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Abstract

Thinner walled (about 6 mm thickness) line pipe steels for smaller diameter pipelines
tend to have a relatively high ratio of yield strength to ultimate tensile strength
(YS/UTS) of 0.93 or higher. This study focused on the effect of the microstructures,
prior deformation in the austenite, cooling rate, coiling simulation and the additions of
some micro-alloying elements on the YS/UTS ratio of a currently produced Nb-Ti and
some experimental Nb-Ti-Mo line pipe steels. The experimental research included the
design of the chemical compositions for five experimental alloys, simulation of the
controlled hot rolling process, the determination of the strain-free as well as the strain
affected continuous cooling transformation (CCT) diagrams, phase identification and
quantitative assessment of the microstructures by optical microscopy, scanning
electron microscopy (SEM) and transmission electron microscopy (TEM), the latter

especially on shadowed carbon extraction replicas and, tensile tests etc.

This study indicated that the transformed microstructures of the alloys were a mixture
of acicular ferrite plus polygonal ferrite and the volume fraction of acicular ferrite

varied from 46.3 to 55.4%. Molybdenum additions did not markedly affect the




University of Pretoria etd — Tang, Z (2007)

University of Pretoria — Z Tang (2006)

formation of acicular ferrite after hot rolling and rapid cooling. The microstructural
details of the acicular ferrite were successfully revealed by TEM on shadowed
extraction replicas. This technique was useful to distinguish the acicular ferrite from
the polygonal ferrite through a more smooth surface relief after etching in 2% Nital of
the little etched polygonal ferrite whereas the deeper etched acicular ferrite showed
parallel sets of internal striations. This made it possible to measure the volume
fraction of acicular ferrite in the mixed microstructures of acicular ferrite and

polygonal ferrite.

The continuous cooling transformation behaviors of two alloys with no molybdenum
and with 0.22% Mo were constructed with no prior deformation as well as with prior
deformation of the austenite. Molybdenum additions shifted the strain-free CCT
diagram towards longer times and expanded the region in which acicular ferrite
formed from a cooling rate range of 0.3 to 5 °Cs™ (Mo-free) to 0.1 to 15 °Cs™ (with
0.22% Mo). However, its effect was significantly overshadowed by prior deformation
in the austenite. The strain affected CCT diagrams for both alloys appear to be similar.
The prior deformation had a stronger effect on the CCT diagram than molybdenum
additions and promoted acicular ferrite formation, whereas it suppressed the
formation of bainite. The prior deformation had two effects in acicular ferrite
formation: it promoted nucleation and suppressed its growth and, therefore, resulted

in a finer overall grain size.

The effect on the YS/UTS ratio at various cooling rates ranging from 1 to 34, 51, 54
or 60 °Cs™ was investigated in three cases: (i) without prior deformation and coiling
simulation, (ii) with no prior deformation but with coiling simulation at 575 and 600
°C and, (iii) with prior deformation of 33% reduction in the austenite below the Ty,
followed by coiling simulation at 575 °C for 1 hour. It was determined that the
YS/UTS ratio was a function of the microstructure and cooling rate in the case
(treatment (1)) without any coiling simulation and prior deformation. The coarse
bainite or acicular ferrite, which was formed at high cooling rates, raised the YS/UTS
ratio under conditions of no deformation prior to the transformation. The yield

strength and ultimate tensile strength also increased with an increase in cooling rate.
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With coiling conditions (treatment (ii)), the ratio was not sensitive to the cooling rate
or the microstructure for the reference Mo-free alloy #6 because the coiling allows
recovery of dislocations, thereby decreasing the difference in dislocation density that
had arisen between a low and a high cooling rate. The YS/UTS ratio ranged from 0.75
to 0.8 after a simulated coiling at 575 °C and from 0.76 to 0.78 after a coiling

simulation at 600 °C.

Prior deformation (treatment (iii)) in the austenite raised the ratio from 0.81 to 0.86.
However, the YS/UTS ratio was not sensitive to cooling rate after coiling at 575 °C
for 1 hour in the cases with and without prior deformation in the austenite.
Deformation with a 33% reduction below the Ty, prior to the transformation increased
the yield strength more than the ultimate tensile strength, leading to a high YS/UTS
ratio that ranged from 0.81 to 0.86. The prior deformation, therefore, had a stronger

effect on the YS/UTS ratio than the microstructure.

Key words:
line pipe steel, acicular ferrite, microstructure, ratio of yield strength to ultimate
tensile strength,, Nb-Ti micro alloyed steel, controlled hot rolling process, CCT

diagram, non-recrystallisation temperature, nucleation of acicular ferrite
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Figure 7.19 The mean flow stress versus inverse test temperature of alloy #6 at a
constant pass strain of 0.20 and inter-pass time of 8 s but at a series of strain rates
from 0.1 to 2.22 5™

Figure.7.20 Strain rate (&) versus the non-recrystallisation temperature for alloy #6.
pass strain € = 0.2, inter-pass time t;,=8 s.

Figure 7.21 The optical micrographs (etched in 2% Nital) of the Mo-free alloy #6 and
with no prior deformation after continuous cooling. PF-polygonal ferrite, P-pearlite
and AF-acicular ferrite microstructure.

Figure 7.22 The CCT diagram of the Mo-free alloy #6 and no prior deformation. PF-
polygonal ferrite, P-pearlite, AF-acicular ferrite microstriucture and B-bainite.

Figure 7.23 The optical micrographs (etched in 2% Nital) for alloy #5 (with 0.22%
Mo) and with no prior deformation after continuous cooling. PF-polygonal ferrite,
P-pearlite and AF-acicular ferrite microstructure.

Figure 7.24 The CCT diagram of alloy #5 (with 0.22% Mo) and with no prior
deformation. PF-polygonal ferrite, P-pearlite, AF-acicular ferrite microstructure and
B-bainite.

Figure 7.25 The optical micrographs (etched in 2% Nital) of the Mo-free alloy #6
after compression testing with a single pass strain of 0.6 at 860 °C (which is below
the Tyy), a strain rate of 0.5 s and cooling down to room temperature at different
cooling rates. PF-polygonal ferrite, P-pearlite and AF-acicular ferrite microstructure.

Figure 7.26 The strain affected CCT diagram of the Mo-free alloy #6 after a single
pass compression strain of 0.6 at 860 °C with a strain rate of 0.5 s™'. PF-polygonal

ferrite, P-pearlite and AF-acicular ferrite microstructure.
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Figure 7.27 The optical micrographs (etched in 2% Nital) of alloy #5 (with 0.22% Mo)
after a single pass compression of 0.6 strain at 860 °C and at a strain rate of 0.5 s™
and then cooling at different rates.

Figure 7.28 The strain affected CCT diagram of alloy #5 (with 0.22% Mo) after a
single pass compression of 0.6 strain at 860 °C at a strain rate of 0.5 s '. PF-
polygonal ferrite, P-pearlite and AF-acicular ferrite microstructure.

Figure 7.29 The optical microstructure, etched in a 2% Nital solution for 5 seconds,
after a rapid cooling rate of 47 °Cs™ for the experimental alloys (a) #1, (b) #2, (c)
#3, (d) #4, (e) #5 and, (f) the reference Mo-free alloy #6 cooled at a rate of 39 °Cs™.

Figure 7.30 The SEM micrographs after a rapid cooling rate of 47 °Cs™ (etched in 2%
Nital for 5 seconds) for the experimental alloys (a) #1, (¢) #2, (c) #3, (d) #4, (e) #5
and, (f) the reference alloy #6 cooled at a rat of 39 °Cs™.

Figure 7.31 The micrographs in the as-rolled condition by high resolution SEM after a
rapid cooling rate of 47 °Cs™' (etched in 2% Nital for 5 seconds) for the
experimental alloys (a) #1, (c) #2, (c) #3, (d) #4 and, (e) #5.

Figure 7.32 The high resolution SEM micrographs in the as-rolled condition after a
rapid cooling rate of 47 °Cs™ for the experimental alloy #1 etched in 2% Nital for (a)
10seconds, (c) 15 seconds, (¢) 30 seconds, (d) 60 seconds and, (e) 120 seconds.

Figure 7.33 TEM micrographs of carbon extraction replicas without shadowing for
the reference alloy #6 after hot rolling and rapid cooling at a rate of 39 °Cs™.

Figure 7.34 The TEM micrograph from a shadowed replica of the Mo-free alloy #6
after hot rolling and rapid cooling at a rate of 39 °Cs™'. (AF-acicular ferrite, PF-
polygonal ferrite and, GB-grain boundary).

Figure 7.35 TEM micrographs from shadowed replicas of the as-hot rolled and
rapidly cooled (at a rate of 47 °Cs™) experimental alloys (a) #1, (b) #2, (c) #3, (d)
#4 and, (e) #5 (AF-acicular ferrite, PF- polygonal ferrite and, GB-grain boundary).

Figure 8.1 Thin foil TEM micrographs of alloy #6 (Mo-free) after a rapid cooling rate
of 39 °Cs™ after hot rolling, (a) polygonal ferrite + laths, (b) polygonal ferrite with
dislocations and, (c),(d) laths with dislocations. PF-polygonal ferrite, AF-acicular
ferrite, A and B-dislocations in polygonal ferrite and an acicular ferrite ,
respectively.

Figure 8.2 Dislocations within the polygonal ferrite in thin foil of the Mo-free alloy
#6. The area M shows a high density of dislocations possibly being emitted from

the moving PF interface while the central regions L of the PF have less dislocations.
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Figure 8.3 Polygonal ferrite in a TEM thin foil micrograph from the experimental
alloy #1 after a rapid cooling rate of 47 °Cs™ after the hot rolling process.

Figure 8.4 TEM thin foil micrograph with laths from alloy #1 after a rapid cooling
rate of 47 °Cs™ after the hot rolling process.

Figure 8.5 TEM thin foil micrograph of the lath plus PF structure in alloy #1 after a
rapid cooling rate of 47 °Cs™" after the hot rolling process.

Figure 8.6 Thin foil TEM micrographs of the lath structure in alloy #2 after a rapid
cooling rate of 47 °Cs™ after the rolling process.

Figure 8.7 Thin foil TEM composite micrographs of parallel laths of an acicular
ferrite in alloy #2 after a rapid cooling rate of 47 °Cs™ after the hot rolling process.
Figure 8.8 Polygonal ferrite (with a few isolated laths) in alloy #3 with a rapid cooling

rate of 47 °Cs™ after the hot rolling process.

Figure 8.9 The parallel lath morphology in alloy #3 after a rapid cooling rate of 47
°Cs™ after the hot rolling process.

Figure 8.10 Thin foil TEM micrographs of a mixture of polygonal ferrite and an
acicular ferrite in alloy #3 after a rapid cooling rate of 47 °Cs™ after the hot rolling
process.

Figure 8.11 Thin foil TEM composite micrographs of the acicular ferrite in alloy #4
after a rapid cooling rate of 47 °Cs™ after the hot rolling process.

Figure 8.12 Thin foil TEM micrographs from alloy #5 with 0.22% Mo (a) polygonal
ferrite, (b) and (¢) acicular ferrite with interwoven laths.

Figure 8.13 Parallel lath morphology in a colony in alloy #3 after rapid cooling at a
rate of 47 °Cs™ after the hot rolling process.

Figure 8.14 Interwoven arrangement between lath colonies in alloy #4 after a fast
cooling rate of 47 °Cs™ after the hot rolling process.

Figure 8.15 Interwoven laths micrographs in alloy #3 after fast cooling of 47 °Cs™
after hot rolling process.

Figure 8.16 Acicular ferrite morphology in alloy #5 after fast cooling of 47°Cs™ after
the hot rolling process.

Figure 8.17 (a) TEM image of acicular ferrite and a large non-metallic inclusion in
alloy #5 after a rapid cooling rate of 47 °Cs™ after the hot rolling, (b) EDS analysis
on the inclusion in this figure (a).

Figure 8.18 Laths nucleated on non-metallic inclusions (a) in alloy #1 after a rapid

cooling rate of 47 °Cs™" after the hot rolling, (b) in alloy #3 after a rapid cooling rate
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of 40 °Cs™ from 980 °C down to room temperature without deformation, (c) EDS
analysis on the inclusion in this figure (a), (d) and (e) EDS analysis on the
inclusions A and B in this figure (b), respectively.

Figure 8.19 (a) Nucleation of interwoven laths of acicular ferrite in sample #AF3F of
alloy #3 after a cooling rate of 20 °Cs™ from 980 °C down to room temperature
without deformation, (b) EDS analysis of red peak was from on the inclusion
indicated by an arrow in this figure (a), while blue peak was from the matrix steel.

Figure 8.20 (a) Non-metallic inclusion and acicular ferrite in alloy #3 after a rapid
cooling rate of 47 °Cs™ after the hot rolling, (b) EDS analysis on the inclusion
indicated by an arrow in this figure (a).

Figure 9.1 The yield strength of the reference Mo-free alloy #6 as a function of the
cooling rate from 980 °C with no prior deformation before the transformation and
with no coiling simulation.

Figure 9.2 The ultimate tensile strength of the reference alloy #6 as a function of
cooling rate from 980 °C with no prior deformation before the transformation and
with no coiling simulation.

Figure 9.3 The YS/UTS ratio of the reference alloy #6 as a function of cooling rate
from 980 °C with no prior deformation before the transformation and with no
coiling simulation. PF-polygonal ferrite, AF-acicular ferrite and P-pearlite.

Figure 9.4 The yield strength of alloy #3 as a function of cooling rate from 980 °C
under conditions of no prior deformation to the transformation and no coiling
simulation.

Figure 9.5 The ultimate tensile strength of alloy #3 as a function of cooling rate from
980 °C under conditions of no prior deformation to the transformation and no
coiling simulation.

Figure 9.6 The YS/UTS of alloy #3 as a function of cooling rate from 980 °C
underconditions of no prior deformation to the transformation and no coiling
simulation.PF-polygonal ferrite, AF-acicular ferrite, B-bainite and P-pearlite

Figure 9.7 The yield strength of alloy #6 as a function of the cooling rate from 980 °C
to 600 °C under conditions of no prior deformation to the transformation but with a
coiling simulation at 600 °C for 1 hour.

Figure 9.8 The ultimate tensile strength of alloy #6 as a function of cooling rate from
980 °C to 600 °C under conditions of no prior deformation to the transformation but

with a coiling simulation at 600 °C for 1 hour.
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Figure 9.9 The YS/UTS ratio of alloy #6 as a function of the cooling from 980 °C to
600 °C under conditions of no prior deformation to the transformation but with a
coiling simulation at 600°C for 1 hour. PF-polygonal ferrite, AF-acicular ferrite, B-
bainite and P-pearlite.

Figure 9.10 The yield strength of alloy #6 as a function of the cooling rate from 980
°C to 575 °C under conditions of no prior deformation to the transformation but
with a coiling simulation at 575 °C for 1 hour.

Figure 9.11 The ultimate tensile strength of alloy #6 as a function of the cooling rate
from 980 °C to 575 °C under conditions of no prior deformation to the
transformation but with a coiling simulation at 575 °C for 1 hour.

Figure 9.12 The YS/UTS ratio alloy #6 as a function of the cooling rate from 980 °C
to 575 °C under conditions of no prior deformation to the transformation but with a
coiling simulation at 575 °C for 1 hour. PF-polygonal ferrite, AF-acicular ferrite, B-
bainite and P-pearlite.

Figure 9.13 Effect of the cooling rate on the yield strength of the reference alloy #6
after prior deformation of 33 % reduction in the austenite below the T, cooling to
575 °C at different cooling rates and simulation of the coiling at 575 °C for 1 hour.

Figure 9.14 Effect of the cooling rate on the ultimate tensile strength of the reference
alloy #6 after prior deformation of 33 % reduction in the austenite below the Ty,
cooling to 575 °C at different cooling rates and simulation the coiling at 575 °C for
1 hour.

Figure 9.15 Effect of the cooling rate on the YS/UTS ratio of the reference alloy #6
after prior deformation of 33 % reduction in the austenite below the T, cooling to
575 °C at different cooling rates and simulation the coiling at 575 °C for 1 hour. PF-
polygonal ferrite, AF-acicular ferrite and P-pearlite.

Figure 9.16 Relationship between the YS/UTS ratio (longitudinal specimens) and the
measured volume fraction of acicular ferrite in the experimental alloys #1 to #5
after laboratory hot rolling with an 86% reduction in total and rapid cooling at a

rate of 47 °Cs™.
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in alloy #6
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Table 7.3 Intercept length austenite grain size, in um, versus reheating temperature
and soaking time of alloy #6

Table 7.4 The non-recrystallisation temperature and pass strains of alloy #6

Table 7.5 The non-recrystallisation temperature of alloy #6 as affected by different
inter-pass times

Table 7.6 The non-recrystallisation temperature and strain rates of alloy #6

Table 7.7 The laboratory hot rolling parameters for alloy #1

Table 7.8 Measured results of volume fraction of acicular ferrite

Table 7.9 Mechanical properties of the experimental alloys

Table 7.10 Mechanical properties of samples #A 124 of the Mo-free alloy #6 with no
coiling and no prior deformation

Table 7.11 Mechanical properties of samples #AF3F of alloy #3 (with 0.09% Mo)

and with no coiling and no prior deformation
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Table 7.12 Mechanical properties of samples #A113 of the Mo-free alloy #6 with 60
min coiling at 600 °C without prior deformation

Table 7.13 Mechanical properties of samples #B113 of alloy #6 with 60 min coiling at
575 °C without prior deformation

Table 7.14 Mechanical properties of samples #TENO06 for the Mo-free alloy #6 with
60 min coiling at 575 °C and a 33% prior reduction below the T,

- xxii -



	FRONT
	Title page
	Dedication
	Acknowledgments
	Abstract
	Table of Contents
	List of figures:
	List of tables:

	Chapters 1-3
	Chapters 4-6
	Chapter 7
	Chapter 8
	Chapters 9-11
	References
	Appendices

