analysis of '                                                                                   | Vari ance                                                                                                          |                                                                                                            |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Source        | DF                                               | -                                                                                                    | -                                                                                               |                                                                                                                    | alue Pr>f                                                                                                  | :        |
| Dependent Mean<br>Coeff Var $0.47597$<br>$33.07080$ Adj R-Sq $0.5316$ Parameter EstimatesVariableDFParameter<br>EstimateStandard<br>Error $Pr >  t $ Tol eranceVariance<br>InflationIntercept1 $0.47791$ $0.11925$ $4.01$ $0.0008$ $0$ $0$ absperhc1 $0.66715$ $0.20126$ $3.31$ $0.0039$ $0.70586$ $1.41671$ expperhc1 $2.15218$ $1.63923$ $1.31$ $0.2057$ $0.70586$ $1.41671$ Test of First and Second<br>Moment SpecificationDFChi-SquarePr > Chi Sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Error         | 18                                               | 0.44599                                                                                              | 9 0.0                                                                                           |                                                                                                                    | 2.35 0.0004                                                                                                | l        |
| VariableDFParameter<br>EstimateStandard<br>ErrorPr >  t Tol eranceVariance<br>InflationIntercept<br>absperhc10.47791<br>10.11925<br>0.66715<br>2.152184.01<br>0.20126<br>1.639230.0008<br>1.3100Intercept<br>absperhc10.47791<br>0.66715<br>2.152180.11925<br>0.20126<br>1.639234.01<br>1.0.0039<br>1.310.0008<br>0.0039<br>0.705860Intercept<br>absperhc10.66715<br>2.152180.11925<br>0.20126<br>1.639234.01<br>1.310.0008<br>0.20570Intercept<br>absperhc10.66715<br>2.152180.11925<br>0.20126<br>1.639234.01<br>1.310.0008<br>0.20570Intercept<br>absperhc10.66715<br>2.152180.11925<br>0.20126<br>1.639234.01<br>1.310.0008<br>0.20570Intercept<br>absperhc10.66715<br>0.20570.70586<br>0.705861.41671<br>1.41671Intercept<br>absperhcIntercept<br>absperhcIntercept<br>absperhc0Intercept<br>absperhcIntercept<br>                                                                                                                |               | Depend                                           | dent Mean                                                                                            | 0. 4759                                                                                         | 7 Adj R-S                                                                                                          |                                                                                                            |          |
| Variable         DF         Estimate         Error         t Value         Pr >  t          Tolerance         Inflation           Intercept         1         0.47791         0.11925         4.01         0.0008         0         0           absperhc         1         0.66715         0.20126         3.31         0.0039         0.70586         1.41671           expperhc         1         2.15218         1.63923         1.31         0.2057         0.70586         1.41671           Test of First and Second<br>Moment Specification           DF         Chi-Square         Pr > Chi Sq                                                                                                                                                                                                                                                                                                                                 |               |                                                  | F                                                                                                    | Parameter Es                                                                                    | timates                                                                                                            |                                                                                                            |          |
| absperhc       1       0.66715       0.20126       3.31       0.0039       0.70586       1.41671         expperhc       1       2.15218       1.63923       1.31       0.2057       0.70586       1.41671         Test of First and Second<br>Moment Specification         DF       Chi-Square       Pr > Chi Sq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                  |                                                                                                      | t Value                                                                                         | Pr >  t  -                                                                                                         | Tol erance                                                                                                 |          |
| Moment Specification<br>DF Chi-Square Pr > ChiSq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | absperhc 1 0. | 66715 (                                          | 0. 20126                                                                                             | 3. 31                                                                                           | 0.0039                                                                                                             |                                                                                                            | 1. 41671 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                  |                                                                                                      |                                                                                                 |                                                                                                                    |                                                                                                            |          |
| 5 4.30 0.5076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                                  | DF                                                                                                   | Chi-Squar                                                                                       | e Pr > Cł                                                                                                          | hi Sq                                                                                                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                  | 5                                                                                                    | 4.3                                                                                             | 0 0. 5                                                                                                             | 5076                                                                                                       |          |

From the model estimation output obtained we can make the following conclusion:

The **R-Square 0.5784** statistic indicate that the model accounts for 57% of the variation of the percentage time spent by staff on R&D activities.

The test for autocorrelation use is the Durban Watson test statistic. The Durbi n Watson test statistic is 2.3068 with (Pr < DW = 0.6945 > 0.05 and (Pr < DW = 0.4055) < 0.95. This indicates that we therefore can conclude that the autoregressive model does not have autocorrelation.

The heteroscedasticity test (Q and LM test for ARCH disturbances) is only interpreted up to 2 time lags. The probability for arch disturbances in the model for lags 1 and 2 are larger than 0.05. We can therefore conclude that the modelled relationship does not suffer from heteroscedasticity.

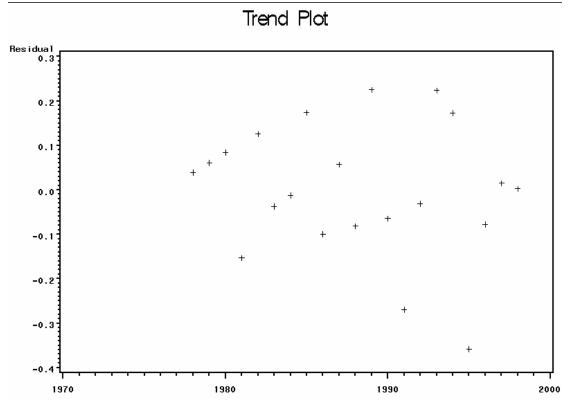



Figure 16-9 Time plot of the residual

From Figure 16-9 can be seen that the time plot seems to be scattered around 0. From the results we van also read the Mean of Working Series is 8.02E-17 in **Error! Reference source not found.** We therefore make use of the "Zero mean" specification in the stationarity test output results.

Table 16-15: Stationarity tests output for the residual

|             | The ARIMA Procedure                                                                         |                        |                    |                |                    |  |  |  |  |
|-------------|---------------------------------------------------------------------------------------------|------------------------|--------------------|----------------|--------------------|--|--|--|--|
|             | Name o                                                                                      | f Variable =           | resi dual          |                |                    |  |  |  |  |
|             | Mean of Working Series 8.02E-17<br>Standard Deviation 0.145732<br>Number of Observations 21 |                        |                    |                |                    |  |  |  |  |
|             | Ph                                                                                          | illips-Perro           | n Unit Root T      | ests           |                    |  |  |  |  |
| Туре        | Lags                                                                                        | Rho                    | Pr < Rho           | Tau            | Pr < Tau           |  |  |  |  |
| Zero Mean   | 0<br>1                                                                                      | -23. 1026<br>-22. 3665 | <. 0001<br><. 0001 | -5.11<br>-5.14 | <. 0001<br><. 0001 |  |  |  |  |
| Single Mean | 0<br>1                                                                                      | -23. 1028<br>-22. 3618 | 0.0003             | -4.97          | 0.0008             |  |  |  |  |
| Trend       | 0<br>1                                                                                      | -23. 7885<br>-22. 8581 | 0.0022             | -4.98          | 0.0039             |  |  |  |  |
|             |                                                                                             |                        |                    |                |                    |  |  |  |  |
|             |                                                                                             |                        |                    |                |                    |  |  |  |  |
|             |                                                                                             |                        |                    |                |                    |  |  |  |  |

For (n-1) = 2, the values are obtained from the Critical values for the Phillips Z Statistic or the Dickey Fuller t Statistic when applied to Residuals from Spurious Cointegration Regression (See table **Error! Reference source not found.**). The critical value for the 1% level is -4.31.

From the Phillips Perron test output obtained from SAS we read the following values for the probability statistics.

Tau = -5.11 for  $\ell = 0$  en Tau = -5.14 for  $\ell = 1$ .

This means that we can therefore reject the null hypothesis of unit root with a 1% significance level, since the Tau values are smaller than the critical value. The residues can be deemed stationary and the variables are cointegrated. We can therefore conclude that the regression is not spurious.

# **17 STATISTICAL TABLES**

# Table 17-1: Critical values for the Phillips Z statistic

# TABLE B.9Critical Values for the Phillips $Z_t$ Statistic or the Dickey-Fuller t Statistic WhenApplied to Residuals from Spurious Cointegrating Regression

|                                                                                             |                |       |       | 0           | 0 0                        |                 |                |       |
|---------------------------------------------------------------------------------------------|----------------|-------|-------|-------------|----------------------------|-----------------|----------------|-------|
| Number of<br>right-hand<br>variables in<br>regression,<br>excluding<br>trend or<br>constant | Sample<br>size |       | Proba | bility that | $(\hat{\rho} - 1)/\hat{o}$ | ,<br>is less th | an entry       |       |
| (n - 1)                                                                                     | (T)            | 0.010 | 0.025 | 0.050       | 0.075                      | 0.100           | 0.125          | 0.150 |
|                                                                                             |                |       |       | Case 1      |                            |                 |                |       |
| 1                                                                                           | 500            | -3.39 | -3.05 | -2.76       | -2.58                      | -2.45           | -2.35          | -2.26 |
| 2                                                                                           | 500            | -3.84 | -3.55 | -3.27       | -3.11                      | -2.99           |                | -2.79 |
| 3                                                                                           | 500            | -4.30 | -3.99 | -3.74       | -3.57                      | -3.44           | -3.35          | -3.26 |
| 4                                                                                           | 500            | -4.67 | -4.38 | -4.13       | -3.95                      | -3.81           | -3.71          | -3.61 |
| 5                                                                                           | 500            | -4.99 | -4.67 | -4.40       | -4.25                      | -4.14           |                | -3.94 |
|                                                                                             |                |       | 0     | Case 2      |                            |                 |                |       |
| 1                                                                                           | 500            | -3.96 | -3.64 | -3.37       | -3.20                      | -3.07           | -2.96          | -2.86 |
| 2                                                                                           | 500            | -4.31 | -4.02 | -3.77       | -3.58                      | -3.45           | -3.35          | -3.26 |
| 3                                                                                           | 500            | -4.73 | -4.37 | -4.11       | -3.96                      | -3.83           | -3.73          | -3.65 |
| 4                                                                                           | 500            | -5.07 | -4.71 | -4.45       | -4.29                      | -4.16           | -4.05          | -3.96 |
| 5                                                                                           | 500            | -5.28 | -4.98 | -4.71       | -4.56                      | -4.43           | -4.33          | -4.24 |
|                                                                                             |                |       | C     | Case 3      |                            |                 |                |       |
| 1                                                                                           | 500            | -3.98 | -3.68 | -3.42       |                            | -3.13           |                |       |
| 2                                                                                           | 500            | -4.36 | -4.07 | -3.80       | -3.65                      | -3.52           | -3.42          | -3.33 |
| 3                                                                                           | 500            | -4.65 | -4.39 | -4.16       | -3.98                      | -3.84           | -3.42<br>-3.74 | -3.66 |
| 4                                                                                           | 500            | -5.04 | -4.77 | -4.49       | -4.32                      | -4.20           | -4.08          | -4.00 |
| 5                                                                                           | 500            | -5.36 | -5.02 | -4.74       | -4.58                      | -4.46           | -4.36          | -4.00 |

The probability shown at the head of the column is the area in the left-hand tail.

Source: P. C. B. Phillips and S. Ouliaris, "Asymptotic Properties of Residual Based Tests for Cointegration," *Econometrica* 58 (1990), p. 190. Also Wayne A. Fuller, *Introduction to Statistical Time Series*, Wiley, New York, 1976, p. 373.

# **18 APPENDIX F**

Please find the bitmap version of the model for the HES on the CD provided.

CD/HES/HES bitmap - SD model

# **19 APPENDIX G**

Please find the bitmap version of the model for the Public sector on the CD provided.

CD/HES/Pub bitmap - SD model

# 20 APPENDIX H

Please find the bitmap version of the model for the Private sector on the CD provided.

CD/HES/Priv bitmap - SD model

# **19 APPENDIX I: SENSITVITY ANALYSIS - DELPHI STUDY**

A sensitivity analysis is conducted of the Delphi responses obtained from the survey conducted in the research project. This analysis is done in order to determine if there is any reason for concern that there could exist some level of sub-aggregation within the individual group members of the three sectors surveyed (HES, Public Sector and Private Sector). If such a sub aggregation should exist, it could affect the reliability of the responses.

Sensitivity analysis of the responses is conducted by analysing responses aggregated in groups from the three sectors surveyed. The main purpose of doing this is to investigate if group aggregations do exist and if so to which extend. It must however also be kept in mind that dividing the already relatively small sample into the three sector groupings leave us with very small samples (5 responses for the three sectors – although 1 from the HES dropped out in the last round).

A simple analysis is done: The means and medians of the different groups are compared to investigate the possibility of a sub-aggregation within the groups members of the three sectors surveyed. If a significant difference in the mean or median is found the Standard deviation is investigated – if the sub-groups also have a high standard deviation, it can be concluded that there exists an overall low level of consensus. However if the overall level of consensus is low, but a high level of consensus is achieved in the sub-groups, it could indicate a sub-aggregation for that response – potentially skewing the results.

# **19.1** The Higher Education Sector: Delphi sensitivity analysis

In order to save space in the box plots as well as in the tables, the questions in the survey is reference to the question number. The following table serves as a reference for the coding of the issue categories.

| Issue Category                                                                           |
|------------------------------------------------------------------------------------------|
| Q1. Lack of funding for R&D in the HES                                                   |
| Q2. Lack of multidisciplinary research projects                                          |
| Q3. Poor linkages pose a threat to future capacity and the relevance of R&D performed in |
| the system                                                                               |
| Q4. Inability to retain and rejuvenate human resource stock in the system                |
| Q5. The deterioration of quality of human resources working in R&D in the sector         |
| Q6. Inadequate funding of equipment                                                      |
| Q7. The lack of female and black researchers for R&D to reach representative work force  |
| Q8. Difficulty of successful R&D policy alignment with national priorities               |
| Q9. Weak IP protection policies in HES                                                   |

The following box plot is a visual representation of the responses received from respondents from all three sectors.

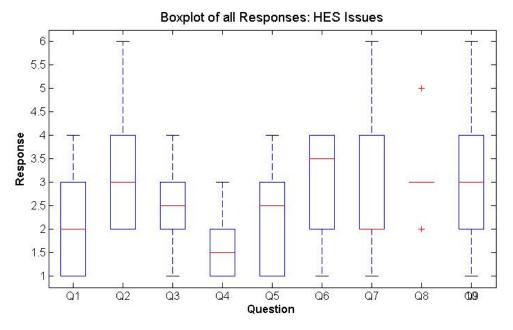



Figure 19-1: Box plot of Responses from all respondents: Issues in the HES

The following tables summarise the analysis done on the set of responses from all respondents.

|          | Q1   | Q2   | Q3   | Q4   | Q5   | Q6   | Q7   | Q8   | Q9   |
|----------|------|------|------|------|------|------|------|------|------|
| Mean     | 2.29 | 3.29 | 2.43 | 1.64 | 2.43 | 3.14 | 2.71 | 3.29 | 3.36 |
| Median   | 2.00 | 3.00 | 2.50 | 1.50 | 2.50 | 3.50 | 2.00 | 3.00 | 3.00 |
| St. Dev  | 1.14 | 1.59 | 0.85 | 0.74 | 1.16 | 1.03 | 1.54 | 0.99 | 1.39 |
| Upper    |      |      |      |      |      |      |      |      |      |
| Quartile | 4.00 | 6.00 | 4.00 | 3.00 | 4.00 | 4.00 | 6.00 | 5.00 | 6.00 |
| Lower    |      |      |      |      |      |      |      |      |      |
| Quartile | 1.25 | 2.00 | 2.00 | 1.00 | 1.25 | 2.25 | 2.00 | 3.00 | 2.25 |
| Maximu   |      |      |      |      |      |      |      |      |      |
| m        | 4    | 6    | 4    | 3    | 4    | 4    | 6    | 5    | 6    |
| Minimum  | 1    | 2    | 1    | 1    | 1    | 1    | 1    | 2    | 1    |

Table 19-2: Summary of responses from all respondents: Issues in HES

Table 19-3: Summary of responses from HES respondents: Issues in HES

|          | Q1  | Q2  | Q3  | Q4  | Q5  | Q6  | Q7  | Q8  | Q9  |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Mean     | 1.3 | 3.8 | 2.8 | 1.5 | 1.8 | 2.3 | 3.0 | 3.3 | 4.3 |
| Median   | 1.0 | 3.0 | 2.5 | 1.5 | 1.5 | 2.5 | 3.5 | 3.0 | 4.5 |
| St. Dev  | 0.5 | 1.5 | 1.0 | 0.6 | 1.0 | 1.0 | 1.4 | 1.3 | 1.0 |
| Upper    |     |     |     |     |     |     |     |     |     |
| Quartile | 2.0 | 6.0 | 4.0 | 2.0 | 3.0 | 3.0 | 4.0 | 5.0 | 5.0 |
| Lower    |     |     |     |     |     |     |     |     |     |
| Quartile | 1.0 | 3.0 | 2.0 | 1.0 | 1.0 | 1.8 | 2.5 | 2.8 | 3.8 |
| Maximum  | 2.0 | 6.0 | 4.0 | 2.0 | 3.0 | 3.0 | 4.0 | 5.0 | 5.0 |

# University of Pretoria etd – Grobbelaar, S S (2007)

R&D in the National System of Innovation: a System Dynamics Model

| Minimum | 1.0 | 3.0 | 2.0 | 1.0 | 1.0 | 1.0 | 1.0 | 2.0 | 3.0 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|

|          | Q1   | Q2   | Q3   | Q4   | Q5   | Q6   | Q7   | Q8   | Q9   |
|----------|------|------|------|------|------|------|------|------|------|
| Mean     | 3    | 4    | 3    | 2    | 3    | 3    | 2    | 4    | 3    |
| Median   | 2    | 4    | 3    | 2    | 3    | 4    | 2    | 3    | 3    |
| St. Dev  | 1.00 | 1.71 | 0.50 | 0.58 | 0.82 | 0.96 | 0.00 | 1.00 | 0.58 |
| Upper    |      |      |      |      |      |      |      |      |      |
| Quartile | 4    | 6    | 3    | 2    | 4    | 4    | 2    | 5    | 3    |
| Lower    |      |      |      |      |      |      |      |      |      |
| Quartile | 2    | 2.75 | 2.75 | 1    | 2.75 | 2.75 | 2    | 3    | 2    |
| Maximum  | 4    | 6    | 3    | 2    | 4    | 4    | 2    | 5    | 3    |
| Minimum  | 2    | 2    | 2    | 1    | 2    | 2    | 2    | 3    | 2    |

### Table 19-4: Summary of responses from Public Sector respondents: Issues in HES

Table 19-5: Summary of responses from Public Sector respondents: Issues in HES

|          | Q1  | Q2  | Q3  | Q4  | Q5  | Q6  | Q7  | Q8  | Q9  |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Mean     | 2.8 | 2.7 | 2.0 | 1.8 | 2.5 | 3.7 | 3.0 | 3.2 | 3.3 |
| Median   | 3.0 | 2.0 | 2.0 | 1.5 | 2.5 | 4.0 | 2.5 | 3.0 | 3.5 |
| St. Dev  | 1.2 | 1.6 | 0.9 | 1.0 | 1.4 | 0.8 | 2.1 | 1.0 | 1.8 |
| Upper    |     |     |     |     |     |     |     |     |     |
| Quartile | 4.0 | 6.0 | 3.0 | 3.0 | 4.0 | 4.0 | 6.0 | 5.0 | 6.0 |
| Lower    |     |     |     |     |     |     |     |     |     |
| Quartile | 2.3 | 2.0 | 1.3 | 1.0 | 1.3 | 4.0 | 1.3 | 3.0 | 2.3 |
| Maximum  | 4   | 6   | 3   | 3   | 4   | 4   | 6   | 5   | 6   |
| Minimum  | 1   | 2   | 1   | 1   | 1   | 2   | 1   | 2   | 1   |

The following table summarises a comparison of means between the three sectors surveyed. The mean is rounded as to give a better sense which main category each group opinion fall into.

.

|         | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 |
|---------|----|----|----|----|----|----|----|----|----|
| Mean    | 2  | 3  | 2  | 2  | 2  | 3  | 3  | 3  | 3  |
| HES     | 1  | 4  | 3  | 2  | 2  | 2  | 3  | 3  | 4  |
| PUB     | 3  | 4  | 3  | 2  | 3  | 3  | 2  | 4  | 3  |
| Private | 3  | 3  | 2  | 2  | 3  | 4  | 3  | 3  | 3  |

The following figure is a graphical representation of the data in the table:

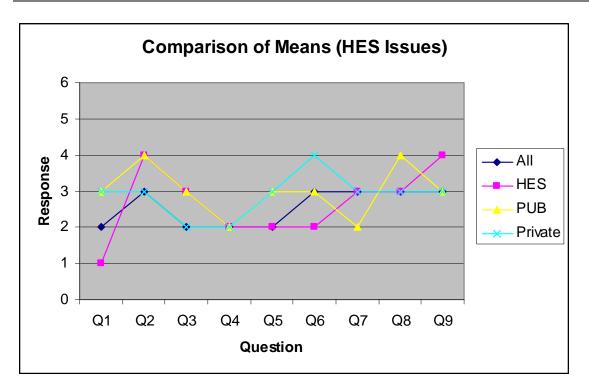



Figure 19-2: Graphical representation of the Comparison of Means (HES Issues)

The following table summarises the comparison of medians between the three sectors surveyed.

|         | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 |
|---------|----|----|----|----|----|----|----|----|----|
| Median  | 2  | 3  | 2  | 2  | 3  | 4  | 2  | 3  | 3  |
| HES     | 1  | 3  | 3  | 2  | 2  | 3  | 4  | 3. | 5  |
| PUB     | 2  | 4  | 3  | 2  | 3  | 4  | 2  | 3  | 3  |
| Private | 3  | 3  | 2  | 2  | 3  | 4  | 3  | 3  | 3  |

 Table 19-7: Comparison of Medians (HES Issues)

The following figure is a graphical representation of the data in the table:

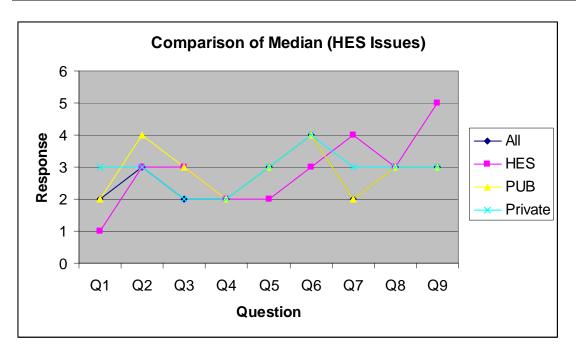
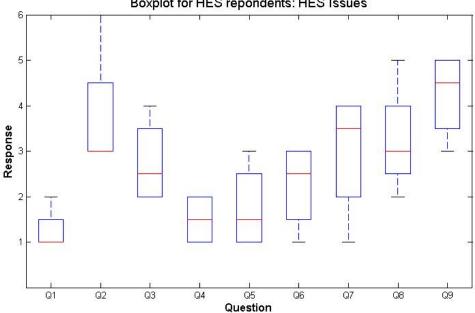




Figure 19-3: Graphical representation of the Comparison of Medians (HES Issues)

No consistent trend or major differences can be seen from the mean and the median of the three groups. It can therefore be concluded that no obvious sub-aggregation that could skew the overall result exist in the groups surveyed.

Although not explicitly included in the analysis, the box plots for each one of the sub aggregations are also provided.



# Boxplot for HES repondents: HES Issues

Figure 19-4: Box plot for HES respondents: HES issues

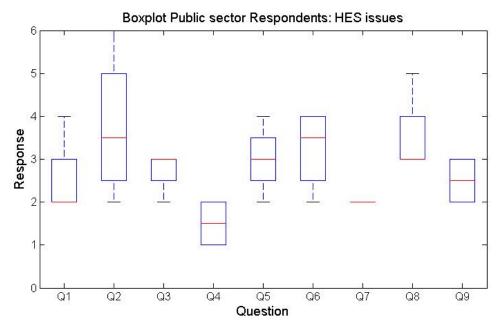
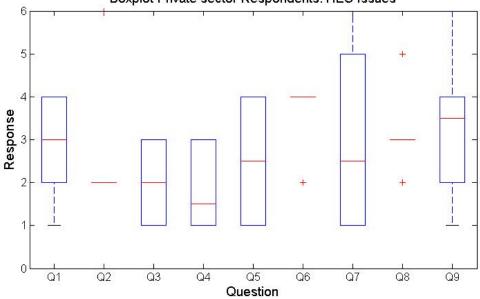




Figure 19-5: Box plot for Public sector respondents: HES issues



Boxplot Private sector Respondents: HES Issues

Figure 19-6: Box plot for Private sector respondents: HES issues

# 19.2 The Public Sector: Delphi sensitivity analysis

In order to save space in the box plots as well as in the tables, the questions in the survey is reference to the question number. The following table serves as a reference for the coding of the issue categories.

| Issue Category                                                                    |
|-----------------------------------------------------------------------------------|
| Q1. Inability to retain and rejuvenate the researchers stock in the system        |
| Q2. Lack of government funding to the public sector to develop R&D and technology |
| platforms                                                                         |
| Q3. Deterioration of quality of human resources working in R&D                    |
| Q4. Current BEE policies having a negative effect on quality and R&D capacity     |
| Q5. A lack of direction and leadership in science policy                          |

# Boxplot of All Responses: Public sector Issues

# Figure 19-7: Box plot of Responses from all respondents: Issues in the Public sector

The following table summarises the analysis done on the set of responses from all respondents:

|                | Q1   | Q2   | Q3   | Q4   | Q5   |
|----------------|------|------|------|------|------|
| Mean           | 2.43 | 2.21 | 2.43 | 2.86 | 2.79 |
| Median         | 2.00 | 2.00 | 2.00 | 2.50 | 2.00 |
| St. Dev        | 1.16 | 1.31 | 1.16 | 1.70 | 1.48 |
| Upper Quartile | 6    | 5    | 4    | 6    | 6    |
| Lower Quartile | 2    | 1    | 2    | 1.25 | 2    |
| Maximum        | 6    | 5    | 4    | 6    | 6    |
| Minimum        | 1    | 1    | 1    | 1    | 1    |

Table 19-9: Summary of responses from All respondents: Issues in Public Sector

# Table 19-10: Summary of responses from HES respondents: Issues in Public Sector

|         | Q1   | Q2   | Q3   | Q4   | Q5   |
|---------|------|------|------|------|------|
| Mean    | 3.25 | 2.25 | 2    | 1.75 | 2    |
| Median  | 2.5  | 2.5  | 2    | 1.5  | 2    |
| St. Dev | 1.89 | 0.96 | 0.82 | 0.96 | 0.82 |

# University of Pretoria etd - Grobbelaar, S S (2007)

# R&D in the National System of Innovation: a System Dynamics Model

| Upper Quartile | 6 | 3    | 3    | 3 | 3    |
|----------------|---|------|------|---|------|
| Lower Quartile | 2 | 1.75 | 1.75 | 1 | 1.75 |
| Maximum        | 6 | 3    | 3    | 3 | 3    |
| Minimum        | 2 | 1    | 1    | 1 | 1    |

# Table 19-11: Summary of responses from Public Sector respondents: Issues in Public Sector

|                | Q1   | Q2   | Q3   | Q4   | Q5   |
|----------------|------|------|------|------|------|
| Mean           | 1.75 | 1.50 | 3.00 | 3.50 | 4.25 |
| Median         | 2.00 | 1.00 | 3.00 | 3.50 | 4.50 |
| St. Dev        | 0.50 | 1.00 | 1.15 | 1.29 | 1.71 |
| Upper Quartile | 2    | 3    | 4    | 5    | 6    |
| Lower Quartile | 1.75 | 1    | 2    | 2.75 | 3.5  |
| Maximum        | 2    | 3    | 4    | 5    | 6    |
| Minimum        | 1    | 1    | 2    | 2    | 2    |

# Table 19-12: Summary of responses from Private Sector respondents: Issues in Public Sector

|                | Q1   | Q2   | Q3   | Q4   | Q5   |
|----------------|------|------|------|------|------|
| Mean           | 2.43 | 2.21 | 2.43 | 2.86 | 2.79 |
| Median         | 2.00 | 2.00 | 2.00 | 2.50 | 2.00 |
| Stdev          | 1.16 | 1.31 | 1.16 | 1.70 | 1.48 |
| Upper Quartile | 6    | 5    | 4    | 6    | 6    |
| Lower Quartile | 2    | 1    | 2    | 1.25 | 2    |
| Maximum        | 6    | 5    | 4    | 6    | 6    |
| Minimum        | 1    | 1    | 1    | 1    | 1    |

The following table summarises a comparison of means between the three sectors surveyed. The mean is rounded as to give a better sense which main category each group opinion fall into.

|         | Q1 | Q2 | Q3 | Q4 | Q5 |
|---------|----|----|----|----|----|
| Mean    | 2  | 2  | 2  | 3  | 3  |
| HES     | 3  | 2  | 2  | 2  | 2  |
| PUB     | 2  | 2  | 3  | 4  | 4  |
| Private | 2  | 2  | 2  | 3  | 3  |

# Table 19-13: Comparison of means (Public Sector issues)

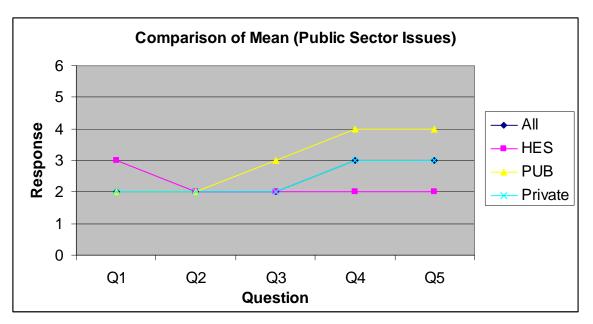



Figure 19-8: Graphical representation of the Comparison of Means (Pub. Sector Issues)

The following table summarises the comparison of medians between the three sectors surveyed.

| Table 19-14: | : Comparison | of Medians | (HES Issues | 5) |
|--------------|--------------|------------|-------------|----|
|--------------|--------------|------------|-------------|----|

|         | Q1  | Q2  | Q3 | Q4  | Q5  |
|---------|-----|-----|----|-----|-----|
| Mean    | 2   | 2   | 2  | 2.5 | 2   |
| HES     | 2.5 | 2.5 | 2  | 1.5 | 2   |
| PUB     | 2   | 1   | 3  | 3.5 | 4.5 |
| Private | 2   | 2   | 2  | 2.5 | 2   |

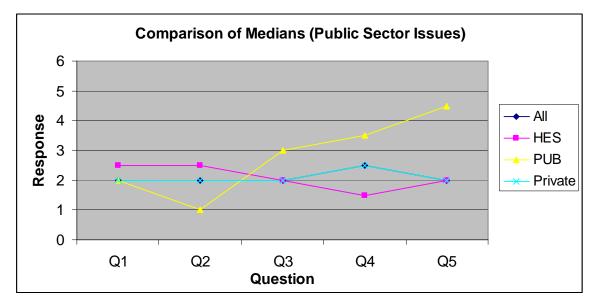
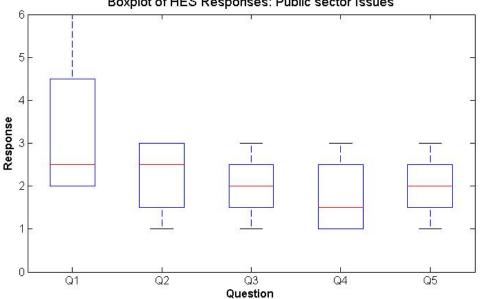



Figure 19-9: Graphical representation of the Comparison of Medians (Pub. Sector Issues)


Q4 and Q5 show larger differences between the three sectors in terms of the Median value. From this we have to investigate the possibility that homogeneity in the responses from the three sectors could be skewing the results.

|         | Q1   | Q2   | Q3   | Q4   | Q5   |
|---------|------|------|------|------|------|
| Overall | 1.16 | 1.31 | 1.16 | 1.70 | 1.48 |
| HES     | 1.89 | 0.96 | 0.82 | 0.96 | 0.82 |
| PUB     | 0.50 | 1.00 | 1.15 | 1.29 | 1.71 |
| Private | 1.16 | 1.31 | 1.16 | 1.70 | 1.48 |

 Table 19-15: Summary of St.DEv (Private sector issues)

We however find that the resulting high standard deviation for the whole response set is also present within the response sets from the three sectors for these three questions. The high Standard Deviation for Q4, Q5 indicates a low overall level of consensus within the groups. We can therefore conclude that the high overall standard deviation is not a low level of consensus due to homogeneity on responses from the three sectors. We can therefore conclude that for the purpose of this study we can be satisfied that the responses are heterogeneous for this sector.

Although not explicitly included in the analysis, the box plots for each one of the sub aggregations are also provided.



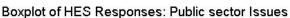



Figure 19-10: Box plot of Responses from HES respondents: Issues in the Public sector

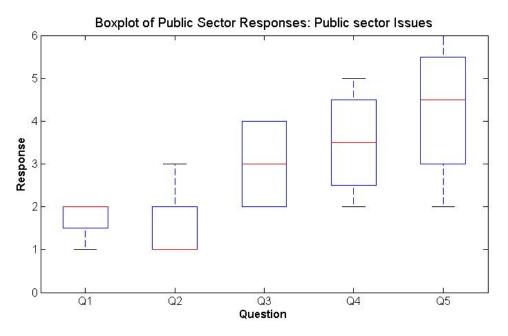
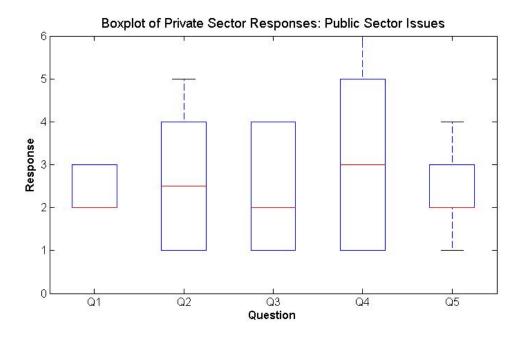



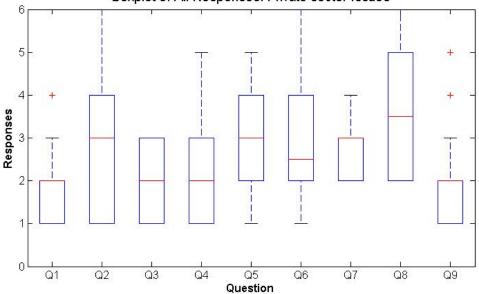

Figure 19-11: Box plot of Responses from Public sector respondents: Issues in the Public sector





# 19.3 The Private Sector: Delphi sensitivity analysis

.


In order to save space in the box plots as well as in the tables, the questions in the survey

is reference to the question number. The following table serves as a reference for the coding of the issue categories.

Table 19-16: Numbering of survey questions for Public sector

| Issue Category                                                                             |
|--------------------------------------------------------------------------------------------|
| Q1. Lack of research culture in South Africa                                               |
| Q2. Lack of fiscal incentives from government to foster R&D culture in companies           |
| Q3. Lack of funding of R&D                                                                 |
| Q4. Inability to retain and rejuvenate the researchers stock in the system                 |
| Q5. Deterioration of quality (skill level) of human resources working in R&D               |
| Q6. Current BEE policies will have a negative effect on South Africa's future R&D capacity |
| Q7. Poor linkages                                                                          |
| Q8. Lack of direction and leadership in science policy                                     |
| Q9. Restrictive communication infrastructure                                               |

The following box plot is a visual representation of the responses received from respondents from all three sectors.



Boxplot of All Responses: Private sector Issues

Figure 19-13: Box plot of Responses from all respondents: Issues in the Private sector

The following tables summarise the analysis done on the set of responses from all respondents.

|                | Q1   | Q2   | Q3   | Q4   | Q5   | Q6   | Q7   | Q8   | Q9   |
|----------------|------|------|------|------|------|------|------|------|------|
| Mean           | 2    | 3    | 2    | 2    | 3    | 3    | 3    | 4    | 2    |
| Median         | 2    | 3    | 2    | 2    | 3    | 3    | 3    | 4    | 2    |
| St. Dev        | 0.86 | 1.64 | 0.83 | 1.20 | 1.30 | 1.59 | 0.63 | 1.49 | 1.21 |
| Upper Quartile | 4    | 6    | 3    | 5    | 5    | 6    | 4    | 6    | 5    |

 Table 19-17: Summary of responses from all respondents: Issues in Private Sector

# University of Pretoria etd - Grobbelaar, S S (2007)

# R&D in the National System of Innovation: a System Dynamics Model

| Lower Quartile | 1 | 1 | 1.25 | 1.25 | 2 | 2 | 2 | 2.25 | 1 |
|----------------|---|---|------|------|---|---|---|------|---|
| Maximum        | 4 | 6 | 3    | 5    | 5 | 6 | 4 | 6    | 5 |
| Minimum        | 1 | 1 | 1    | 1    | 1 | 1 | 2 | 2    | 1 |

# Table 19-18: Summary of responses from HES respondents: Issues in Private Sector

|                | Q1   | Q2   | Q3   | Q4   | Q5   | Q6   | Q7   | Q8   | Q9   |
|----------------|------|------|------|------|------|------|------|------|------|
| Mean           | 2    | 1    | 2    | 2    | 2    | 2    | 3    | 3    | 2    |
| Median         | 2    | 1    | 2    | 2    | 2    | 2    | 3    | 3    | 2    |
| St. Dev        | 0.58 | 0.50 | 0.96 | 0.50 | 0.82 | 0.58 | 0.82 | 0.58 | 1.41 |
| Upper Quartile | 2    | 2    | 3    | 2    | 3    | 2    | 4    | 3    | 4    |
| Lower Quartile | 1    | 1    | 1    | 1.75 | 1.75 | 1    | 2.75 | 2    | 1    |
| Maximum        | 2    | 2    | 3    | 2    | 3    | 2    | 4    | 3    | 4    |
| Minimum        | 1    | 1    | 1    | 1    | 1    | 1    | 2    | 2    | 1    |

# Table 19-19: Summary of responses from Public sector respondents: Issues in Private Sector

|                | Q1 | Q2   | Q3  | Q4 | Q5  | Q6   | Q7  | Q8   | Q9 |
|----------------|----|------|-----|----|-----|------|-----|------|----|
| Mean           | 2  | 5    | 3   | 2  | 4   | 4    | 2   | 5    | 2  |
| Median         | 2  | 5    | 3   | 2  | 4   | 4    | 2   | 5    | 2  |
| St. Dev        | 0  | 1.3  | 0.6 | 1  | 0.6 | 1.3  | 0.5 | 1.3  | 0  |
| Upper Quartile | 2  | 6    | 3   | 3  | 4   | 5    | 3   | 6    | 2  |
| Lower Quartile | 2  | 3.75 | 2   | 1  | 3   | 2.75 | 2   | 3.75 | 2  |
| Maximum        | 2  | 6    | 3   | 3  | 4   | 5    | 3   | 6    | 2  |
| Minimum        | 2  | 3    | 2   | 1  | 3   | 2    | 2   | 3    | 2  |

# Table 19-20: Summary of responses from Private sector respondents: Issues in Private Sector

|                | Q1  | Q2  | Q3  | Q4  | Q5  | Q6  | Q7  | Q8  | Q9  |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Mean           | 2.0 | 2.5 | 2.0 | 3.0 | 3.3 | 3.5 | 2.7 | 4.0 | 2.2 |
| Median         | 1.5 | 3.0 | 2.0 | 3.0 | 3.5 | 4.0 | 3.0 | 4.5 | 1.5 |
| St. Dev        | 1.3 | 1.2 | 0.9 | 1.4 | 1.6 | 1.8 | 0.5 | 1.7 | 1.6 |
| Upper Quartile | 4.0 | 4.0 | 3.0 | 5.0 | 5.0 | 6.0 | 3.0 | 6.0 | 5.0 |
| Lower Quartile | 1.0 | 1.5 | 1.3 | 2.3 | 2.3 | 2.5 | 2.3 | 2.5 | 1.0 |
| Maximum        | 4   | 4   | 3   | 5   | 5   | 6   | 3   | 6   | 5   |
| Minimum        | 1   | 1   | 1   | 1   | 1   | 1   | 2   | 2   | 1   |

The following table summarises a comparison of means between the three sectors surveyed. The mean is rounded as to give a better sense which main category each group opinion fall into.

|         | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 |
|---------|----|----|----|----|----|----|----|----|----|
| Mean    | 2  | 3  | 2  | 2  | 3  | 3  | 3  | 4  | 2  |
| HES     | 2  | 1  | 2  | 2  | 2  | 2  | 3  | 3  | 2  |
| PUB     | 2  | 5  | 3  | 2  | 4  | 4  | 2  | 5  | 2  |
| Private | 2  | 3  | 2  | 3  | 3  | 4  | 3  | 4  | 2  |

# Table 19-21: Comparison of means (Private sector issues)

University of Pretoria etd – Grobbelaar, S S (2007)

**Comparison of Means (Private Sector Issues)** 6 5 4 Response - All 3 HES 2 PUB Private 1 0 Q2 Q3 Q6 Q1 Q4 Q5 Q7 Q8 Q9 Question

R&D in the National System of Innovation: a System Dynamics Model

Figure 19-14: Graphical representation of the Comparison of Means (Private Sector Issues)

The following table summarises the comparison of medians between the three sectors surveyed.

|         | Q1  | Q2  | Q3  | Q4  | Q5  | Q6  | Q7  | Q8  | Q9  |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Median  | 2   | 3   | 2   | 2   | 3   | 3   | 3   | 4   | 2   |
| HES     | 2   | 1   | 2   | 2   | 2   | 2   | 3   | 3   | 2   |
| PUB     | 2   | 5   | 3   | 2   | 4   | 4   | 2   | 5   | 2   |
| Private | 1.5 | 3.0 | 2.0 | 3.0 | 3.5 | 4.0 | 3.0 | 4.5 | 1.5 |

 Table 19-22: Comparison of Medians (Private sector Issues)

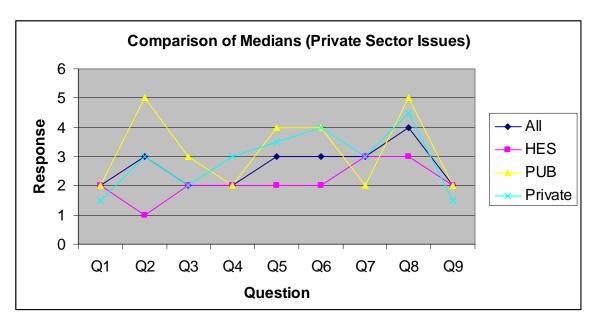



Figure 19-15: Graphical representation of the Comparison of Medians (Private Sector Issues)

For the Private sector analysis, the HES respondents in some cases seem to rank the issues as more serious than the other two groupings. However this trend was not evident in the analysis of the other two sectors.

Q2, Q5, and Q6 all show larger differences between the three sectors in terms of the Median value. From this we have to investigate the possibility that homogeneity in the responses from the three sectors could be skewing the results.

|         | Q1   | Q2   | Q3   | Q4   | Q5   | Q6   | Q7   | Q8   | Q9   |
|---------|------|------|------|------|------|------|------|------|------|
| Overall | 0.86 | 1.64 | 0.83 | 1.20 | 1.30 | 1.59 | 0.63 | 1.49 | 1.21 |
| HES     | 0.58 | 0.50 | 0.96 | 0.50 | 0.82 | 0.58 | 0.82 | 0.58 | 1.41 |
| PUB     | 0    | 1.3  | 0.6  | 1    | 0.6  | 1.3  | 0.5  | 1.3  | 0    |
| Private | 1.3  | 1.2  | 0.9  | 1.4  | 1.6  | 1.8  | 0.5  | 1.7  | 1.6  |

 Table 19-23: Summary of St.DEv (Private sector issues)

We however find that the resulting high standard deviation for the whole response set is also present within the response sets from the three sectors for these three questions. The high Standard Deviation for Q2, Q5 and Q6 indicates a low overall level of consensus within the groups. We can therefore conclude that the high overall standard deviation is not a low level of consensus due to homogeneity on responses from the three sectors. We can therefore conclude that for the purpose of this study we can be satisfied that the responses are heterogeneous for this sector.

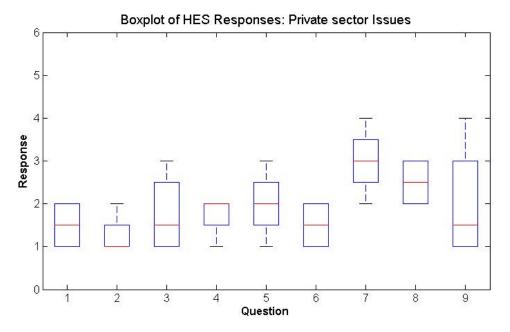



Figure 19-16: Box plot of Responses from HES respondents: Issues in the Private sector

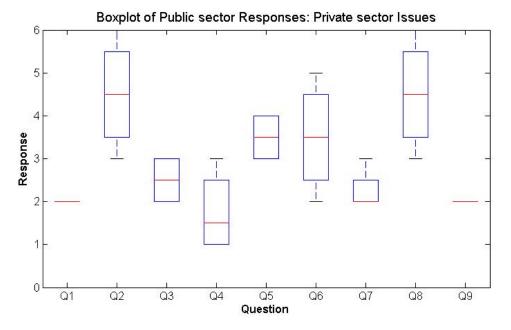



Figure 19-17: Box plot of Responses from Public sector respondents: Issues in the Private sector




Figure 19-18: Box plot of Responses from Private sector respondents: Issues in the Private sector