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ABSTRACT

The aim of this study was to arrive at a fundamental understanding of kimberlite weathering
and of factors which affect the rate and extent of weathering. Weathering was evaluated by
measuring the change in size distribution after immersing crushed kimberlite in solutions of
various compositions. Reproducibility of the measurements was found to be good, with the
cumulative mass passing a given size differing by 7% or less, as tested for various

weathering conditions.

Kimberlite mineralogy, specifically the swelling clay content, was found to play a central role:
kimberlite ores containing no swelling clay were not prone to weathering under any of the

conditions tested.

The cation exchange capacity (CEC) correlates well with the swelling clay content and with
the weathering behaviour. The cation exchange capacity may be used in conjunction with the
swelling clay content, as a predictor of possible kimberlite behaviour; however, given the
relative complexity and cost of measuring swelling clay content (by X-ray diffraction), the CEC

is the preferred parameter for practical use.

Cations in the weathering solution have a strong effect on kimberlite weathering; the strength
of the effect followed the series Cu®* > Li* > Fe** > Ca®* > Fe*" > Mg®*, whereas K* and NH,"

stabilised the kimberlite somewhat against weathering. This sequence was in reasonable
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correlation with the ionic potential (ratio of valency to ionic radius), but with exceptionally
strong weathering effects of cu®, and (to a lesser extent) of Li* and Fe®*. The strong effect of
the latter group of cations may be related to their tendency to adsorb onto other crystal sites
in addition to the interlayer — the associated change in surface energy can change the

fracture behaviour of the kimberlite.

Measurement of the layer spacing of the swelling clay (by X-ray diffraction) showed no
correlation between the weathering effect of a cation and the associated thickness of the
interlayer. For solutions of cupric ions, the identity of the anion (chloride or sulphate) has little
effect on weathering. The size of the crushed kimberlite ore similarly has little effect on the

relative extent of size degradation by weathering.

The concentration of cupric ions affects weathering, as does the weathering time — although
85% of the weathering caused by 30 days' exposure was found to occur within the first 24
hours. Increasing the temperature to 40°C (in a magnesium chloride solution) also increased
weathering strongly. The kinetics of exchange of cuprous and potassium ions was measured
(for two different kimberlites); the apparent reaction order (with respect to the concentration of
exchanging cations in solution) varied between 1 and 3.5, and exchange of potassium was

more rapid.

This work has practical implications for in-plant processing of kimberlite, possible alternative
kimberlite processing routes which eliminate one or more crushing steps, and for the stability

of mine tunnels which pass through kimberlite.

KEYWORDS: Kimberlite, weathering, swelling, mineralogy, clay minerals, accelerated

weathering, cation exchange
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standard test method for 0 and 15 days.

Figure 34. Weathering results from a 1.5 kg (— 22.4 + 19 mm) Geluk Wes ore sample weathered in
0.2 M sodium chloride, acidified sodium chloride at low pH (~ 2.5), aluminium chloride and lithium
chloride solutions, all for 6 days.

Figure 35. Visual appearance of Geluk Wes ore (initial size -22.4 + 19 mm) weathered in sodium
chloride solution (0.2 M) for 6 days.

Figure 36. Visual appearance of Geluk Wes ore (initial size - 22.4 + 19 mm) weathered in aluminium
chloride solution (0.2 M) for 6 days.

Figure 37. Visual appearance of Geluk Wes ore (initial size -22.4 + 19 mm) weathered in lithium
chloride solution (0.2 M) for 6 days.

Figure 38. Weathering results from a 1.5 kg (— 26.5 + 22.4 mm) Dutoitspan ore sample weathered for
6 days in a distilled water medium.

Figure 39. Visual appearance of Dutoitspan ore (initial size - 26.5 + 22.4 mm) weathered in
potassium chloride solution (0.4 M) for 6 days.

Figure 40. Visual appearance of Dutoitspan ore (initial size - 26.5 + 22.4 mm) weathered in lithium
chloride solution (0.4 M) for 6 days.

Figure 41. Visual appearance of Dutoitspan ore (initial size - 26.5 + 22.4 mm) weathered in ammonia
chloride solution (0.4 M) for 6 days.

Figure 42. Visual appearance of Dutoitspan ore (initial size - 26.5 + 22.4 mm) weathered in sodium

chloride solution (0.4 M) for 6 days.
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Figure 43. Results of the investigation on the influence of monovalent cations on the weathering
behaviour of Dutoitspan ore. Tests were done utilising 1.5 kg (initial size — 26.5 + 22.4 mm) ore
weathered in a 0.4 M cation solution for 6 days.

Figure 44. Visual appearance of Dutoitspan ore (initial size - 26.5 + 22.4 mm) weathered in calcium
chloride solution (0.4 M) for 6 days.

Figure 45. Visual appearance of Dutoitspan ore (initial size - 26.5 + 22.4 mm) weathered in cupric
chloride solution (0.4 M) for 6 days.

Figure 46. Visual appearance of Dutoitspan ore (initial size - 26.5 + 22.4 mm) weathered in ferrous
chloride solution (0.4 M) for 6 days.

Figure 47. Visual appearance of Dutoitspan ore (initial size - 26.5 + 22.4 mm) weathered in
magnesium chloride solution (0.4 M) for 6 days.

Figure 48. Results of the investigation on the influence of divalent cations on the weathering
behaviour. Tests were done utilising 1.5 kg (initial size — 26.5 + 22.4 mm) Dutoitspan ore weathered
in 0.4 M cation solution for 6 days.

Figure 49. Results of the investigation on the influence of trivalent cations on the weathering
behaviour. Tests were done utilising 1.5 kg (initial size — 26.5 + 22.4 mm) Dutoitspan ore weathered
in a 0.4 M cation solution for 6 days.

Figure 50. Comparing the influence of different charged cations on weathering behaviour. The tests
were done on a 1.5 kg (- 26.5 + 22.4 mm) sample weathered for 6 days in a 0.4 M solution.

Figure 51. Weathering results of differently charged cations as a function of ionic potential.
Weathering tests were performed with 300 g of — 16 + 13.2 mm Dutoitspan kimberlite, weathered in a
0.5 M cation solution for 6 days.

Figure 52. Weathering results from a 1.5 kg (initial size — 26.5 + 22.4 mm) Dutoitspan ore sample
weathered in a 0.2 M magnesium chloride solution for 0, 2, 6 and 15 days.

Figure 53. Summarised weathering results from a 1.5 kg (initial size — 26.5 + 22.4 mm) Dutoitspan
ore sample weathered in a 0.2 M magnesium chloride solution for 0, 2, 6 and 15 days (from figure 52).
Figure 54. Visual appearance of Dutoitspan ore (initial size - 26.5 + 22.4 mm) weathered in cupric
sulphate solution (0.2 M) for 12 hours.

Figure 55. Visual appearance of Dutoitspan ore (initial size - 26.5 + 22.4 mm) weathered in cupric
sulphate solution (0.2 M) for 24 hours.

Figure 56. Visual appearance of Dutoitspan ore (initial size - 26.5 + 22.4 mm) weathered in cupric
sulphate solution (0.2 M) for 6 days (144 hours).

Figure 57. Weathering results from a 1.5 kg (initial size — 26.5 + 22.4 mm) Dutoitspan ore sample
weathered in a 0.2 M cupric sulphate solution for 6, 12, 24 and 144 hours (6 days).

Figure 58. Results from the investigation of the time dependence of kimberlite weathering. Drawn
from figure 57 as cumulative % passing 17.5 mm.

Figure 59. Weathering results from a 300 g (initial size — 16 + 13.2 mm) Dutoitspan ore sample

weathered in a 0.5 M cupric sulphate solution for up to 30 days.
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Figure 60. Results from the investigation of the time dependence of kimberlite weathering. Drawn
from figure 59 as cumulative % passing 10.3 mm.

Figure 61. Visual appearance of Dutoitspan ore (initial size -26.5 + 22.4 mm) weathered in a 0.005 M
cupric sulphate medium for 6 days.

Figure 62. Visual appearance of Dutoitspan ore (initial size -26.5 + 22.4 mm) weathered in a 0.1 M
cupric sulphate medium for 6 days.

Figure 63. Visual appearance of Dutoitspan ore (initial size -26.5 + 22.4 mm) weathered in a 0.4 M
cupric sulphate media for 6 days.

Figure 64. Results of the investigation to determine the influence of cation concentration. The tests
were conducted on 1.5 kg of —=26.5 +22.4 mm Dutoitspan ore. Copper sulphate concentrations were
0.005, 0.025, 0.05, 0.1, 0.2 and 0.4 M. The weathering time was constant at 6 days.

Figure 65. Weathering as a function of cation (cupric) concentration. The weathering is reported as
the cumulative percent passing 14.2 mm from figure 64.

Figure 66. Results of the investigation of the influence of temperature on the weathering behaviour.
The results include the standard test at room temperature and the standard test at 40 °C. The
weathering tests in a 0.2 M MgCl, solution for 6 days at room temperature and 40 °C are also shown.
All the tests were done on a 1.5 kg (initial size — 19 + 16 mm) Dutoitspan kimberlite sample.

Figure 67. Results of tests to determine the influence of the type of anion on weathering. Tests
conducted on a 1.5 kg -26.5 + 22.4 mm Dutoitspan ore sample at 0.3 M cupric chloride and cupric
sulphate solution for 6 days.

Figure 68. Results of the investigation to determine the influence of particle size. The tests were
conducted in 0.2 M magnesium chloride solution for 6 days. The particle sizes used were —26.5 + 22.4,
-224+ 19, -19 + 16 and -16 + 13.2 mm, using Dutoitspan ore.

Figure 69. Results from the investigation of particle size. Comparison of the size distribution curves
for the unweathered and weathered states at 70 % of the starting material size.

Figure 70. Investigation of the influence of milling on weathering tests. Weathering tests were
performed in a 0.2 M cupric sulphate solution (initial size - 26.5 + 22.4 mm) Dutoitspan ore for 12
hours and the unmilled and milled sample product size distributions compared.

Figure 71. Investigation of the influence of potassium on weathering tests. Weathering tests were
performed on a 250 - 300 g -16 + 13.2 mm Dutoitspan kimberlite in a 0.5 M potassium solution for 8,
48 and 144 hours.

Figure 72. Investigation of the influence of copper on weathering tests. Weathering tests were
performed on a 250 - 300 g -16 + 13.2 mm Dutoitspan kimberlite in a 0.5 M copper solution for up to
15 days.

Figure 73. Comparison of the effect of copper (swelling cation) on the left and potassium (stabilising
cation) on the right and their effect on the weathering of kimberlite (photos taken after 6 days for
potassium and 15 days for copper medium).

Figure 74. Venetia K1 Hypabyssal North East kimberlite unweathered (left) compared to the
weathered product (right). Weathering was done in a 0.05 M cupric sulphate solution for 6 days.
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Figure 75. Venetia K1 Hypabyssal South kimberlite unweathered (left) compared to the weathered
product (vight). Weathering was done in a 0.05 M cupric sulphate solution for 6 days.

Figure 76. Venetia K1 TKB East kimberlite unweathered (left) compared to the weathered product
(right). Weathering was done in a 0.05 M cupric sulphate solution for 6 days.

Figure 77. Venetia K2 South kimberlite unweathered (left) compared to the weathered product (right).
Weathering was done in a 0.05 M cupric sulphate solution for 6 days.

Figure 78. Venetia K2 North East kimberlite unweathered (left) compared to the weathered product
(right). Weathering was done in a 0.05 M cupric sulphate solution for 6 days.

Figure 79. Venetia K2 West kimberlite unweathered (left) compared to the weathered product (right).
Weathering was done in a 0.05 M cupric sulphate solution for 6 days.

Figure 80. Venetia K8 unweathered (left) compared to the weathered product (right). Weathering was
done in a 0.05 M cupric sulphate solution for 6 days.

Figure 81. Venetia Red kimberlite unweathered (left) compared to the weathered product (right).
Weathering was done in a 0.05 M cupric sulphate solution for 6 days.

Figure 82. Results of weathering tests performed on Venetia kimberlites (- 26.5 + 22.4 mm) in a 0.05
M cupric sulphate solution for 6 days.

Figure 83a. Comparing weathering results with the smectite content of Venetia ores. Weathering is
shown as log cumulative % passing at 10.3 mm from figure 82 (6 days' weathering in 0.05 M copper
sulphate).

Figure 83b. Comparing weathering results with cation exchange capacity of Venetia ores.

Weathering is shown as log cumulative % passing at 10.3 mm from figure 82 (6 days' weathering in
0.05 M copper sulphate).

Figure 84. Repeatability of the weathering tests were evaluated by triplicate tests at 0.025, 0.1 and 0.5
M copper concentration. Tests were done on 300 g, -16 + 13.2 mm Dutoitspan kimberlite.

Figure 85. ICP analysis results displaying the steady decrease of the concentration of copper in the
weathering solution as a function of time. The lines are fitted curves for simple n" - order kinetics
(parameters of curve fits in table 25).

Figure 86. ICP analysis results displaying the release of sodium, potassium, calcium and the sum of
minor cations (K', Ca’*, Mgz " and Al3+)fr0m the kimberlite into the 0.025 M copper solution.

Figure 87. ICP analysis results displaying the release of sodium, potassium, calcium and the sum of
minor cations (K', Ca*', Mg** and AP") from the kimberlite into the 0.1 M copper solution.

Figure 88. ICP analysis results displaying the release of sodium, potassium, calcium and the sum of
minor cations (K', Ca’*, Mg”* and AP") from the kimberlite into the 0.5 M copper solution.

Figure 89. ICP analysis results displaying the release of sodium from the kimberlite into the solution
at 0.025, 0.1 and 0.5 M copper concentration.

Figure 90. ICP analysis results displaying the release of the sum of other cations (K', Ca’*, Mg"* and
APY) from the kimberlite into the solution at 0.025, 0.1 and 0.5 M copper concentration.

Figure 91. A plot of log dC/dt vs. log (C-C,) for the 0.025 M copper weathering test. Time in hours,
(C-C,) in mmol/l and dC/dt in mmol/(Ixh).
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Figure 92. A plot of log dC/dt vs. log (C-C,) for the 0.1 M copper weathering test. Time in hours, (C-
C.,) in mmol/l and dC/dt in mmol/(Ixh).

Figure 93. A plot of log dC/dt vs. log (C-C,,) for the 0.5 M copper weathering test. Time in hours, (C-
C.,) in mmol/l and dC/dt in mmol/(Ixh).

Figure 94. ICP analysis results displaying the steady decrease of the concentration of potassium in the
weathering solution as functions of time. The lines are fitted curves for simple n ™ - order kinetics
(parameters in table 30).

Figure 95. ICP analysis results displaying the increase in the concentration of sodium in the
potassium weathering solution as _functions of time.

Figure 96. ICP analysis results displaying the increase in the concentration of the sum of calcium and
magnesium in the potassium weathering solution as functions of time.

Figure 97. A plot of log dC/dt vs. log (C-C,,) for the 0.1 M potassium weathering test. Time in hours,
(C-C,) in mmol/l and dC/dt in mmol/(Ixh).

Figure 98. A plot of log dC/dt vs. log (C-C,) for the 0.5 M potassium weathering test. Time in hours,
(C-C,,) in mmol/l and dC/dt in mmol/(Ixh).

Figure 99. A plot of log dC/dt vs. log (C-C,) for the 1 M potassium weathering test. Time in hours,
(C-C,,) in mmol/l and dC/dt in mmol/(Ixh).

Figure 100. A plot of tys (time to reduce the difference between the exchanging cation concentration
and the equilibrium concentration to half of the original difference) vs. log C,-C., for the copper and
potassium data.

Figure 101. Langmuir adsorption isotherm for kimberlite treated with copper at 0.025, 0.1 and 0.5 M
and treated with potassium at 0.1, 0.5 and 1 M.

Figure 102. Cation exchange constants as published by Bruggenwert and Kamphorst (1982) as a
function of ionic potential.

Figure 103. Experimentally determined cation exchange constants as a function of ionic potential.
Figure 104. XRD scans (5.5 — 8 ° 26) of Dutoitspan kimberlite after exposure to copper solutions for 4
hours, 8 hours, 2 days, 7 days and 30 days.

Figure 105. XRD scans (5.5 — 8 ° 26) of Venetia Red kimberlite after exposure to a 1.5 M potassium
chloride solution for 4 hours.

Figure 106. Visual results of the agglomeration test showing the degree of agglomerated ore on the
metal piece.

Figure 107. Comparing weathering results with the agglomeration test of Venetia ores. Weathering is
shown as log cumulative % passing at 10.3 mm from figure 82 (6 days' weathering in 0.05 M copper
sulphate).

Figure 108. Agglomeration test results for kimberlites dried at 100 °C and then wetted in distilled
water for 2 hours.

Figure 109. Smectite vs. CEC for Venetia ores / kimberlites from the De Beers geological database.
Symbols of kimberlites shown in table 36.

XVi




University of Pretoria etd — Morkel, J (2007)

Figure 110. Smectite vs. CEC for Koffiefontein ores / kimberlites from the De Beers geological
database. Symbols of ores / kimberlites shown in table 37.

Figure 111. Smectite vs. CEC for Cullinan ores / kimberlites from the De Beers geological database.
Symbols of ores / kimberlites given in table 38.

Figure 112. Smectite vs. CEC for Oaks ores / kimberlites from the De Beers geological database.
Symbols used for the ores/ kimberlites are given in table 39.

Figure 113. Smectite vs. CEC for the Oaks, Koffiefontein, Cullinan and Venetia mines from the De
Beers geological database.

Figure 114. Slake durability test results for three different Cullinan kimberlites (L732T109DP9,
L717T66N, L732T109DP13) and Venetia Red and Venetia Hypabyssal kimberlites in distilled water.
Figure 115. Slake durability test results for Venetia Red and Cullinan L732T109DP9 in a distilled

water and a potassium chloride solution.
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