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South African metropolitan areas are experiencing rapid growth and requires an increase

in network infrastructure. Increased congestion negatively impacts both public and freight

transport costs. The concept of City Logistics is concerned with the mobility of cities,

and entails the process of optimizing urban logistics activities by concerning the social,

environmental, economic, financial, and energy impacts of urban freight movement. In a cost-

competitive environment, freight transporters often use sophisticated vehicle routing and

scheduling applications to improve fleet utilization and reduce the cost of meeting customer

demands.

In this thesis, the candidate builds on the observation that vehicle routing and schedul-

ing algorithms are inherent problem specific, with no single algorithm providing a dominant

solution to all problem environments. Commercial applications mostly deploy a single al-

gorithm in a multitude of environments which would often be better serviced by various

different algorithms.

This thesis algorithmically implements the ability of human decision makers to choose

an appropriate solution algorithm when solving scheduling problems. The intent of the rout-

ing agent is to classify the problem as representative of a traditional problem set, based

on its characteristics, and then to solve the problem with the most appropriate solution

algorithm known for the traditional problem set. A not-so-artificially-intelligent-vehicle-

routing-agentTM is proposed and developed in this thesis. To be considered intelligent, an

agent is firstly required to be able to recognize its environment. Fuzzy c-means clustering is

employed to analyze the geographic dispersion of the customers (nodes) from an unknown

routing problem to determine to which traditional problem set it relates best. Cluster vali-

dation is used to classify the routing problem into a traditional problem set.

Once the routing environment is classified, the agent selects an appropriate metaheuristic

to solve the complex variant of the Vehicle Routing Problem. Multiple soft time windows, a
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heterogeneous fleet, and multiple scheduling are addressed in the presence of time-dependent

travel times. A new initial solution heuristic is proposed that exploits the inherent configu-

ration of customer service times through a concept referred to as time window compatibility.

A high-quality initial solution is subsequently improved by the Tabu Search metaheuristic

through both an adaptive memory, and a self-selection structure.

As an alternative to Tabu Search, a Genetic Algorithm is developed in this thesis. Two

new crossover mechanisms are proposed that outperform a number of existing crossover

mechanisms. The first proposed mechanism successfully uses the concept of time window

compatibility, while the second builds on an idea used from a different sweeping-arc heuristic.

A neural network is employed to assist the intelligent routing agent to choose, based on

its knowledge base, between the two metaheuristic algorithms available to solve the unknown

problem at hand. The routing agent then not only solves the complex variant of the prob-

lem, but adapts to the problem environment by evaluating its decisions, and updating, or

reaffirming its knowledge base to ensure improved decisions are made in future.

Keywords: Vehicle routing; fuzzy clustering, time-dependent travel time; metaheuristics
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Chapter 1
Introduction

South Africa’s level of urbanization closely follows international trends in developed coun-

tries, with the highest level of economic activity focused in a few metropolitan areas; at-

tracting both people and investment. The good functioning of these metropolitan areas is of

strategic importance to the country, as these areas are the main focus for economic and so-

cial development. The level of transport services provided impacts directly on the efficiency

and the quality of the development in the metropolitan areas. South African metropolitan

areas are experiencing rapid growth, and are having difficulties in controlling the physical

urban expansion. Both public and freight transport costs are negatively impacted by these

phenomena. As demand for transport increases faster than the supply of these services,

commuting and freight transportation costs increase at a higher than inflation rate. The

community at large experiences the demands for more extensive infrastructure and services.

Customers, both businesses and private consumers, demands products and services at the

point of utilization. The geographically dispersed point of supply and point of utilization are

bridged through transport. The majority of urban freight is carried by means of road trans-

port, and the definition of the Organization for Economic Co-operation and Development

(OECD) for urban freight transport applies:

“The delivery of consumer goods (not only retail, but also by other sectors such

as manufacturing) in city and suburban areas, including the reverse flow of used

goods in terms of clean waste.” — OECD (2003)

Goods transport has a major impact on the economic power, quality of life, accessibility and

attractiveness of local communities, especially in city and metropolitan areas, but receives

much less attention in comparison to passenger movement. According to the first State of
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Logistics Survey for South Africa prepared by CSIR Transportek (2004), 83% of the total

tonnage transport bill of ZAR 134 billion is transported via road, while 22% of the total

tonnage is transported within metropolitan areas. Freight transport within metropolitan

and urban areas have different characteristics from long haulage, and the main attributes

include (Taniguchi et al., 2004):

• Frequent deliveries of smaller quantities

• Low utilisation of the capacity of trucks

• Time windows

Efficiently transporting goods within urban areas facilitates the establishment of sus-

tainable cities. OECD (2003) acknowledges the contribution that freight vehicles make to

traffic congestion, energy consumption and negative environmental impacts. Yamada and

Taniguchi (2005) conclude that the majority of benefits for freight carriers can be achieved by

implementing advanced vehicle routing and scheduling systems, hence addressing congestion,

energy consumption, and indirectly environmental impacts. The problem concerned with al-

locating customer deliveries (or collections) to vehicles, and determining the visiting order of

those customers on each vehicle route, is classified as the Vehicle Routing Problem (VRP),

and has as its main objective to minimize some measurable function, such as distance trav-

eled, time traveled, or total fleet cost.

1.1 Modeling as research motivation

South Africa provides a fascinating interface between the developed and the developing

world. In a critical review, Leinbach and Stansfield (2002) have emphasized that Industrial

Engineers should re-adopt a systematic view. They argue that the perception of Industrial

Engineers has been negatively impacted by their ability to model the obvious, and in the over-

simplification of their models, to the extent that reality is not represented comprehensively.

Industrial engineers should therefor appreciate the complex and intertwined relationships

between social, political, and economic factors influencing urban freight transport systems.

A systematic approach in addressing a problem is illustrated in the lower cycle of Fig-

ure 1.1 where a problem is modeled, the model is solved, and the solution is interpreted so

as to change the original problem through decisions (Rardin, 1998). Identifying and scoping

a problem is not a trivial matter, and is important in ensuring that the final solution that a

decision is based upon, will in fact represent, and ultimately address the core problem. Taha
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Problem Model

Decision Solution

Modeling

Solving

Interpreting

Implementing

Problem in
real world

Abstracted model
from the assumed

world

Problem in
assumed world

Figure 1.1: Operations Research cycle

(2003) expands the action of modeling in Figure 1.1 and illustrates how representations of

the real world can easily be over-simplified. Interrelationships within the real world are so

complex and abundant, that no one person can comprehend it in its entirety. We refer to

the problem in the real world as the first level of abstraction. The human is a contextual

being: the cultural, social and emotional context of an individual forms the individual’s

perception of the reality in which he or she exist. The second level of abstraction therefor

represents the contextually sensitive view, referred here to as the assumed reality, that an

individual has of the real problem. But even the abstract and fragmented view is often too

complex to solve in its entirety. Through the actions of analyzing, and applying a method-

ology of divide-and-conquer, the individual scopes the problem in a structured way through

simplifying assumptions. These assumptions may be justified in the absence of complete

and accurate data about the assumed reality. The third level of abstraction is referred to

as a model. The verb modeling therefor requires the problem solver to not only scope the

problem, but also justify the endeavors to ensure that the assumed reality has been chal-

lenged to represent the real problem more comprehensively. This is illustrated through the

arrows stretching the boundaries of the assumed reality towards the real world. Although
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the model can be any representation of a real problem, from scraps of paper with notes on

them, a functional flow block diagram or process maps, in this thesis the term is used as a

structured and mathematical model with an optimization intent.

Once the model is a true representation of the problem at hand, the decision maker can

proceed to solve the model. It should be emphasized that only the model is solved, and

not the problem itself. The availability and the ease of use of new generation optimization

software have facilitated the process of solving models representing complex operational

problems. The rapidly increasing processing power of computers brings the optimization

opportunities right to the desk of the practitioner. The solution, however, is often but a list

of numerical results.

The numerical solution, and its sensitivity to changes in parameters, requires careful

consideration before recommendations and decisions are made, and is only considered as

decision support. Implementation impacts, and possible change factors are considered before

a final decision is made and implemented. The impact of the decision is then assessed so

as to close the problem solving-cycle. Implemented changes may either address the original

problem adequately, or may elicit new problems that require modeling, solving, and decision

making.

1.2 Intelligence as the research driver

Freight carriers are sharing the road network with various modes of public transport. The use

of private vehicles have rapidly increased. The increase can be attributed to both an increase

in the number of trips undertaken, and increased journey lengths (Banister, 1995; Spence,

1998). Road network performance is negatively impacted by the higher usage of private

vehicles and results in higher levels of congestion, and a significant reduction in operating

speeds. Public transport performance is impacted negatively when operating speeds decrease,

resulting in increased operating costs for the carriers, and thus impacting negatively on

its attractiveness. As a result, the economically able part of the population turn to their

private vehicles for a reliable source of transport, and unknowingly contributes to the hyper-

congestion phenomenon.

Congestion does not only increase the stress levels of road users from a commuting point

of view, but it also increases the complexity for vehicle and fleet managers overseeing the

scheduling, routing, and optimization of their fleet concerns.

Carrier companies represent both public and private entities executing the logistic and
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distribution functions of freight. This thesis addresses the complexities of freight transport.

Freight carriers are continuously expected to provide higher levels of service at lower rates,

and therefor try to minimize their logistic costs, and maximize their profit. Sharing the road

infrastructure with other vehicles such as private cars and public transport forces carriers

to plan their freight routes more carefully. Enhanced vehicle routing and scheduling takes

the congestion constraint into account and attempts to improve the vehicular utility through

shorter routes and higher load factors. Software applications often do not provide adequate

functionality by not being able to address complex business requirements such as companies

having a fleet of vehicles that differ in capacity and/or running costs, and multiple scheduling

where vehicles are allowed to complete a trip, return to the depot to renew it’s capacity, i.e.

offload goods collected, or loading goods to be delivered. The reason for software deficiencies

are related to the extreme computational complexity when solving routing models. Human

intervention is required to, for instance, split the fleet into vehicle categories that represent

similar or the same capacity and/or costs. Each category is then solved independently,

adjusting demand as customers are serviced by other categories. Human operators can also

intervene by evaluating vehicular routes, and identifying vehicles that may be used for a

second trip, and then schedule such vehicles accordingly. Although such interventions are

mechanistic in nature, they require the time and effort of experienced individuals having a

thorough understanding of vehicle routing so as to intervene wisely.

We refer to ourselves (in a more formal way) as homo sapiens — man the wise — and

value our mental abilities to think and reason to assist us in improving our surroundings.

We require our thought processes and intelligence to make decisions that will maximize the

utility that we obtain from logistics — moving goods from points of manufacture to points

of consumption that are geographically dispersed.

“What is mind? What is the relationship between mind and the brain? What

is thought? What are the mechanisms that give rise to imagination? What is

perception and how is it related to the object perceived? What are emotions and

why do we have them? What is will and how do we choose what we intend to do?

How do we convert intentions into action? How do we plan and how do we know

what to expect from the future?”—Albus (1999)

It seems clear from the quote by Albus (1999) that before one toss terms such as thinking

and planning around, one should carefully consider how such actions take place, and how

one intends to employ such actions to improve, for example, urban freight congestion.
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1.2.1 Intelligence

In their leading text, Russell and Norvig (2003) introduces Artificial Intelligence (AI) as

not only understanding the human intellect, but also building entities (or agents) that are

intelligent. Although it encompasses a huge variety of subfields of study, with many varying

definitions, the authors have categorized AI approaches in a two-dimensional framework

represented in Figure 1.2.

Systems that think
like humans

Systems that
think rationally

Systems that act
like humans

Systems that
act rationally

B
eh
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Human Idealperformance measure
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Figure 1.2: Categories of artificial intelligence (Adapted from ?)

The top half of the framework is concerned with thought processes and reasoning, as

opposed to the lower half that is concerned with the behavioral element of intelligence.

The left side of the framework measures the success of an agent’s intelligence against the

fidelity of human performance. The right half establishes an ideal concept of intelligence as

a benchmark, referred to as rationality. This is analogous to effectiveness — doing the right

things. However, the right within rationality is only relative to what is known at the time

of the doing.

An agent is something that acts. This thesis is concerned with the development of a

computer agent that could intelligently intervene in the routing and scheduling of distribution

vehicles. But how is it to be distinguished from mere programming? It should be able to

operate autonomously, perceive the environment, persist over a period of time, and be able

to adopt the goals and objectives of another entity. As an improvement on a basic agent,

this thesis propose a rational agent that has a strategy to achieve the best possible outcome
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for a given objective, either known, or the expected outcome should some of the parameters

be uncertain. The focus of the thesis is therefor not on understanding the human thought

processes, but on creating a system that can think, and act rationally.

1.2.2 Complexity

Perfect rationality in modeling is often too difficult to attain due to too high computational

demands when looking for exact solutions. Problems such as the routing and scheduling

of vehicles can often not be solved exactly, and require the use of solution algorithms that

provided approximate solutions where the optimality of the solution can neither be proved

in advance, nor confirmed once a solution is found. The different opinions with regards

to either finding an exact optimal solution versus settling for a good enough solution given

a specific environment have led to the split that occurred between Decision Theory and

Artificial Intelligence in the latter half of the twentieth century.

Decision Theory is the field of study where probability theory and utility theory are

combined to present a formal framework for decision making under uncertainty. The field

of operations research addresses complex management decisions rationally. The intention of

the pure branch of decision theory is to obtain a rational decision, or a global optimum.

On the contrary, the complexity in finding a single optimum value led the pioneers of AI

such as Herbert Simon (1916–2001) to prove that being able to find a good enough answer

describes human behavior more accurately — and earned him the Nobel prize in economics

in 1978. And although the computational ability of computers have increased dramatically

over the past decade, the intention is still to assist mere mortal logistics decision makers to

improve their ability to manage distribution fleets.

1.3 Formulating the research question

The primary research question that this thesis intends to answer is whether it is feasible to

develop a rational and intelligent agent to schedule a predefined variant of the VRP. In order

to answer the question, a number of secondary research questions will be stated in terms of

the concept of an intelligent agent.

In his paper on the engineering of mind, Albus (1999) identifies four functional elements

of an intelligent system.

Sensory perception — accepting input data from both outside and from within the sys-

tem. The data is then transformed through classification and clustering into meaningful
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representations of the real world. The first secondary research question addresses the

analysis of input data and is stated as follows:

How should customer parameters be clustered so that meaningful classifica-

tion can be done prior to executing the solution process?

Behavior generation — planning and controlling actions so that goals are achieved. An

intelligent agent accepts task with goals, objects and priorities. The tasks are then

broken up into jobs and, along with resources, are assigned to agents. Hypothetical

plans are created and simulated to predict the outcome of the plans. The simulated

results are evaluated, and the agent selects the best expected hypothesized plan. In

terms of this thesis an agent refers to computational elements that plan and control

the execution of a routing algorithm, correcting for errors and perturbations along

the way. The planning processes of the agent are heuristics and metaheuristics that

attempt to converge to optimal vehicle routes and schedules. This lead to another

secondary research question:

How can heuristics and metaheuristics be used to establish vehicle routes and

schedules in a complex and constrained environment?

Value judgement — the computation of a predefined set of costs, risks, benefits, and or

penalties related to the vehicle routes. In operations research terms these computa-

tional expressions are referred to as the objective function(s). The third secondary

research question is derived from value judgement:

What should constitute the objective function of the model so that the real

problem is adequately represented?

World modeling — an overall strategy that uses input parameters and variables to up-

date a knowledge database. Data is used to query the behavior generation of plans

regarding current routes and schedules. The strategy further simulates possible results

of future plans after analyzing the current plans. Simulated results are evaluated, using

the value judgement, so the best expected plan for execution can be selected. After

execution, the strategy allows for sensory expectations to be created regarding future

actions — analogous to bumping your feet against an obstacle in the dark. After stum-

bling, and reacting to the pain, you lift your feet unnaturally high so as to avoid the

next obstacle. The fourth and fifth, probably the most challenging secondary research

questions addresses the agents ability to learn from the past and improve in future:
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What critical parameters influence the agent’s learning, and should therefor

be included in creating future expectations?

How are future expectations created from the past performance?

1.4 Research design and methodology

The process diagram in Figure 1.3 provides an overview of an intelligent agent’s decision

process. The agent in this thesis will be a hybrid computerized solution algorithm that has

Analyze customer 
characteristics for given 

problem instance

Select 
appropriate solution 

strategy

Solve the given problem 
instance

Fleet structure
Customer structure
Network structure

Vehicle loading 
instructions and route 

sheet

Data 
structures

Customer characteristics

Populated solution algorithm

Route

Initiate comparative 
algorithm and parameter 

analysis

Intelligence database

Learn from past 
performance

Route

Comparative
strategies

Updated strategies

Solution
strategies

Solution strategies

Customer structure

Figure 1.3: Overview of the intelligent agent’s decision process

the following inputs:

• Fleet structure

• Customer structure, i.e. demand quantity, geographical location, time windows

• Network structure, derived from customers’ geographical locations

The algorithm will analyze the clustering characteristics of the geographical distribution of

customers. Based on the randomness (or clusteredness) of the distribution and the time

window characteristics of the customers, the algorithm will select an appropriate solution

strategy — a combination of a metaheuristic solution algorithm, along with its appropri-

ate parameter values. The problem instance is solved, and the solution is interpreted and
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presented in a useful loading instruction and route sheet. Behind the scenes the algorithm

will initiate comparative analysis of the proposed solution strategy by solving the provided

problem instance with various metaheuristics and various parameter values for each meta-

heuristic. The algorithm will then learn from these analysis through a neural network, and

update the intelligence database by recommending new solution strategies for the given

problem instance, or reiterating current solution strategies.

The algorithm will be coded using the MATLABr development environment. The anal-

ysis and solution components, and the comparative analysis components will run on separate

computer processors to optimize for speed and in doing so, address the computational com-

plexity of the hybrid algorithm.

1.5 The structure of the thesis

To elaborate on the exact nature of the research problem, Chapter 2 reviews literature on

the VRP and its variants. The chapter concludes with the mathematical formulation of the

Capacitated Heterogeneous Fleet Vehicle Routing Problem with Multiple Soft Time Windows

and Probabilistic Travel and Service Time as addressed in this thesis. The review of solution

algorithms, both exact and approximate, are conducted in Chapter 3, concluding with the

recommendation of two metaheuristic solution algorithms, each covered in more detail in

later chapters. The analysis of the customer structure is reviewed in Chapter 7, and the

chapter proposes an algorithm to determine the level of clusteredness of a customer network.

The algorithm is tested by analyzing benchmark data sets provided for pre-defined problem

instances in literature.

Chapters 4 through 6 is dedicated to the development of various metaheuristic solution

algorithms. Chapter 4 develops an improved initial solution algorithm to enhance the com-

putational performance of the Tabu Search solution algorithm, developed in Chapter 5. The

Genetic Algorithm is less sensitive to the quality of an initial solution, and is treated inde-

pendently in Chapter 6. For each metaheuristic the various parameters are discussed, and

default values proposed. The respective algorithms are discussed at high level, followed by

detailed discussions of algorithmic particularities, and concluded by testing and validating

the algorithm through benchmark data sets.

The integration of the algorithms, as well as the agent’s ability to learn from repetitive

decision making is covered in Chapter 8. The thesis is concluded in Chapter 9 with a critical

analysis of the research contribution, and setting a research agenda.
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Chapter 2
The Vehicle Routing Problem : origins and

variants

Rardin (1998) states that the organizing of a collection of customer locations, jobs, cities,

or points, into sequences and routes are among the most common discrete optimization

problems. The first of the two review chapters focus on the origins and the mathematical

formulation of the VRP and its variants.

2.1 The origins of the basic VRP

2.1.1 The Traveling Salesman Problem (TSP)

The simplest, and probably most famous of routing problems known to researchers is the

TSP that seeks a minimum-total-length route visiting every one of N points in a given

set V = {1, 2, . . . , N} exactly once across an arc set A. The distance between all point

combinations in A, (i, j), where (i, j) ∈ V |i 6= j, is known. In the notation introduced

by Rardin (1998), the symbol ‘,’ denotes defined to be. With the decision variable xij

defined as:

xij ,


1 if a salesman travels from node i to node j, where i, j = {1, 2, . . . , N}

0 otherwise
(2.1)

we formulate the problem as

min z =
∑

(i,j)∈A

cijxij (2.2)
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subject to

N∑
i=1

xij = 1 ∀j ∈ {2, . . . , N} (2.3)

N∑
j=1

xij = 1 ∀i ∈ {2, . . . , N} (2.4)

∑
i∈S

∑
j∈S

xij ≤ |S| − 1 ∀S ⊂ V (2.5)

xij ∈ {0, 1} ∀i, j ∈ {2, . . . , N} (2.6)

The objective of the problem minimizes the total distance traveled in (2.2). Each node must

be visited exactly once according to (2.3) and (2.4), also referred to as degree constraints.

Subtours are eliminated through the introduction of (2.5). The |S| denotes the number of

elements in the subset S. Schrage (2002) states that there are of the order 2n constraints of

type (2.5), as opposed to the alternative in (2.7)

uj ≥ ui + 1− (1− xij)n ∀j ∈ {2, . . . , N}|j 6= i (2.7)

of which there are of the order N − 1 constraints. Only a few of the former type constraints

will be binding in the optimum. Padberg and Rinaldi (1987) therefor propose an efficient

and effective iterative process of adding violated constraints of type (2.5) as needed.

Although a number of TSP variations exist, our interest is in the variant where multiple

salesmen are routed simultaneously.

2.1.2 The Multiple Traveling Salesman Problem (MTSP)

The MTSP is similar to the notoriously difficult TSP that seeks an optimal tour of N

cities, visiting each city exactly once with no sub-tours. In the MTSP, the N cities must

be partitioned into M tours, with each tour resulting in a TSP for one salesperson. The

MTSP is more difficult than the TSP because it requires determining which cites to assign

to each salesperson, as well as the optimal ordering of the cities within each salesperson’s

tour (Carter and Ragsdale, 2005; Kara and Bektas, 2005). Consider a complete directed

graph G = (V,A) where V is the set of N nodes (or cities to be visited), A is the set of arcs

and C = (cij) is the cost (distance) matrix associated with each arc (i, j) ∈ A. The cost

matrix can be symmetric, asymmetric, or Euclidean. The latter refers to the straight-line

distance measured between the two geographically dispersed nodes. There are M salesmen

based at the depot, denoted as node 1. The single depot MTSP consists of finding tours
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for the M salesmen subject to each salesman starting and ending at the depot, each node

is located in exactly one tour, and the number of nodes visited by a salesman lies within a

predetermined time (or distance) interval. The objective is to minimize the cost of visiting

all the nodes. We define the decision variable, xij , in (2.1). For any salesman, ui denotes

the number of nodes visited on that salesman’s route up to node i, with corresponding

parameters K and L denoting the minimum and maximum number of nodes visited by any

one salesman, respectively. We can therefor state that 1 ≤ ui ≤ L when i ≥ 2, and when

xi1 = 1, then K ≤ ui ≤ L. The following Integer Linear Program (ILP) formulation is

proposed by Kara and Bektas (2005).

min z =
∑

(i,j)∈A

cijxij (2.8)

subject to

N∑
j=2

x1j = M (2.9)

N∑
i=2

xi1 = M (2.10)

N∑
i=1

xij = 1 ∀j ∈ {2, . . . , N} (2.11)

N∑
j=1

xij = 1 ∀i ∈ {2, . . . , N} (2.12)

ui + (L− 2)x1i − xi1 ≤ L− 1 ∀i ∈ {2, . . . , N} (2.13)

ui + x1i + (2−K)xi1 ≥ 2 ∀i ∈ {2, . . . , N} (2.14)

x1i + xi1 ≤ 1 ∀i ∈ {2, . . . , N} (2.15)

ui − uj + Lxij + (L− 2)xji ≤ L− 1 ∀i, j ∈ {2, . . . , N}|i 6= j (2.16)

xij ∈ {0, 1} ∀i, j ∈ {2, . . . , N} (2.17)

The objective in (2.8) minimizes the total cost of traveling to all nodes, while constraints (2.9)

and (2.10) ensures that all M salesmen are allocated routes. Degree constraints are imposed

by (2.11) and (2.12). The MTSP-specific constraints (2.13) and (2.14) are referred to as

bounding constraints and Kara and Bektas (2005) introduce these as the upper and lower

bound constraints on the number of nodes visited by each salesman. The value of ui is initial-

ized to 1 if and only if node i is the first node on the tour of any salesman. Inequality (2.15)

forbids a salesman to only visit a single node on its tour. The formation of subtours be-

tween all nodes in V \ {1} (all nodes except the depot) are eliminated by (2.16) as it ensures
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that uj = ui + 1 if and only if xij = 1. They are also referred to as Subtour Elimination

Constraints (SEC).

Next we consider a variant where each of the M salespeople has a predefined, yet similar,

capacity. An analogy is having salespeople traveling with samples in their vehicles. Not only

do their cars have limited space for the samples, but each customer visited may require a

different number of the samples. As a variant of the MTSP it is referred to as the Capaci-

tated Multiple Traveling Salesman Problem (CMTSP), but in the context of this thesis the

vehicular related name, Vehicle Routing Problem (VRP), is preferred.

2.1.3 The Vehicle Routing Problem (VRP)

The distribution problem in which vehicles based at a central facility (depot) are required to

visit — during a given time period — geographically dispersed customers in order to fulfill

known customer requirements are referred to as the VRP (Christofides, 1985). The main

objective of the VRP is to minimize the distribution costs for individual carriers, and can be

described as the problem of assigning optimal delivery or collection routes from a depot to a

number of geographically distributed customers, subject to constraints (?). The most basic

version of the VRP have also been called vehicle scheduling, truck dispatching, or simply

the delivery problem. A number of different formulations appear in the authoritative work

of Christofides (1985). The basic problem can be defined with G = (V,A) being a directed

graph where V = {v1, . . . , vN} is a set of vertices representing N customers, and with v1

representing the depot where M identical vehicles, each with capacity Q, are located (?).

E = {(vi, vj)|vi, vj ∈ V, i 6= j} is the edge set connecting the vertices. Each vertex, except

for the depot (V \{v1}), has a non-negative demand qi and a non-negative service time si.

A matrix C = (cij) is defined on A. In some contexts, cij can be interpreted as travel cost,

travel time, or travel distance for any of the identical vehicles. Hence, the terms cost, time,

and distance are used interchangeably, although tij denotes the travel time between nodes i

and j in the formulation provided below. The basic VRP is to route the vehicles one route

per vehicle, each starting and finishing at the depot, so that all customers are supplied with

their demands and the total travel cost is minimized. Although Christofides (1985) presents

three different formulations from the early 1980s, the following mathematical formulation of

the VRP is adapted from Bodin et al. (1983) and Filipec et al. (1998). During this period

little changes were made to the formulation of the problem. The decision variable, xk
ij is
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defined as

xk
ij ,


1 if vehicle k travels from node i to j, where

i, j ∈ {1, 2, . . . , N}|i 6= j, and k ∈ {1, 2, . . . ,K}

0 otherwise

(2.18)

min z =
N∑

i=0

N∑
j=0
j 6=i

K∑
k=1

cijx
k
ij (2.19)

subject to

N∑
i=0

K∑
k=1

xk
ij = 1 ∀j ∈ {1, . . . , N} (2.20)

N∑
j=0

K∑
k=1

xk
ij = 1 ∀i ∈ {1, . . . , N} (2.21)

N∑
i=0

xk
ip −

N∑
j=0

xk
pj = 0 ∀p ∈ {1, . . . , N}, k ∈ {1, . . . ,K} (2.22)

N∑
j=0

qj

(
N∑

i=0

xk
ij

)
≤ Q ∀k ∈ {1, . . . ,K} (2.23)

N∑
i=0

N∑
j=0

tijx
k
ij ≤ D ∀k ∈ {1, . . . ,K} (2.24)

N∑
j=1

xk
0j ≤ 1 ∀k ∈ {1, . . . ,K} (2.25)

N∑
i=1

xk
i0 ≤ 1 ∀k ∈ {1, . . . ,K} (2.26)

xk
ij ∈ {0, 1} ∀i, j ∈ {1, . . . , N}, k ∈ {1, . . . ,K} (2.27)

The degree constraints are represented by (2.20) and (2.21). Route continuity is enforced

by (2.22) as once a vehicle arrived at a node, it must also leave that node. No one vehicle

can service customer demands that exceeds the vehicle capacity in (2.23). A maximum

route length is limited by (2.24). Constraints (2.25) and (2.26) ensures that each vehicle is

scheduled no more than once.

2.2 Variants of the VRP

The basic VRP makes a number of assumptions, including utilizing a homogeneous fleet, a

single depot, one route per vehicle, etc. These assumptions can be eliminated by introducing
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additional constraints to the problem. This implies increasing the complexity of the prob-

lem, and, by restriction, classifies the extended problem as an np-hard problem. It should be

noted that most of these additional constraints are often implemented in isolation, without

integration, due to the increased complexity of solving such problems. In the next few sec-

tions, these variants are introduced in isolation, before proposing an integrated formulation

in Section 2.3.

2.2.1 The concept of time windows

A time window can be described as a window of opportunity for deliveries. It is an extension

of the VRP that has been researched extensively (Ibaraki et al., 2005; Taillard, 1999; Taillard

et al., 1997; Tan et al., 2001c). A time window is the period of time during which deliveries

can be made to a specific customer i, and has three main characteristics:

• Earliest allowed arrival time, ei, also referred to as the opening time

• Latest allowed arrival time, li, also referred to as the closing time

• Whether the time window is considered soft or hard

Consider the example, illustrated in Figure 2.1, where customer i requests delivery between

07:30 and 17:00. To distinguish between the actual and the specified times of arrival, the

18:0016:0006:00 08:00

ei li

Figure 2.1: Double sided hard time window

variable ai denotes the actual time of arrival at node i. Should the actual arrival time at

node i, denoted by ai, be earlier than the earliest allowed arrival at the node, ei, then the

vehicle will incur a waiting time, wi, which can be calculated as wi = max{0, ei − ai}. The
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introduction of time windows to the basic VRP sees the introduction of three new constraints.

a0 = w0 = s0 = 0 (2.28)
K∑

k=1

N∑
i=0;i6=j

xk
ij(ai + wi + si + tij) ≤ aj ∀j ∈ {1, 2, . . . , N} (2.29)

ei ≤ (ai + wi) ≤ li ∀i ∈ {1, 2, . . . , N} (2.30)

Constraint (2.28) assumes that vehicles are ready and loaded by the time the depot opens,

which is indicated as time 0 (zero). Constraint (2.29) calculates the actual arrival time,

while (2.30) ensures that each customer i is serviced within its time window.

When both an earliest and latest allowed arrival is stipulated, the time window is referred

to as double sided. If no arrivals are allowed outside of the given parameters, the time window

is said to be hard, as is the case in Figure 2.1. When delivery is allowed outside the specified

time window, the time window is said to be soft, and customer i may penalize lateness at a

cost of αi (Koskosidis et al., 1992). Customer i may specify a maximum lateness, Lmax
i . The

example illustrated in Figure 2.2 sees customer i specifying a time window between 07:30

and 15:30. The customer will, however, allow late deliveries until 17:00. A hard time window

18:0016:0006:00 08:00

ei li Li
max

Figure 2.2: Soft time window

is therefor a special type of soft time window where Lmax
i = 0. Should a vehicle arrive after

the latest allowed arrival time, li, but prior to the maximum lateness, Lmax
i , the lateness at

node i, Li, can be calculated as Li = max{0, ai − li}|ai ≤ Lmax
i . The lateness is penalized

by introducing a penalty term to the VRP objective function (2.19), resulting in(2.31).

min z =
N∑

i=0

N∑
j=0,j 6=i

K∑
k=1

cijx
k
ij +

N∑
i=1

αi ×max{0, Li} (2.31)

The time window for the depot, node 0, can be specified. The case illustrated in Figure 2.3

sees the depot specifying operating hours (time window) from 06:00 to 18:00, while the first

customer on the route, customer 1, specifies a time window between 07:00 and 09:00, and

the last customer, customer N , requests delivery between 15:00 and 17:00.
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18:0016:0006:00 08:00

e0 l0

e1 l1 en ln

Figure 2.3: Time window for the depot, node 0

Should a customer specify multiple time windows, an indexing symbol, a, is intro-

duced as superscript to the earliest and latest allowed arrival times, respectively, where

a ∈ {1, 2, . . . , A} in which A indicates the maximum number of time windows allowed for

each customer. Consider the example where customer n requests delivery either between

06:30 and 09:00, or between 16:00 and 17:30 as illustrated in Figure 2.4. This example is

18:0016:0006:00 08:00

en
1 ln

1 en
2 ln

2

Figure 2.4: Multiple time windows

typical of residents requesting home shopping deliveries outside business hours. The formu-

lation changes with the introduction of the decision variable

ψa
i ,


1 if the ath time window of customer i is used, where i ∈ {1, 2, . . . , N},

a ∈ {1, 2, . . . , A}

0 otherwise.

To ensure that the decision variable is appropriately enforced in the formulation, we change

constraint (2.30) to distinguish between different time windows, as proposed in (2.32)

eai − (1− ψa
i )M ≤ (ai + wi) ≤ lai + (1− ψa

i )M ∀i ∈ {1, 2, . . . , n}, a ∈ {1, 2, . . . , A}

(2.32)

where M is a sufficiently large number, typically greater than the scheduling horizon. An

enforcement of a single time window for each customer is required, and is subsequently

introduced in (2.33).

A∑
a=1

ψa
i = 1 ∀i ∈ {1, 2, . . . , N} (2.33)
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2.2.2 Capacity constraints and vehicle characteristics

Gendreau et al. (1999) propose a solution methodology for cases where the fleet is hetero-

geneous, that is, where the fleet is composed of vehicles with different capacities and costs.

Their objective is to determine what the optimal fleet composition should be, and is referred

to as either a Heterogeneous Fleet Vehicle Routing Problem (HVRP) or a Fleet Size and

Mix Vehicle Routing Problem (FSMVRP). Liu and Shen (1999b) adds time windows in their

problem application and refer to the problem as a Fleet Size and Mix Vehicle Routing Prob-

lem with Time Windows (FSMVRPTW). In yet another paper, Liu and Shen (1999a) refers

to the heterogeneous fleet variant as the Vehicle Routing Problem with Multiple Vehicle

Types and Time Windows (VRPMVTTW). Taillard (1999) formulates the Vehicle Routing

Problem with a Heterogeneous fleet of vehicles (VRPHE) where the number of vehicles of

type t in the fleet is limited; the objective being to optimize the utilization of the given fleet.

Salhi and Rand (1993) incorporate vehicle routing into the vehicle composition problem, and

refer to it as the Vehicle Fleet Mix problem (VFM).

The implication of a heterogeneous fleet on the standard VRP is that T type of vehicles

are introduced, with t ∈ {1, 2, . . . , T}. The vehicle capacity parameter p is changed. The new

parameter, pt, represents the capacity of vehicles of type t, resulting in each vehicle k having

a unique capacity, pk. The use of one vehicle of type t implies a fixed cost ft. A unique fixed

cost, fk, is introduced for each vehicle k, based on its vehicle type. The objective function

changes to

min z =
n∑

i=0

n∑
j=0
j 6=i

K∑
k=1

cijx
k
ij +

K∑
k=1

n∑
j=1

fkx
k
0j (2.34)

while (2.23) changes to indicate the new capacity parameter

n∑
i=1

qi

 n∑
j=0

xk
ij

 ≤ pk ∀k = {1, 2, . . . ,K} (2.35)

Taillard (1999) introduces a variable cijt to represent the cost of traveling between nodes

i and j, using a vehicle of type t. It is possible to introduce the variable portion of the vehicle

cost into the objective function proposed in (2.34). The introduction will lead to (2.36)

min
n∑

i=0

n∑
j=0
j 6=i

K∑
k=1

T∑
t=1

cijtx
k
ijξ

k
t +

K∑
k=1

n∑
j=1

fkx
k
0j (2.36)
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where

ξk
t ,


1 if vehicle k is of type t, where k = {1, 2, . . . ,K}, and t = {1, 2, . . . , T}

0 otherwise

2.2.3 Uncertainty in vehicle routing

The statements in Section 2.1.3 do not adequately describe a variety of practical VRP situ-

ations where one or several parameters are uncertain. Powell (2003) confirms that research

into routing and scheduling algorithms, which explicitly captures the uncertainty of future

decisions made now, is extremely young. Laporte et al. (1992), Lambert et al. (1993), and

Ong et al. (1997) provide examples including vehicles collecting random quantities at vari-

ous customers; and customers being visited on a random basis. A vehicle incurs a penalty

proportional to the duration of its route in excess of a predetermined constant B — typical

of applications where drivers are paid overtime for work done after normal hours. Laporte

et al. (1992) propose an attractive and relatively simple chance constrained model (from a

computational point of view). However, as the expected cost related to excess route duration

needs to be taken into account, this thesis reverts to proposing a stochastic programming

model with recourse.

First stage decisions made are the number of vehicles required, as well as their respective

routes. Once the random travel time and service time variables are realized in the second

stage, penalties are incurred for the excess duration. The following variables are defined.

xk
ij ,


1 if vehicle k travels from node i to j, where

i, j = {1, 2, . . . , n}|i 6= j, and k = {1, 2, . . . ,K}

0 otherwise

zk
i ,


1 if node i is visited by vehicle k, where i = {1, . . . , n}, k = {1, . . . ,m}

0 otherwise

ξ̃ , a vector of random variables corresponding to travel and service times.

Each realization r of ξ̃, denoted by ξr, is referred to as a state of the

world (Kall and Wallace, 1994)

Ξ , the finite support of ξ̃ such that Ξ =
{
1, 2, . . . , ξr, . . . , ξR

}
where R is the

total number of states in the problem world

yk(ξ̃) , the excess duration of route k as a function of the realization of ξ̃
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ckij , the travel cost from node i to j with vehicle k, where i, j = {1, . . . , n}, k =

{1, . . . ,K}

tkij(ξ̃) , the travel time from node i to j with vehicle k, where i, j = {1, . . . , n}, k =

{1, . . . ,K} expressed as a function of the realization of ξ̃

τk
i (ξ̃) , the service time at node i with vehicle k, where i = {1, . . . , n}, k =

{1, . . . ,K}, expressed as function of the realization of ξ̃

βk , the positive unit penalty cost for excess duration traveled by vehicle k,

where k = {1, . . . ,m}

fk , the fixed cost of vehicle k, where k = {1, . . . ,K}

Bk , the maximum time for route k over which a penalty is incurred, where

k = {1, . . . ,K}

The model is then

min z =
K∑

k=1

fkzk
0 +

n∑
i=1

n∑
j=1
j 6=i

K∑
k=1

ckijx
k
ij + Eξ̃

(
K∑

k=1

βkyk(ξ̃)

)
(2.37)

subject to

K∑
k=1

zk
i = 1 ∀i ∈ {1, . . . , n} (2.38)

n∑
j=1

(
xk

0j + xk
j0

)
= 2zk

0 k ∈ {1, . . . ,K} (2.39)

n∑
j=1

(
xk

ij + xk
ji

)
= 2zk

i ∀i ∈ {1, . . . , n}, k ∈ {1, . . . ,K} (2.40)

∑
i∈S

∑
j∈S
j 6=i

xk
ij ≤ |S| − 1 S ⊂ V, 3 ≤ |S| ≤ n− 3, k = {1, . . . ,K} (2.41)

Bk −
n∑

i=1

n∑
j=1
j 6=i

tkij(ξ̃)x
k
ij −

1
2

n∑
i=1

n∑
j=1
j 6=i

(
τk
i (ξ̃) + τk

j (ξ̃)
)
xk

ij + yk(ξ̃) ≥ 0 (2.42)

∀k ∈ {1, . . . ,K}, ξ̃ ∈ Ξ

xk
ij ∈ {0, 1} ∀i, j ∈ {1, . . . , n}, k ∈ {1, . . . ,K} (2.43)

zk
i ∈ {0, 1} ∀i ∈ {1, . . . , n}, k ∈ {1, . . . ,K} (2.44)

yk
(
ξ̃
)
≥ 0 ∀k ∈ {1, . . . ,K}, ξ̃ ∈ Ξ (2.45)
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The objective function minimizes total cost in (2.37) that includes fixed vehicle costs, travel

costs, as well as the expected penalty costs as a result of exceeded route duration. All vehicles

must be routed according to (2.38), while (2.39) calculates the number of routed vehicles.

Degree constraints are introduced in (2.40). Subtours are eliminated through (2.41) where

the reader may infer that n > 6. Constraint (2.42) combined with (2.45) implies a penalty to

be calculated for vehicle k, but only if the total route length including service times exceed

Bk.

2.2.4 Time-dependent travel time

Although unpredictable events such as accidents and vehicle breakdowns render travel times

as stochastic, the candidate postulates that the subtle, yet partially predictable event of

congestion during peak hours of the day requires more attention. The assumption is made

that by addressing the time-dependent nature of travel times, a modeling approach that is a

stronger approximation of the actual real-world conditions of vehicle routing and scheduling

than by catering for stochastic travel times, will be achieved.

Hill and Benton (1992) review the two main approaches in estimating travel distance

between two nodes i and j, denoted by dij , namely Minkowski distance and Pythagorean

distance. The former is presented in (2.46).

dij = [|xi − xj |ω + |yi − yj |ω]
1
ω (2.46)

When ω is 2, the Minowski distance, denoted by dij , is the Pythagorean distance. When ω is

1, the Minowski distance is the city-block right-angled distance. In (2.46) the coordinate pair

(xi, yi) of each node i is required. A similar approach can be followed if only latitude and

longitude data is available, i.e. from a Geographical Information System (GIS) database.

The problem, however, is that researchers often reduce vehicle travel speed to an approximate

speed, denoted by rc, and simply apply the scalar transformation of distance in (2.47) to

find the travel time between the two nodes,

tij =
dij

rc
(2.47)

without cognisance of an acceleration stage to get onto the road, the cruising stage, and

the deceleration stage at the destination node (Assad, 1988). If the three stages were to be

acknowledged, dc denotes the distance required for the vehicle to reach its cruising speed,

and α denotes the acceleration, a more appropriate way of calculating the travel time is given
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in (2.48).

tij =


2
(

dij

α

) 1
2 if dij ≤ 2dc

dij

rc
+ rc

α if dij > 2dc

(2.48)

In most metropolitan areas, travel times are much longer during the start and end of

workday rush hours, especially on main arterial routes. If one were to inflate all route

times equally during peak periods, one would be able to route and schedule vehicles without

taking time-dependent travel times into consideration, and not compromise optimality of

routes. However, road networks are unevenly congested, i.e. traveling from A to B during

the morning rush hour traffic might be more congested than when traveling from B to A at

the same time.

Malandraki and Daskin (1992) state that the travel time is not only a function of the

distance, but should take the time of day into account as well. Ichoua et al. (2003) state that

research on time-dependent problems started towards the end of the 1950s with references

to the time-dependent shortest path problem, the time-dependent path choice problem, and

the Time Dependent Traveling Salesman Problem (TDTSP). Of the earliest research found

on the Time Dependent Vehicle Routing Problem (TDVRP) is Hill et al. (1988), followed

by Hill and Benton (1992). In their papers customer nodes were assigned time-dependent

piecewise constant speeds — these speeds reflect the traveling speed surrounding the nodes.

The edge travel time between two nodes were derived as the average speed of the two nodes

concerned. At the time Hill and Benton (1992) attribute the lack of time-dependent travel

time research to:

• Immense efforts to estimate travel time parameters

• Prohibitive data storage requirements

• Inefficient solution algorithms

Malandraki and Daskin (1992) formulate an elegant variant of the Vehicle Routing Prob-

lem with Time Windows (VRPTW) with the introduction of piecewise constant travel times

on the edges. Approaches to accommodate time-dependent travel times mentioned so far

all allow passing : the event where one vehicle my pass another vehicle on the same edge al-

though it started later than the vehicle it passed, but in a different time period with shorter

traveling time.

Ahn and Shin (1991) use similar notation as used in the introduction of the VRPTW,

and also introduce:
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τij (x) , travel time from node i to node j via arc (i, j) ∈ A, given that the trip

starts from node i at time x

si , the constant service time at node i

ti , the time at which service begins at node i

Aij (ti) , arrival time at node j through arc (i, j) ∈ A given ti, that is Aij(y) =

y + si + τij (ti + si)

di , the effective latest service start time at node i that allows us to maintain

the feasibility of a current route

Each customer i is to be serviced within its time window [ei, li]. The internode travel

time τij (·) and the arrival time Aij (·) are functions of the departure time representing time-

dependent congestion levels. In this thesis multiple links are not considered. The non-passing

property can be expressed as:

For any two nodes i and j, and any two service start times x and y at node i

such that x < y, Aij(x) < Aij(y) must hold, that is, earlier departure from node

i guarantees earlier arrival at node j.

Raw travel time data in the form of a step function is not appropriate for use in the

routing of vehicles, as it only provides average travel time data for specific time periods. In

such data sources, let:

τijk , the shortest travel time from node i to node j if the start time at node i

is in time slot Zk, where i, j ∈ A, and k ∈ {1, 2, . . . ,K},

where the day (planning horizon) is divided into time slots such that

Zk = [zk−1, zk] ∀k ∈ {1, 2, . . . ,K},

where the interval [z0, zK ] reflects the full day, or planning horizon under consideration.

Figure 2.5 is used for illustrative purposes. The travel time, being a function of the time of

day, is not continuous in the point zk and may lead to passing if travel time decrease for the

k + 1th segment. To obtain a smoothed travel time function, let:

τij(t) , the travel time from node i to node j given that the travel started at time

t from node i
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Figure 2.5: Travel time function

A parameter δijk is introduced for each breakpoint zk, where k ∈ {1, 2, . . . ,K}, be-

tween two consecutive time slots Zk−1 and Zk. The values of δij0 = δijK = 0. The jump

between two consecutive travel times segments Zk−1 and Zk is linearized in the interval

[zk − δijk, zk + δijk] provided the parameter δijk and determining the slope

sijk =
τij,k+1 − τijk

2δijk
(2.49)

The travel time function, as illustrated by Figure 2.5(b), is expressed as

τij (t) =


τijk for zk−1 + δij,k−1 ≤ t ≤ zk − δijk

τijk + (t− zk + δijk) sijk for zk − δijk < t < zk + δijk

(2.50)

The travel time function holds for all k ∈ {1, 2, . . . ,K}. Fleischmann et al. (2004) prove that

if δijk > 0 for all intermediate breakpoints and the slope sijk > −1, that the arrival time

function

Aij(t) = t+ τij(t) (2.51)

is continuous and monotonic1, i.e. adheres to the non-passing property. The papers by

Ichoua et al. (2003) and Potvin et al. (2006) also refer to the non-passing property as the

First-In-First-Out (FIFO) property. As Aij (·) is a strictly increasing function, it possesses
1There is a designated sequence such that successive members are either consistently increasing or de-

creasing with no oscillation in relative value, i.e. each member of a monotone increasing sequence is greater

than or equal to the preceding member; each member of a monotone decreasing sequence is less than or equal

to the preceding member.
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the inverse function A−1
ij (·). A−1

ij (x) is interpreted as the departure time at node i so that

node j can be reached at time x. Let (i0, i1, i2, . . . , im, i0) denote a partially constructed

feasible route with m customer nodes where i0 denotes the depot. The partial route could

be simplified for illustration purposes to (0, 1, 2, . . . ,m, 0).

In the presence of the non-passing property, the effective latest service start time at node

i on the partial feasible route, denoted by di, could then be given by the backward recursive

relation given in (2.52).

di =


min

{
li, A

−1
i0 (l0)

}
for i = m

min
{
li, A

−1
i,i+1 (di+1)

}
for 0 ≤ i ≤ m− 1

(2.52)

The actual service start time for each node i can be determined by the forward recursion

given in (2.53).

ti =


max {ei, A01 (t0)} for i = 1

max {ei, Ai−1,i (ti−1)} for 2 ≤ i ≤ m
(2.53)

The computation of both di and ti is fairly elementary. The advantage is only apparent when

route improvements are made, and subsequent feasibility check routines are eased.

The formulation used in this thesis refers to both travel and service times as uncertain

and dependent on the realization of uncertain events. A principle distinction, however, is

made between stochastic service times and time-dependent travel times. The implications

of such a distinction will become apparent in the calculations and feasibility checks when

solution algorithms are developed in later chapters, as only time-dependent travel time is

considered. In the majority of applications, demand is assumed to be known at the time of

establishing the actual route.

2.2.5 Multiple scheduling

It is often not viable to assume that each vehicle will only complete a single route. Multiple

scheduling is concerned with the case where a vehicle could complete deliveries on a scheduled

route, return to the depot where its capacity is renewed, after which a second, or consecutive

trip is executed with the renewed capacity. Taillard et al. (1996) refer to this type of problem

as the Vehicle Routing Problem with Multiple use of vehicles (VRPM). Butt and Ryan (1999)

consider the Multiple Tour Maximum Collection Problem (MTMCP) and assumes that the

routes are constrained in such a way that all of the customers cannot be visited. Their

approach aims to maximize the number of customers serviced. Brandão and Mercer (1997)
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introduce the Multi-Trip Vehicle Routing Problem (MTVRP) and address the combination

of multiple trips with time windows. The special case of multiple scheduling where only trips

are considered is referred to as Double Scheduling.

This thesis considers a vehicle that starts and ends its tour at the depot. A tour consists

of one or more routes, each starting and ending at the depot. The same vehicle can only

be used for two or more routes if the routes do not overlap. As opposed to (2.28) multiple

routes require a service time to be specified for the depot. Consider the example illustrated

in Figure 2.6. The depot has a time window from 06:00 to 18:00. A vehicle fills its capacity

18:0016:0006:00 08:00

s0
Route 1

10:00 12:00 14:00

s0
Route 2

e0 l0

Figure 2.6: Double scheduling

at the depot for a time period of s0 = 0.5 hours. It leaves the depot at 06:30, services the

first route, and returns to the depot at 11:00, where its capacity is renewed. A second route,

of five hours, is serviced before the vehicle returns to the depot.

Taillard et al. (1996) state that the multiple scheduling type of problem has received

very little attention in literature. This thesis proposes a way to deal with multiple routes.

The proposed solution involves a time verification process. If a vehicle arrives back at the

depot at time am, and the service time is specified as s0, then the vehicle is considered for

an additional route on its current tour if, after the capacity has been renewed, the depot’s

time window is still open. The case is presented in (2.54).

am + s0 ≤ l0 (2.54)

The mathematical formulation of the VRPM requires a redefinition of the decision variables,

as well as the constraints. The VRPM is addressed in the next section where the complete

problem is defined and formulated.
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2.3 The integrated problem at hand

An extended variant of the VRP, where multiple soft time windows, a heterogeneous fleet,

and multiple scheduling are considered in an environment with uncertain travel and service

times, is presented. Due to the complexity associated when concatenating elements from

various variant acronyms, we revert to using a simple reference, the Thesis Problem (TP).

To formulate the complex problem, we will redefine some of the variables and parameters used

earlier, and introduce a few additional variables. We define the following basic parameters.

N , total number of customers to be serviced

qi , deterministic demand for customer i, where i = {1, 2, . . . , N}

K , total number of vehicles available

zk
i ,


1 if node i is visited by vehicle k, where i = {1, . . . , N}, k = {1, . . . ,K}

0 otherwise

ξ̃ , a vector of uncertain variables corresponding to travel and service times.

Each realization γ of ξ̃, denoted by ξγ , is referred to as a state of the

world (Kall and Wallace, 1994)

Ξ , the finite support of ξ̃ such that Ξ =
{
1, 2, . . . , ξγ , . . . , ξΓ

}
where Γ is the

total number of states in the problem world

tkij

(
ξ̃
)

, the travel time from node i to j with vehicle k, where i, j = {1, . . . , N}, k =

{1, . . . ,K} expressed as a function of the realization of ξ̃

τk
i

(
ξ̃
)

, the service time at node i with vehicle k, where i = {1, . . . , N}, k =

{1, . . . ,K}, expressed as function of the realization of ξ̃

To expand the formulation and to include a heterogeneous fleet, we let:

T , number of different types of vehicles available

cijt , travel cost if a vehicle of type t travels from customer i to customer j,

where t = {1, 2, . . . , T}, and i, j = {0, 1, 2, . . . , N}

pt , capacity of a vehicle of type t, where t = {1, 2, . . . , T}

ft , fixed cost of a vehicle of type t, where t = {1, 2, . . . , T}

φk
t ,


1 if vehicle k is of type t, where k = {1, 2, . . . ,K}, and

t = {1, 2, . . . , T}

0 otherwise
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Multiple soft windows will be addressed by introducing the following parameters:

Ai , number of time windows for customer i, where i = {0, 1, 2, . . . , N}

ai

(
ξ̃
)

, the actual arrival time at customer i, where i = {0, 1, 2, . . . , N}, expressed

as a function of the realization of ξ̃

eai , earliest allowed arrival time for customer i’s ath time window, where i =

{0, 1, 2, . . . , N} and a = {1, 2, . . . , Ai}

lai , latest allowed arrival time for customer i’s ath time window, where

i = {0, 1, 2, . . . , N} and a = {1, 2, . . . , Ai}

Lmax
i , maximum lateness allowed by customer i, where i = {0, 1, 2, . . . , N}

αi , lateness penalty at customer i in cost per time unit, where

i = {0, 1, 2, . . . , N}

λi

(
ξ̃
)

, actual lateness at customer i, where i = {0, 1, 2, . . . , N}, expressed as a

function of the realization of ξ̃

wi

(
ξ̃
)

, waiting time at customer i, where i = {0, 1, 2, . . . , N}, expressed as a

function of the realization of ξ̃

To ensure that multiple scheduling is considered, we let:

Rk , number of routes scheduled for vehicle k, where k = {1, 2, . . . ,K}

Q , maximum number for routes allowed for any one vehicle

Mk , maximum tour time (all routes) allowed for vehicle k, where k =

{1, 2, . . . ,K}

dkr
(
ξ̃
)

, vehicle k’s departure time from the depot as it embarks on servicing its

rth route, where k = {1, 2, . . . ,K} and r = {1, 2, . . . , Rk}, expressed as a

function of the realization of ξ̃

gkr
(
ξ̃
)

, vehicle k’s return time at the depot after servicing its rth route, where

k = {1, 2, . . . ,K} and r = {1, 2, . . . , Rk}, expressed as a function of the

realization of ξ̃

δk
(
ξ̃
)

, the amount by which vehicle k exceed its allowable tour time, where k =

{1, 2, . . . ,K}, expressed as a function of the realization of ξ̃

βk , the positive unit penalty cost for vehicle k when exceeding its allowable

tour time, where k = {1, . . . ,K}

With the notation established the decision variables for the TP are defined as:
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xkr
ij ,


1 if vehicle k travels from customer i to customer j on its rth route,

where i, j = {1, 2, . . . , N}, k = {1, 2, . . . ,K}, r = {1, 2, . . . , Rk}

0 otherwise

ψa
i ,


1 if the ath time window of customer i is used, where i ∈ {1, 2, . . . , N},

a ∈ {1, 2, . . . , A}

0 otherwise.

The mathematical formulation of the TP is provided.

min z =
N∑

i=0

N∑
j=0
j 6=i

K∑
k=1

T∑
t=1

Rk∑
r=1

cijtx
kr
ij φ

k
t +

N∑
j=1

K∑
k=1

Rk∑
r=1

fkxkr
0j

Rk

+ Eξ̃

[
N∑

i=1

αiλi

(
ξ̃
)

+
K∑

k=1

βkδk
(
ξ̃
)]

(2.55)

subject to

N∑
j=1

Q∑
r=1

xkr
0j = Rk ∀k ∈ {1, 2, . . . ,K} (2.56)

N∑
j=1

Q∑
r=1

xkr
j0 = Rk ∀k ∈ {1, 2, . . . ,K} (2.57)

N∑
i=1
i6=j

K∑
k=1

Rk∑
r=1

xkr
ij = 1 ∀j ∈ {1, 2, . . . , N} (2.58)
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N∑
j=1
j 6=i

K∑
k=1

Rk∑
r=1

xkr
ij = 1 ∀i ∈ {1, 2, . . . , N} (2.59)

N∑
q=1

qi

N∑
j=0
j 6=i

xkr
ij ≤ pk ∀k ∈ {1, 2, . . . ,K},

r = {1, 2, . . . , Rk} (2.60)

eai − (1− ψa
i )M ≤ ai

(
ξ̃
)

+ wi

(
ξ̃
)

∀i ∈ {1, 2, . . . , N},

∀a ∈ {1, 2, . . . , Ai} (2.61)

Lmax
i + (1− ψa

i )M ≥ ai

(
ξ̃
)

+ wi

(
ξ̃
)

∀i ∈ {1, 2, . . . , N},

∀a ∈ {1, 2, . . . , Ai} (2.62)
Ai∑

a=1

ψa
i = 1 ∀i ∈ {1, 2, . . . , N} (2.63)

max

{
0, ej −

(
dkr
(
ξ̃
)

+ t0j

) K∑
k=1

Rk∑
r=1

xkr
0j

}
= wj

(
ξ̃
)

∀j ∈ {1, 2, . . . , N} (2.64)

max
{

0,
(
ai

(
ξ̃
)
− lai

)}
= λa

i

(
ξ̃
)

∀i ∈ {1, 2, . . . , N},

∀a ∈ {1, 2, . . . , Ai} (2.65)

dk1 ≥ e0 + s0 ∀k ∈ {1, 2, . . . ,K} (2.66)

K∑
k=1

Rk∑
r=1

xkr
0j

(
dkr
(
ξ̃
)

+ t0j

)
≤ aj

(
ξ̃
)

∀j ∈ {1, 2, . . . , N} (2.67)

N∑
i=1
i6=j

K∑
k=1

Rk∑
r=1

xkr
ij

(
ai

(
ξ̃
)

+ wi

(
ξ̃
)

+ τk
i

(
ξ̃
)

+ tkij

(
ξ̃
))
≤ aj

(
ξ̃
)

∀j ∈ {1, 2, . . . , N}

(2.68)

N∑
i=1

xkr
i0

(
ai

(
ξ̃
)

+ τk
i

(
ξ̃
)

+ wi

(
ξ̃
)

+ ti0

)
≤ gkr

(
ξ̃
)

∀k ∈ {1, 2, . . . ,K},

r ∈ {1, 2, . . . , Rk} (2.69)

gk,r−1
(
ξ̃
)

+ s0 = dkr
(
ξ̃
)

∀k ∈ {1, 2, . . . ,K},

r ∈ {2, 3, . . . , Rk} (2.70)
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gkr
(
ξ̃
)

+ s0 ≤ l0 ∀k ∈ {1, 2, . . . ,K},

r ∈ {2, 3, . . . , Rk−1} (2.71)

gkRk
(
ξ̃
)
≤Mk + δk

(
ξ̃
)

∀k ∈ {1, 2, . . . ,K} (2.72)

Rk ≤ Q ∀k ∈ {1, 2, . . . ,K} (2.73)
Q∑

r=Rk+1

N∑
i=1

N∑
j=1
j 6=i

xkr
ij = 0 ∀k ∈ {1, 2, . . . ,K} (2.74)

xkr
ij ∈ {0, 1} ∀i, j ∈ {1, 2, . . . , N},

k ∈ {1, 2, . . . ,K},

r ∈ {1, 2, . . . , Rk} (2.75)

ψa
i ∈ {0, 1} ∀i ∈ {1, 2, . . . , N},

∀a ∈ {1, 2, . . . , Ai} (2.76)

The objective function in (2.55) minimizes a combination of deterministic and stochastic cost

components. The first expression represents the total variable traveling cost, followed by the

total fixed fleet cost. The third expression represents the expected lateness penalties and

constitutes firstly the lateness at each customer, and secondly the lateness for each vehicle.

The combination of (2.56) and (2.57) calculates the total number of routes and ensures

that the same number of routes that starts for each vehicle, also finishes. Each customer

is visited exactly once according to the constraint combination (2.58) and (2.59). Vehicular

capacity is enforced through (2.60) by ensuring that the sum of the demands of all customers

assigned to a specific route of a given vehicle do not exceed the vehicle’s capacity, which may

either by represented as weight or volumetric capacity, or both if additional constraints are

added.

Constraints (2.61) and (2.62) ensure that the multiple soft time windows are adhered to

where the parameter M represents a sufficiently large number, as discussed when multiple

soft time windows were introduced. Actual arrival times and waiting times at any given

customer is a function of the stochastic travel and service times of all customers preceding

that specific customer, hence the stochastic notation. As each customer is visited only once,

(2.63) ensures that only one time window for each customer is considered. The waiting time

and lateness at each customer, both expressed as a stochastic variable, are determined in

(2.64) and (2.65), respectively.

The departure time for each vehicle’s first route is determined by (2.66), while the actual
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arrival time at the first customer on each route is determined by (2.67). Arrival times for

subsequent customers are determined by (2.68).

The return time for each route is determined by (2.69). Consecutive route start times

is determined by (2.70) by taking the service time of the depot into account where vehicles’

capacities are renewed as proposed in (2.54). Constraint (2.71) enforces all routes to fin-

ish within the operating hours of the depot, while (2.72) determines the lateness for each

vehicle when exceeding its allowed tour time. Each vehicle may not execute more than

a predetermined number of routes as provided for in (2.73). Should it be determined in

equations (2.56) and (2.57) that the required number of routes is less than the preset limit

Q, then all allowed routes not required are eliminated through the introduction of (2.74).

Binary decision variables are provided for with the introduction of (2.75) and (2.76).

2.4 Conclusion

This chapter deals with the background of the VRP, as well as the integration of multiple

variants into a single problem instance — each contributing to the already complex nature

of the problem. Although the model formulation is the first step in describing the problem

comprehensively, only very small instances of the problem is currently solvable to optimality.

The following chapter introduces the complexity of the problem at hand, and reviews so-

lution approaches for solving the problem. Exact, heuristic, as well as metaheuristic solution

algorithms are considered.
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Chapter 3
Intelligence in solution algorithms

Once a model of the perceived reality is formulated, a process is required to obtain a solution

to the model which, in turn, could be implemented to solve the problem in reality. It should

always be noted that models are solved, not real problems. Rardin (1998) refers to numerical

search as the process of systematically trying different choices for decision variables so that

the best feasible solution could be found. This chapter is dedicated to review the three

primary search strategies used to solve mathematical programming models.

The first of these are exact solution algorithms where one can prove that the best feasible

solution found is in fact the global optimum for the problem. The first section of the chapter

introduces some of the fundamental exact solution algorithms, with reference to further

review articles for interested readers.

Exact solution algorithms are unfortunately not always viable when the size of a problem

increases. To compensate for the time-consuming computational burden, solution seekers opt

for approximate solutions, also referred to as heuristics, where the best solution may, or may

not, be the true optimum for the problem. Yet, heuristics offer solutions that are often

better than the typical industrial solutions obtained through intuition and common sense.

The second section introduces a number of heuristics dating back from the 1950’s, and follows

a few variations of these heuristics.

Heuristics have evolved during the 1990’s to what is referred to as metaheuristics —

intelligent strategies governing the execution of various heuristics in order to find even better

solutions. The third section introduces a number of metaheuristics and its variations, from

where a conclusion is drawn and a motivation is provided for the choice of solution algorithms

for this thesis.
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3.1 Exact solution algorithms

It might at first seem counterintuitive that integer (discrete) linear and combinatorial prob-

lems are more difficult to solve than their continuous counterparts, seeing that the algebra

for Linear Programming Problem (LP) algorithms can be quite daunting. A discrete model

with a finite number of possible decision variable values, on the other hand, seems much

easier. This reasoning holds only for small instances of discrete problems, and Rardin (1998)

confirms that total enumeration of all possible combinations is the most effective method to

find the best solution. Consider a problem with only two binary variables, x1 and x2. There

are only 22 = 4 possible cases. Although ten binary variables will require 210 = 1024 cases to

be enumerated, it is still viable using computers. The exponential growth in the number of

case evaluations when enumerating requires alternative algorithms for problems of practical

size.

This thesis follows the classification proposed by Laporte and Nobert (1987) and Laporte

(1992) whereby exact algorithms are grouped into three primary categories, each covered in

the following subsections.

3.1.1 Direct tree search methods

The analogy of a tree in search methods represents the primary stem being some initial

solution, from where the stem is split into branches, or secondary stems that are related to

the primary stem. These secondary stems, in turn, branch into tertiary stems, etc.

The first step in direct tree search methods is to find the primary, or initial solution.

Because discrete optimization models are typically hard to solve, it is natural to find re-

lated, yet easier formulations of the problem. Auxiliary models are referred to as relaxations

of the original discrete problem and are easier to solve as some of the constraints, or ob-

jective function(s) of the discrete problem are weakened. Solving the relaxations can lead

the modeler to make solution interpretations of the original problems. Various relaxation

techniques vary in strength. Rardin (1998) defines a relaxation as strong or sharp if the

relaxation’s optimal value closely bounds that of the original model, and the relaxation’s so-

lution closely approximates an optimum in the original problem. Various relaxation methods

exist in introductory Operations Research textbooks and include LP relaxations, stronger

Big-M constants and the introduction of valid inequalities (for example the Cutting Plane

algorithm (Jeroslow, 1979)) (Hillier and Lieberman, 2005; Rardin, 1998; Taha, 2003; Win-

ston and Venkataramanan, 2003). An even stronger relaxation, referred to as Lagrangian
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relaxation, do not weaken integrality constraints, but rather relax some of the main linear

constraints after which they are dualised (or weighed) in the objective function with La-

grangian multipliers (Fisher and Jaikumar, 1981). Desrosiers et al. (1988) use Lagrangian

relaxation methods to solve a variant of the MTSP with time windows.

Once a relaxation is solved to optimality, and the solution also conforms to all constraints

in the original problem, the solution is also the optimal solution for the original problem.

If not, various strategies and algorithms are employed to systematically work towards a

relaxation of which the optimal solution is also optimal for the original problem.

The branch-and-bound search algorithms combine relaxations with an enumeration strat-

egy to find optimal candidate solutions, while bounding the search by previous solutions.

Laporte et al. (1989) adapt the branch-and-bound algorithm in solving a class of stochastic

location routing problems with networks of 20 and 30 nodes. Laporte et al. (1986) solve the

asymmetrical Capacitated Vehicle Routing Problem (CVRP) for 260 nodes. The structure of

the VRP and its relationship with one of its relaxations, the MTSP, is exploited by Laporte

(1992) in a similar manner.

The branch-and-bound algorithm has been modified with the introduction of stronger

relaxations prior to the branching of a partial solution. The modified algorithm is referred

to as branch-and-cut as the stronger relaxations are obtained with the inclusion of new

inequalities. The inequalities should hold for all feasible solutions of the original discrete

problem, but should render the last relaxation’s optimum as infeasible, hence the term cut.

Padberg and Rinaldi (1987) illustrate the generation of cuts in a symmetrical TSP with

532 nodes. Laporte et al. (1992) describe a general branch and cut algorithm for the VRP

with stochastic travel times. The authors introduce cuts in the form of subtour elimination

constraints, and introduce lower bounds on penalties if a route exceeds its predetermined

route duration limit.

Van Slyke and Wets (1969) introduce the L-shaped method as a variant of the cut-

ting plane algorithm for specific linear programs. Birge and Louveaux (1988) acknowledge

that the method holds opportunity for stochastic programming applications and modify the

method to create multiple cuts in each major iteration. Laporte and Louveaux (1993) fur-

ther expand the method and refer to their general branch-and-cut procedure as the integer

L-shaped method and apply it to stochastic integer programs and note that fathoming rules

are different than in branch-and-bound trees. In another variation on branching, Christofides

et al. (1979) propose a depth-first tree search in which single feasible routes are generated

as and when required in their VRP formulation based on the TSP.
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In their recent review of exact algorithms based on branch-and-bound, Toth and Vigo

(2002a) state that these types of algorithms remain the state of the art with respect to exact

solutions, especially in the case where asymmetric cost matrices exist. Giaglis et al. (2004)

confirm that exact approaches are applicable to problems of practical size only if they have

low complexity.

3.1.2 Dynamic Programming (DP)

DP determines the optimum solutions of an n-variable problem by decomposing it into n

stages each consisting of a single-variable subproblem (Taha, 2003). The objective is to

divide-and-conquer real-life problems by enumerating in an intelligent way through a state

space of solutions (Brucker, 2004). In solving shortest path problems, Rardin (1998) claims

that DP methods exploit the fact that it is sometimes easiest to solve one optimization

problem by taking on an entire family of shortest path models. DP was first proposed for

solving VRPs by Eilon et al. (as cited by Laporte (1992)).

Hamacher et al. (2000) faced the requirement that the nodes to be routed in a tour must

be chosen from a small region of the map, and motivate their choice by the fact that the truck

drivers have a local knowledge of the environment and is subjected to business constraints.

Although the most natural DP formulation results in a DP with infinite state and action

spaces, an optimality-invariance condition recently introduced by Lee et al. (2006) establishes

leads to an equivalent problem with finite state and action spaces. Their formulation leads

to a new exact algorithm for solving the Multi-Vehicle Routing Problem with Split Pick-ups

(MVRPSP), based on a shortest path search algorithm, which they claim to be conceptually

simple and easy to implement.

Although in a different problem context, Beaulieu and Gamache (2006) present an enu-

meration algorithm based on DP for optimally solving the fleet management problem in

underground mines. Their problem consists of routing and scheduling bidirectional vehicles

on a haulage network composed of one-lane bidirectional road segments.

Li et al. (2005) integrate the machine scheduling problem with a delivery routing problem

and formulate a DP recursion since there are a finite number of time points for the start

time of a trip of the vehicle. They conclude, however, that the problem can be simplified

by limiting deliveries to direct shipments, a situation that is inappropriate if there is a large

number of customers and small shipments across a geographically dispersed network.
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3.1.3 Integer linear programming

The set partitioning formulation is a method that starts by assuming that the totality of

routes which a single vehicle can operate feasibly, can be generated (Christofides et al., 1979).

Let A denote the set of nodes representing customers. Then if S ⊆ A is the subset of nodes

which can be feasibly supplied on a single route by a vehicle vk, it is assumed that the total

variable cost associated with the optimal routing of nodes in S can be calculated. This is not

trivial if |S| is large as it relates to a TSP (one vehicle with a single route). For each vehicle

vk a family Sk of all feasible single routes for that specific vehicle is generated. A matrix

G = [gij ] is produced with row i representing customer xi and M blocks of columns where

the kth block of columns corresponds to vehicle vk and column jk of the block corresponds

to a feasible single route Sjk
of vehicle vk. The VRP now becomes the problem of choosing

at most one column from each block of G so that each row of G has an entry when

gijk
,


1 if customer xi is an element of the single route Sjk

0 otherwise

Balinksi and Quandt (as cited by Laporte (1992)) were among the first to propose such a

set partitioning formulation for VRPs. But combinatorial problems often result in extremely

large arrays of possibilities too complex to be modeled concisely (Rardin, 1998). Column

generation adopt a two-part strategy for such problems. It first enumerates a sequence of

columns representing viable solutions to parts of the problem, often employing DP. Part

two of the strategy solves a set partitioning model to select an optimal collection of these

alternatives fulfilling all problem requirements. It results in a flexible and convenient ap-

proach employing a multitude of schemes to generate columns which are complex. In this

approach it becomes possible to address constraints that are often difficult to model. It

suffers, however, from the shortcoming that the number of columns in G can be enormous.

A variant of the VRPTW is solved by Desrochers et al. (1992) who admit that exact

solution algorithms have lagged considerably behind the development of heuristics. Their

algorithm attempts to use best of breed by solving various subproblems using a branch and

bound scheme, DP, and column generation. The drawback remains that the set partitioning

problem stops being competitive when a large number of customers are to be serviced on a

single route, for example when demands are small in relation to the vehicle capacity. This

results in the LP relaxation to become more dense — leading to possible degeneracy.

The MTMCP is closely related to both the TSP and the VRP with the major difference

that it is not possible to service all nodes in the graph in the allocated time on a given set

38

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoouubbeerrtt,,  JJ  WW  ((22000077))  



of tours. Hence the objective to maximize the earned reward of those nodes visited. In their

paper Butt and Ryan (1999) combine column generation and constraint branching to achieve

an optimal solution algorithm that solves problems with 100 nodes.

In more recent work Righini and Salani (2004) note that a trade-off remains between

the time spent on the column generation, and the quality of the lower bound achieved,

indicating that research into effective exact algorithms remain active. Choi and Tcha (2006)

use a column generation approach in solving the HVRP with a maximum of 100 nodes in

the test problems used. Column generation, however, is not easily adapted to the stochastic

variant of a routing problem (Lambert et al., 1993).

3.2 A case for heuristics

Maffioli (1979) indicates that real life combinatorial problems have a number of unpleasant

features: problems are usually dimensionally large; problems have integrated constraints;

and problems can not always be decomposed or generalized to simpler subproblems. It is

noteworthy that although researchers attempt to solve real-world problems, complex prob-

lems are already solved in industry where decision makers often settle for good enough solu-

tions (Russell and Norvig, 2003).

3.2.1 Route construction

Savings-based heuristics

Christofides et al. (1979) indicate that the majority of heuristics are constructive in nature in

the sense that at any given stage one or more incomplete routes exist. Incomplete routes are

extended to consecutive stages until a final route exists. The construction of routes may be

either sequential if one route is completed prior to another being started, or parallel where

more than one incomplete route may exist at a particular stage. After routes are created, a

number of local improvements may be initiated to refine a route.

The savings algorithm established by Clarke and Wright (1964) is without doubt the most

widely known heuristic in VRPs and has formed the basis of a substantial number of heuristic

variations. The Clarke-Wright algorithm remains a computationally efficient algorithm, and

deserves attention (Lenstra and Rinnooy Kan, 1981). The algorithm is defined as follows:

Step 1 Calculate the savings for all pairs of customers i and j, denoted by sij , where both

customers are serviced on one route, as opposed to customer i being serviced on a new
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dedicated route from the depot, using (3.1)

sij = c0i − cij + cj0 ∀i, j ∈ {1, 2, . . . , N} (3.1)

where N is the total number of customers in the network, and cij denotes the cost of

traveling from node i to node j, and where i = j = 0 represents the depot.

Step 2 Arrange the savings in descending order of magnitude.

Step 3 Starting from the top, use one of the following approaches:

Sequential approach

1. Find the first feasible link in the list which can be used to extend one of the

two ends of the currently constructed route.

2. If the route cannot be expanded, or no route exist, choose the first feasible

link in the list to start a new route.

3. Repeat (1) and (2) until no more links can be chosen.

Parallel approach

1. If making a given link results in a feasible route according to the constraints

of the VRP, add the given link to the solution. If not, reject the link.

2. Try the next link in the list and repeat (1) until no more links can be chosen.

Step 4 The links form the solution to the VRP.

Christofides et al. (1979) suggest that in the parallel approach a maximum number of routes,

M , be introduced to ensure that vehicle feasibility constraints are adhered to. Mole and

Jameson (1976) motivate why a sequential approach yields more benefit and adapt the

savings procedure to calculate the best insertion position on edge (i, j) of the partially

constructed route C for customer u, denoted by s(i, u?, j), using the expression in (3.2)

s(i, u?, j) = min
i,j∈C

{s(i, u, j)} ∀u ∈ {1, 2, . . . , N}|u 3 C (3.2)

where C is the subset of the N nodes already routed, with

s(i, u, j) = 2d0u + (dij − diu − duj) (3.3)

The criteria used to determine the best edge to insert a specific customer is referred to as

the insertion criteria. Once the best edge for insertion has been identified for each customer,

the customer with the highest saving will be selected and inserted in its best position. The

criteria used to select the best customer is referred to as the selection criteria.
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Although a number of schemes have been suggested by Christofides et al. (1979) to

identify the first customer on a new route, termed the seed customer, such as customer with

earliest time window deadline; unrouted customer furthest from depot; or customer with

largest demand, this thesis will propose a new method for identifying seed customers in

Chapter 4.

Nelson et al. (1985) review and test a number of data structures to employ when imple-

menting the Clarke-Wright algorithm. The authors establish methods of choice for VRPs

with given characteristics of the network topology.

The savings heuristic has since its inception been adapted in quite a number of re-

search contributions. Golden et al. (1984) refer to the basic savings algorithm as Clarke-

Wright (CW), and introduced minor changes through their Combined Savings (CS) algo-

rithm. They proceeded to introduce both the Optimistic Opportunity Savings (OOS) and

Realistic Opportunity Savings (ROS). The latter was extended to the ROS-γ that included

variety into the algorithm. Solomon (1987) not only applied the savings technique in solving

the VRPTW, but also established benchmark problems which have since been used exten-

sively. Paessens (1988), Salhi and Rand (1993) and Tung and Pinnoi (2000) propose various

adaptions to the savings heuristic and apply the algorithms to generate feasible routes prior

to an improvement stage. In a banking application Lambert et al. (1993) use the sav-

ings algorithm on both a deterministic and stochastic variant of the VRPTW. Dullaert

et al. (2001) continue the development and adapt the original criteria for sequential inser-

tion, referred to as the Adapted Combined Savings (ACS), Adapted Optimistic Opportunity

Savings (AOOS), and the Adapted Realistic Opportunity Savings (AROS).

Liu and Shen (1999b) challenge the prior research by stating that a parallel approach to

route construction actually yields superior results, and use the savings algorithm in solving

the VRPMVTTW.

Ong et al. (1997) introduce new selection criteria and use the sequential approach on a

variant of the Multi Period Vehicle Routing Problem (MPVRP) with time windows, specific

vehicle type constraints, multiple depots and stochastic demand constraints. Liu and Shen

(1999a) considered the FSMVRPTW and introduced some modifications on the savings

expressions with added route shape parameters.

The basic Clarke-Wright algorithm is adapted by Hill et al. (1988), Ahn and Shin (1991),

Hill and Benton (1992) and Malandraki and Daskin (1992) to accommodate forward schedul-

ing where time-dependent travel times are modeled. Fleischmann et al. (2004) test three

saving algorithms on a time-dependent travel time variant of the VRPTW.
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Sweep algorithm

A different approach was introduced by Gillett and Miller (1974). Their proposed algorithm

divides the locations into a number of routes. The following notation is introduced to explain

the algorithm. Let:

N , number of locations including the depot (where the depot is always referred

to as location 1)

qi , the demand at location i, where i ∈ {2, 3, . . . , N}

(xi, yi) , rectangular coordinates of the ith location, where i ∈ {1, 2, . . . , N}

C , the capacity of each vehicle

dij , the distance between locations i and j, where i, j ∈ {1, 2, . . . , N}

∠i , the polar coordinate angle (measured from the depot) of the ith location,

where i ∈ {2, 3, . . . , N}

ri , the radius from the depot to location i, where i ∈ {2, 3, . . . , N}

The polar coordinate angle is calculated through (3.4).

∠i = arctan
[
yi − y1

xi − x1

]
(3.4)

This results in −π < ∠i < 0 if yi − y1 < 0, and 0 ≤ ∠i ≤ π if yi − y1 ≥ 0. The locations

are renumbered in ascending order according to the size of their polar coordinate angle such

that

∠i < ∠i+1 ∀i ∈ {2, 3, . . . , N − 1}

The forward sweep portion of the algorithm partitions locations into routes beginning with

the location with the smallest angle. Locations are added until the vehicle’s capacity is

reached, or a preset distance constraint on a route is reached. Subsequent routes are gener-

ated in a similar manner until all locations are routed. Each route is then optimised using

either exact or heuristic algorithms for the TSP. The minimum distance traveled is then the

sum of the distances of each optimised route.

The x-y axis is then rotated counterclockwise so the first location becomes the last, the

second becomes the first, the third the second, etc. The minimum distance is calculated

again. The rotation of the x-y axis and the calculation of the distance traveled is repeated

for all possible axis configurations. The minimum forward sweep distance is the least total

distance traveled taken from all axis configurations that was calculated.
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The backward sweep portion is similar to the forward portion except that it forms the

routes in reverse order, i.e. it start with the last reordered entry based on the polar coordinate

angle.

Gillett and Miller (1974) state that the two portions often produce different routes and

minimum distances traveled, hence the sweep algorithm’s result is the route with the lowest

distance traveled of the two portions.

Generalized assignment

Where assignment problems involve the optimal pairing of objects of two distinct types, for

example exactly one job order to exactly one machine, or exactly one customer to exactly

one sales representative, the generalized assignment problem allows for each object i to be

assigned to some j, and each j being allowed to receive a number of i (Rardin, 1998). Fisher

and Jaikumar (1981) reformulate the VRP in a two-stage approach. First customers are

assigned to vehicles, hence the relation to generalized assignment problems. Secondly, for

each vehicle the customers assigned to that vehicle is sequenced using the TSP formulation

or some other route construction algorithm. The approach is heuristic as the assignment

problem’s objective function is a linear approximation of the second stage’s distance traveled.

A number of methodological variants are provided in Nygard et al. (1988). Koskosidis et al.

(1992) extend the approach to solve a time window variant of the routing problem.

Giant tours

In the VRP version, a giant tour, including the depot, is first created. A giant tour is a

single tour that starts from the depot, passes through all customer sites and returns to the

depot. A directed cost network is then constructed. Define the tour Tab as a tour beginning

with an arc from the depot to customer a, then following the giant tour between customers

a and b (which might include other nodes), finishing with an arc from customer b to the

depot. There exist a directed edge in the cost network from a to b if and only if the tour Tab

is feasible in terms of vehicle capacity and distance restriction. The length of the edge ab

in the cost network is the length of Tab. The shortest path problem is subsequently solved

using Dijkstra’s (1959) algorithm, providing a partitioning of the giant tour.

The procedure is repeated starting from different giant tours and the overall least cost

solution is chosen. In their experiments Nagy and Salhi (2005) constructed 5 giant tours;

one using the nearest neighbor, another using the least insertion cost rule, and the remaining
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three tours are generated randomly. A detailed description on how to generate these giant

tours and how to construct the associated cost networks can be found in Salhi et al. (1992).

3.2.2 Route improvement

Numerical search is the process of systematically trying different values for the decision vari-

ables in an attempt to find a better solution. The process keeps track of the feasible solution

with the best objective function value found thus far, referred to as the incumbent solution.

Rardin (1998) states that most optimization procedures can be thought of as variations of

a single theme: improving search. Synonyms of the theme include local improvement, hill

climbing, local search, and neighborhood search.

An improving search heuristic for vehicle routing and scheduling usually starts with a

feasible solution created through the route construction heuristics suggested in Section 3.2.1.

A characteristic, and unfortunately a drawback of an improving search heuristic is that it

advances along its search path of feasible solutions only while the objective function value

improves. The search space in which new solutions are investigated is best explained through

the analogy of a neighborhood: nearby points of the current solution, each within a small

distance from the current solution.

Slight modifications to the current route are referred to as perturbations, and are ac-

cepted if they yield feasible solutions with an improved objective function value. Although

the discussion in this section is by no means exhaustive, it introduces some of the basic

mechanisms for creating perturbations. Authors such as Nagy and Salhi (2005) apply com-

binations of these perturbations sequentially to obtain improved solutions. For purposes of

this discussion nodes will be denoted by a, b, c, etc., and routes by bolded characters xxx, yyy,

zzz, etc.

Route reversal

A procedure introduced by Nagy and Salhi (2005) in their Vehicle Routing Problem with

Pickups and Deliveries (VRPPD). They observed that changing the direction of a route does

not lead to an increase in the route length, and may lead to increased feasibility. In their

application the objective is to minimize the infeasibilities when integrating both pickups and

deliveries simultaneously, as opposed to sequentially.
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2-Opt

A routine introduced by Lin (1965) based on interchanging two edges, say ab and cd, to form

two new edges ac and bd.

3-Opt

A modification of the 2-Opt routine. In this case three arcs are exchanged with three other

edges.

Shifting node

Similar to the 3-Opt routine involving two routes. A single node a is removed from a route

xxx and inserted into another route yyy.

Exchanging nodes

An extension of the Shifting node routine. A node a is identified on route xxx, and node b on

route yyy. The two nodes a and b are exchanged in their respective positions.

λ-Interchange

When an equal number of nodes, λ, are exchanged between two routes, the perturbation

is referred to as λ-Interchange (Tan et al., 2001c; Thompson and Psaraftis, 1993). The

Exchanging nodes perturbation is therefor a special case where λ = 1.

Double shift

A more complex extension of the Shifting node routine where two nodes, a and b, and three

routes, xxx, yyy, and zzz, are considered. Node a is removed from route xxx and inserted into route

yyy, while node b is removed from route yyy and inserted into route zzz. This is different from

performing the Shifting routine twice, as after the first Shift the resulting route may be

infeasible. It should be noted that this routine is computationally more complex as the

possible combinations to consider increases substantially.

Splitting a route

According to Mosheiov (as cited by Nagy and Salhi (2005)) a route can be improved if the

depot is reinserted into the route, resulting in two routes being created from the original one

route considered.
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Combining routes

If feasible, two routes xxx and yyy are combined, considering both orders xyxyxy and yxyxyx.

3.3 Metaheuristics

The improving search heuristics discussed in the previous section are applied until there are

no solutions in the immediate neighborhood hat include a solution that is both feasible and

improving. The incumbent solution is then referred to as a local optimum. The advantage

of heuristics is that good feasible solutions can still be found even though optimality can

not be guaranteed; the disadvantage is that uncertainty exists about how close the solutions

actually came to the optimal. Herein lies the drawback of heuristics, as the initial solution

may negatively influence the optimality of the local optimum found. Refer to the overly

simplified illustration in Figure 3.1 and note that if the heuristic starts with a solution at
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Figure 3.1: Local vs. global optimum

a, it can only improve until it reaches the local optimum at A. If the same heuristic starts

with a solution at b it can reach the local optimum at B which also happens to be the global

optimum: a feasible solution such that no other solution has a superior objective function

value.

The interested reader is referred to the TOP Program (2006) research group within the

Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology

(SINTEF). The group has an extensive bibliography of research contributions in the field of

vehicle routing, with the majority being on metaheuristics and future research opportunities.
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Metaheuristics are master strategies which uses intelligent decision making techniques

to guide algorithms to find global optimal solutions by temporarily allowing moves in the

neighborhood that result in solutions with inferior objective function values compared to the

incumbent solution. Such a deteriorating move is illustrated in Figure 3.1 with a solution

starting at a, and deteriorating towards b along the dotted line before improving towards

B. A problem arises with accepting temporarily deterioration moves. Consider a and b

to be neighbor solutions. Each solution can thus be reached from the other with a single

perturbation. A move from a to b may be accepted as a temporarily deteriorating move.

However, a move from b to a will always be accepted as it improves the objective function.

This may lead to indefinite cycling around a single solution. All metaheuristics follow a

similar process, although their specific naming conventions, analogies and detailed routines

may vary.

Initialization The process of finding an initial solution. Some metaheuristics, such as the

Genetic Algorithm performs well with randomly generated initial solutions that need

not be feasible, while the Tabu Search is highly sensitive to the quality of the initial

solution.

Diversification The mechanism that ensures that the underlying heuristics are searching

a diversified neighborhood, and thus not getting trapped within local optima.

Intensification A mechanism that ensures the heuristic starts zooming in towards a single

solution. The most promising neighborhoods are identified and those areas of the

solution space are searched more thoroughly.

The diversification and intensification can repeat indefinitely, and hence requires a stop-

ping criteria to terminate the metaheuristic (Van Breedam, 2001). The longer the meta-

heuristic is run, the higher the probability of converging to the global optimum.

An elementary metaheuristic would entail running the improving search heuristic with

multiple initial solutions, each yielding a single local optimum. The best of these local optima

is the incumbent solution, denoted by x̂. Such a process would be highly reliant on the choice

of initial solutions and may yield inferior local optima if initial solutions are not selected and

generated carefully.

Four promising metaheuristics are introduced, and interested readers can refer to Gen-

dreau et al. (1998) for a general review of metaheuristics for the VRP.
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3.3.1 Tabu Search (TS)

The TS is a memory-based local search metaheuristic introduced by Glover (1986) that

searches the neighboring solution space (neighborhood) in search of an improving solution,

updating the incumbent solution when improving moves are made. Deteriorating moves

are allowed and the metaheuristic deals with cycling by declaring moves to recently visited

solutions as tabu, hence the name. A thorough and recent review of the TS can be found in

Bräysy and Gendreau (2001), where the authors focus on time window variants of the VRP.

A general TS approach is presented in Algorithm 3.1. An initial solution x0 and a

Algorithm 3.1: Tabu Search
Input: Initial feasible solution x0; Iteration limit tmax

t← 01

x̂← xt2

Clear Tabu-list, T = {·}3

Generate feasible move set Mxt
4

while either (4x ∈M and 4x 3 T and t < tmax ) or (4x satisfies aspiration) do5

xt+1 ← xt +4x6

T ← T ∪ {xt+1}7

if c
(
xt+1

)
< c (x̂) then8

x̂← xt+19

endif10

t← t+ 111

Generate feasible move set Mxt
12

endw13

stopping criteria is required. In this case the stopping criteria is determined to be a preset

maximum iteration count tmax. The algorithm is initialized by setting the iteration count

to zero, setting the initial solution to be the incumbent solution, and clearing the tabu list.

The objective function value c(x) is expressed as a function of the solution x. A feasible

move set Mxt
that represents the neighborhood around the current solution xt is generated.

The neighborhood is established through any of the perturbations discussed in Section 3.2.2.

If either no non-tabu move 4x ∈ M leads to a feasible neighbor of the current solution

xt within the preset iteration limit, or some aspiration criteria1 is met, the metaheuristic
1The aspiration criteria may override the tabu list, or the iteration limit criteria.
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terminates and the incumbent solution x̂ is the approximate optimum. If not, the new

neighbor becomes the current solution and is added to the tabu list. The current solution

replaces the incumbent if it has a superior objective function value c
(
xt+1

)
. The iteration

count is incremented, a move set is generated for the new current solution, and the process

is repeated.

In a comparison of heuristics and metaheuristics, Van Breedam (2001) identifies TS as

a dominant improvement heuristic with the certainty of achieving at least a local optimum.

Their observation is confirmed by Lee et al. (2006). Ichoua et al. (2003) implement the

TS in both a static and dynamic setting, and claim that the model provides substantial

improvements over a model based on fixed travel times. Recent developments include dras-

tically reducing the size of the search neighborhood, so called granular neighborhoods (Toth

and Vigo, 2003). Results obtained when using promising moves, as proposed by granular

neighborhoods, yielded good solutions within short computing times.

3.3.2 Simulated Annealing (SA)

As opposed to a local search method, SA is a randomized search method (Brucker, 2004).

To understand the concept of simulated annealing in optimization, one has to look at its

analogy to the physical annealing system as first introduced by Kirkpatrick et al. (1983).

The ground state of a solid, for example steel, is that state in which its atoms or particles

are arranged into a minimum energy configuration – the most stable state of the solid. The

ground state of a metal can be obtained through the process of physical annealing. The

metal is first heated to a high temperature to induce its transformation from a solid to a

liquid. This temperature is called the melting point of the metal. In its liquid state the

metal is unstable, the particles move about freely, exhibiting high energy, since they are not

arranged in any set configuration. The temperature is then carefully reduced to allow the

particles to gradually settle into the arrangement of minimum energy and the ground state

is obtained.

Similarly, SA is aimed at obtaining the minimum value of the objective function of an

optimization problem which corresponds to the ground state of the solid (Tan et al., 2001c).

Any other state of the solid corresponds to a feasible solution for the optimization problem,

and the energy of a state of the solid is equivalent to the objective function value of a

solution. A control parameter q, analogous to the temperature of the physical system, is

used to control the gradual convergence of the SA algorithm towards the global optimum by
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regulating the acceptance of moves that deteriorates the objective function value. Similar to

a small displacement of the atoms of the solid, the current solution at stage t, xt, undergoes

small perturbations 4x as it converges towards the optimum solution.

The general SA metaheuristic provided in Algorithm 3.2 requires an initial solution x0,

and a stopping criteria. Alfa et al. (1991) indicate that the computational time required for

finding good solutions are sensitive to the quality of initial solutions. As for the TS algorithm,

an iteration limit count tmax is used. The algorithm also requires an initial temperature q0

and a cooling parameter δ that reduces the temperature of the system after a sufficient

number of iterations, denoted by qmax.

Initializing the SA algorithm entails setting both the iteration count and the temperature

control count to zero, setting the temperature to the initial temperature, and assigning the

initial solution as the incumbent x̂. The neighborhood is established through any of the

perturbations discussed in Section 3.2.2.

If either the iteration count limit tmax is reached, or there are no more feasible moves

4x in the neighborhood move set Mxt
for the current solution xt, the algorithm terminates.

Otherwise the move is tested for acceptance. If the move is improving the objective function

value, it is accepted with a probability of 1. If the move is deteriorating, it will still be

accepted with probability

P [accept] = e

„
c(x̂)−c(x′)

q

«

Returning to the analogy between the physical annealing of a solid and the simulated anneal-

ing algorithm, the acceptance criterion for the SA algorithm is deducted from the Metropolis

criterion. The Metropolis algorithm, as introduced by Metropolis et al. (as cited by Aarts

and Korst (1989)) is a simple algorithm for simulating the physical annealing of a solid. It

states that, given a current state i of the solid with energy Ei, a subsequent state j, with

energy Ej is generated via a small displacement of the atoms of the solid. If the resulting

energy difference, Ej − Ei, is less than or equal to zero, j is accepted as the new current

state. If, however, the energy difference should be greater than zero, the state j will only be

accepted with probability

P [accept] = e

“
Ei−Ej

kBT

”

where T is the current absolute temperature of the solid and kB is known as the physical

Boltzmann constant. Kirkpatrick et al. (1983) noted that since the temperature is merely

a control parameter, the Boltzmanns constant can be omitted. The control parameter is
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Algorithm 3.2: Simulated Annealing
Input: Initial feasible solution x0; Iteration limit tmax

Input: Initial temperature q0 � 0; Temperature limit qmax; Cooling factor 0 < δ ≤ 1

t← 01

qcount ← 02

q ← q03

x̂← xt4

Generate feasible move set Mxt
5

while 4x ∈Mxt
and t < tmax do6

x′ ← xt +4x7

if qcount = qmax then8

q ← δq9

qcount ← 010

else11

qcount ← qcount + 112

endif13

if either c (x′) < c (x̂) or Probability
(
e

c(x̂)−c(x′)
q

)
then

14

xt+1 ← x′15

if c
(
xt+1

)
< c (x̂) then16

x̂← xt+117

endif18

else19

xt+1 ← xt20

endif21

t← t+ 122

Generate feasible move set Mxt
23

endw24
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formulated so as to allow virtually all deteriorating moves during the initial stages of the

algorithm. As the control parameter is gradually decreased, the probability of accepting

deteriorating moves also decreases, and the algorithm converges to the global optimum.

Robusté et al. (1990) indicate in their application of SA that a human can actually out-

perform the algorithm for large problems in terms of the quality of the solution. Development

of the SA have since continued with Van Breedam (1995) reviewing and comparing variants

of the SA. Tan et al. (2001c) attribute a number of advantages to the SA metaheuristic:

• Deals with arbitrary systems and cost functions.

• Statistically guarantees an optimal solution (provided sufficient processing time).

• Relatively easy to code, even for complex problems.

• Generally gives a good solution within reasonable processing time.

The latter point has been supported by Van Breedam (2001) stating that the difference in so-

lution quality between TS and SA never exceeded 4% in his evaluation. In their comparative

analysis of three metaheuristics, Tan et al. (2001c) conclude that SA is a good compromise

between computational effort and quality of solution.

3.3.3 Genetic Algorithm (GA)

GAs were developed and published by John Holland in 1975. GAs are algorithms that

search for global optimal solutions by intelligently exploiting random search methods, emu-

lating biological evolution (Rardin, 1998). The relationships between genetic evolution and

optimization are:

• Populations are represented by groups, each representing a feasible solution.

• In a population, parents mate according to natural selection. This is analogous to

randomly selected feasible parent solutions.

• Offspring are produced by the mating of the selected parents and represent newly

created solutions.

• In nature, offspring exhibit some characteristics of each parent since chromosomes are

exchanged to form new chromosome strings. The algorithm draws on the analogy by

creating two new offspring solutions using perturbations such as swapping, on parts of

the parent solutions. In GAs the perturbations are often referred to as crossovers.
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• Survival of the fittest is also incorporated as the fitness of a solution can be related to

its objective function value. The fittest solutions will typically reproduce to ensure the

survival of the fittest solution in the next generation.

• Mutation for diversity is represented in the metaheuristic by the random modification

of chromosomes, i.e. possible solutions.

Goldberg (1989) reviews GA applications in search strategies an optimization. The general

GA metaheuristic provided in Algorithm 3.3 indicates p unique feasible initial solutions

Algorithm 3.3: Genetic Algorithm
Input: Generation limit tmax

Input: Population size p; Initial feasible solutions x0
1 . . . x

0
p

Input: Population subdivisions pe, pi, and pc such that pe + pi + pc = p

t← 01

while t < tmax do2

begin elite3

Copy pe best solutions from generation t to generation t+ 14

end5

begin immigrant6

Include pi new solutions in generation t+ 17

end8

begin crossover9

Choose pc

2 non-overlapping pairs of solutions from generation t10

Perform crossover perturbations11

Include new solutions in generation t+ 112

end13

t← t+ 114

endw15

x? ← min
i∈{1,...,p}

{
xt

i

}
16

x̂← locally optimized x?17

required to constitute generation 0. Filipec et al. (1998) test their GA with various population

sizes and conclude that too small a population may terminate the algorithm prematurely as

diversification is compromised, while too large populations slows down the convergence rate

as more generations are required (increased computational effort) to initiate dominance of
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quality solutions. Initial solutions are created either randomly or using route construction

heuristics as discussed in Section 3.2.1 (Vas, 1999). Skrlec et al. (1997) and Tan et al. (2001c)

suggest using only heuristics so as to improve the rate of convergence.

The algorithm only terminates when a sufficient number of generations have existed.

Survival of the fittest is ensured as the pe best solutions of generation t is cloned exactly into

generation t + 1. A number, pi, of new immigrant solutions are generated and included in

generation t+1. The balance of generation t+1 is made up by performing various crossover

perturbations on a random selection of pc

2 solutions from generation t.

Two distinct approaches are found in literature to solve constrained VRPs with GAs.

Cluster first, route second

This approach was popular in early writings. Thangiah et al. (1991) developed GIDEON, a

GA program used to solve the VRPTW. At the time it was the best algorithm available for

the VRPTW as it produced the best known solutions for 41 of the 56 benchmark problems

introduced by Solomon (1987). GIDEON has two distinct modules:

Clustering This module assigns customers to specific vehicles in a process called genetic

clustering. It uses a GA to sector customers into clusters, with each cluster serviced by

one vehicle. Figure 3.2 shows the sweeping motion that is is used together with seed

angles to create clusters. Each vehicles cluster is routed to minimize route cost, not

taking into account vehicle capacities or time windows. The first customer per route,

referred to as the seed customer, is randomly selected out of the cluster, the rest of

the route is formed by determining which customer, when inserted in the route, will

produce the lowest route cost, i.e. using a savings heuristic. The best set of clusters

obtained by this module is transferred to the next module.

Local route optimization Customers are exchanged between clusters to ensure the feasi-

bility of the solution — taking into account time windows and vehicle capacities. To

change a customers cluster, its angle is artificially altered. When a cluster is changed,

a cheapest insertion algorithm is used to improve the cluster route.

Nygard and Kadaba (1991), Thangiah and Gubbi (1993), Malmborg (1996), Filipec et al.

(1997), Skrlec et al. (1997) and Karanta et al. (1999) were among the contributors using the

cluster first, route second approach. Nygard and Kadaba (1991) found that GAs for VRPs

tend not to perform well when customers are geographically clustered and a small fleet is

54

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoouubbeerrtt,,  JJ  WW  ((22000077))  



Seed angle 1

Seed angle 2

Seed angle 3

Seed angle 5

Seed angle 4

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Depot

Figure 3.2: Division of customers using seed angles (Thangiah et al., 1991)

used. For all other problem instances the GA performs well. Tan et al. (2001c) claims that

the approach “is only a hybrid heuristic that constitutes some GA element”.

Route first, cluster second

Recently, path representations are implemented more often for all VRP variations (Filipec

et al., 1998; Hwang, 2002; Maeda et al., 1999; Ochi et al., 1998; Prins, 2004; Tan et al.,

2001b,c; Zhu, 2003). To indicate separate routes in a chromosome, extra partitioning char-

acters need to be inserted into the chromosome. These extra characters may render the GA

useless. GAs use two phases to solve VRP variations, with each chromosome representing a

specific path through all the customers. In the first routing phase, the GA improves the long

chromosome string by solving a TSP for all customers. The second clustering phase creates

a route for each vehicle out of the long route. This is done by another algorithm that adds

customers to a vehicle only if time windows are not violated, until the vehicle is full. The
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following customer in the single route chromosome is then assigned to the next vehicle.

Tan et al. (2001c) were the first to compare three popular metaheuristics, TS, SA and

GA for VRP variants. They conclude that GAs were successful in solving the VRPTW,

but deduce that there is still no single metaheuristic generic enough to solve all routing

problems.

3.3.4 Ant Colony Optimization (ACO)

ACO algorithms are classified as iterative, probabilistic metaheuristics for finding solutions to

combinatorial optimization problems. ACO is a general term proposed by Dorigo and Stützle

(2002) that includes all ant algorithms. The ant algorithm is an evolutionary approach where

several generations of artificial ants search for good solutions. Every ant of a generation

builds a solution in a step by step manner, going through several decisions. Ants that found

good solution(s) mark their paths through the decision space by placing pheromone on the

edges of the path. The ants of the next generation are attracted to pheromone and they are

more likely to search the solution space near good solutions (Middendorf et al., 2002).

Ant algorithms are inspired by the foraging mechanism employed by real ants attempting

to find a shortest path from their nests to food sources. A foraging ant will mark its path

by distributing an amount of pheromone on the trail, thus encouraging, but not forcing,

other foraging ants to follow the same path (Dorigo et al., 1999). Pheromone is the generic

name for any endogenous chemical substance secreted by an organism to incite reaction in

other organisms of the same specie. This principle of modifying the environment to induce

a change in the ants’ behavior via communication is known as stigmergy. The effect of

stigmergy provides the basis for the ant foraging behavior and artificial ant metaheuristics.

Dorigo et al. (1999) discuss the experiments conducted that suggest that the social structure

of ant colonies can determine shortest paths between the nest and food sources. A formal

proof, however, is absent.

There are a number of direct relationships between real foraging ants and artificial ants

used in the ACO metaheuristic.

Colony of cooperating individuals Similar to real ants, artificial ants are composed of

a population (or colony) of concurrent and asynchronous entities cooperating to find

food timeously. The artificial food are good solutions to the optimization problem

under consideration. Although the complexity of each artificial ant is such that it can

build a feasible solution, high quality solutions are the result of the cooperation among
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the individuals of the whole colony. This is analogous to a real ant that can by chance

find a path between the nest and the food. But only the cooperation of the whole

colony can ensure that sufficient food sources are located as close as possible to the

nest. Ants cooperate by means of the information they concurrently read and write on

the problems states.

Pheromone trail and stigmergy Artificial ants modify some aspects of their environ-

ment as real ants do. While real ants deposit a chemical substance, pheromone, on the

world state they visit, artificial ants change some numeric information locally stored

in the problem state they visit. This information takes into account the ants current

history or performance and can be read and written by any ant accessing the state. By

analogy, this numeric information is called the artificial pheromone trail, pheromone

trail for short. In ACO algorithms local pheromone trails are the only communication

channels among the ants. This stigmergetic form of communication plays a major role

in the utilization of collective knowledge. Its main effect is to change the way the

environment (the problem landscape) is locally perceived by the ants as a function of

all the past history of the whole ant colony.

Usually, in ACO algorithms an evaporation mechanism is employed, similar to real

pheromone evaporation, that modifies pheromone information over time. Pheromone

evaporation allows the ant colony slowly to forget its past history so that it can direct its

search toward new directions without being over-constrained by past decisions, hence

addressing the diversification issue raised for metaheuristics in general.

Shortest path searching and local moves Artificial and real ants share the common

task of finding a shortest (minimum cost) path joining an origin (nest) and destination

(food). Real ants systematically walk through adjacent terrains’ states. Similarly,

artificial ants move step-by-step through the neighborhood of solutions of the problem.

The exact definitions of state and neighborhood are problem specific.

Stochastic and myopic state transition policy Artificial ants, as does real ants, build

solutions applying a probabilistic decision policy to move through adjacent states. As

for real ants, the artificial ants’ decision policy makes use of local information only

and it does not make use of lookahead to predict future states. Therefore, the applied

policy is completely local, in space and time. The policy is a function of both the a

priori information represented by the problem specifications (equivalent to the terrains
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structure for real ants), and of the local modifications in the environment (pheromone

trails) induced by past ants.

Artificial ants also have some characteristics that do not have counterparts in real ants.

Artificial ants live in a discrete world and their moves consist of transitions from discrete

states to discrete states. Artificial ants have an internal state. This private state contains

the memory of the ants’ past actions. Artificial ants deposit an amount of pheromone that

is a function of the quality of the solution found. Timing in pheromone laying is problem

dependent and often does not reflect real ants behavior. For example, in many cases artificial

ants update pheromone trails only after having generated a solution. To improve overall

system efficiency, ACO algorithms can be enriched with extra capabilities such as the ability

to forecast, local optimization, and backtracking that cannot be found in real ants.

An ant is a simple computational agent, which iteratively constructs a solution for the

instance to solve. Partial problem solutions are seen as states. At the core of the ACO

algorithm lies a loop, where at each iteration, each ant moves (performs a step) from a state

i to another one j, corresponding to a more complete partial solution.

Algorithm 3.4 is based on Maniezzo et al. (2004) and requires an a priori desirability

Algorithm 3.4: Ant Colony Optimization
Input: Attractiveness ηij ; Trail level τij

Input: Number of ants k

while t < tmax do1

for each ant k do2

repeat3

choose in probability the state j to move to4

append ant k’s set tabuk5

until ant k’s solution is complete6

endfor7

for each ant move (i, j) do8

compute 4τij9

update trail matrix10

endfor11

t← t+ 112

endw13
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of the route referred to as the attractiveness, ηij , for each origin-destination pair (i, j). The

attractiveness is often also referred to as the heuristic information (Meuleau and Dorigo,

2002). The trail level τij of the move from i to j is required and indicates how beneficial it

has been in the past to make that particular move. The trail level therefore represents an a

posteriori indication of the desirability of the move. As in previous metaheuristics discussed,

an iteration limit tmax terminates the ACO.

For each ant k a solution is incrementally built using both the attractiveness and the

trail level, weighted with preset parameters. Each ant’s memory of tabu moves are updated

accordingly to ensure only feasible solutions are created. Once all ants have their solutions,

the pheromone trail matrix is updated by determining how many ants (solutions) traversed

specific edges (i, j). The iteration number is incremented, and the process repeated until the

maximum number of iterations have been reached.

Although Bullnheimer et al. (1999) could not improve on the best solutions found for sets

of benchmark problems, the competitiveness of ACO is applaudable, given the immaturity of

the approach to VRP variants compared to established, and well-researched metaheuristics.

Detailed algorithmic approaches are provided by Dorigo and Gambardella (1997a,b), and

Meuleau and Dorigo (2002) for the TSP and Gambardella et al. (1999) for the VRPTW

which should stimulate and accelerate research in the respective fields and its variants. A

robust algorithm presented by Reimann et al. (2004) is able to solve a number of VRP

variants.

3.4 Conclusion

In the first review article of ACO theory, Dorigo and Blum (2005) comprehensively state that

research contributions using metaheuristics as new as the ACO focus on proof-of-concept.

This, however, is still true for the majority of theoretical papers on heuristics and meta-

heuristics. Solution quality and computational burden of various algorithm contributions

are compared using benchmark problems (Van Breedam, 2001). The state-of-the-art for

generic variants of the VRP are often implemented in commercial software applications. In

such applications the parameter values for the specific metaheuristic are usually fixed, and

are based on experiments with the benchmark data.

The majority of literature reviewed in this chapter either suggest parameter values that

perform well in the majority of cases, or confirm that parameter settings are inherently

problem specific. This review concludes with the observation that an intelligent routing
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system is required that will be able to observe the problem environment in which it is

implemented, and dynamically adjust parameter settings in order to improve future solutions.
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Chapter 4
An improved initial solution algorithm

Although Ichoua et al. (2003) employ a random insertion heuristic to create initial solutions,

Van Breedam (2001) introduces an initial solution parameter in his evaluation of improve-

ment algorithms, and finds that, in most cases, a good initial solution results in significantly

better final results. This thesis proposes the use of a savings route construction heuristic

based on Joubert (2003)1. Solomon (1987) concludes that, from the five initial solution

heuristics evaluated, the Sequential Insertion Heuristic (SIH) proved to be very successful,

both in terms of the quality of the solution, as well as the computational time required to

find the solution. Section 3.2.1 reviews a number of route construction heuristics.

4.1 A route construction heuristic

An overview of the initial solution algorithm proposed in this thesis is provided in Algo-

rithm 4.1. Initializing the algorithm requires a distance matrix. When using benchmark

data sets only customer coordinates are provided, and the Minkowski distances are calcu-

lated using (2.46). If a Geographical Information System (GIS) is used, the travel distances

can be determined through a process referred to as geocoding and route calibration. The

initial solution algorithm also requires a travel time matrix for all node pairs (i, j).

4.1.1 Time-dependent travel times

Congestion effects become critical when time windows are imposed by customers, because

in routing the temporal issue is of greater concern than the spatial issue. Three valuable

contributions that incorporate both time dependent travel time and time windows are Ahn
1A revised version of this chapter has been published by Joubert and Claasen (2006)
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Algorithm 4.1: Initial solution heuristic
Input: Customer data

Input: Fleet data

Initialize algorithm1

repeat Initialize tour2

Establish tour starting time3

Assign vehicle4

repeat Build tour5

Establish route start time6

Identify seed customer7

repeat Expand partial route8

Determine insertion criteria9

Determine selection criteria10

Insert node11

until either all nodes are routed or no node identified for insertion12

Determine multi route feasibility13

until either all nodes are routed or route expansion infeasible14

until either all nodes are routed or vehicles are depleted15

Establish orphans16

Report initial solution s17
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and Shin (1991), Fleischmann et al. (2004), and Ichoua et al. (2003).

Fleischmann et al. (2004) implement their routing algorithm when dynamic travel data

is available through the Berlin traffic management system. Let:

τijk , shortest travel time from node i to node j when the start time is in the

time slot Zk

with the day divided into K time slots Zk = [zk−1, zk] , k ∈ {1, 2, . . . ,K}. The planning

horizon is denoted by the time interval [z0, zK ] which may coincide with the time window

for the depot, becoming the time interval [e0, Lmax
0 ]. The authors propose a smoothing of

the travel time function with the introduction of

τij (t) , travel time from node i to node j for the start time t at node i.

This is similar to the travel time proposed by Ichoua et al. (2003) where real traffic data

is not accessible. A computationally efficient routine is introduced to acquire the travel

time. A distance matrix D = (dij) is created for all i, j ∈ {1, 2, . . . , n} nodes. The planning

horizon is also divided into K planning periods, while the edges are partitioned into C

subsets A = (Ac)1≤c≤C based on, for example, road type. To limit the number of speed

values stored for each edge (i, j) for each time slot t, a travel speed vct is associated with

each edge partition c for each time slot t. The dynamic travel time between nodes i and j

can consequently be determined through Algorithm 4.2, if the travel start time at node i is

denoted by t0 ∈ Zk = [zk−1, zk].

Calculating the travel time matrix, however, is computationally expensive. Instead of

calculating a travel time between each (i, j) pair for each time unit k in the scheduling period,

Algorithm 4.3 introduces Time Window Compatibility (TWC) to only calculate travel time

values for node pairs that have compatible time windows.

4.1.2 Time window compatibility

The introduction of the TWC concept assists in identifying, and eliminating, obvious infea-

sible nodes. This results in a more effective and robust route construction heuristic. The

purpose of TWC is to determine the time overlap of all edges, or node combinations, (i, j),

where i, j ∈ {0, 1, 2, . . . , N}, and N the total number of nodes in the network. During the

route construction phase, time window compatibility can be checked, and obvious infeasible

nodes can be eliminated from the set of considered nodes. The Time Window Compatibility
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Algorithm 4.2: Travel time calculation procedure
Input: Distance matrix D = (dij)

Input: Travel speed matrix V = (vct)

t← t01

d← dij2

t′ ← t+ d
vcZk

3

while t′ > zk do4

d← d− vcZk
(zk − t)5

t← zk6

t′ ← t+ d
vcZk

7

k ← k + 18

endw9

tijt = t′ − t010

Algorithm 4.3: Incorporating time window compatibility with time dependent travel

time

foreach node pair (i, j) do1

calculate TWCij2

if TWCij 6= −∞ then3

foreach time period k ∈ {1, . . . ,K} do4

calculate τijk using Algorithm 4.25

endfch6

else7

foreach time period k ∈ {1, . . . ,K} do8

τijk ←∞9

endfch10

endif11

endfch12
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Matrix (TWCM) is a non-symmetrical matrix as the sequence of two consecutive nodes, i

and j, is critical. Let:

N , be the total number of nodes

ei , be the earliest allowed arrival time at customer i, where i = {0, 1, . . . , N}

li , be the latest allowed arrival time at customer i, where i = {0, 1, . . . , N}

si , be the service time at node i, where i = {0, 1, . . . , N}

tij , be the travel time from node i to node j, where i, j = {0, 1, . . . , N}

aei
j , be the actual arrival time at node j, given that node j is visited directly

after node i, and that the actual arrival time at node i was ei, where

i, j = {0, 1, . . . , N}

ali
j , be the actual arrival time at node j, given that node j is visited directly

after node i, and that the actual arrival time at node i was li, where

i, j = {0, 1, . . . , N}

TWCij , be the time window compatibility when node i is directly followed by node

j

TWCij indicates the entry in row i, column j of the TWCM. Consider the following five

scenarios that illustrate the calculation of time window compatibility. Each scenario assume

customer j to be serviced directly after customer i, a service time of one hour, and a travel

time of two hours from node i to node j.

Scenario 1: if aei
j > ej and ali

j < lj , illustrated in Figure 4.1. Customer i specifies a time

06:00 08:00 10:00 12:00 14:00 16:00
Time

ei li

ej lj

si + tij TWCij

aj
ei aj

li

node i

node j

18:00

Figure 4.1: Time window compatibility scenario 1

window [ei, li] = [08:00,12:00], while customer j requires service during the time window

[ej , lj ] = [09:00,16:00]. If service at customer i starts at the earliest allowed time, ei,
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then the actual arrival time at customer j would be calculated as

aei
j = ei + si + tij (4.1)

In this scenario aei
j = 11:00. Similarly, ali

j would be the actual arrival time at customer

j, given that the actual arrival time at customer i was li, and is calculated as

ali
j = li + si + tij (4.2)

The difference between aei
j and ali

j indicates the time window overlap between the two

nodes. The time window compatibility is calculated as

TWCij = ali
j − a

ei
j (4.3)

For this example, the time window compatibility is four hours (04:00).

Scenario 2: if aei
j > ej and ali

j > lj , illustrated in Figure 4.2. Customer i specifies a time

08:00 10:00 12:00 14:00 16:00
Time

ei li

ej ljaj
ei aj

l i

si + tij TWCij

node i

node j

18:00

Figure 4.2: Time window compatibility scenario 2

window [ei, li] = [08:00,12:00], while customer j requires service during the time window

[ej , lj ] = [09:00,13:00]. The calculations for aei
j and ali

j are similar to (4.1) and (4.2),

respectively. The time windows of customer i and customer j only partly overlap, and

the time window compatibility is calculated as

TWCij = lj − aei
j (4.4)

For this example, the time window compatibility is two hours (02:00).

Scenario 3: if aei
j < ej and ali

j < lj , illustrated in Figure 4.3. Customer i specifies a time

window [ei, li] = [08:00,12:00], while customer j requires service during the time window

[ej , lj ] = [12:00,16:00]. The calculations for aei
j and ali

j are similar to (4.1) and (4.2),
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06:00 08:00 10:00 12:00 14:00 16:00
Time

ei li

ej ljaj
ei aj

li

si + tij TWCij

node i

node j

18:00

Figure 4.3: Time window compatibility scenario 3

respectively. The time windows of customer i and customer j only partly overlap, and

the time window compatibility is calculated as

TWCij = ali
j − ej (4.5)

For this example, the time window compatibility is three hours (03:00).

Scenario 4: if aei
j and ali

j < ej , illustrated in Figure 4.4. Customer i specifies a time

06:00 08:00 10:00 12:00 14:00 16:00
Time

18:00

ei li

ej ljaj
ei aj

li

si + tij TWCij

node i

node j

Figure 4.4: Time window compatibility scenario 4

window [ei, li] = [08:00,12:00], while customer j requires service during the time window

[ej , lj ] = [17:00,18:00]. The calculations for aei
j and ali

j are similar to (4.1) and (4.2),

respectively. The time windows of customer i and customer j do not overlap. Even if

customer i is serviced as late as possible, li, a waiting time is incurred at customer j.

The time window compatibility is calculated as

TWCij = ali
j − ej (4.6)

For this example, the time window compatibility is negative two hours (-02:00). The

significance of the negative time is that it is possible, in this case, to service customer j

after customer i, although the waiting time is penalized.
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Scenario 5: if aei
j and ali

j > lj , illustrated in Figure 4.5. Customer i specifies a time

06:00 08:00 10:00 12:00 14:00 16:00
Time

node i

node j

NO

ei li

ej lj

aj
ei aj

li

si + tij
TWCij

18:00

Figure 4.5: Time window compatibility scenario 5

window [ei, li] = [08:00,12:00], while customer j requires service during the time window

[ej , lj ] = [07:00,11:00]. The calculations for aei
j and ali

j are similar to (4.1) and (4.2),

respectively. Although the time windows of customer i and customer j partly overlap,

it is impossible to service customer j, even if customer i is serviced as early as possible,

ei. Therefor, no time window compatibility exist.

A generalized equation is proposed that will address all five scenarios illustrated, and is

given by (4.7).

TWCij =


min{ali

j , lj} −max{aei
j , ej} if lj − aei

j > 0

−∞ otherwise
(4.7)

The higher the value, the better the compatibility of the two time windows considered.

Therefore an incompatible time window is defined to have a compatibility of negative infinity.

Example. Consider the following example with five nodes geographical distributed around

a depot in Figure 4.6. In the example, node c has indicated two possible time windows.

To accommodate multiple time windows, the customer is artificially split and treated

as two separate nodes, c1 and c2, respectively, each having a single time windows.

The time windows for each customer, including the depot, as well as the service time

at each node, are given in Table 4.2. The distance matrix, D, is calculated using

the rectangular distance between nodes. With the grid provided in Figure 4.6, the
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Figure 4.6: Geographical distribution of nodes around a depot

Table 4.2: Time windows and service times

Service time

Node Time window (in hours)

(i) (ei; li) si

Depot 07:00 – 18:00 0.00

a 08:00 – 12:00 0.50

b 11:00 – 13:00 0.25

c1 08:00 – 09:00 0.25

c2 15:00 – 17:00 0.25

d 08:00 – 12:00 0.50

e 10:00 – 15:00 0.25
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distances can be obtained through inspection.

D =



0 60 60 50 50 70 60

60 0 20 70 70 110 120

60 20 0 50 50 110 120

50 70 50 0 0 80 90

50 70 50 0 0 80 90

70 110 110 80 80 0 70

60 120 120 90 90 70 0


If the average speed is known, the time matrix, T , can be calculated, but in the presence

of time dependent travel time, the travel times are calculated using Algorithm 4.2. For

illustrative purposes in this example only, T is given. Values are in hours.

T =



0 1 1 1 1 1 1

1 0 0.5 1 1 2 2

1 0.5 0 1 1 2 2

1 1 1 0 0 1.5 1.5

1 1 1 0 0 1.5 1.5

1 2 2 1.5 1.5 0 1

1 2 2 1.5 1.5 1 0


With the information at hand, the time window compatibility matrix can be calculated.

For the given example,

TWCM =



11 4 2 1 2 4 5

4 3.5 2 −∞ −1.5 1.5 4

2 0.25 1.75 −∞ −0.75 −∞ 1.75

1 1 −0.75 0.75 −5.75 1 0.75

1.75 −∞ −∞ −∞ 1.75 −∞ −∞

4 1.5 2 −∞ −1 3.5 3.5

5 −∞ 0.75 −∞ 1.75 0.75 4.75


4.2 Improving the initial solution heuristic

Initialization criteria in Algorithm 4.1 refer to the process of finding the seed customer : the

first customer to be inserted into a new route. Joubert (2003) proposes the use of the TWC

concept to identify seed customers. When looking at the TWCM example, it is clear that the
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Table 4.3: Number of infeasible time window instances

Number of infeasible time windows

Node as origin as destination Total

Depot 0 0 0

a 1 2 3

b 2 1 3

c1 0 5 5

c2 5 0 5

d 1 2 3

e 2 1 3

incompatibility is distinct for specific nodes. It is therefor possible to identify incompatible

nodes. As opposed to the two most common initialization criteria, namely customer with

earliest deadline, and furthest customer, as suggested by Dullaert et al. (2001), the author of

this thesis proposes the use of the TWCM to identify seed nodes based on their time window

compatibility. Table 4.3 indicates the number of instances where a node has an infeasible

time window with another node, either as origin, or as destination. Both nodes c1 and c2

have five infeasible instances. The two artificial nodes are representing the same customer

c. It can be concluded that customer c is the most incompatible node, and is identified as

the seed customer. Ties are broken arbitrarily. Should two nodes have the same number

of infeasible time window instances, either of the two customers could be selected as seed

customer.

It may be possible to not have any infeasible time window instances. In such a scenario,

a total compatibility value, denoted by Ctotal
a , can be determined for each node a, and is

calculated using either (4.8) or (4.9),

Ctotal
a =

M∑
i=1,i6=a

TWCia +
M∑

j=1,j 6=a

TWCaj + TWCaa ∀a (4.8)

Ctotal
a =

M∑
i=1

TWCia +
M∑

j=1

TWCaj − TWCaa ∀a (4.9)

where M refers to all the unrouted nodes, including all instances of those nodes that are split

artificially. The customer with the lowest total compatibility is selected as seed customer.

Once the seed customer has been identified and inserted, the SIH algorithm considers, for
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all unrouted nodes, the insertion position that minimizes a weighted average of the additional

distance and time needed to include a customer in the current partially constructed route.

This second step is referred to as the insertion criteria. Note that the terms nodes and

customers are used interchangeably. The insertion and selection criteria can be simplified

using the example illustrated in Figure 4.7. The partially constructed route in the example

A

B

C

D

E

Depot

Figure 4.7: Sequential insertion of customers

consists of the depot and three routed nodes, namely B, C, and E. The route can be

expressed as Depot-B-C-E-Depot. Nodes A and D are unrouted. The insertion criteria,

denoted by c1(i, u, j), calculates the best position and associated cost, between two adjacent

nodes i and j on the partial route, to insert a customer u, and is calculated for each of the

unrouted nodes. Consider node A in the example. There are four edges where the node can

be inserted, namely Depot-B, B-C, C-E, or E-Depot, as illustrated in Figure 4.8. Dullaert

et al. (2001) extend Solomon’s heuristic and determines c1(i, A, j) for the unrouted node A

as

c1(i, A, j) = min
p={1,2,...,m}

[c1(ip−1, A, ip)] (4.10)

in which m represents the routed nodes in the partially constructed route. If the expressions

are generalized for all unrouted nodes u, the insertion criteria is calculated as

c1(i, u, j) = α1c11(i, u, j) + α2c12(i, u, j) + α3c13(i, u, j) (4.11)
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Depot

Figure 4.8: Selection criteria

with

c11(i, u, j) = diu + duj − µdij , µ ≥ 0 (4.12)

c12(i, u, j) = anew
j − aj (4.13)

c13(i, u, j) = ACS, AOOS, or AROS (4.14)

With the extension to Solomon’s heuristic, the weighting factors αi need not add up to 1.

The additional distance, and the additional time needed to serve customer u after customer i,

but before customer j is denoted by c11(i, u, j) and c12(i, u, j), respectively. The new actual

arrival time at node j is denoted by bnew
j in (4.13). The vehicle savings criteria, denoted by

c13(i, u, j), considers any one of three parallel approaches to vehicle cost, where the savings

concepts introduced by Golden et al. (1984) are adapted. Let:

F (z) , the fixed cost of the smallest vehicle that can service a cumulative route

demand of z

F ′(z) , the fixed cost of the largest vehicle whose capacity is less than or equal

to z

P (z) , the capacity of the smallest vehicle that can service a demand of z

Q , be the load of the vehicle currently servicing the route

Q , be the maximum capacity of the vehicle currently servicing the route
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Qnew , be the new load of the vehicle after the customer has been inserted into

the route

Q
new

, be the (new) capacity of the vehicle after the customer has been inserted

into the route

The Adapted Combined Savings (ACS) is defined as the difference between the fixed

costs of the vehicles capable of transporting the load of the route after, and before, inserting

customer u, and is calculated by (4.15).

ACS = F (Qnew)− F (Q) (4.15)

The Adapted Optimistic Opportunity Savings (AOOS) extends the ACS by subtracting

the fixed cost of the vehicle that can service the unused capacity, and is calculated by (4.16).

AOOS = [F (Qnew)− F (Q)]− F (Qnew −Qnew) (4.16)

The Adapted Realistic Opportunity Savings (AROS) takes the fixed cost of the largest

vehicle smaller than or equal to the unused capacity, F ′(Qnew − Qnew), into account as an

opportunity saving. It only does so if a larger vehicle is required to service the current route

after a new customer has been inserted. AROS is calculated by (4.17).

AROS = [F (Qnew)− F (Q)]− δ(ω)F ′ (Qnew −Qnew
)

(4.17)

where

δ(ω) =


1 if Q+ qu > Q

0 otherwise.

Any one of these savings criteria can be used as all three outperformed previous best

published results for the initial solution (Dullaert et al., 2001). Once the best position for

each unrouted node has been determined, as illustrated in Figure 4.9, the customer that is

best according to the selection criteria, is selected — the third step in the SIH algorithm.

The procedure can be expressed mathematically as

c2(i, u?, j) = max
u

[c2(i, u, j)], u unrouted and feasible (4.18)

c2(i, u, j) = λ(dou + tou) + su + F (qu)− c1(i, u, j), λ ≥ 0 (4.19)

The best customer, u?, is then inserted into the partially created route between its specific

nodes i and j. From Figure 4.9, consider node D to be the best node. After inserting D into
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D

E

Depot

Figure 4.9: Best insertion position determined for each unrouted node

the current route, node A remains the only unrouted node, and the new route is illustrated

in Figure 4.10, and can be expressed as Depot-B-D-C-E-Depot. The insertion process is

A

B

C

D

E

Depot

Figure 4.10: New route after inserting best customer

repeated until no remaining unrouted nodes have a feasible insertion place. A new route is

then initialized and identified as the current route.

A shortcoming of Solomon’s SIH 1987 is that it considers all unrouted nodes when cal-

culating the insertion and selection criteria for each iteration. The fact that all unrouted

nodes are considered makes it computationally expensive. The occurrence of obvious in-

feasible nodes in a partially constructed route becomes significant in the extended problem

considered in this thesis. In each iteration, these criteria are calculated for each edge on the

partially constructed route, irrespective of the compatibility of the time window of the node

considered for insertion with the time windows of the two nodes forming the edge. For an

75

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoouubbeerrtt,,  JJ  WW  ((22000077))  



improved case, consider the example where node u is considered for insertion between nodes

i and j. As the TWCM is already calculated, it is possible to check the compatibility of

node u with the routed nodes i and j. If either TWCiu or TWCuj is negative infinity (−∞),

indicating an incompatible time window, the insertion heuristic moves on and considers the

next edge, without wasting computational effort on calculating the insertion and selection

criteria. In the earlier example, eleven instances of infeasible time windows occur. If these

instances are identified and eliminated, a computational saving in excess of 22% is achieved.

The saving is calculated as the percentage of instances with time window incompatibilities

of the total number of travel time instances.

4.3 Initial solutions

Solomon (1987) introduced 54 benchmark problems contained in six distinctive sets for the

VRPTW, denoted by c1, c2, r1, r2, rc1, and rc2, each with 100 customer nodes. Each set

highlights several factors that can affect the behavior of routing and scheduling heuristics.

These factors include the geographical dispersion; the number of customers serviced by a

vehicle, i.e. the relation between customer demand and vehicle capacity; and time window

characteristics such as percentage of time-constrained customers, as well as the tightness and

positioning of time windows.

The geographical data for the first group of problem sets are randomly generated using

a uniform distribution (denote the corresponding problem sets by r1 and r2). The second

group of sets are clustered (denote the corresponding problems sets by c1 and c2). A third

semi-clustered group of sets have a combination of randomly distributed and clustered points

(denote the corresponding problem sets by rc1 and rc2. Problem sets r1, c1, and rc1 have

short scheduling horizons and along with vehicular capacities only allow a few customers to

be serviced by a single vehicle. Problem sets r2, c2, and rc2 have long scheduling horizons,

and when combined with large vehicular capacities, allows for a much higher number of

customers being serviced by a single vehicle.

Homberger and Gehring (1999) extend the original problems to include problem sets

having 200, 400, 600, and 1000 customer nodes. For illustrative purposes, Figure 4.11 shows

the header of one of the Homberger and Gehring (1999) problem sets, as well as the first

few customers. The depot is represented by customer ‘0’. The attributes for each customer

include a customer number, coordinates, the demand, the earliest and latest allowed arrival,

as well as the service time at each customer. The problem sets do unfortunately not accom-
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c1_2_4

VEHICLE

NUMBER CAPACITY

50 200

CUSTOMER

CUST NO. XCOORD. YCOORD. DEMAND READY TIME DUE DATE SERVICE TIME

0 70 70 0 0 1351 0

1 33 78 20 750 809 90

2 59 52 20 0 1240 90

3 10 137 30 0 1172 90

4 4 28 10 0 1183 90

5 25 26 20 128 179 90

Figure 4.11: An excerpt of a problem set (Homberger, 2003)

modate a heterogeneous fleet, and the fleet structure proposed by Liu and Shen (1999b) is

therefor used in this thesis — presented in Table 4.4 for each of the problem classes.

Time windows provided in the problem sets are hard, i.e. they allow neither early nor

late arrivals. To create problem sets that will test the initial solution algorithm with soft

time windows, a maximum lateness of Lmax = 30 time units is associated with each node,

including the depot. Such time windows incur waiting time if arriving early, but allow late

arrivals penalized at a unit cost of α.

Multiple scheduling is achieved through an elementary routine testing whether their is

at least ρ time units between the return time of the current route and the end of the depot’s

time window. In this thesis the author uses an arbitrary value of ρ = 60 minutes.

Tables 4.5a through 4.5f show the results for 60 problem instances executed on an Intelr

Pentiumr4 computer with a 3.6GHz processor (64Bit) and 3.25GB RAM.

Each table indicates the specific Homberger and Gehring (1999) problem instance from

which the 100 customer data set as taken, the numbers of tours (vehicles) used in the

initial solution, the total number of routes, the average time required to generate the initial

solution, and the number of orphans. Orphans are customers from the data set that could not
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Table 4.4: Heterogeneous fleet data (Liu and Shen, 1999a)

(a) Set r1

Type Capacity Cost

1 30 50

2 50 80

3 80 140

4 120 250

5 200 500

(b) Set r2

Type Capacity Cost

1 300 450

2 400 700

3 600 1200

4 1000 2500

(c) Set c1

Type Capacity Cost

1 100 300

2 200 800

3 300 1350

(d) Set c2

Type Capacity Cost

1 400 1000

2 500 1400

3 600 2000

4 700 2700

(e) Set rc1

Type Capacity Cost

1 40 60

2 80 150

3 150 300

4 200 450

(f) Set rc2

Type Capacity Cost

1 100 150

2 200 350

3 300 550

4 400 800

5 500 1100

6 1000 2500
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Table 4.5a: Initial solution summary for the c1 problem class

Problem Tours Routes Time (sec) Orphans

c1 2 1 33 40 9 3

c1 2 2 27 30 14 1

c1 2 3 29 44 22 2

c1 2 4 19 19 30 1

c1 2 5 27 28 9 2

c1 2 6 28 37 12 2

c1 2 7 23 24 11 1

c1 2 8 23 23 14 0

c1 2 9 21 21 19 0

c1 210 19 20 22 0

Table 4.5b: Initial solution summary for the c2 problem class

Problem Tours Routes Time (sec) Orphans

c2 2 1 39 50 10 11

c2 2 2 29 39 15 8

c2 2 3 27 46 20 7

c2 2 4 17 17 34 6

c2 2 5 24 24 10 6

c2 2 6 25 25 14 2

c2 2 7 27 30 15 3

c2 2 8 25 25 14 1

c2 2 9 28 35 19 2

c2 210 23 24 20 0
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Table 4.5c: Initial solution summary for the r1 problem class

Problem Tours Routes Time (sec) Orphans

r1 2 1 34 76 7 0

r1 2 2 37 71 6 0

r1 2 3 40 67 6 0

r1 2 4 59 70 6 0

r1 2 5 39 74 5 0

r1 2 6 42 69 6 0

r1 2 7 42 68 6 0

r1 2 8 57 70 7 0

r1 2 9 36 70 6 0

r1 210 39 68 6 0

Table 4.5d: Initial solution summary for the r2 problem class

Problem Tours Routes Time (sec) Orphans

r2 2 1 13 21 21 1

r2 2 2 9 17 34 1

r2 2 3 6 7 64 0

r2 2 4 6 9 84 0

r2 2 5 9 12 28 0

r2 2 6 9 9 57 0

r2 2 7 8 10 74 0

r2 2 8 6 7 94 0

r2 2 9 9 11 41 0

r2 210 10 11 41 0
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Table 4.5e: Initial solution summary for the rc1 problem class

Problem Tours Routes Time (sec) Orphans

rc1 2 1 30 51 9 0

rc1 2 2 26 48 9 0

rc1 2 3 27 46 10 0

rc1 2 4 34 46 13 0

rc1 2 5 26 47 9 0

rc1 2 6 29 49 9 0

rc1 2 7 30 48 10 0

rc1 2 8 25 47 10 0

rc1 2 9 27 47 10 0

rc1 210 35 48 11 0

Table 4.5f: Initial solution summary for the rc2 problem class

Problem Tours Routes Time (sec) Orphans

rc2 2 1 13 26 16 0

rc2 2 2 11 26 23 0

rc2 2 3 11 24 31 1

rc2 2 4 11 18 31 0

rc2 2 5 12 20 19 0

rc2 2 6 12 18 18 0

rc2 2 7 9 18 21 0

rc2 2 8 11 18 22 0

rc2 2 9 13 18 21 0

rc2 210 13 19 25 0
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feasibly be included in the initial solution. Ten iterations were used to calculate the average

time values. Orphans are a result of the specific problem instance. The time dependent

travel times that were calculated using randomly generated edge types, vcT , may result in

a situation whereby a customer can not be serviced within the time window of the depot,

even if such customers are serviced by a dedicated vehicle.

A sample of an initial solution output file for the r2 2 3 problem set (see Table 4.5d) is

provided in Appendix A. The initial solution indicates the algorithm’s ability to generate

more than one route per vehicle, and indicates the vehicle type assigned to the specific route.

Each line represents a route, with each route starting and ending at the depot. Sequential

numbers in each route represent the customers and the sequence in which customers are

serviced. In the solution for the r2 2 3 problem all nodes are routed, and no orphans exist.

4.4 Conclusion

To establish an initial solution that addresses not only time windows, but also time dependent

travel times and a heterogeneous fleet, requires a computational expensive routine. In this

chapter the author introduced the concept of Time Window Compatibility (TWC) to ease

the computational burden. The concept of TWC is also employed to identify seed customers

as the most incompatible customer nodes.

Data sets from literature were adapted to create test problems for which the initial

solution algorithm found solutions within seconds. The initial solutions generated in this

chapter is used as inputs to the route improvement metaheuristics that are developed in

Chapters 5 through 6.
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Chapter 5
A Tabu Search solution algorithm

The TS examines a trajectory sequence of solutions and moves to the best neighbor of the

current solution. To avoid cycling, solutions that were recently examined are forbidden, or

tabu, for a number of iterations (Gendreau et al., 2002). Section 3.3.1 reviews the basic

structure of the TS.

Taillard (1993) introduces a feature whereby the main problem is decomposed into in-

dependent subproblems so that the algorithm can be parallelized on multiple processors.

Each subproblem is solved on a different processor before the tours are grouped together to

construct a solution to the original problem. The new solution is then decomposed, and the

process repeats itself for a given number of times. A random selection of components in the

decomposition process ensures the algorithm produces different solutions from one execution

to the next. In this thesis an approach similar to that of Taillard (1993) and Rochat and

Taillard (1995) is followed, albeit on a single processor. The approach can be parallelized

through the coding structure in future research, but recent software technology, i.e. cluster

scheduling such as the MATLAB Distributed Computing system, provides the software the

ability to automatically determine which segment of an algorithm can be parallelized on

multiple clustered processors without adapting the code.

The chapter starts with a brief discussion of the main elements of a TS algorithm, followed

by the TS proposed in this thesis, and a detailed discussion of each phase of the TS. The

chapter concludes with an analysis of the algorithm’s results for problems based on integrated

data sets of Solomon (1987), Homberger and Gehring (1999), and Liu and Shen (1999a,b).
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5.1 Elements of the tabu algorithm

Tabu list A list of the last few moves (or solutions). The memory of moves can be

recency or frequency-based. Short-term recency-based memory forbids cycling around

a local neighborhood in the solution space through setting the last T moves as Tabu.

Recently made moves are stored in a mechanism that is referred to as the Tabu-Move

list. The number of moves in the list is determined by the tabu list size, denoted by

T . The list operates on a first-in-first-out principle. Other recency information that is

stored in the Tabu list is the solution configurations. The larger the value of T , the

longer the moves and solutions stay tabu. The Tabu-Solution list is a set of solutions

that have been created recently by exchanging segments between routes. The solutions

are coded into an integer string. The total cost of the solution is also attached to the

string.

Long-term frequency-based memory allows searches to be conducted in the most promis-

ing neighborhoods. The frequency-based memory provides additional information of

how many times a tabu move have been attempted. To alleviate time and memory

requirements, it is customary to record an attribute of a tabu solution, and not the

solution itself.

Candidate list TS makes use of a candidate list that provides a list of moves to evaluate.

One move of the candidate list is chosen to proceed with the search. The candidate

list plays an important role in the performance of TS.

Intensification and diversification Two memory-based strategies that form a funda-

mental principle of TS. Gendreau (2003) claims diversification to be the single-most

important issue in designing a TS. With the use of the intensification strategy regions

around attractive solutions are more thoroughly searched, and typically operates by

restarting a search from a solution previously found to yield good results. The restart

is achieved through the candidate list representing attractive regions. Diversification,

on the other hand, encourages the search process to examine unvisited regions and

to generate solutions that differ in various significant ways from previous solutions.

The probabilistic diversification and intensification introduced by Rochat and Taillard

(1995) is also referred to as the Adaptive Memory Procedure (AMP).

Penalized objective function The objective function of a solution s is denoted by f1(s)

and is calculated by (5.1) as the sum of the travel times of all routes and tours, and
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the total lateness at all customers (Ichoua et al., 2003).

f1(s) =
∑
Tours

∑
Routes

t+
∑

Customers

αiyi (5.1)

In the calculation αi denotes the lateness penalty for customer i, while yi = max {0, ai − li}.

The actual arrival time at customer i is denoted by ai, while li denotes the latest allowed

arrival time at customer i. The design of the algorithm ensures that ai ≤ li + Lmax
i ,

where Lmax
i is the maximum allowed lateness at customer i. The objective function

is artificially adapted to incorporate a significant penalty for any unrouted customers,

referred to as orphans. The artificial objective function, f2(s), is expressed in (5.2),

f2(s) = f1(s) + βo (5.2)

where β is a nonnegative penalty factor, and o the number of orphans in the final

solution. Orphans are only created if the time window of the customer is completely

incompatible with that of the depot, even if it is serviced by a dedicated vehicle.

Stopping criteria The search is terminated once a preset maximum number of iterations

of the main TS algorithm have been reached. An alternative stopping criteria could

be a predetermined number of attempts being made to set the same solution in the

Tabu-Solution list as the new current solution. This indicates that the search has been

caught in a local optimum, hence terminating the search.

5.2 Tabu algorithm

The phased approach of the TS algorithm, similar to the implementation of Taillard et al.

(1997) and Gendreau et al. (1999), is illustrated in Algorithm 5.1. Data structures are

indicated with sans serif font, while functional routines are indicated with typewriter font.

5.2.1 Initialization

The initial solution algorithm proposed in Chapter 4 forms the basis of the initialization

phase, but generates only a single initial solution, s. As I, preferably different, initial so-

lutions are required, the routine in Algorithm 5.2 is proposed. For each initial solution

required, a random node I?
i is identified and removed from the problem set P . The remain-

ing nodes in P ′ are used to create an initial solution using the improved initial solution

algorithm proposed in Chapter 4. After the nodes in P ′ have been routed, the identified

node I?
i is reinserted into the first feasible position. The result is a set of initial solutions
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Algorithm 5.1: Tabu Search (TS) Overview
Input: stopping criteria

Input: Adaptive Memory size, M

begin Initialization (Section 5.2.1)1

construct I unique initial solutions sss = {s1, s2, . . . , sI}2

x̂← min
i∈{1,...,I}

{si}3

decompose sss into independent tour set T4

store M best tours of T∪(Adaptive Memory) in the Adaptive Memory5

end6

begin Optimization (Section 5.2.2)7

while stopping criteria is not met do8

construct a biased solution, x from the tours in Adaptive Memory9

xcurrent ← x10

for W iterations do11

x? ← locally optimized xcurrent12

xcurrent ← x?13

if xcurrent < x̂ then14

x̂← xcurrent15

endif16

endfor17

endw18

decompose xcurrent into independent tour set T19

store M best tours of T∪(Adaptive Memory) in the Adaptive Memory20

end21

report incumbent x̂22
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Algorithm 5.2: Tabu Search (TS) Initialization
Input: Problem set P , with |P | = n nodes

Input: Number of initial solutions required, I

identify I? ⊂ P , a randomly identified subset with I nodes from problem set ;1

foreach I?
i ∈ I? do2

P ′ ← P\ {I?
i };3

find initial solution s by executing Initial solution heuristic with P ′ ;4

re-insert I?
i into initial solution to create si5

endfch6

sss = {s1, s2, . . . , sI}. Each initial solution’s tours are stored in the adaptive memory, and

associated with it the objective function value of the initial solution from which the tour

originates. All tours consisting of only a single node are removed from the adaptive mem-

ory.

5.2.2 Optimization

The TS optimization routine listed in Algorithm 5.3 terminates after executing a predefined

number of local optimization iterations, denoted by Imax. A partially constructed tour

is created through iteratively selecting tours from the adaptive memory, and removing all

tours from the adaptive memory that share nodes with the selected tour. The probability

of selecting any tour is based on the objective function associated with the tour, which in

turn is taken from the solution from which the tour originates. Glover (1990) notes that the

use of probabilities, based on past performance, as an underlying measure of randomization

yields efficient and effective means of diversification. The better a solution, the higher the

probability of selecting a tour from that solution. Once a tour is selected from the adaptive

memory, all tours sharing nodes with the selected tour are removed from memory. Removing

tours from the adaptive memory ensures each node is represented only once in the partially

constructed tour. The selection of tours from the adaptive memory, and the removal of

tours with common nodes, is repeated until no more tours remain in the adaptive memory.

As not all nodes are represented, the partially constructed tour denoted by s, is completed

by inserting the remaining unrouted nodes into feasible positions of s. The resulting tour,

denoted by s?, is achieved through either identifying positions on a current route, creating

a new route on a current tour, or creating a new tour with its associated vehicle.
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Algorithm 5.3: Tabu Search (TS) Optimization
Input: Incumbent solution, x̂

Input: Iteration limit for local optimization, Imax

Input: Frequency parameter, ζ

s = {·}1

assign set of tours, A← Adaptive Memory2

repeat3

select a ∈ A4

s← s ∪ a5

A← A	 (a ∩A)6

until A = {·}7

s? ← s⊕ ({1, 2, . . . , N} 	 s)8

i← 09

repeat10

i← i+ 111

if
⌊

i
ζ

⌋
= i

ζ then12

exchange heuristic j = {1, 2}13

else14

select exchange heuristic j ∈ {1, 2} with probability pj15

endif16

s′j ← ej (s?)17

s′ ← min
j

{
s′j

}
18

x′ ← f (s′)19

if x′ < x̂ then20

ŝ← s′21

s? ← s′22

endif23

until i > Imax24
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Two exchange operators are considered. The first operator removes a randomly selected

node from one tour and inserts the node into the best possible position in another tour that

has the same vehicle type. The second operator also removes a randomly selected node from

an origin tour, but selects the best insertion position for the node on a tour having a different

vehicle type than the origin tour.

Initially the probability of selecting either of the operators is equal. A frequency pa-

rameter, ζ, ensures that every ζ iterations both operators are used to create perturbations.

The probability of the operator producing the best solution is then increased relative to its

current probability. Consider, during a general iteration, the first operator having a weight

of α = 30 and the second operator having a weight of β = 60. If both operators are executed,

and the first operator yields a better solution, its weight will be increased by a factor γ. In

this thesis γ is arbitrarily set to 2. The new probability of selecting the first operator is

p1 =
γα

γα+ β

=
2× 30

2× 30 + 60

= 0.50·,

and the probability of selecting the second operator is calculated as

p2 = 1− p1.

5.3 Results and analysis

The TS algorithm proposed in this thesis contains a random component similar to the algo-

rithm proposed by Rochat and Taillard (1995). This means that two runs of the algorithm

will generally produce two different solutions. Figure 5.1 provides graphs for a random se-

lection of problems. Each graph indicates the iteration number on the x-axis, while the

objective function value is represented on the y-axis. The thinner of the two lines on each

graph represent the actual objective function value of the solution for the given iteration,

while the thick line represents the incumbent — the best solution found thus far, at that

iteration.

It is noticeable that the incumbent for the first iteration is frequently lower than the

actual iteration value. This is the result of the incumbent being represented by one of the ten

initial solutions created for the TS, whereas the first iteration’s solution is created through the

solution-building mechanism that selects tours from the adaptive memory. The incumbent,
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Figure 5.1: Selection of TS result graphs

furthermore, is never improved by more than 10% over the 100 iterations, reflecting on the

high quality initial solution proposed in Chapter 4.

Because of the randomness inherent in the structure of the proposed TS, the results pre-

sented in Appendix B sees four independent runs executed, with Tables B.1(a) through B.1(f)

providing the objective function values for each of the runs, as well as the average objective

function value obtained. The last column of the result tables provide the average time (in

seconds) required to obtain a solution. The average time is provided under the assumption

that time-dependent travel time matrices are not available, and that such matrices have to

be established once, and adhere to the triangular inequality

tik + tkj ≥ tij ∀i, j, k ∈ {1, 2, . . . , N}. (5.3)

Although Toth and Vigo (2002b) interpret the triangular inequality as being inconvenient

to deviate from the direct link between nodes i and j, it may be practical to adjust the link
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from i to j to rather pass via node k without actually visiting node k. This occurs when

the direct link is heavily congested during peak times. Adjusting the route selection in

combination with time-dependent travel times are highly dependent on an accurate GIS.

5.4 Conclusion

A Tabu Search (TS) algorithm is proposed that generates a number of initial solutions as

input, from where tours are added to an Adaptive Memory Procedure (AMP). During each

consecutive iteration, tours are selected from the AMP in a biassed manner to construct

a new solution. Non-tabu, feasible solutions are generated in an attempt to escape local

minima.

The algorithm is coded in MATLAB, and tested on 60 benchmark data sets adapted

from literature. The sets are adapted to accommodate multiple routes per tour, as well as a

heterogeneous fleet in an environment where time dependent travel times occur. The results

are promising, yielding solutions between 670 and 4762 seconds on a standard Intel Pentium

Centrino laptop computer with a 1.5GHz processor and 512MB of RAM. Four independent

runs are executed for each of the 60 problems. The Absolute Mean Deviation (AMD) of

the solution quality between the 240 runs is 3.6%, indicating an algorithm that produces

consistent solutions between runs.

In the next chapter, the GA is investigated as an alternative to the TS.
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Chapter 6
A Genetic Algorithm

In this thesis the approach by Tan et al. (2001c) is followed whereby a Genetic Algorithm

(GA) uses a path representation to code chromosomes (routes). For example, the chromo-

some string 4-5-2-3-1 represents a route that starts at node 4, followed by node 5, then 2, 3,

and 1 before returning to node 4. Each element in the chromosome is referred to as an allele.

For a problem with n customers, each chromosome will be an integer string with n elements.

Although elementary crossover routines often destroy the validity of tours and routes, spe-

cific crossover routines have been developed to ensure that tours and routes remain valid,

and keeps improving.

A slightly adapted version of the GA discussed in Algorithm 3.3 is provided in Algo-

rithm 6.1. The GA requires a generation limit similar to the iteration limit for TS and SA.

The population size determines the number of solutions in a single generation. The pop-

ulation subdivision parameters establishes the fraction of the population that will undergo

specific genetic manipulation. To ensure the natural phenomena of survival of the fittest,

the elitist parameter pe ensures that the pe fittest solutions in a given generation g is exactly

copied to the next generation g + 1. The mutation parameter pm determines the number

of chromosomes that will undergo random changes, or mutation. The crossover parameter,

pc, determines the number of solutions that will produce offspring by sharing elements of its

chromosomes.

The algorithm is initialized with the generation of p solutions, each containing a single

TSP string of nodes. Vas (1999) states that initial solutions can be generated either ran-

domly or heuristically, while Tan et al. (2001c) suggest a combination of solutions: some

generated using an efficient Push Forward Insertion Heuristic (PFIH), and the balance gen-

erated randomly.

92

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoouubbeerrtt,,  JJ  WW  ((22000077))  



Algorithm 6.1: Genetic Algorithm (GA) overview
Input: Generation limit gmax

Input: Population size p

Input: Population subdivisions pe, pm, and pc such that pe + pm + pc = p

g ← 01

begin initialization2

generate feasible TSP solutions x0
1, . . . , x

0
p3

end4

repeat5

g ← g + 16

cluster TSP solutions7

determine fitness of TSP solutions8

begin elite9

Copy pe best solutions from generation g to generation g + 110

end11

begin mutation12

Include pm mutated solutions in generation g + 113

end14

begin crossover15

Choose pc

2 non-overlapping pairs of solutions from generation g16

execute crossover perturbations17

Include new solutions in generation g + 118

end19

until g = gmax20

x? ← min
i∈{1,...,p}

{xg
i }21

x̂← locally optimized x?22
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The GA proceeds for gmax generations. During each generation, the single string solu-

tion, also referred to as a TSP solution, is clustered and assigned to vehicles. Each solution’s

fitness is calculated as the objective function of the specific solution. Based on the fitness, the

algorithm reproduces the next generation through a combination of cloning the pe fittest so-

lutions exactly to the next generation, mutating pm solutions through small changes referred

to as perturbations, and creating pc new offspring by performing crossover perturbations on

a selection of generation g solutions.

The following sections discuss some of the elements of the GA in more detail.

6.1 Initialization

The simplest and computationally most efficient way of generating p initial solutions, each

containing n customers, is to create p random permutations of integers between 1 and n.

Each integer value represents a specific customer. To generate a population of 200 solutions

(chromosomes), each with 200 nodes takes MATLAB on average 0.014 seconds (average ob-

tained from 10,000 independent runs) on a standard Intel Pentium Centrino laptop computer

with a 1.5GHz processor and 512MB of RAM.

As an alternative, initial solutions can be generated using the algorithm presented in

Chapter 4, and adapted for the TS in Algorithm 5.2.

6.2 Clustering

Each chromosome represents a solution in the form of a single integer string, similar to

the TSP strings proposed by Michalewicz (1992). The difficulty with having a single string

to represent multiple tours and routes is that the chromosome needs to be clustered, and

assigned to vehicles.

Although Tan et al. (2001c) simply adds the first allele of the chromosome to the end of

the current tour until vehicle capacity is met, the author of this thesis propose the clustering

routine presented in Algorithm 6.2 to address multiple scheduling. The first allele of the

chromosome is considered for insertion on each edge of each route of the current tour, and

not only at the end of the route. If no position is found for the customer, a new route

on the current tour is considered. If an additional route leads to infeasibilities, a new tour

is initialized, and the customer is inserted. A customer is only orphaned if it can not be

serviced by a dedicated tour.
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Algorithm 6.2: GA clustering
Input: population

foreach chromosome in population do1

repeat2

found← 03

forall the routes of current tour do4

forall the edges on current route do5

if feasible insertion then6

found← 17

endif8

endfall9

endfall10

if found = 1 then11

insert customer12

else if multiple routes are feasible then13

insert customer into new route14

else15

create new current tour16

create new first route17

endif18

until all customers are routed, or vehicles are depleted19

report orphans20

endfch21
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6.3 Mutation

A proportion, pm of all chromosomes in a given generation is mutated to ensure that the GA

does not get stuck in a local optimum (Vas, 1999). The proportion is typically very low to

ensure that good chromosomes remain intact. Michalewicz (1992) introduces a non-uniform

mutation rate whereby the number of chromosomes mutated decreases to ensure that the

solution space is searched widely during early generations, and only searched locally in later

generations.

In the majority of applications binary representation is used and mutation involves chang-

ing a 0 value to 1, and vice versa. In this thesis the approach of Tan et al. (2001a) is followed

whereby randomly selected customers are swapped in an integer string representation of a

chromosome.

6.4 Crossover

Crossover operators are concerned with producing offspring solutions for the next generation

from two parent solutions from the current generation. Parents are selected using a biased

roulette wheel. A number of the operators produce only a single offspring from the two

parents, while others produce two offspring. To illustrate the various crossover operators,

the first ten nodes of the C2-2-2 problem set is used.

6.4.1 Enhanced Edge Recombination (EER)

Whitley, Starkweather & Fuquay (as cited by Michalewicz (1992)) developed the Edge

Recombination (ER) crossover technique which they claim transfer more than 95% of the

edges from the parents to a single offspring. To illustrate the ER, consider two single string

TSP solutions, A and B, illustrated in Figures 6.1(a) and 6.1(b) respectively. The edge

table created in Table 6.1(a) lists for each node all the neighbouring nodes from both par-

ent solutions. The single offspring, denoted by C, starts by selecting a starting element.

Starkweather et al. (1991) state that the starting element can be either chosen randomly

from the set of elements which has the fewest entries in the edge table, or a random choice

between the starting element from either parent A or B. The latter option is used in this

thesis. Of the elements that have links to the last element in C, choose the element which

has the fewest number of unassigned links in the edge table entry, breaking ties randomly.

The process is repeated until the new offspring chromosome is complete.
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Figure 6.1: Two parent solutions illustrating the ER crossover

Table 6.1: Edge lists

(a) ER edge list

City Links

1 2, 4, 9, 10

2 1, 3, 4, 10

3 2, 4, 5, 8

4 1, 2, 3, 5

5 3, 4, 6

6 5, 7

7 6, 8, 9

8 3, 7, 9, 10

9 1, 7, 8, 10

10 1, 2, 8, 9

(b) EER edge list

City Links

1 2, 4, 9, 10

2 1, 3, 4, 10

3 2, 4, 5, 8

4 1, 2, 3, 5

5 3, 4, -6

6 -5, -7

7 -6, 8, 9

8 3, 7, 9, 10

9 1, 7, 8, 10

10 1, 2, 8, 9
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Suppose element 1 is selected from A as starting element in C. Since 1 has been assigned

to C, all occurrences of 1 is removed from the edge list. Element 1 has links to 2, 4, 9 and

10, each having 3 remaining links in the edge table. Element 2 is randomly chosen as next

element in C and all element 2’s occurrences are removed from the edge table. Element 2

has links with 3, 4 and 10, of which 4 and 10 have only 2 remaining links in the edge table.

Element 10 is chosen randomly as the next element in C, having links to elements 8 and 9.

Element 9 has the least (2) number of remaining links in the edge list, and chosen as the

next element in C. The process continues until C = [1 2 10 9 7 8 3 4 5 6].

To enhance the random breaking of ties when selecting among elements, Starkweather

et al. (1991) changed the edge list to indicate common edges. This is achieved by flagging a

common edge by inverting, for example, 3 to −3 if an element has a common edge to element

3 in both parents. Table 6.1(b) indicates the edge list with flagged common edges. When

a tie exist between elements, preference is given to the element with the highest number of

remaining flagged elements. If a tie still exists, it may be broken randomly. Following the

same procedure as for the ER example above, a slightly different offspring C ′ = [1 2 10 9 7

6 5 3 4 8] is obtained. The offspring chromosome is illustrated in Figure 6.1(c). The only

new edge in the offspring is the edge connecting elements 6 and 1. Hence, 90% of the edges

are transferred from the parents to the offspring solution.

6.4.2 Merged Crossover (MX)

The MX was first introduced by Blanton and Wainwright (1993) and is based on the notion

of a global precedence among genes of any chromosome, rather than defining a precedence

among genes specific to parents in a local crossover such as the EER. A number of precedence

vectors have been established in literature.

Latest allowed arrival time

Chen et al. (1998) state that there is a natural precedence relationship among all customers

based on the upper limit of their time windows. The precedence list, denoted by P , for the

example problem is P = [2 8 3 5 7 1 10 6 9 4], based on the time window details provided

in Table 6.2.

To illustrate the crossover, we consider parents A and B from Figure 6.1. The first

elements from both parents are considered: element 5 from B appears before element 1 from

A in the precedence list P , and is selected as first element in offspring C. To maintain
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Table 6.2: Time window details for customers from the C2-2-2 problem set

Earliest allowed Latest allowed

Customer, i arrival, ei arrival, li

1 2808 2968

2 668 828

3 1021 1181

4 0 3481

5 1922 2082

6 0 3451

7 2597 2757

8 906 1066

9 0 3475

10 0 3445

validity, elements 1 and 5 are swapped in parent A.

A = [5 2 3 4 1 6 7 8 9 10]

B = [5 6 9 1 4 2 10 8 3 7]

C = [5 ? ? ? ? ? ? ? ? ?]

Next, the second elements of each parent is considered. As element 2 from A appears before

element 6 from B in the precedence list, element 2 is placed in the offspring, and elements 2

and 6 are swapped in parent B.

A = [5 2 3 4 1 6 7 8 9 10]

B = [5 2 9 1 4 6 10 8 3 7]

C = [5 2 ? ? ? ? ? ? ? ?]

The process is repeated until the offspring chromosome is completed with C = [5 2 3 1 4 6

7 8 9 10]. The MX approach is denoted by MX li .

Earliest allowed arrival time

Louis et al. (1999) suggest using the earliest allowed arrival time, given by ei in Table 6.2,

to establish the precedence list, denoted by MX ei . Executing their recommendation results

in a precedence list P = [4 6 9 10 2 8 3 5 7 1]. When using the precedence list on parents A

and B from Figure 6.1, an offspring chromosome C = [5 6 9 4 1 2 10 8 3 7] results.
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Time window compatibility

Two novel ways of establishing a precedence list are suggested in this thesis. In the first

novel approach denoted by MX twc, the total compatibility for each customer is calculated

using either (4.8) or (4.9), sorted in ascending order to create the precedence list. Ties are

broken arbitrarily. The resulting precedence list sees incompatible nodes placed earlier in

the chromosome. More compatible nodes are subsequently inserted to fill routes and tours.

Angles

The second novel way to establish the precedence list is to reconsider the fundamental way in

which the the crossover operator is used. The simplicity, yet success of the sweep algorithm

proposed by Gillett and Miller (1974) is incorporated in this MX approach denoted by

MX ∠. The angle for each customer is calculated, and the angles are sorted in ascending

order to determine the precedence list. The resulting crossover ensures that customers that

are located close to one another are assigned to the same route, time windows permitting.

With the depot’s location indicated by an open circle in Figure 6.2, the precedence list

df s1

s2
s10

s9 s7

s8

s
3

s4
s

5

s6

Figure 6.2: Depot and first 10 customers from the C2-2-2 problem set

P = [1 8 2 10 6 9 4 7 5 3] is established.

6.4.3 Partially Matched Crossover (PMX)

PMX is a genetic operator often used with TSP problems using integer string representa-

tion (Goldberg and Lingle, 1985). The operator selects two parent chromosomes using the

biassed roulette wheel, and produces two offspring chromosomes, as opposed to the previous

operators producing only a single offspring. Consider again the two parent chromosomes A

and B given in Figure 6.1. Two crossing positions a and b are randomly selected such that
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1 ≤ a < b ≤ ‖A‖ + 1, where ‖A‖ denotes the number of elements (alleles) in chromosome

A. For illustrative purposes let a = 3 and b = 7. To create offspring 1, denoted by C1, the

strings between the crossing positions from parent 2 is copied to C1.

C1 = [? ? 9 1 4 2 ? ? ? ?]

For each element in A between a and b, starting from position a, look for elements in A that

have not been copied to C1. In the example element 3 is identified. Element 3’s position in

A is occupied by element 9 in C1, and hence element 9 in A’s position is filled in C1 with 3

such that

C1 = [? ? 9 1 4 2 ? ? 3 ?].

Next, element 5 in A is identified, as element 4 has already been copied to offspring C1.

Element 5’s position in A is occupied by 4 in C1, but since element 4 in A’s position is

already occupied in C1 by element 1, element 1’s position in A is identified for element 5 in

C1 such that

C1 = [5 ? 9 1 4 2 ? ? 3 ?].

Element 6 in A is identified next. Element 6’s position in C1 is occupied by element 2, which

in turn, is located in position 2 in A. Hence, element 6 is placed in position 2 in C1 such

that

C1 = [5 6 9 1 4 2 ? ? 3 ?].

As all elements in A between positions a and b have been considered, C1 is completed by

duplicating the remaining elements from A such that

C1 = [5 6 9 1 4 2 7 8 3 10].

The second offspring, denoted by C2, is created in a similar fashion with the resulting off-

spring being C2 = [1 2 3 4 5 6 10 8 9 7].

6.5 Evaluating crossover operators

The proposed GA algorithm is executed to identify appropriate crossover operators for the

varying problem sets. Due to computational time complexity, a single problem is randomly

selected from each problem set. Each crossover operator is then tested using 4 indepen-

dent iterations. The fitness is calculated using an objective function which considers total
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travel time, number of vehicles used, and total lateness at customers. The GA is executed

for a maximum of 200 generations, each having 100 chromosomes. Of every new genera-

tion, 80% of chromosomes were generated through crossover operators. Initially 10% of a

newly created generation is established through mutation to ensure that the solution space

is widely searched. A non-uniform mutation rate introduced by Michalewicz (1992) reduces

the number of mutated chromosomes as the number of generations increases. Hence the so-

lution space is only locally searched towards the end of the algorithm. The balance of a new

generation is created by cloning (copying exactly) the best chromosomes from the previous

generation.

Figure 6.3 illustrates the performance of the various crossover mechanisms for each prob-

lem set. The performances are expressed and calibrated according to the best crossover

operators for the specific problem set. Actual results are provided in Tables 6.3a and 6.3b,

providing the best fitness (objective function value) obtained over the four independent runs,

as well as the average time required (in seconds) to find a solution.

Contrary to Blanton and Wainwright (1993) claiming that most of their MX operators

outperform the PMX operator, the results in this thesis indicates six instances in which

the PMX is either significantly better in terms of fitness, or significantly faster than any

of the other crossover operators. In only two instances, c2 2 3 and rc2 3 8, did MX prove

significantly faster than the other crossover operators, of which one instance is the newly

proposed MX twc.

Using a standard statistical t-test, the EER crossover operators proved to be consistently

worse and slower than other mechanisms, and is consequently omitted from further analysis.

The remaining operators are again subjected to a t-test, resulting in some operators to be

identified as significant, hence labels (e) and (f) in Tables 6.3a and 6.3b.

Self regulation can be achieved through a biased selection of operators based on past

performance. Initially each operator (except EER) is assigned equal probability of being

selected. A parameter λ indicates the frequency (in terms of generations) of testing all

operators, and the probabilities are consequently adjusted based on the relative performance

of each operator, similar to the self organizing mechanism proposed for exchange operators

of the TS algorithm in Chapter 5.
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Table 6.3a: Analysis of random problems for each data set

Problem EER MXli MXei MXtwc MX∠ PMX

c1 2 8

Fitness

Value 90026 88895 88510 85272 85043 84607

Relative 1.064 1.051 1.046 1.008 1.005 1.000

t-Value -3.096a -1.916 -1.514 1.865 2.104 2.559

Time

Value 26478 25708 25747 25776 25560 25361

Relative 1.044 1.014 1.015 1.016 1.008 1.000

t-Value -4.569b 0.412 0.160 -0.028 1.369 2.656c

c2 2 3

Fitness

Value 213070 212736 212572 212318 212261 212078

Relative 1.005 1.003 1.002 1.001 1.001 1.000

t-Value -3.821b -1.559e -0.448 1.272 1.658 2.898c

Time

Value 24498 23783 23695 23416 23595 23657

Relative 1.046 1.016 1.012 1.000 1.008 1.010

t-Value -4.725b -0.059 0.516 2.336f 1.168 0.764

r1 2 1

Fitness

Value 37147 36779 36358 36144 35610 34350

Relative 1.081 1.071 1.058 1.052 1.037 1.000

t-Value -2.672a -1.764 -0.724 -0.196 1.123 4.234d

Time

Value 20348 19746 19736 19697 19658 19441

Relative 1.047 1.016 1.015 1.013 1.011 1.000

t-Value -4.650b 0.201 0.282 0.596 0.911 2.659c

a Rejected with 97.5% certainty
b Rejected with 99.0% certainty
c Accepted with 97.5% certainty
d Accepted with 99.0% certainty
e Rejected with 97.5% certainty, EER omitted
f Accepted with 97.5% certainty, EER omitted
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Table 6.3b: Analysis of random problems for each data set

Problem EER MXli MXei MXtwc MX∠ PMX

r2 2 5

Fitness

Value 51472 50715 50392 50147 49975 50277

Relative 1.030 1.015 1.008 1.003 1.000 1.006

t-Value -4.434b -0.994e 0.474 1.588 2.369 0.997

Time

Value 17685 17160 17279 17374 17612 17003

Relative 1.040 1.009 1.016 1.022 1.036 1.000

t-Value -3.113a 1.797 0.684 -0.204 -2.430e 3.266c

rc1 2 8

Fitness

Value 42833 42310 41693 41327 41257 40772

Relative 1.051 1.038 1.023 1.014 1.012 1.000

t-Value -3.679b -1.983e 0.018 1.205 1.432 3.005c

Time

Value 61481 60192 60236 60007 59988 60215

Relative 1.025 1.003 1.004 1.000 1.000 1.004

t-Value -4.908b 0.701 0.510 1.507 1.589 0.601

rc2 2 8

Fitness

Value 37348 34763 34433 34294 34271 34045

Relative 1.097 1.021 1.011 1.007 1.007 1.000

t-Value -4.909b 0.189e 0.840 1.114 1.160 1.605

Time

Value 46954 46193 46561 46686 46605 47711

Relative 1.016 1.000 1.008 1.011 1.009 1.033

t-Value -0.803 2.813c 1.064 0.470 0.855 -4.400b

a Rejected with 97.5% certainty
b Rejected with 99.0% certainty
c Accepted with 97.5% certainty
d Accepted with 99.0% certainty
e Rejected with 97.5% certainty, EER omitted
f Accepted with 97.5% certainty, EER omitted
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EER MX with l_i MX with e_i MX with TWC MX a PMX

Fitness Time

(a) c1 2 8

EER MX with l_i MX with e_i MX with TWC MX a PMX

Fitness Time

(b) c2 2 3

EER MX with l_i MX with e_i MX with TWC MX a PMX

Fitness Time

(c) r1 2 1

EER MX with l_i MX with e_i MX with TWC MX a PMX

Fitness Time

(d) r2 2 5

EER MX with l_i MX with e_i MX with TWC MX a PMX

Fitness Time

(e) rc1 2 8

EER MX with l_i MX with e_i MX with TWC MX a PMX

Fitness Time

(f) rc2 2 8

Figure 6.3: Results for a random problem from each set, expressed relative to the best

crossover mechanism for each set.
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6.6 Conclusion

In this chapter a GA with integer string representation is developed to test a variant of

the VRP that uses time-dependent travel time and that accommodates time windows, a

heterogenous fleet, and multiple scheduling. Six crossover mechanisms are tested, two of

which are newly proposed in this thesis.

The results suggest that although there are performance differences among the crossover

operators, few prove to be significant. Therefor, it is suggested that when integrating the

multiple optimization algorithms, namely GA and TS, into the intelligent routing agent,

internal learning or self regulation should be considered.
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Chapter 7
Clustering input data

In this chapter the concept of pattern identification on input data is investigated. What is

peculiar about the benchmark problem sets proposed by both Solomon (1987) and Homberger

and Gehring (1999) are the fact that they are preempting specific theoretical characteristics,

unlike problems found in real applications. This is clearly illustrated when the assignment

of time windows is discussed. For the problem sets R1, R2, RC1, and RC2 a percentage of

customers are selected to receive time windows, say 0 < f ≤ 1. Next n random numbers from

the random uniform distributions is generated on the interval (0, 1), and sorted. Customers

i1, i2, . . . , in1 are then assigned time windows, where the number of customers requiring time

windows can then be approximated by n1 ≈ f.n. The center of the time window for customer

ij ∈ {i1, i2, . . . , in1} is a uniformly distributed, randomly generated number on the interval(
e0 + toij , l0 − tij0

)
, where e0 and l0 denotes the opening and closing times of the depot,

respectively, and t0ij and tij0 denotes the travel distance from the depot to customer ij , and

back, respectively.

For clustered problem sets C1 and C2 the process becomes questionable. Customers

in each cluster are first routed using a 3-opt routine as described in the previous chapter.

An orientation is chosen for the route, and time windows are then assigned with the center

being the arrival time at the customer. The width and density are derived in a similar

fashion as for random and semi-clustered data. Although Solomon (1987) states that “this

approach permits the identification of a very good, possibly optimal, cluster-by-cluster solution

which, in turn, provides an additional means of evaluating heuristic performance”, it does

not provide a credible means to evaluate real life problems where customers do not negotiate

their sequence prior to stating a preferred time window.

Literature provides good references to what type of metaheuristics, or metaheuristic
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configurations provide good answers to which of the six benchmark problems. When given a

real data set from industry, however, one is not provided with the classification of “this a C1

problem set”. To therefore determine which solution algorithm to use, and which parameter

setting, the routing agent first needs to classify the input data.

The idea behind learning is not so that an agent can act, but rather to improve an agent’s

ability to act in future. In the context of vehicle routing the agent is the routing system

proposed by this thesis. The acting is the routing of vehicles, given the demand inputs,

using some metaheuristic with its associated parameter settings. For a routing systems to

learn, it must perceive certain characteristics of the inputs, for example the geographical

dispersion of customers or the width of time windows provided by customers, and choose an

appropriate metaheuristic, and know what parameter values to suggest in order to obtain

the best route in the shortest possible time. The execution of the metaheuristic makes up

the performance element of the agent, and have been thoroughly introduced in Chapters 4

through 6. Deciding which metaheuristic to use forms the learning element of the agent.

The concepts of representation of an agents knowledge and its reasoning processes that

brings that knowledge to life are central to the entire field of AI. The design of a learning

element is affected by three distinctive components:

• Which components of the performance element are to be learned?

• What feedback is available to learn these components?

• What representation is used for the components?

The components of the performance element that the agent should learn from input data

provided, are the geographical distribution of customers; the relation between customer

demand and vehicle capacity, and time window characteristics. In order to determine the

nature of learning for the agent, the type of feedback available to the agent is extremely

important. Russell and Norvig (2003) distinguish between three types of feedback:

Supervised learning Learning takes place by providing both input and output exam-

ples. For instance, if an agent is provided with many pictures that he is told contain

buses, the agent learns to recognize a bus. Both the input and the output is provided.

Unsupervised learning Patterns are learned by providing input, but in the absence

of specific outputs. When commuting from home to work, a person might be able

to distinguish between “good traffic days” and “bad traffic days”, without ever being
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given examples of either of the two. A purely unsupervised agent cannot learn as it

has no information as to what constitute a desirable state, or a correct action.

Reinforcement learning The most general of the three types of feedback. Without

being told by a supervisor what to do, a reinforcement learning agent must learn

through reinforcement, for example an action that is not followed by a tip or any

confirmation is interpreted as an undesirable state.

The routing agent in this thesis will typically be given a data set without knowing whether

it is clustered, randomly distributed, or whether the time windows are tight. As a supervisor

also do not know whether it is clustered, or not, it would also not be possible to reinforce

a correct action taken, as the evaluation of correctness would be flawed. The routing agent

would hence have to learn unsupervised.

Knowledge and reasoning are both required for problem solving agents to perform well

in complex environments. The concept of knowledge representation is important as an agent

would require some structure in which to put the information that it has learnt, so as to

be able to revisit its knowledge base in future when decision are made. This is necessary

to improve future decision making. The central component of a knowledge-based agent is

its knowledge base, expressed as sentences in a knowledge representation language. Each

sentence asserts something about the agent’s world. There are ways to add new sentences to

the knowledge base, and ways to query what is already known. In AI these two actions are

referred to as Tell and Ask. Being a logical agent, when ‘Ask’ed a question, the answer would

be related to what the knowledge base has been ‘Tell’ed previously. Also, the two tasks may

involve inference where new sentences are derived from old ones.

7.1 Unsupervised clustering

The clustering problem is defined as partitioning a given data set into groups, or clusters, such

that data points in a cluster are more similar to each other than to other points belonging

to different clusters. According to Gath and Geva (1989) and Xie and Beni (1991) the

criteria for the definition of optimal partition of the data into clusters are based on three

requirements:

• Clear separation between the resulting clusters.

• Minimal volume of the clusters.
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• Maximal number of data points concentrated in the vicinity of the cluster centroid, i.e.

maximum cohesion.

Thus, although the environment is fuzzy, the aim of the classification is the generation of

well-defined subgroups. To solve the clustering problem, a number of clustering algorithms

have been proposed. One of the most important families of clustering techniques are parti-

tioning clustering, with the most commonly used algorithm in this family being the k-means

clustering algorithm and its numerous variants (Xu and Brereton, 2005). A main problem

of the k-means clustering variants is that the algorithms require the number of clusters, c,

as an input so that a data set can be clustered into c partitions.

Unsupervised clustering is the problem of discerning multiple categories in a collection

of objects. The categories referred to are the components of the input data that the agent

should learn, while objects refer to the input data points, i.e. the customers in the network.

The learning process is unsupervised as the agent does not know whether the input data is

randomly distributed, clustered, or a combination of both.

So if the number of clusters, c, is not known when learning should occur, the agent can

perform a number of clustering attempts, each using a different values for c. In such a way

the most appropriate value for c can be determined. Such an approach is defined as cluster

validation. In this chapter, the behavior of a number of validation indices will be tested

on benchmark data sets for the VRPTW. The objective is to establish trends that can be

used to Tell the routing agent how to identify input data as belonging to either the R1, R2,

C1, C2, RC1, or RC2 group of problems. The most appropriate metaheuristic can then be

identified, along with its most appropriate parameter settings.

7.1.1 Fuzzy c-means clustering

One of the variants of the k-means clustering algorithm, fuzzy c-means (FCM) clustering,

attempts to find the most characteristic point in each cluster vi ∈ VVV = {v1, . . . , vc}, which

can be considered as the center of cluster i and then grade the membership for each node

xj ∈ XXX = {x1, . . . , xn} in cluster i. The member allocation is achieved by minimizing the

commonly used membership weighted with-in cluster error objective function defined in (7.1)

Je (UUU,VVV ) =
c∑

i=1

n∑
j=1

um
ijd

2
ij (7.1)

where dij is the Euclidean distance between object j and the ith center, and uij is the

fuzzy membership of object j belonging to the ith cluster. The FCM is then described
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by Algorithm 7.1. The algorithm requires the number of classes, a fuzzy factor and a

Algorithm 7.1: Fuzzy c-means clustering
Input: Number of classes, c

Input: Fuzzy factor, m > 1

Input: Convergence threshold, ε > 0

Randomly select c nodes to initialize centers matrix VVV 0,1

k ← 02

Jk
e ←

∑c
i=1

∑n
j=1 u

m(k)
ij

(
dk

ij

)2

3

repeat4

for i ∈ {1, . . . , c}, j ∈ {1, . . . , n} do5

uk
ij =

(
c∑

r=1

[(
dk

ij

dk
rj

) 2
m−1

])−1

if For any r ∈ {1, . . . , c}, dk
rj = 0 then

6

uk
rj = 17

for i, r ∈ {1, . . . , c}, i 6= r do8

uk
ij = 09

endfor10

endif11

endfor12

for i ∈ {1, . . . , c} do13

VVV k+1
i =

nP
j=i

u
m(k)
ij xj

nP
j=i

u
m(k)
ij14

endfor15

k ← k + 116

Jk
e ←

∑c
i=1

∑n
j=1 u

m(k)
ij

(
dk

ij

)2

17

until
∥∥Jk

e − Jk+1
e

∥∥ < ε18

convergence threshold as input. The centers matrix VVV is then initialized using a random

selection of c nodes from the node set {1, . . . , n}. The iteration count is zeroed before

the membership matrix UUUk is calculated. A new centers matrix is calculated, before the

convergence of the objective function is tested. Xu and Brereton (2005) notes that when the

fuzzy factor m approaches 1, the FCM is similar to the standard k-means clustering. When

m approaches infinity, however, the clustering of the FCM is at its fuzziest: each node is

assigned equally to each cluster. The authors also note that the FCM is but a local search
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algorithm, and at best will find a local minimum, and is therefore sensitive to the random

initial guess for VVV 0. Figure 7.1 illustrates the clustering of one of the C1 problem sets

provided by Gehring and Homberger (1999), C1-2-1, the first of their problem sets with 200

customers. The small circles indicate the customer nodes, while asterisks indicate the center

of the cluster. All nodes clustered together are linked with gray lines. In establishing the

clusters, a fuzzy factor of m = 3, convergence threshold of ε = 1.0× 10−5, and an iteration

limit of kmax = 1000 is used. A number of validation indices are subsequently considered to

evaluate the clustering.

7.1.2 Validation indices

A validation index is a single real value that describes the quality of a cluster partition.

Some of the validation indices are only concerned with the membership value of the final

clustering partition. Although Bolshakova and Azuaje (2003) do not apply the Silhouette

index on fuzzy clusters, this thesis propose that for a given cluster i ∈ {1, . . . , c}, assign to

each node j a quality measure sj , known as the silhouette width, defined in (7.2)

sj =
bj − aj

max {aj , bj}
(7.2)

where aj is the average distance between the jth node and all the other nodes included in

the ith cluster, and bj the average distance between node j and all the other nodes not in

cluster i. Here a node j is assigned to cluster i if uij = max
i∈{1,...,c}

{uij}. The value of sj will

range in the region [−1, 1]. A value close to 1 indicates node j to be well clustered, i.e.

appropriately assigned to cluster i. A value for si in the region of zero indicates that node

j may well be assigned to a neighboring cluster, and a value close to -1 indicates node j to

be misclassified, i.e. assigned to the wrong cluster. For cluster i one may then determine a

silhouette value Si, defined by (7.3)

Si =
1
m

m∑
j=1

sj (7.3)

where m is the number of samples in cluster i. The global silhouette value Vs as defined

by (7.4) is an effective index.

Vs =
1
c

c∑
i=1

Si (7.4)

The Partition Coefficient index is defined by (7.5)

VPC =
1
n

 c∑
i=1

n∑
j=1

u2
ij

 (7.5)
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(a) 5 Clusters

(b) 20 Clusters

Figure 7.1: Clustering the C1-2-1 problem set
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where uij is the fuzzy membership for node j belonging to cluster i, and n the number of

nodes in the input data, excluding the depot. The value of VPC is in the range [1/c, 1]. An

index close to 1 indicates good cluster separation, while a low index value indicates fuzzier

clustering. An index of VPC = 1/c indicates that there is no clustering tendency. The

disadvantages of VPC are the lack of direct connection to a geometrical property, and the

monotonic decreasing tendency with c.

The Partition Entropy index is defined by (7.6)

VPE = − 1
n

 c∑
i=1

n∑
j=1

uij log (uij)

 (7.6)

The value of VPE is in the range [0, log c]. In contrast to PC, a low value of VPE indicates

good cluster separation. Unfortunately the same disadvantages as for VPC hold for VPE in

that there is not direct connection to a geometrical property, and the index has a monotonic

decreasing tendency with c. The following indices involve not only the membership value,

but also the actual data set.

In the following indices the numerical taxonomy of Bezdek (1974) is used. Xie and Beni

(1991) introduced an index that give weight to both compactness, and separation. First

the fuzzy deviation of node j from cluster i, denoted by dij is determined as the Euclidean

distance between node j and cluster i, weighted by the fuzzy membership of node j belonging

to cluster i. The sum of the squares of the fuzzy deviations of each node j is referred to

as the variance of cluster i, denoted by σi. The total variation of the data set with respect

to the given fuzzy c-partition is referred to as σ. The compactness of the partition is the

ratio between the total variation of the data set to the size of the data set, expressed as σ
n .

The centers between all cluster center combinations i, r ∈ {1, . . . , c}, i 6= r is calculated, and

the minimum inter-center distance is denoted by dmin. The separation of clusters is then

determined by s = d2
min. A high value of s indicates well-separated clusters. The index is

the minimum value for σ
n·s , or more explicitly written in (7.7).

VXB =

c∑
i=1

n∑
j=1

u2
ij ‖xxxj − vvvi‖2

n

(
min

i,r∈{1,...,c},i6=r

{
‖vvvi − vvvr‖2

}) (7.7)

Pal and Bezdek (1995) extend the Xie-Beni index for cases where the fuzzy factor m 6= 2,
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and the extended index V +
XB is defined in (7.8)

V +
XB =

c∑
i=1

n∑
j=1

um
ij ‖xxxj − vvvi‖2

n

(
min

i,r∈{1,...,c},i6=r

{
‖vvvi − vvvr‖2

}) (7.8)

Kwon (1998) also investigates the Xie-Beni index, and proposes an index that eliminates

the monotonically decreasing tendency as the number of clusters increases and approaches

n, the number of nodes in the data set. The index is denoted by VK and is defined in (7.9).

VK =

c∑
i=1

n∑
j=1

u2
ij ‖xxxj − vvvi‖2 + 1

c

c∑
i=1
‖vvvi − vvv‖2

n

(
min

i,r∈{1,...,c},i6=r

{
‖vvvi − vvvr‖2

}) (7.9)

The second term in the numerator is an ad hoc punishing function used to eliminate the

decreasing tendency when c becomes large and close to n. The center of the data set is

denoted by v.

The Fukuyama-Sugeno index (as cited by Kim et al. (2003); Rao and Srinivas (2006); Xu

and Brereton (2005)) is defined by (7.10)

VFS =
c∑

i=1

n∑
j=1

um
ij

(
‖xxxj − vvvi‖2 − ‖vvvi − vvv‖2

)
(7.10)

The weighted membership value is multiplied by the difference between the distance between

nodes and its cluster centers, and the distance between cluster centers and the data center.

A small value represents a well-separated and compact cluster.

The Compose Within and Between Scattering index was introduced by Rezaee et al.

(1998) and is defined by (7.11).

VCWB = αScat(c) +Dis(c) (7.11)

where

Scat(c) =

1
c

c∑
i=1

[
σ(vvvi)T · σ(vvvi)

] 1
2

[σ(XXX)T · σ(XXX)]
1
2

(7.12)

Dis(c) =
Dmax

Dmin

c∑
i=1

(
c∑

r=1

‖vvvi − vvvr‖

)−1

(7.13)

σ(XXX) =
1
n

n∑
j=1

‖xxxj − vvv‖2 (7.14)

σ(vvvi) =
1
n

n∑
j=1

uij ‖xxxj − vvvi‖2 ∀i ∈ {1, . . . , c} (7.15)
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Dmax = max
i,r∈{1,...,r},i6=r

{vvvi − vvvr} (7.16)

Dmin = min
i,r∈{1,...,r},i6=r

{vvvi − vvvr} (7.17)

α = Dis(cmax) (7.18)

The VCWB tends to find an optimum between compactness and separation. Scat(c) denotes

the average scattering (compactness) for the c clusters, while Dis(c) denotes the distance

between cluster centers (separation). With Scat(c) taking on much smaller values than

Dis(c), a scaling factor α is introduced to balance the two terms’ opposite trends. Dmax and

Dmin are the maximum and minimum distances between clusters. The authors perform the

validation over cluster partitions with values 2 ≤ c ≤ cmax. In the application of this thesis

a cluster is considered to be more than 5 nodes, hence cmax = n
5 .

7.2 Evaluating fuzzy membership parameters

Three test sets for clusters have been found in literature, and one set is proposed in this thesis.

Test sets are used to determine the effectiveness of a clustering algorithm as a function of

the fuzzy factor m.

Kwon (1998) suggests the data sets illustrated in Figures 7.2(a) through 7.2(c) with two,

three, and four clusters, respectively. A fourth data set, having five clusters, is proposed in

this thesis and is illustrated in Figure 7.2(d).

All data sets are validated with an iteration limit of k = 10000 and a convergence thresh-

old of ε = 1 × 10−12. The first three data sets provided by Kwon (1998) were tested for

c = {2, 3, . . . , 10} clusters, while the fourth data set is tested for c = {2, 3, . . . , 30} clus-

ters. Results of the cluster validation is provided in Appendix D in Tables D.1 through D.4.

Incorrect predictions for the number of clusters in a data set are boxed. Through obser-

vation it can be seen that the best results are obtained with the fuzzy factor in the region

1.5 ≤ m ≤ 2.0. The best performing validation indices are the Xi-Beni index, VXB, and

the enhanced Xi-Beni index, V +
XB. As expected, these two indices perform very similar in

close proximity of m = 2.0, and become identical in the value m = 2.0.

It is therefor proposed that either VXB or V +
XB be used when benchmark data sets’

clustering is validated. Furthermore, a fuzzy factor of m ∈MMM = {1.5, 1.6, 1.7, 1.8, 1.9, 2.0} is

proposed.
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(d) Data set with five clusters

7.3 Validation of benchmark data

Cluster validation is performed for each of the ten problems of each of the six benchmark

sets. Although somewhat expected, it is interesting to report that the results for all problems

in a given data set are exactly the same. Table E.1 therefor does not report the results for

each problem, but rather for each class.

Each sub-table shows the optimal number of clusters for a specific fuzzy factor, m, as

well as the corresponding validation index value for both the Xi-Beni index, VXB, and the

extended Xi-Beni index, V +
XB. It is noticeable that the optimal number of clusters is much

lower than expected, especially for data sets C1 (4 clusters) and C2 (2 clusters). One might

have expected a number in the region of 20 when referring to Figure 7.1.

The index values for the problem sets R1 and R2 are also lower than expected, indicating

good clusteredness and separation. The index values are significantly (approximately dou-

ble) higher than the values for clustered problem sets, but one might have expected values

indicating much worse clusteredness.
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7.4 Conclusion

In this chapter, fuzzy c-means clustering is introduced as a mechanism to establish the level

of geographical clusteredness of vehicle routing benchmark problem sets. The two values

of interest in the cluster validation is the optimal number of clusters identified, and the

validation index value. The latter provides insight to the level of clusteredness of a data set,

for example the index values for the set RC1 (semi-clustered) is between that of the set C1

(clustered), and set R1 (random).

In the next chapter, these values will be used, along with a time window width analysis,

to train a neural network so that new data sets could be tested to determine which problem

set it resembles best.
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Chapter 8
Dynamic intelligence through Artificial

Neural Networks (ANNs)

The concept of Artificial Neural Networks (ANNs) is derived from research into the work-

ing of the brain. The models of ANNs are algorithms for cognitive tasks such as learning

and optimization (Müller et al., 1995). The use of neural networks in the broader field of

operations research is reviewed by Burke and Ignizio (1992).

Potvin and Smith (2003) provide a brief historic review of the first introduction of Arti-

ficial Neural Network (ANN) in the late 1940s. After a devastating blow by counter-proving

research in the 1960s, the field only reemerged in the early 1980s, with successes in the field

of pattern recognition. The first attempt to solve combinatorial optimization problems using

neural networks was made by Hopfield and Tank (1985) — solving only small instances of

the TSP. Potvin (1993) later solved problems with 200 nodes. One of the first attempts to

solve a VRP using an ANN was made by Matsuyama (1991).

The objective of employing ANNs in this thesis is not to compete with existing meta-

heuristics to solve a variation of the VRP. The emphasis is on employing ANNs to predict

the best solution algorithm to use, given a new and unknown data set. Also, to learn from

experience so that better predictions can be made in future. The candidate proceeds in

this chapter to use a learning structure for predicting the best solution algorithm, and the

approach can easily be extended to include parametric variations of an algorithm.

8.1 Learning structures

Russell and Norvig (2003) comprehensively address a number of learning structures. The
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first, and simplest form of learning, is done from observation alone. A decision tree is

established from known results, and can be employed in making future decisions. The task

of learning a function from example inputs and outputs is referred to as inductive learning,

or supervised learning.

8.1.1 Bayesian networks

A hypothesis, in the learning context, is a probabilistic theory describing the problem domain.

To use an example from the vehicle routing domain, a hypotheses would be to solve the given

problem using the TS. On the other hand, data is the available evidence used to sustain a

specific hypothesis. Again, using the vehicle routing example, evidence would be the fact

that customer input data is classified as a c1 problem — geographically clustered with tight

time windows.

Acid et al. (2004) used Bayesian networks to predict patient stays in an emergency med-

ical service, and answer related management questions with regards to staff redistribution

and possible reinforcement of both staff and equipment. Bayesian learning simply calculates

the probability of each hypothesis, given the input data, and makes predictions on that ba-

sis (Russell and Norvig, 2003). Predictions are therefore made by using all the probabilities,

albeit in a weighted manner, instead of just the single best hypothesis.

8.1.2 Artificial Neural Networks (ANNs)

According to Potvin and Smith (2003) the original objective of artificial neural networks were

to provide a fundamentally new and different approach to information processing, especially

when an algorithmic procedure for solving the problem was not known. But it is the ability

that ANNs have to learn arithmetic or logical functions, due to McCulloch and Pitts (1943),

that is of value to this thesis. Russell and Norvig (2003) confirm that ANNs are mostly used

for classification, in the case of discrete hypotheses, or regression for continuous hypotheses.

ANNs are powerful at finding nonlinear relationships in data without known structure, but

require a lot of data to find such relationships.

This thesis attempts to algorithmically implement the ability of human decision makers

to choose an appropriate solution algorithm when solving scheduling problems. The desire to

understand the principles on which the human brain work is one of the motivating factors why

researchers became interested in neural networks. Another motivation is the wish to build

machines that are capable of performing complex, parallel processing of tasks for which the
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sequentially operating computers are not well-suited. Technology has changed dramatically

and consequently made the motivating factors for ANNs a possibility.

8.2 Basic mechanisms of an ANN

Müller et al. (1995) defines a neural network in mathematical terms as a directed graph with

the following properties:

• A state variable ni associated with each node i in the graph. Nodes are also referred

to as neurons.

• A real-valued weight wik associated with each edge between nodes i and k. Links are

also referred to as synapses. The weight wik is interpreted as the influence that node

k’s output will have on node i.

• A real-valued bias νi associated with each node i, also referred to as the activation

threshold.

• A transfer function fi [nk, wik, νi, (k 6= 1)] is defined for each node i. The function

determines the state of the node as a function of its bias, the weights of incoming links,

as well as the states of the nodes connected to it by the links. The transfer function

usually takes the form f (
∑

k wiknk − νi) and is either a discontinuous step function,

or a smoothly increasing generalization known as a sigmoidal function. Examples of

these shapes are illustrated in Figure 8.1.

The concept of binary switching was first proposed in the decision element theory of Mc-

Culloch and Pitts (1943). Each one of the decision elements (neurons) i = 1, . . . , n can only

take the output values ni ∈ {0, 1}, where ni = 0 represents the resting state, and ni = 1 the

active state of the neuron. The new input state of a neuron i, denoted by hi(t) at time t, is

influenced by all other neurons. The initial combination was originally expressed linearly as

hi(t) =
∑

j

wijnj(t)

using the same notation presented earlier with the exception of a time-dependent nj(t)

denoting the state of neuron j at time t. If ni(t) denotes the output state of a neuron,

the properties of the neural network is governed by the functional relation between hi(t)

and ni(t + 1). The simplest case sees a neuron become active if its input exceeds a certain
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Figure 8.1: Typical transfer function shapes

threshold νi which may be unique to each neuron i. The law

ni(t+ 1) = θ (hi(t)− νi)

governs the network with θ (x) being the step function indicated in Figure 8.1(a), i.e. θ(x <

1) = 0, and θ(x ≥ 1) = 1.

But it was Caianello (1961) that addressed learning through an algorithm that allow

the determination of the synaptic strengths, wij , of the neural network. Rosenblatt (1962)

introduced the perceptron, a layered neural network. The neurons of the output layer receives

synaptic signals from the input layer, as illustrated in Figure 8.2.

Whereas the clustering of input data discussed in Chapter 7 was unsupervised, learning

is supervised in the ANN suggested here. Dermuth et al. (2005) state that the event of

training a neural network can be illustrated using Figure 8.3. The network is trained, or

adjusted, until a particular input leads to a specific target output. This iterative process is

referred to as error back-propagation, and minimizes the Mean Square Error (MSE), where
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Input

Output

Figure 8.2: Simple layered perceptron (Müller et al., 1995)

Neural Network 
including connections 

(weights) between 
neurons

CompareOutput

Target

Adjusted
weights

Input

Figure 8.3: Training a neural network(Dermuth et al., 2005)

the error is the difference between the actual output and the target output. If tk denotes

the target output of an input element pk, and ak denotes the actual output of the network,

then, for a training session with K input elements, the MSE is calculated as

MSE =
1
K

K∑
k=1

(tk − ak)
2.

Karayannis and Venetsanopoulos (1993) divide ANN architectures into three basic cate-

gories, of which the first is the category most widely researched, and henceforth adopted in

this thesis:

Feed-forward One of the earliest architectures consisting of one or more layers of pro-

cessing units. Units belonging to neighboring layers are connected by sets of synaptic

weights. The name feed-forward is illustrative of output layers of the network feeds the

next layer of units in the network. Networks of this type can be trained to provide a

desired response (solution algorithm) to a given input (customer data set).
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Feed-back In this type of ANN, the input information defines the initial activity state

of a feed-back system.

Self-organizing Humans’ ability to use their past experience in order to adapt to unpre-

dictable changes in their environment has lead to self-organizing — an adaption to the

environment without the involvement of an external teacher.

8.3 Representation conventions

The notation used to express the ANN is due to Dermuth et al. (2005), and requires a brief

introduction.

8.3.1 Network architectures

The architecture of a network describes how many layers a network has, the number of

neurons in each layer, each layer’s transfer function, and how layers are connected to each

other (Dermuth et al., 2005). The challenge is to find the most appropriate architecture

for the problem of identifying the most appropriate routing algorithm, and predicting the

objective function value. As a general rule, the more neurons in a hidden layer, the more

powerful the network.

Consider Figure 8.4 to be a simple neuron i with vector input

∑ f a

b
Rw

n
1p
2p

Rp

2w
1w

Input Neuron

Figure 8.4: A basic neuron

ppp = {p1, p2, . . . , pj , . . . , pR} where R is number of input elements. Associated with each edge

between input element j and neuron i is the real-valued weightwww = {wi,1, wi,2, . . . , wij , . . . , wi,R}.

The summing junction indicated by
∑

has as its input the dot product of the single row

matrix www and the input vector ppp, wpwpwp, as well as the scalar bias, b. In this thesis the bias is
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initially set to zero, and is adapted during training. The net input to the transfer function,

n, is calculated as

ni =
∑

j

wijpj + b.

The transfer function is indicated by f , and may be either a discontinuous step function,

pure linear function, or the sigmoidal function indicated in Figure 8.1. An abbreviated

notation is suggested for a single neuron by Dermuth et al. (2005), and is provided in

Figure 8.5.

f
a

n
p

R

w

b
+

1

1×R
R×1

11 ×

11 ×

11 ×

Input Neuron

Figure 8.5: A basic neuron using the abbreviated notation

The benefit of the abbreviated notation becomes apparent when s neurons are combined

in a single layer. The layer is illustrated in its basic form by Figure 8.6, and in its abbreviated

form by Figure 8.7.

A class of problems, referred to as linearly inseparable problems, for example the exclusive-

or (xor) function, cannot be represented by a single perceptron. It was the identification

of such inseparable problems that halted neural network research during the 1960s. The

introduction of multiple layers of neurons avoids nonrepresentable problems. Hence, the last

notational introduction is the existence of multiple layers. To distinguish between the weight

matrices, output vectors, etc., for each layer, the layer’s number is indicated as a superscript

to the variable of interest. Figures 8.8 and 8.9 provides the basic, and abbreviated notation

for a three-layered network. The weight w2,1
4,3 is interpreted as being the weight of the 3rd

output neuron from layer 1 to the 4th neuron from layer 2. In Figure 8.9 the layer between

the input layer 1 and the output layer 3 is referred to as the hidden layer. Russell and Norvig

(2003) state the advantage of hidden layers as the ability to enlarge the hypothesis space

that the network can represent.
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1p

3p
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Input Layer of neurons

∑ f 2a

2b

2n

∑ f sa

sb

sn

2p

Figure 8.6: A layer of neurons

f
a

n
p

R

w

b
+

1

1×R
Rs ×

1×s

1×s

1×s

Input Layer of neurons

s

Figure 8.7: A layer of neurons using the abbreviated notation
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Figure 8.8: A three-layer network
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Figure 8.9: A three-layer network using the abbreviated notation

The concept of back-propagation determines which hidden layer is responsible for the

error. Each hidden node j is believed to be responsible for some fraction of the error,

denoted by ∆i, in each of the output nodes to which it connects. Thus, the ∆i values are

divided according the the strength of the connection between the hidden node and the output

node. The error portions are propagated back to provide the ∆j for the hidden layer. The

back-propagation is repeated until the first (earliest) hidden layer is reached.

8.3.2 Data structures

The first type of input vector, denoted by ppp, occurs concurrently without a particular se-

quence of the elements of the vector, as is the case in this thesis. All inputs (geographical

dispersion, time windows, and demand characteristics) occur concurrently, and need not be

presented to the network in a specific order. On the other hand, a network for sequentially
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input vectors contains delays to ensure that input vectors are received in a specific order by

the network.

8.4 Proposed network structure

The proposed network is illustrated in its abbreviated form in Figure 8.10. The network

1n

p

6

1,1w

1b
+

1

16 ×
650 ×

150 ×

150 ×

Input Hidden layer

50

Output layer

2n

1,1w

2b
+502×

12 ×

12×

2

1

1a
150 ×

2a
12 ×

Figure 8.10: Proposed network in abbreviated form

consists of an input layer with six input elements, each depicting a specific characteristic of

the problem set:

Number of clusters The optimal number of clusters when using fuzzy c-means cluster-

ing and the Xie-Beni index. The index value is the same as the extended Xie-Beni

index, V +
XB, with a fuzzy factor of m = 2.

Validation index The Xie-Beni validation index vlaue, VXB, calculated using (7.7).

Time window width (mean) The arithmetic mean width of customer time windows

expressed as a fraction of the time window width of the depot.

Time window width (stdev) The standard deviation of the customer time window

widths when expressed as a fraction of the depot’s time window width.

Demand (mean) The mean customer demand.

Demand (stdev) The standard deviation in the data set containing all customer de-

mands.
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The network boasts a single hidden layer with arbitrary quantity of 50 neurons and a tan-

sigmoid transfer function as indicated in 8.1(d) generating outputs in the range (−1, 1). The

output layer has two elements and a pure linear transfer function a indicated in Figure 8.1(b).

The linear transfer function in the output layer allows outputs to take on any value. The first

output element is equal to 1 if TS is the proposed solution algorithm to be used, and 2 if the

GA is proposed. The second output element is the predicted objective function value when

using the proposed solution algorithm. The actual training set is provided in Appendix F.

8.5 Training the neural network

One of two training styles can be used. In batch training, weights and biases are only

updated once all inputs have been presented to the network. In this thesis all training data

is presented to the network before weights are adjusted. The second incremental training

style sees weights and biases of the network updated each time an input is presented to the

network.

The convergence of the error during training is illustrated with Figure 8.11. As the
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Figure 8.11: Convergence of the objective function error towards zero

training progresses, the network’s ability to accurately predict the objective function value

increases. It can be seen in the figure that the error converges towards zero.

Properly trained backpropagation networks tend to give reasonable answers when repre-

sented with inputs that they have never seen. Typically when an input is presented that is

similar to an input on which the network was trained, the output will be similar to the cor-

rect output provided during training. This generalization makes it possible to train a neural
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network on a representative set of input/target pairs and get good results without training

the network on all possible input/output pairs, as this will not be possible in practice. All

possible customer location and demand configurations in the vehicle routing context cannot

be solved in reasonable time to train the network.

According to Dermuth et al. (2005), an epoch is the time allowed to present the set of

training data to the network and the calculation of new weights and biases. The regression

analysis result after training the network for 500 epochs is indicated in Figure 8.12. Even
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R = 0.9245

Figure 8.12: Regression results for the trained network

with training data that is not very rich, i.e. only a single instance occurs suggesting the

use of GA as a solution algorithm, the network’s ability to attain the target is fair, with a

correlation coefficient of R = 0.9245.

8.6 Integrating the neural network

Neural networks require rich training sets to ensure a well-trained network with accurate

prediction rates. A structure for the integrated intelligent agent is proposed in Algorithm 8.1.

Due to the computational burden being in excess of 1500 seconds, a problem set is only

evaluated every ϑ instance. During the evaluation, a problem is solved using both the TS

and the GA solution approaches. The problem is analyzed as per the original training of

the network. The target for the problem is established as the best of either the TS or GA

result. While the target is reported as the problem set’s solution, the problem set’s analysis,

as well as the target, is added to the training set, and the network is retrained on the newly

adapted training set.
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Algorithm 8.1: The intelligent agent
Input: Network update frequency function, f (θ)

Input: Problem set, P

load global iteration number, θ1

ϑ← f (θ) = max
{
1,
⌊
ln
(

θ
10

)⌋}
2

if θ
ϑ =

⌊
θ
ϑ

⌋
then3

x1 ← Solve P using TS4

x2 ← Solve P using GA5

x? ← min
i={1,2}

{xi}6

report solution x?7

load training set8

training set← training set ∪ {P ⊕ x?}9

retrain neural network with updated training set10

save neural network11

save training set12

else13

load neural network14

x̂← simulated output from neural network with input P15

Report solution x̂16

endif17

θ ← θ + 118

save θ19
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The network update frequency, ϑ, is a parameter that is dynamically adjusted as a

function of the global iteration number, θ. This ensures that the network is initially retrained

after every iteration, and the update frequency is decreased as the network becomes more

adapted to the environment. In this thesis the candidate assumes that an intelligent routing

agent is implemented in an environment in which customer demand characteristics are fairly

stable. A network update frequency function, denoted by f (θ), is proposed in (8.1).

ϑ = max
{

1,
⌊
ln
(
θ

10

)⌋}
(8.1)

The update frequency, ϑ, is illustrated in Figure 8.13 as a function of the global iteration

number, θ.
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Figure 8.13: Update frequency function

8.7 Conclusion

Planning, according to Russell and Norvig (2003), is the task of coming up with a sequence

of actions that will achieve a goal. In the context of this thesis, the goal is to solve any

given real life vehicle routing and scheduling problem as best possible. In this chapter, an

intelligent agent is proposed in the form of an algorithm that utilizes an Artificial Neural

Network (ANN) to predict the best solution algorithm to use to solve a given routing problem.

Strategies and results from previous chapters in this thesis, i.e. the Tabu Search (TS) and

Genetic Algorithm (GA) metaheuristics, fuzzy c-means clustering, and the current neural

network were all integrated within the proposed agent. A conclusive discussion on the value

of this contribution, as well as suggested future endeavors are indicated in the next chapter.
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Chapter 9
Intelligent routing agents: birth or burial?

The primary research question, as stated in Section 1.3, that this thesis intends to answer

is whether it is feasible to develop a rational and intelligent agent to schedule a predefined

variant of the Vehicle Routing Problem (VRP).

9.1 Answering the research questions

In answering the question affirmatively, research highlights will be reviewed according to a

number of secondary research questions stated in terms of the concept of an intelligent agent.

9.1.1 Sensory perception

In order to be classified as intelligent, an agent must have the ability to perceive its envi-

ronment. This thesis postulates that benchmark data sets are skewed in the sense that they

do not represent reality appropriately. Solution algorithms presented in literature are inher-

ently problem specific, and are therefor lauded to be successful in solving selected benchmark

problems.

In reality, however, decision makers do not have a reference to whether a problem’s

customers are clustered, semi-clustered, or randomly distributed. Fuzzy c-means clustering

is used in this thesis to establish the level of clusteredness and level of cluster separation of

a given data set, and thus providing the agent with an ability to recognize its environment.

Results of test sets indicated the Xie-Beni validation index to be best suited for measuring

and provided noticeably different clustering results for the various problem sets.

133

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoouubbeerrtt,,  JJ  WW  ((22000077))  



9.1.2 Behavior generation

Two prominent metaheuristics, the Tabu Search (TS) and the Genetic Algorithm (GA), was

developed to solve a complex variant of the VRP. Soft time windows, a heterogeneous fleet

and multiple scheduling was incorporated in an environment with time-dependent travel

times imposed on the network.

To ensure good performance by the TS, a good initial solution was required. A sequen-

tial route construction heuristic was developed for the complex environment. To ease the

computational burden, the novel concept referred to as Time Window Compatibility (TWC)

was introduced to eliminate obviously infeasible insertions, and to generate good seed cus-

tomers. The TS itself incorporated an Adaptive Memory Procedure (AMP) that allowed the

algorithm to benefit from the successes of evolutionary metaheuristics. A self-organizational

component is introduced to ensure the algorithm is adaptable to changing environments.

During the development of the GA, two new precedence lists were proposed for the

Merged Crossover (MX) operator. Results compared favorably in a thorough evaluation of

various operators. However, the GA was competitive in neither the quality of the solution,

nor the computational time required when measured against the TS.

9.1.3 Value judgement

A fairly standard set of costs, risks, benefits, and or penalties was employed to indicate to

the intelligent agent which metaheuristic algorithm yielded solutions of higher quality. The

objective function (or fitness function) minimized total time. Time was considered more

important than a monetary value as it directly relates to both the time-dependent travel

time that resulted in quickest routes, and the expected lateness at customers. The objective

function heavily penalized both the number of vehicles in an attempt to improve utilization,

and orphaned customers not included in the final solution.

9.1.4 World modeling

To update the agent’s knowledge base, a neural network is trained to predict the best solution

algorithm to use, given a problem set for which geographic dispersion, time window ratios,

and demand characteristics are known.

The overall structure of the intelligent agent is provided in Algorithm 8.1. Once imple-

mented in a real problem environment, the agent will be given an unknown data set with

customer locations, time window requirements for each customer, as well as product de-

134

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoouubbeerrtt,,  JJ  WW  ((22000077))  



mands. The customer characteristics are analyzed using the fuzzy c-means clustering, and

the cluster results are simulated in the neural network, suggesting the best solution algorithm

to use, as well as a predicted objective function value.

The agent uses the suggested solution algorithm to solve the problem at hand, and provide

the user with the incumbent routes and schedules. The agent frequently retrains the neural

network according to a dynamic update frequency parameter to ensure that the knowledge

base is updated, and allowing the agent to adapt to the specific environment.

9.2 Critical observations and recommendations

Although the results from the initial solution algorithm, metaheuristics, as well as the cluster

validation proved very successful and useful, some critical observations are valid.

Neural networks require rich data sets to allow the network to identify intricate non-linear

relationships between inputs and outputs. The candidate expected the two metaheuristics,

TS and GA, to be more competitive with each other. The contrary was however observed

with the GA only competing in a single instance. It should be noted that the GA was not

tested on all 60 problems due to the computational burden being in excess of 20 times that

of the TS algorithm. The candidate therefor reverted to training the network with a data

set not representative of both solution algorithms.

Fleischmann et al. (2004) used the rich data available to them trough the Intelligent

Transportation System (ITS) in Berlin. The ITS provide real-time data on the congestion

and travel speeds of roads, remotely-observed, in the city for different times of the day. Other

contributions using real-time data readily available to them include Ghiani et al. (2003) and

Giaglis et al. (2004). In the absence of such accurate real-time data, this thesis reverted to

benchmark data sets and simulated network congestion, as did Ichoua et al. (2003). On the

candidate’s research agenda is the integration of the proposed routing agent with current

South African initiatives to establish an ITS in selected metropolitan areas.

As the field of metaheuristics is well-researched, the majority of research opportunities

sprouting from this thesis is on the topic of learning of an intelligent routing agent.

Learning structure As opposed to employing a neural network to represent the agent’s

world modeling ability, a Bayesian network could be investigated. Similar to neural

networks, the Bayesian tree requires substantial data to be created.

Recurrent network The candidate proposed and tested a feed-forward neural network
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with back propagation. As an alternative, the recurrent network, or feed-back network,

could be considered. It is unfortunately a network structure that is not well-understood

and well researched due to its computational complexity. The benefit of the feed-back

network structure is the short-term memory inherent in the network. Such an approach

may resemble the thought processes of a human decision maker more accurately.

Update frequency Once the network is employed in the problem environment, it re-

trains itself according to an update frequency function. The function proposed in (8.1)

initially retrains itself after every iteration to ensure the algorithm adapts rapidly to

the new environment. As the network becomes more stable, the frequency decreases. A

more complex update frequency function may be considered in environments that is not

stable, as assumed in this thesis. The improved update frequency function may either

reset the global iteration number, based on some criteria, to again update the network

at every iteration. Alternatively, a completely new function may be proposed that

dynamically adjusts based on environmental changes to reflect an ad hoc or short-term

change in the environment.

Although the computational burden of the algorithms proposed in this thesis is not ex-

cessive, with exception of the GA results, significant improvement can be made through

parallelization of the solution algorithm across multiple processors. The University of Pre-

toria has recently invested in Velocity : a computer cluster consisting of a master and 24

high specification processor nodes. Similar cluster configurations are becoming more readily

available in industry as well, and are often shared by companies. Rochat and Taillard (1995)

provide guidelines to extend the TS with AMP across multiple processors. Even the basic

GA structure lends itself to parallel processing, and should be investigated for a speed-up in

computational time.

A multi-processor environment will also benefit the neural network as one or more proces-

sors may be dedicated to actually solving the problem with the solution algorithm suggested

by the agent, while other processors are dedicated to constantly retrain the neural network

as new problem sets and targets become available.
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9.3 Conclusion

The not-so-artificially-intelligent-vehicle-routing-agentTM has been proved both feasible and

viable through the careful integration of multiple Operations Research techniques, including

cluster analysis, optimization and neural networks. With computational capacity becoming

more accessible, the agent may become a generally accepted means to intelligently adapt

routing algorithms to various, even unique, problem environments.

In establishing the agent’s ability to execute solution algorithms, only two prominent

metaheuristics were considered. The agent’s structure lends itself to be generalized to include

a multitude of solution algorithms, and even various similar solution algorithms with different

parameter configurations.
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Proceedings of EUROGEN99 — Short Course on Evolutionary Algorithms in Engineering

and Computer Science, volume No. A 2/1999 of Reports of the Department of Mathematical

Information Technology, pages 57–64, Finland.

Gendreau, M. (2003). An introduction to tabu search. In Glover, F. and Kochenberger,

G. A., editors, Handbook of Metaheuristics, International Series in Operations Research &

Management Science, chapter 2, pages 37–54. Kluwer Academic Publishers, Boston.

141

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoouubbeerrtt,,  JJ  WW  ((22000077))  



Gendreau, M., Laporte, G., Musaraganyi, C., and Taillard, É. D. (1999). A tabu search
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Chapter 1
Introduction

South Africa’s level of urbanization closely follows international trends in developed coun-

tries, with the highest level of economic activity focused in a few metropolitan areas; at-

tracting both people and investment. The good functioning of these metropolitan areas is of

strategic importance to the country, as these areas are the main focus for economic and so-

cial development. The level of transport services provided impacts directly on the efficiency

and the quality of the development in the metropolitan areas. South African metropolitan

areas are experiencing rapid growth, and are having difficulties in controlling the physical

urban expansion. Both public and freight transport costs are negatively impacted by these

phenomena. As demand for transport increases faster than the supply of these services,

commuting and freight transportation costs increase at a higher than inflation rate. The

community at large experiences the demands for more extensive infrastructure and services.

Customers, both businesses and private consumers, demands products and services at the

point of utilization. The geographically dispersed point of supply and point of utilization are

bridged through transport. The majority of urban freight is carried by means of road trans-

port, and the definition of the Organization for Economic Co-operation and Development

(OECD) for urban freight transport applies:

“The delivery of consumer goods (not only retail, but also by other sectors such

as manufacturing) in city and suburban areas, including the reverse flow of used

goods in terms of clean waste.” — OECD (2003)

Goods transport has a major impact on the economic power, quality of life, accessibility and

attractiveness of local communities, especially in city and metropolitan areas, but receives

much less attention in comparison to passenger movement. According to the first State of
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Logistics Survey for South Africa prepared by CSIR Transportek (2004), 83% of the total

tonnage transport bill of ZAR 134 billion is transported via road, while 22% of the total

tonnage is transported within metropolitan areas. Freight transport within metropolitan

and urban areas have different characteristics from long haulage, and the main attributes

include (Taniguchi et al., 2004):

• Frequent deliveries of smaller quantities

• Low utilisation of the capacity of trucks

• Time windows

Efficiently transporting goods within urban areas facilitates the establishment of sus-

tainable cities. OECD (2003) acknowledges the contribution that freight vehicles make to

traffic congestion, energy consumption and negative environmental impacts. Yamada and

Taniguchi (2005) conclude that the majority of benefits for freight carriers can be achieved by

implementing advanced vehicle routing and scheduling systems, hence addressing congestion,

energy consumption, and indirectly environmental impacts. The problem concerned with al-

locating customer deliveries (or collections) to vehicles, and determining the visiting order of

those customers on each vehicle route, is classified as the Vehicle Routing Problem (VRP),

and has as its main objective to minimize some measurable function, such as distance trav-

eled, time traveled, or total fleet cost.

1.1 Modeling as research motivation

South Africa provides a fascinating interface between the developed and the developing

world. In a critical review, Leinbach and Stansfield (2002) have emphasized that Industrial

Engineers should re-adopt a systematic view. They argue that the perception of Industrial

Engineers has been negatively impacted by their ability to model the obvious, and in the over-

simplification of their models, to the extent that reality is not represented comprehensively.

Industrial engineers should therefor appreciate the complex and intertwined relationships

between social, political, and economic factors influencing urban freight transport systems.

A systematic approach in addressing a problem is illustrated in the lower cycle of Fig-

ure 1.1 where a problem is modeled, the model is solved, and the solution is interpreted so

as to change the original problem through decisions (Rardin, 1998). Identifying and scoping

a problem is not a trivial matter, and is important in ensuring that the final solution that a

decision is based upon, will in fact represent, and ultimately address the core problem. Taha
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Problem Model

Decision Solution

Modeling

Solving

Interpreting

Implementing

Problem in
real world

Abstracted model
from the assumed

world

Problem in
assumed world

Figure 1.1: Operations Research cycle

(2003) expands the action of modeling in Figure 1.1 and illustrates how representations of

the real world can easily be over-simplified. Interrelationships within the real world are so

complex and abundant, that no one person can comprehend it in its entirety. We refer to

the problem in the real world as the first level of abstraction. The human is a contextual

being: the cultural, social and emotional context of an individual forms the individual’s

perception of the reality in which he or she exist. The second level of abstraction therefor

represents the contextually sensitive view, referred here to as the assumed reality, that an

individual has of the real problem. But even the abstract and fragmented view is often too

complex to solve in its entirety. Through the actions of analyzing, and applying a method-

ology of divide-and-conquer, the individual scopes the problem in a structured way through

simplifying assumptions. These assumptions may be justified in the absence of complete

and accurate data about the assumed reality. The third level of abstraction is referred to

as a model. The verb modeling therefor requires the problem solver to not only scope the

problem, but also justify the endeavors to ensure that the assumed reality has been chal-

lenged to represent the real problem more comprehensively. This is illustrated through the

arrows stretching the boundaries of the assumed reality towards the real world. Although
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the model can be any representation of a real problem, from scraps of paper with notes on

them, a functional flow block diagram or process maps, in this thesis the term is used as a

structured and mathematical model with an optimization intent.

Once the model is a true representation of the problem at hand, the decision maker can

proceed to solve the model. It should be emphasized that only the model is solved, and

not the problem itself. The availability and the ease of use of new generation optimization

software have facilitated the process of solving models representing complex operational

problems. The rapidly increasing processing power of computers brings the optimization

opportunities right to the desk of the practitioner. The solution, however, is often but a list

of numerical results.

The numerical solution, and its sensitivity to changes in parameters, requires careful

consideration before recommendations and decisions are made, and is only considered as

decision support. Implementation impacts, and possible change factors are considered before

a final decision is made and implemented. The impact of the decision is then assessed so

as to close the problem solving-cycle. Implemented changes may either address the original

problem adequately, or may elicit new problems that require modeling, solving, and decision

making.

1.2 Intelligence as the research driver

Freight carriers are sharing the road network with various modes of public transport. The use

of private vehicles have rapidly increased. The increase can be attributed to both an increase

in the number of trips undertaken, and increased journey lengths (Banister, 1995; Spence,

1998). Road network performance is negatively impacted by the higher usage of private

vehicles and results in higher levels of congestion, and a significant reduction in operating

speeds. Public transport performance is impacted negatively when operating speeds decrease,

resulting in increased operating costs for the carriers, and thus impacting negatively on

its attractiveness. As a result, the economically able part of the population turn to their

private vehicles for a reliable source of transport, and unknowingly contributes to the hyper-

congestion phenomenon.

Congestion does not only increase the stress levels of road users from a commuting point

of view, but it also increases the complexity for vehicle and fleet managers overseeing the

scheduling, routing, and optimization of their fleet concerns.

Carrier companies represent both public and private entities executing the logistic and
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distribution functions of freight. This thesis addresses the complexities of freight transport.

Freight carriers are continuously expected to provide higher levels of service at lower rates,

and therefor try to minimize their logistic costs, and maximize their profit. Sharing the road

infrastructure with other vehicles such as private cars and public transport forces carriers

to plan their freight routes more carefully. Enhanced vehicle routing and scheduling takes

the congestion constraint into account and attempts to improve the vehicular utility through

shorter routes and higher load factors. Software applications often do not provide adequate

functionality by not being able to address complex business requirements such as companies

having a fleet of vehicles that differ in capacity and/or running costs, and multiple scheduling

where vehicles are allowed to complete a trip, return to the depot to renew it’s capacity, i.e.

offload goods collected, or loading goods to be delivered. The reason for software deficiencies

are related to the extreme computational complexity when solving routing models. Human

intervention is required to, for instance, split the fleet into vehicle categories that represent

similar or the same capacity and/or costs. Each category is then solved independently,

adjusting demand as customers are serviced by other categories. Human operators can also

intervene by evaluating vehicular routes, and identifying vehicles that may be used for a

second trip, and then schedule such vehicles accordingly. Although such interventions are

mechanistic in nature, they require the time and effort of experienced individuals having a

thorough understanding of vehicle routing so as to intervene wisely.

We refer to ourselves (in a more formal way) as homo sapiens — man the wise — and

value our mental abilities to think and reason to assist us in improving our surroundings.

We require our thought processes and intelligence to make decisions that will maximize the

utility that we obtain from logistics — moving goods from points of manufacture to points

of consumption that are geographically dispersed.

“What is mind? What is the relationship between mind and the brain? What

is thought? What are the mechanisms that give rise to imagination? What is

perception and how is it related to the object perceived? What are emotions and

why do we have them? What is will and how do we choose what we intend to do?

How do we convert intentions into action? How do we plan and how do we know

what to expect from the future?”—Albus (1999)

It seems clear from the quote by Albus (1999) that before one toss terms such as thinking

and planning around, one should carefully consider how such actions take place, and how

one intends to employ such actions to improve, for example, urban freight congestion.
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1.2.1 Intelligence

In their leading text, Russell and Norvig (2003) introduces Artificial Intelligence (AI) as

not only understanding the human intellect, but also building entities (or agents) that are

intelligent. Although it encompasses a huge variety of subfields of study, with many varying

definitions, the authors have categorized AI approaches in a two-dimensional framework

represented in Figure 1.2.

Systems that think
like humans

Systems that
think rationally

Systems that act
like humans

Systems that
act rationally
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eh
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Figure 1.2: Categories of artificial intelligence (Adapted from ?)

The top half of the framework is concerned with thought processes and reasoning, as

opposed to the lower half that is concerned with the behavioral element of intelligence.

The left side of the framework measures the success of an agent’s intelligence against the

fidelity of human performance. The right half establishes an ideal concept of intelligence as

a benchmark, referred to as rationality. This is analogous to effectiveness — doing the right

things. However, the right within rationality is only relative to what is known at the time

of the doing.

An agent is something that acts. This thesis is concerned with the development of a

computer agent that could intelligently intervene in the routing and scheduling of distribution

vehicles. But how is it to be distinguished from mere programming? It should be able to

operate autonomously, perceive the environment, persist over a period of time, and be able

to adopt the goals and objectives of another entity. As an improvement on a basic agent,

this thesis propose a rational agent that has a strategy to achieve the best possible outcome
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for a given objective, either known, or the expected outcome should some of the parameters

be uncertain. The focus of the thesis is therefor not on understanding the human thought

processes, but on creating a system that can think, and act rationally.

1.2.2 Complexity

Perfect rationality in modeling is often too difficult to attain due to too high computational

demands when looking for exact solutions. Problems such as the routing and scheduling

of vehicles can often not be solved exactly, and require the use of solution algorithms that

provided approximate solutions where the optimality of the solution can neither be proved

in advance, nor confirmed once a solution is found. The different opinions with regards

to either finding an exact optimal solution versus settling for a good enough solution given

a specific environment have led to the split that occurred between Decision Theory and

Artificial Intelligence in the latter half of the twentieth century.

Decision Theory is the field of study where probability theory and utility theory are

combined to present a formal framework for decision making under uncertainty. The field

of operations research addresses complex management decisions rationally. The intention of

the pure branch of decision theory is to obtain a rational decision, or a global optimum.

On the contrary, the complexity in finding a single optimum value led the pioneers of AI

such as Herbert Simon (1916–2001) to prove that being able to find a good enough answer

describes human behavior more accurately — and earned him the Nobel prize in economics

in 1978. And although the computational ability of computers have increased dramatically

over the past decade, the intention is still to assist mere mortal logistics decision makers to

improve their ability to manage distribution fleets.

1.3 Formulating the research question

The primary research question that this thesis intends to answer is whether it is feasible to

develop a rational and intelligent agent to schedule a predefined variant of the VRP. In order

to answer the question, a number of secondary research questions will be stated in terms of

the concept of an intelligent agent.

In his paper on the engineering of mind, Albus (1999) identifies four functional elements

of an intelligent system.

Sensory perception — accepting input data from both outside and from within the sys-

tem. The data is then transformed through classification and clustering into meaningful
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representations of the real world. The first secondary research question addresses the

analysis of input data and is stated as follows:

How should customer parameters be clustered so that meaningful classifica-

tion can be done prior to executing the solution process?

Behavior generation — planning and controlling actions so that goals are achieved. An

intelligent agent accepts task with goals, objects and priorities. The tasks are then

broken up into jobs and, along with resources, are assigned to agents. Hypothetical

plans are created and simulated to predict the outcome of the plans. The simulated

results are evaluated, and the agent selects the best expected hypothesized plan. In

terms of this thesis an agent refers to computational elements that plan and control

the execution of a routing algorithm, correcting for errors and perturbations along

the way. The planning processes of the agent are heuristics and metaheuristics that

attempt to converge to optimal vehicle routes and schedules. This lead to another

secondary research question:

How can heuristics and metaheuristics be used to establish vehicle routes and

schedules in a complex and constrained environment?

Value judgement — the computation of a predefined set of costs, risks, benefits, and or

penalties related to the vehicle routes. In operations research terms these computa-

tional expressions are referred to as the objective function(s). The third secondary

research question is derived from value judgement:

What should constitute the objective function of the model so that the real

problem is adequately represented?

World modeling — an overall strategy that uses input parameters and variables to up-

date a knowledge database. Data is used to query the behavior generation of plans

regarding current routes and schedules. The strategy further simulates possible results

of future plans after analyzing the current plans. Simulated results are evaluated, using

the value judgement, so the best expected plan for execution can be selected. After

execution, the strategy allows for sensory expectations to be created regarding future

actions — analogous to bumping your feet against an obstacle in the dark. After stum-

bling, and reacting to the pain, you lift your feet unnaturally high so as to avoid the

next obstacle. The fourth and fifth, probably the most challenging secondary research

questions addresses the agents ability to learn from the past and improve in future:
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What critical parameters influence the agent’s learning, and should therefor

be included in creating future expectations?

How are future expectations created from the past performance?

1.4 Research design and methodology

The process diagram in Figure 1.3 provides an overview of an intelligent agent’s decision

process. The agent in this thesis will be a hybrid computerized solution algorithm that has

Analyze customer 
characteristics for given 

problem instance

Select 
appropriate solution 

strategy

Solve the given problem 
instance

Fleet structure
Customer structure
Network structure

Vehicle loading 
instructions and route 

sheet

Data 
structures

Customer characteristics

Populated solution algorithm

Route

Initiate comparative 
algorithm and parameter 

analysis

Intelligence database

Learn from past 
performance

Route

Comparative
strategies

Updated strategies

Solution
strategies

Solution strategies

Customer structure

Figure 1.3: Overview of the intelligent agent’s decision process

the following inputs:

• Fleet structure

• Customer structure, i.e. demand quantity, geographical location, time windows

• Network structure, derived from customers’ geographical locations

The algorithm will analyze the clustering characteristics of the geographical distribution of

customers. Based on the randomness (or clusteredness) of the distribution and the time

window characteristics of the customers, the algorithm will select an appropriate solution

strategy — a combination of a metaheuristic solution algorithm, along with its appropri-

ate parameter values. The problem instance is solved, and the solution is interpreted and
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presented in a useful loading instruction and route sheet. Behind the scenes the algorithm

will initiate comparative analysis of the proposed solution strategy by solving the provided

problem instance with various metaheuristics and various parameter values for each meta-

heuristic. The algorithm will then learn from these analysis through a neural network, and

update the intelligence database by recommending new solution strategies for the given

problem instance, or reiterating current solution strategies.

The algorithm will be coded using the MATLABr development environment. The anal-

ysis and solution components, and the comparative analysis components will run on separate

computer processors to optimize for speed and in doing so, address the computational com-

plexity of the hybrid algorithm.

1.5 The structure of the thesis

To elaborate on the exact nature of the research problem, Chapter 2 reviews literature on

the VRP and its variants. The chapter concludes with the mathematical formulation of the

Capacitated Heterogeneous Fleet Vehicle Routing Problem with Multiple Soft Time Windows

and Probabilistic Travel and Service Time as addressed in this thesis. The review of solution

algorithms, both exact and approximate, are conducted in Chapter 3, concluding with the

recommendation of two metaheuristic solution algorithms, each covered in more detail in

later chapters. The analysis of the customer structure is reviewed in Chapter 7, and the

chapter proposes an algorithm to determine the level of clusteredness of a customer network.

The algorithm is tested by analyzing benchmark data sets provided for pre-defined problem

instances in literature.

Chapters 4 through 6 is dedicated to the development of various metaheuristic solution

algorithms. Chapter 4 develops an improved initial solution algorithm to enhance the com-

putational performance of the Tabu Search solution algorithm, developed in Chapter 5. The

Genetic Algorithm is less sensitive to the quality of an initial solution, and is treated inde-

pendently in Chapter 6. For each metaheuristic the various parameters are discussed, and

default values proposed. The respective algorithms are discussed at high level, followed by

detailed discussions of algorithmic particularities, and concluded by testing and validating

the algorithm through benchmark data sets.

The integration of the algorithms, as well as the agent’s ability to learn from repetitive

decision making is covered in Chapter 8. The thesis is concluded in Chapter 9 with a critical

analysis of the research contribution, and setting a research agenda.
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Chapter 2
The Vehicle Routing Problem : origins and

variants

Rardin (1998) states that the organizing of a collection of customer locations, jobs, cities,

or points, into sequences and routes are among the most common discrete optimization

problems. The first of the two review chapters focus on the origins and the mathematical

formulation of the VRP and its variants.

2.1 The origins of the basic VRP

2.1.1 The Traveling Salesman Problem (TSP)

The simplest, and probably most famous of routing problems known to researchers is the

TSP that seeks a minimum-total-length route visiting every one of N points in a given

set V = {1, 2, . . . , N} exactly once across an arc set A. The distance between all point

combinations in A, (i, j), where (i, j) ∈ V |i 6= j, is known. In the notation introduced

by Rardin (1998), the symbol ‘,’ denotes defined to be. With the decision variable xij

defined as:

xij ,


1 if a salesman travels from node i to node j, where i, j = {1, 2, . . . , N}

0 otherwise
(2.1)

we formulate the problem as

min z =
∑

(i,j)∈A

cijxij (2.2)
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subject to

N∑
i=1

xij = 1 ∀j ∈ {2, . . . , N} (2.3)

N∑
j=1

xij = 1 ∀i ∈ {2, . . . , N} (2.4)

∑
i∈S

∑
j∈S

xij ≤ |S| − 1 ∀S ⊂ V (2.5)

xij ∈ {0, 1} ∀i, j ∈ {2, . . . , N} (2.6)

The objective of the problem minimizes the total distance traveled in (2.2). Each node must

be visited exactly once according to (2.3) and (2.4), also referred to as degree constraints.

Subtours are eliminated through the introduction of (2.5). The |S| denotes the number of

elements in the subset S. Schrage (2002) states that there are of the order 2n constraints of

type (2.5), as opposed to the alternative in (2.7)

uj ≥ ui + 1− (1− xij)n ∀j ∈ {2, . . . , N}|j 6= i (2.7)

of which there are of the order N − 1 constraints. Only a few of the former type constraints

will be binding in the optimum. Padberg and Rinaldi (1987) therefor propose an efficient

and effective iterative process of adding violated constraints of type (2.5) as needed.

Although a number of TSP variations exist, our interest is in the variant where multiple

salesmen are routed simultaneously.

2.1.2 The Multiple Traveling Salesman Problem (MTSP)

The MTSP is similar to the notoriously difficult TSP that seeks an optimal tour of N

cities, visiting each city exactly once with no sub-tours. In the MTSP, the N cities must

be partitioned into M tours, with each tour resulting in a TSP for one salesperson. The

MTSP is more difficult than the TSP because it requires determining which cites to assign

to each salesperson, as well as the optimal ordering of the cities within each salesperson’s

tour (Carter and Ragsdale, 2005; Kara and Bektas, 2005). Consider a complete directed

graph G = (V,A) where V is the set of N nodes (or cities to be visited), A is the set of arcs

and C = (cij) is the cost (distance) matrix associated with each arc (i, j) ∈ A. The cost

matrix can be symmetric, asymmetric, or Euclidean. The latter refers to the straight-line

distance measured between the two geographically dispersed nodes. There are M salesmen

based at the depot, denoted as node 1. The single depot MTSP consists of finding tours
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for the M salesmen subject to each salesman starting and ending at the depot, each node

is located in exactly one tour, and the number of nodes visited by a salesman lies within a

predetermined time (or distance) interval. The objective is to minimize the cost of visiting

all the nodes. We define the decision variable, xij , in (2.1). For any salesman, ui denotes

the number of nodes visited on that salesman’s route up to node i, with corresponding

parameters K and L denoting the minimum and maximum number of nodes visited by any

one salesman, respectively. We can therefor state that 1 ≤ ui ≤ L when i ≥ 2, and when

xi1 = 1, then K ≤ ui ≤ L. The following Integer Linear Program (ILP) formulation is

proposed by Kara and Bektas (2005).

min z =
∑

(i,j)∈A

cijxij (2.8)

subject to

N∑
j=2

x1j = M (2.9)

N∑
i=2

xi1 = M (2.10)

N∑
i=1

xij = 1 ∀j ∈ {2, . . . , N} (2.11)

N∑
j=1

xij = 1 ∀i ∈ {2, . . . , N} (2.12)

ui + (L− 2)x1i − xi1 ≤ L− 1 ∀i ∈ {2, . . . , N} (2.13)

ui + x1i + (2−K)xi1 ≥ 2 ∀i ∈ {2, . . . , N} (2.14)

x1i + xi1 ≤ 1 ∀i ∈ {2, . . . , N} (2.15)

ui − uj + Lxij + (L− 2)xji ≤ L− 1 ∀i, j ∈ {2, . . . , N}|i 6= j (2.16)

xij ∈ {0, 1} ∀i, j ∈ {2, . . . , N} (2.17)

The objective in (2.8) minimizes the total cost of traveling to all nodes, while constraints (2.9)

and (2.10) ensures that all M salesmen are allocated routes. Degree constraints are imposed

by (2.11) and (2.12). The MTSP-specific constraints (2.13) and (2.14) are referred to as

bounding constraints and Kara and Bektas (2005) introduce these as the upper and lower

bound constraints on the number of nodes visited by each salesman. The value of ui is initial-

ized to 1 if and only if node i is the first node on the tour of any salesman. Inequality (2.15)

forbids a salesman to only visit a single node on its tour. The formation of subtours be-

tween all nodes in V \ {1} (all nodes except the depot) are eliminated by (2.16) as it ensures
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that uj = ui + 1 if and only if xij = 1. They are also referred to as Subtour Elimination

Constraints (SEC).

Next we consider a variant where each of the M salespeople has a predefined, yet similar,

capacity. An analogy is having salespeople traveling with samples in their vehicles. Not only

do their cars have limited space for the samples, but each customer visited may require a

different number of the samples. As a variant of the MTSP it is referred to as the Capaci-

tated Multiple Traveling Salesman Problem (CMTSP), but in the context of this thesis the

vehicular related name, Vehicle Routing Problem (VRP), is preferred.

2.1.3 The Vehicle Routing Problem (VRP)

The distribution problem in which vehicles based at a central facility (depot) are required to

visit — during a given time period — geographically dispersed customers in order to fulfill

known customer requirements are referred to as the VRP (Christofides, 1985). The main

objective of the VRP is to minimize the distribution costs for individual carriers, and can be

described as the problem of assigning optimal delivery or collection routes from a depot to a

number of geographically distributed customers, subject to constraints (?). The most basic

version of the VRP have also been called vehicle scheduling, truck dispatching, or simply

the delivery problem. A number of different formulations appear in the authoritative work

of Christofides (1985). The basic problem can be defined with G = (V,A) being a directed

graph where V = {v1, . . . , vN} is a set of vertices representing N customers, and with v1

representing the depot where M identical vehicles, each with capacity Q, are located (?).

E = {(vi, vj)|vi, vj ∈ V, i 6= j} is the edge set connecting the vertices. Each vertex, except

for the depot (V \{v1}), has a non-negative demand qi and a non-negative service time si.

A matrix C = (cij) is defined on A. In some contexts, cij can be interpreted as travel cost,

travel time, or travel distance for any of the identical vehicles. Hence, the terms cost, time,

and distance are used interchangeably, although tij denotes the travel time between nodes i

and j in the formulation provided below. The basic VRP is to route the vehicles one route

per vehicle, each starting and finishing at the depot, so that all customers are supplied with

their demands and the total travel cost is minimized. Although Christofides (1985) presents

three different formulations from the early 1980s, the following mathematical formulation of

the VRP is adapted from Bodin et al. (1983) and Filipec et al. (1998). During this period

little changes were made to the formulation of the problem. The decision variable, xk
ij is
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defined as

xk
ij ,


1 if vehicle k travels from node i to j, where

i, j ∈ {1, 2, . . . , N}|i 6= j, and k ∈ {1, 2, . . . ,K}

0 otherwise

(2.18)

min z =
N∑

i=0

N∑
j=0
j 6=i

K∑
k=1

cijx
k
ij (2.19)

subject to

N∑
i=0

K∑
k=1

xk
ij = 1 ∀j ∈ {1, . . . , N} (2.20)

N∑
j=0

K∑
k=1

xk
ij = 1 ∀i ∈ {1, . . . , N} (2.21)

N∑
i=0

xk
ip −

N∑
j=0

xk
pj = 0 ∀p ∈ {1, . . . , N}, k ∈ {1, . . . ,K} (2.22)

N∑
j=0

qj

(
N∑

i=0

xk
ij

)
≤ Q ∀k ∈ {1, . . . ,K} (2.23)

N∑
i=0

N∑
j=0

tijx
k
ij ≤ D ∀k ∈ {1, . . . ,K} (2.24)

N∑
j=1

xk
0j ≤ 1 ∀k ∈ {1, . . . ,K} (2.25)

N∑
i=1

xk
i0 ≤ 1 ∀k ∈ {1, . . . ,K} (2.26)

xk
ij ∈ {0, 1} ∀i, j ∈ {1, . . . , N}, k ∈ {1, . . . ,K} (2.27)

The degree constraints are represented by (2.20) and (2.21). Route continuity is enforced

by (2.22) as once a vehicle arrived at a node, it must also leave that node. No one vehicle

can service customer demands that exceeds the vehicle capacity in (2.23). A maximum

route length is limited by (2.24). Constraints (2.25) and (2.26) ensures that each vehicle is

scheduled no more than once.

2.2 Variants of the VRP

The basic VRP makes a number of assumptions, including utilizing a homogeneous fleet, a

single depot, one route per vehicle, etc. These assumptions can be eliminated by introducing
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additional constraints to the problem. This implies increasing the complexity of the prob-

lem, and, by restriction, classifies the extended problem as an np-hard problem. It should be

noted that most of these additional constraints are often implemented in isolation, without

integration, due to the increased complexity of solving such problems. In the next few sec-

tions, these variants are introduced in isolation, before proposing an integrated formulation

in Section 2.3.

2.2.1 The concept of time windows

A time window can be described as a window of opportunity for deliveries. It is an extension

of the VRP that has been researched extensively (Ibaraki et al., 2005; Taillard, 1999; Taillard

et al., 1997; Tan et al., 2001c). A time window is the period of time during which deliveries

can be made to a specific customer i, and has three main characteristics:

• Earliest allowed arrival time, ei, also referred to as the opening time

• Latest allowed arrival time, li, also referred to as the closing time

• Whether the time window is considered soft or hard

Consider the example, illustrated in Figure 2.1, where customer i requests delivery between

07:30 and 17:00. To distinguish between the actual and the specified times of arrival, the

18:0016:0006:00 08:00

ei li

Figure 2.1: Double sided hard time window

variable ai denotes the actual time of arrival at node i. Should the actual arrival time at

node i, denoted by ai, be earlier than the earliest allowed arrival at the node, ei, then the

vehicle will incur a waiting time, wi, which can be calculated as wi = max{0, ei − ai}. The
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introduction of time windows to the basic VRP sees the introduction of three new constraints.

a0 = w0 = s0 = 0 (2.28)
K∑

k=1

N∑
i=0;i6=j

xk
ij(ai + wi + si + tij) ≤ aj ∀j ∈ {1, 2, . . . , N} (2.29)

ei ≤ (ai + wi) ≤ li ∀i ∈ {1, 2, . . . , N} (2.30)

Constraint (2.28) assumes that vehicles are ready and loaded by the time the depot opens,

which is indicated as time 0 (zero). Constraint (2.29) calculates the actual arrival time,

while (2.30) ensures that each customer i is serviced within its time window.

When both an earliest and latest allowed arrival is stipulated, the time window is referred

to as double sided. If no arrivals are allowed outside of the given parameters, the time window

is said to be hard, as is the case in Figure 2.1. When delivery is allowed outside the specified

time window, the time window is said to be soft, and customer i may penalize lateness at a

cost of αi (Koskosidis et al., 1992). Customer i may specify a maximum lateness, Lmax
i . The

example illustrated in Figure 2.2 sees customer i specifying a time window between 07:30

and 15:30. The customer will, however, allow late deliveries until 17:00. A hard time window

18:0016:0006:00 08:00

ei li Li
max

Figure 2.2: Soft time window

is therefor a special type of soft time window where Lmax
i = 0. Should a vehicle arrive after

the latest allowed arrival time, li, but prior to the maximum lateness, Lmax
i , the lateness at

node i, Li, can be calculated as Li = max{0, ai − li}|ai ≤ Lmax
i . The lateness is penalized

by introducing a penalty term to the VRP objective function (2.19), resulting in(2.31).

min z =
N∑

i=0

N∑
j=0,j 6=i

K∑
k=1

cijx
k
ij +

N∑
i=1

αi ×max{0, Li} (2.31)

The time window for the depot, node 0, can be specified. The case illustrated in Figure 2.3

sees the depot specifying operating hours (time window) from 06:00 to 18:00, while the first

customer on the route, customer 1, specifies a time window between 07:00 and 09:00, and

the last customer, customer N , requests delivery between 15:00 and 17:00.
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18:0016:0006:00 08:00

e0 l0

e1 l1 en ln

Figure 2.3: Time window for the depot, node 0

Should a customer specify multiple time windows, an indexing symbol, a, is intro-

duced as superscript to the earliest and latest allowed arrival times, respectively, where

a ∈ {1, 2, . . . , A} in which A indicates the maximum number of time windows allowed for

each customer. Consider the example where customer n requests delivery either between

06:30 and 09:00, or between 16:00 and 17:30 as illustrated in Figure 2.4. This example is

18:0016:0006:00 08:00

en
1 ln

1 en
2 ln

2

Figure 2.4: Multiple time windows

typical of residents requesting home shopping deliveries outside business hours. The formu-

lation changes with the introduction of the decision variable

ψa
i ,


1 if the ath time window of customer i is used, where i ∈ {1, 2, . . . , N},

a ∈ {1, 2, . . . , A}

0 otherwise.

To ensure that the decision variable is appropriately enforced in the formulation, we change

constraint (2.30) to distinguish between different time windows, as proposed in (2.32)

eai − (1− ψa
i )M ≤ (ai + wi) ≤ lai + (1− ψa

i )M ∀i ∈ {1, 2, . . . , n}, a ∈ {1, 2, . . . , A}

(2.32)

where M is a sufficiently large number, typically greater than the scheduling horizon. An

enforcement of a single time window for each customer is required, and is subsequently

introduced in (2.33).

A∑
a=1

ψa
i = 1 ∀i ∈ {1, 2, . . . , N} (2.33)
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2.2.2 Capacity constraints and vehicle characteristics

Gendreau et al. (1999) propose a solution methodology for cases where the fleet is hetero-

geneous, that is, where the fleet is composed of vehicles with different capacities and costs.

Their objective is to determine what the optimal fleet composition should be, and is referred

to as either a Heterogeneous Fleet Vehicle Routing Problem (HVRP) or a Fleet Size and

Mix Vehicle Routing Problem (FSMVRP). Liu and Shen (1999b) adds time windows in their

problem application and refer to the problem as a Fleet Size and Mix Vehicle Routing Prob-

lem with Time Windows (FSMVRPTW). In yet another paper, Liu and Shen (1999a) refers

to the heterogeneous fleet variant as the Vehicle Routing Problem with Multiple Vehicle

Types and Time Windows (VRPMVTTW). Taillard (1999) formulates the Vehicle Routing

Problem with a Heterogeneous fleet of vehicles (VRPHE) where the number of vehicles of

type t in the fleet is limited; the objective being to optimize the utilization of the given fleet.

Salhi and Rand (1993) incorporate vehicle routing into the vehicle composition problem, and

refer to it as the Vehicle Fleet Mix problem (VFM).

The implication of a heterogeneous fleet on the standard VRP is that T type of vehicles

are introduced, with t ∈ {1, 2, . . . , T}. The vehicle capacity parameter p is changed. The new

parameter, pt, represents the capacity of vehicles of type t, resulting in each vehicle k having

a unique capacity, pk. The use of one vehicle of type t implies a fixed cost ft. A unique fixed

cost, fk, is introduced for each vehicle k, based on its vehicle type. The objective function

changes to

min z =
n∑

i=0

n∑
j=0
j 6=i

K∑
k=1

cijx
k
ij +

K∑
k=1

n∑
j=1

fkx
k
0j (2.34)

while (2.23) changes to indicate the new capacity parameter

n∑
i=1

qi

 n∑
j=0

xk
ij

 ≤ pk ∀k = {1, 2, . . . ,K} (2.35)

Taillard (1999) introduces a variable cijt to represent the cost of traveling between nodes

i and j, using a vehicle of type t. It is possible to introduce the variable portion of the vehicle

cost into the objective function proposed in (2.34). The introduction will lead to (2.36)

min
n∑

i=0

n∑
j=0
j 6=i

K∑
k=1

T∑
t=1

cijtx
k
ijξ

k
t +

K∑
k=1

n∑
j=1

fkx
k
0j (2.36)
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where

ξk
t ,


1 if vehicle k is of type t, where k = {1, 2, . . . ,K}, and t = {1, 2, . . . , T}

0 otherwise

2.2.3 Uncertainty in vehicle routing

The statements in Section 2.1.3 do not adequately describe a variety of practical VRP situ-

ations where one or several parameters are uncertain. Powell (2003) confirms that research

into routing and scheduling algorithms, which explicitly captures the uncertainty of future

decisions made now, is extremely young. Laporte et al. (1992), Lambert et al. (1993), and

Ong et al. (1997) provide examples including vehicles collecting random quantities at vari-

ous customers; and customers being visited on a random basis. A vehicle incurs a penalty

proportional to the duration of its route in excess of a predetermined constant B — typical

of applications where drivers are paid overtime for work done after normal hours. Laporte

et al. (1992) propose an attractive and relatively simple chance constrained model (from a

computational point of view). However, as the expected cost related to excess route duration

needs to be taken into account, this thesis reverts to proposing a stochastic programming

model with recourse.

First stage decisions made are the number of vehicles required, as well as their respective

routes. Once the random travel time and service time variables are realized in the second

stage, penalties are incurred for the excess duration. The following variables are defined.

xk
ij ,


1 if vehicle k travels from node i to j, where

i, j = {1, 2, . . . , n}|i 6= j, and k = {1, 2, . . . ,K}

0 otherwise

zk
i ,


1 if node i is visited by vehicle k, where i = {1, . . . , n}, k = {1, . . . ,m}

0 otherwise

ξ̃ , a vector of random variables corresponding to travel and service times.

Each realization r of ξ̃, denoted by ξr, is referred to as a state of the

world (Kall and Wallace, 1994)

Ξ , the finite support of ξ̃ such that Ξ =
{
1, 2, . . . , ξr, . . . , ξR

}
where R is the

total number of states in the problem world

yk(ξ̃) , the excess duration of route k as a function of the realization of ξ̃
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ckij , the travel cost from node i to j with vehicle k, where i, j = {1, . . . , n}, k =

{1, . . . ,K}

tkij(ξ̃) , the travel time from node i to j with vehicle k, where i, j = {1, . . . , n}, k =

{1, . . . ,K} expressed as a function of the realization of ξ̃

τk
i (ξ̃) , the service time at node i with vehicle k, where i = {1, . . . , n}, k =

{1, . . . ,K}, expressed as function of the realization of ξ̃

βk , the positive unit penalty cost for excess duration traveled by vehicle k,

where k = {1, . . . ,m}

fk , the fixed cost of vehicle k, where k = {1, . . . ,K}

Bk , the maximum time for route k over which a penalty is incurred, where

k = {1, . . . ,K}

The model is then

min z =
K∑

k=1

fkzk
0 +

n∑
i=1

n∑
j=1
j 6=i

K∑
k=1

ckijx
k
ij + Eξ̃

(
K∑

k=1

βkyk(ξ̃)

)
(2.37)

subject to

K∑
k=1

zk
i = 1 ∀i ∈ {1, . . . , n} (2.38)

n∑
j=1

(
xk

0j + xk
j0

)
= 2zk

0 k ∈ {1, . . . ,K} (2.39)

n∑
j=1

(
xk

ij + xk
ji

)
= 2zk

i ∀i ∈ {1, . . . , n}, k ∈ {1, . . . ,K} (2.40)

∑
i∈S

∑
j∈S
j 6=i

xk
ij ≤ |S| − 1 S ⊂ V, 3 ≤ |S| ≤ n− 3, k = {1, . . . ,K} (2.41)

Bk −
n∑

i=1

n∑
j=1
j 6=i

tkij(ξ̃)x
k
ij −

1
2

n∑
i=1

n∑
j=1
j 6=i

(
τk
i (ξ̃) + τk

j (ξ̃)
)
xk

ij + yk(ξ̃) ≥ 0 (2.42)

∀k ∈ {1, . . . ,K}, ξ̃ ∈ Ξ

xk
ij ∈ {0, 1} ∀i, j ∈ {1, . . . , n}, k ∈ {1, . . . ,K} (2.43)

zk
i ∈ {0, 1} ∀i ∈ {1, . . . , n}, k ∈ {1, . . . ,K} (2.44)

yk
(
ξ̃
)
≥ 0 ∀k ∈ {1, . . . ,K}, ξ̃ ∈ Ξ (2.45)
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The objective function minimizes total cost in (2.37) that includes fixed vehicle costs, travel

costs, as well as the expected penalty costs as a result of exceeded route duration. All vehicles

must be routed according to (2.38), while (2.39) calculates the number of routed vehicles.

Degree constraints are introduced in (2.40). Subtours are eliminated through (2.41) where

the reader may infer that n > 6. Constraint (2.42) combined with (2.45) implies a penalty to

be calculated for vehicle k, but only if the total route length including service times exceed

Bk.

2.2.4 Time-dependent travel time

Although unpredictable events such as accidents and vehicle breakdowns render travel times

as stochastic, the candidate postulates that the subtle, yet partially predictable event of

congestion during peak hours of the day requires more attention. The assumption is made

that by addressing the time-dependent nature of travel times, a modeling approach that is a

stronger approximation of the actual real-world conditions of vehicle routing and scheduling

than by catering for stochastic travel times, will be achieved.

Hill and Benton (1992) review the two main approaches in estimating travel distance

between two nodes i and j, denoted by dij , namely Minkowski distance and Pythagorean

distance. The former is presented in (2.46).

dij = [|xi − xj |ω + |yi − yj |ω]
1
ω (2.46)

When ω is 2, the Minowski distance, denoted by dij , is the Pythagorean distance. When ω is

1, the Minowski distance is the city-block right-angled distance. In (2.46) the coordinate pair

(xi, yi) of each node i is required. A similar approach can be followed if only latitude and

longitude data is available, i.e. from a Geographical Information System (GIS) database.

The problem, however, is that researchers often reduce vehicle travel speed to an approximate

speed, denoted by rc, and simply apply the scalar transformation of distance in (2.47) to

find the travel time between the two nodes,

tij =
dij

rc
(2.47)

without cognisance of an acceleration stage to get onto the road, the cruising stage, and

the deceleration stage at the destination node (Assad, 1988). If the three stages were to be

acknowledged, dc denotes the distance required for the vehicle to reach its cruising speed,

and α denotes the acceleration, a more appropriate way of calculating the travel time is given
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in (2.48).

tij =


2
(

dij

α

) 1
2 if dij ≤ 2dc

dij

rc
+ rc

α if dij > 2dc

(2.48)

In most metropolitan areas, travel times are much longer during the start and end of

workday rush hours, especially on main arterial routes. If one were to inflate all route

times equally during peak periods, one would be able to route and schedule vehicles without

taking time-dependent travel times into consideration, and not compromise optimality of

routes. However, road networks are unevenly congested, i.e. traveling from A to B during

the morning rush hour traffic might be more congested than when traveling from B to A at

the same time.

Malandraki and Daskin (1992) state that the travel time is not only a function of the

distance, but should take the time of day into account as well. Ichoua et al. (2003) state that

research on time-dependent problems started towards the end of the 1950s with references

to the time-dependent shortest path problem, the time-dependent path choice problem, and

the Time Dependent Traveling Salesman Problem (TDTSP). Of the earliest research found

on the Time Dependent Vehicle Routing Problem (TDVRP) is Hill et al. (1988), followed

by Hill and Benton (1992). In their papers customer nodes were assigned time-dependent

piecewise constant speeds — these speeds reflect the traveling speed surrounding the nodes.

The edge travel time between two nodes were derived as the average speed of the two nodes

concerned. At the time Hill and Benton (1992) attribute the lack of time-dependent travel

time research to:

• Immense efforts to estimate travel time parameters

• Prohibitive data storage requirements

• Inefficient solution algorithms

Malandraki and Daskin (1992) formulate an elegant variant of the Vehicle Routing Prob-

lem with Time Windows (VRPTW) with the introduction of piecewise constant travel times

on the edges. Approaches to accommodate time-dependent travel times mentioned so far

all allow passing : the event where one vehicle my pass another vehicle on the same edge al-

though it started later than the vehicle it passed, but in a different time period with shorter

traveling time.

Ahn and Shin (1991) use similar notation as used in the introduction of the VRPTW,

and also introduce:
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τij (x) , travel time from node i to node j via arc (i, j) ∈ A, given that the trip

starts from node i at time x

si , the constant service time at node i

ti , the time at which service begins at node i

Aij (ti) , arrival time at node j through arc (i, j) ∈ A given ti, that is Aij(y) =

y + si + τij (ti + si)

di , the effective latest service start time at node i that allows us to maintain

the feasibility of a current route

Each customer i is to be serviced within its time window [ei, li]. The internode travel

time τij (·) and the arrival time Aij (·) are functions of the departure time representing time-

dependent congestion levels. In this thesis multiple links are not considered. The non-passing

property can be expressed as:

For any two nodes i and j, and any two service start times x and y at node i

such that x < y, Aij(x) < Aij(y) must hold, that is, earlier departure from node

i guarantees earlier arrival at node j.

Raw travel time data in the form of a step function is not appropriate for use in the

routing of vehicles, as it only provides average travel time data for specific time periods. In

such data sources, let:

τijk , the shortest travel time from node i to node j if the start time at node i

is in time slot Zk, where i, j ∈ A, and k ∈ {1, 2, . . . ,K},

where the day (planning horizon) is divided into time slots such that

Zk = [zk−1, zk] ∀k ∈ {1, 2, . . . ,K},

where the interval [z0, zK ] reflects the full day, or planning horizon under consideration.

Figure 2.5 is used for illustrative purposes. The travel time, being a function of the time of

day, is not continuous in the point zk and may lead to passing if travel time decrease for the

k + 1th segment. To obtain a smoothed travel time function, let:

τij(t) , the travel time from node i to node j given that the travel started at time

t from node i
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(b) Smoothed function (Fleischmann et al., 2004)

Figure 2.5: Travel time function

A parameter δijk is introduced for each breakpoint zk, where k ∈ {1, 2, . . . ,K}, be-

tween two consecutive time slots Zk−1 and Zk. The values of δij0 = δijK = 0. The jump

between two consecutive travel times segments Zk−1 and Zk is linearized in the interval

[zk − δijk, zk + δijk] provided the parameter δijk and determining the slope

sijk =
τij,k+1 − τijk

2δijk
(2.49)

The travel time function, as illustrated by Figure 2.5(b), is expressed as

τij (t) =


τijk for zk−1 + δij,k−1 ≤ t ≤ zk − δijk

τijk + (t− zk + δijk) sijk for zk − δijk < t < zk + δijk

(2.50)

The travel time function holds for all k ∈ {1, 2, . . . ,K}. Fleischmann et al. (2004) prove that

if δijk > 0 for all intermediate breakpoints and the slope sijk > −1, that the arrival time

function

Aij(t) = t+ τij(t) (2.51)

is continuous and monotonic1, i.e. adheres to the non-passing property. The papers by

Ichoua et al. (2003) and Potvin et al. (2006) also refer to the non-passing property as the

First-In-First-Out (FIFO) property. As Aij (·) is a strictly increasing function, it possesses
1There is a designated sequence such that successive members are either consistently increasing or de-

creasing with no oscillation in relative value, i.e. each member of a monotone increasing sequence is greater

than or equal to the preceding member; each member of a monotone decreasing sequence is less than or equal

to the preceding member.
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the inverse function A−1
ij (·). A−1

ij (x) is interpreted as the departure time at node i so that

node j can be reached at time x. Let (i0, i1, i2, . . . , im, i0) denote a partially constructed

feasible route with m customer nodes where i0 denotes the depot. The partial route could

be simplified for illustration purposes to (0, 1, 2, . . . ,m, 0).

In the presence of the non-passing property, the effective latest service start time at node

i on the partial feasible route, denoted by di, could then be given by the backward recursive

relation given in (2.52).

di =


min

{
li, A

−1
i0 (l0)

}
for i = m

min
{
li, A

−1
i,i+1 (di+1)

}
for 0 ≤ i ≤ m− 1

(2.52)

The actual service start time for each node i can be determined by the forward recursion

given in (2.53).

ti =


max {ei, A01 (t0)} for i = 1

max {ei, Ai−1,i (ti−1)} for 2 ≤ i ≤ m
(2.53)

The computation of both di and ti is fairly elementary. The advantage is only apparent when

route improvements are made, and subsequent feasibility check routines are eased.

The formulation used in this thesis refers to both travel and service times as uncertain

and dependent on the realization of uncertain events. A principle distinction, however, is

made between stochastic service times and time-dependent travel times. The implications

of such a distinction will become apparent in the calculations and feasibility checks when

solution algorithms are developed in later chapters, as only time-dependent travel time is

considered. In the majority of applications, demand is assumed to be known at the time of

establishing the actual route.

2.2.5 Multiple scheduling

It is often not viable to assume that each vehicle will only complete a single route. Multiple

scheduling is concerned with the case where a vehicle could complete deliveries on a scheduled

route, return to the depot where its capacity is renewed, after which a second, or consecutive

trip is executed with the renewed capacity. Taillard et al. (1996) refer to this type of problem

as the Vehicle Routing Problem with Multiple use of vehicles (VRPM). Butt and Ryan (1999)

consider the Multiple Tour Maximum Collection Problem (MTMCP) and assumes that the

routes are constrained in such a way that all of the customers cannot be visited. Their

approach aims to maximize the number of customers serviced. Brandão and Mercer (1997)
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introduce the Multi-Trip Vehicle Routing Problem (MTVRP) and address the combination

of multiple trips with time windows. The special case of multiple scheduling where only trips

are considered is referred to as Double Scheduling.

This thesis considers a vehicle that starts and ends its tour at the depot. A tour consists

of one or more routes, each starting and ending at the depot. The same vehicle can only

be used for two or more routes if the routes do not overlap. As opposed to (2.28) multiple

routes require a service time to be specified for the depot. Consider the example illustrated

in Figure 2.6. The depot has a time window from 06:00 to 18:00. A vehicle fills its capacity

18:0016:0006:00 08:00

s0
Route 1

10:00 12:00 14:00

s0
Route 2

e0 l0

Figure 2.6: Double scheduling

at the depot for a time period of s0 = 0.5 hours. It leaves the depot at 06:30, services the

first route, and returns to the depot at 11:00, where its capacity is renewed. A second route,

of five hours, is serviced before the vehicle returns to the depot.

Taillard et al. (1996) state that the multiple scheduling type of problem has received

very little attention in literature. This thesis proposes a way to deal with multiple routes.

The proposed solution involves a time verification process. If a vehicle arrives back at the

depot at time am, and the service time is specified as s0, then the vehicle is considered for

an additional route on its current tour if, after the capacity has been renewed, the depot’s

time window is still open. The case is presented in (2.54).

am + s0 ≤ l0 (2.54)

The mathematical formulation of the VRPM requires a redefinition of the decision variables,

as well as the constraints. The VRPM is addressed in the next section where the complete

problem is defined and formulated.
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2.3 The integrated problem at hand

An extended variant of the VRP, where multiple soft time windows, a heterogeneous fleet,

and multiple scheduling are considered in an environment with uncertain travel and service

times, is presented. Due to the complexity associated when concatenating elements from

various variant acronyms, we revert to using a simple reference, the Thesis Problem (TP).

To formulate the complex problem, we will redefine some of the variables and parameters used

earlier, and introduce a few additional variables. We define the following basic parameters.

N , total number of customers to be serviced

qi , deterministic demand for customer i, where i = {1, 2, . . . , N}

K , total number of vehicles available

zk
i ,


1 if node i is visited by vehicle k, where i = {1, . . . , N}, k = {1, . . . ,K}

0 otherwise

ξ̃ , a vector of uncertain variables corresponding to travel and service times.

Each realization γ of ξ̃, denoted by ξγ , is referred to as a state of the

world (Kall and Wallace, 1994)

Ξ , the finite support of ξ̃ such that Ξ =
{
1, 2, . . . , ξγ , . . . , ξΓ

}
where Γ is the

total number of states in the problem world

tkij

(
ξ̃
)

, the travel time from node i to j with vehicle k, where i, j = {1, . . . , N}, k =

{1, . . . ,K} expressed as a function of the realization of ξ̃

τk
i

(
ξ̃
)

, the service time at node i with vehicle k, where i = {1, . . . , N}, k =

{1, . . . ,K}, expressed as function of the realization of ξ̃

To expand the formulation and to include a heterogeneous fleet, we let:

T , number of different types of vehicles available

cijt , travel cost if a vehicle of type t travels from customer i to customer j,

where t = {1, 2, . . . , T}, and i, j = {0, 1, 2, . . . , N}

pt , capacity of a vehicle of type t, where t = {1, 2, . . . , T}

ft , fixed cost of a vehicle of type t, where t = {1, 2, . . . , T}

φk
t ,


1 if vehicle k is of type t, where k = {1, 2, . . . ,K}, and

t = {1, 2, . . . , T}

0 otherwise
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Multiple soft windows will be addressed by introducing the following parameters:

Ai , number of time windows for customer i, where i = {0, 1, 2, . . . , N}

ai

(
ξ̃
)

, the actual arrival time at customer i, where i = {0, 1, 2, . . . , N}, expressed

as a function of the realization of ξ̃

eai , earliest allowed arrival time for customer i’s ath time window, where i =

{0, 1, 2, . . . , N} and a = {1, 2, . . . , Ai}

lai , latest allowed arrival time for customer i’s ath time window, where

i = {0, 1, 2, . . . , N} and a = {1, 2, . . . , Ai}

Lmax
i , maximum lateness allowed by customer i, where i = {0, 1, 2, . . . , N}

αi , lateness penalty at customer i in cost per time unit, where

i = {0, 1, 2, . . . , N}

λi

(
ξ̃
)

, actual lateness at customer i, where i = {0, 1, 2, . . . , N}, expressed as a

function of the realization of ξ̃

wi

(
ξ̃
)

, waiting time at customer i, where i = {0, 1, 2, . . . , N}, expressed as a

function of the realization of ξ̃

To ensure that multiple scheduling is considered, we let:

Rk , number of routes scheduled for vehicle k, where k = {1, 2, . . . ,K}

Q , maximum number for routes allowed for any one vehicle

Mk , maximum tour time (all routes) allowed for vehicle k, where k =

{1, 2, . . . ,K}

dkr
(
ξ̃
)

, vehicle k’s departure time from the depot as it embarks on servicing its

rth route, where k = {1, 2, . . . ,K} and r = {1, 2, . . . , Rk}, expressed as a

function of the realization of ξ̃

gkr
(
ξ̃
)

, vehicle k’s return time at the depot after servicing its rth route, where

k = {1, 2, . . . ,K} and r = {1, 2, . . . , Rk}, expressed as a function of the

realization of ξ̃

δk
(
ξ̃
)

, the amount by which vehicle k exceed its allowable tour time, where k =

{1, 2, . . . ,K}, expressed as a function of the realization of ξ̃

βk , the positive unit penalty cost for vehicle k when exceeding its allowable

tour time, where k = {1, . . . ,K}

With the notation established the decision variables for the TP are defined as:
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xkr
ij ,


1 if vehicle k travels from customer i to customer j on its rth route,

where i, j = {1, 2, . . . , N}, k = {1, 2, . . . ,K}, r = {1, 2, . . . , Rk}

0 otherwise

ψa
i ,


1 if the ath time window of customer i is used, where i ∈ {1, 2, . . . , N},

a ∈ {1, 2, . . . , A}

0 otherwise.

The mathematical formulation of the TP is provided.

min z =
N∑

i=0

N∑
j=0
j 6=i

K∑
k=1

T∑
t=1

Rk∑
r=1

cijtx
kr
ij φ

k
t +

N∑
j=1

K∑
k=1

Rk∑
r=1

fkxkr
0j

Rk

+ Eξ̃

[
N∑

i=1

αiλi

(
ξ̃
)

+
K∑

k=1

βkδk
(
ξ̃
)]

(2.55)

subject to

N∑
j=1

Q∑
r=1

xkr
0j = Rk ∀k ∈ {1, 2, . . . ,K} (2.56)

N∑
j=1

Q∑
r=1

xkr
j0 = Rk ∀k ∈ {1, 2, . . . ,K} (2.57)

N∑
i=1
i6=j

K∑
k=1

Rk∑
r=1

xkr
ij = 1 ∀j ∈ {1, 2, . . . , N} (2.58)
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N∑
j=1
j 6=i

K∑
k=1

Rk∑
r=1

xkr
ij = 1 ∀i ∈ {1, 2, . . . , N} (2.59)

N∑
q=1

qi

N∑
j=0
j 6=i

xkr
ij ≤ pk ∀k ∈ {1, 2, . . . ,K},

r = {1, 2, . . . , Rk} (2.60)

eai − (1− ψa
i )M ≤ ai

(
ξ̃
)

+ wi

(
ξ̃
)

∀i ∈ {1, 2, . . . , N},

∀a ∈ {1, 2, . . . , Ai} (2.61)

Lmax
i + (1− ψa

i )M ≥ ai

(
ξ̃
)

+ wi

(
ξ̃
)

∀i ∈ {1, 2, . . . , N},

∀a ∈ {1, 2, . . . , Ai} (2.62)
Ai∑

a=1

ψa
i = 1 ∀i ∈ {1, 2, . . . , N} (2.63)

max

{
0, ej −

(
dkr
(
ξ̃
)

+ t0j

) K∑
k=1

Rk∑
r=1

xkr
0j

}
= wj

(
ξ̃
)

∀j ∈ {1, 2, . . . , N} (2.64)

max
{

0,
(
ai

(
ξ̃
)
− lai

)}
= λa

i

(
ξ̃
)

∀i ∈ {1, 2, . . . , N},

∀a ∈ {1, 2, . . . , Ai} (2.65)

dk1 ≥ e0 + s0 ∀k ∈ {1, 2, . . . ,K} (2.66)

K∑
k=1

Rk∑
r=1

xkr
0j

(
dkr
(
ξ̃
)

+ t0j

)
≤ aj

(
ξ̃
)

∀j ∈ {1, 2, . . . , N} (2.67)

N∑
i=1
i6=j

K∑
k=1

Rk∑
r=1

xkr
ij

(
ai

(
ξ̃
)

+ wi

(
ξ̃
)

+ τk
i

(
ξ̃
)

+ tkij

(
ξ̃
))
≤ aj

(
ξ̃
)

∀j ∈ {1, 2, . . . , N}

(2.68)

N∑
i=1

xkr
i0

(
ai

(
ξ̃
)

+ τk
i

(
ξ̃
)

+ wi

(
ξ̃
)

+ ti0

)
≤ gkr

(
ξ̃
)

∀k ∈ {1, 2, . . . ,K},

r ∈ {1, 2, . . . , Rk} (2.69)

gk,r−1
(
ξ̃
)

+ s0 = dkr
(
ξ̃
)

∀k ∈ {1, 2, . . . ,K},

r ∈ {2, 3, . . . , Rk} (2.70)
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gkr
(
ξ̃
)

+ s0 ≤ l0 ∀k ∈ {1, 2, . . . ,K},

r ∈ {2, 3, . . . , Rk−1} (2.71)

gkRk
(
ξ̃
)
≤Mk + δk

(
ξ̃
)

∀k ∈ {1, 2, . . . ,K} (2.72)

Rk ≤ Q ∀k ∈ {1, 2, . . . ,K} (2.73)
Q∑

r=Rk+1

N∑
i=1

N∑
j=1
j 6=i

xkr
ij = 0 ∀k ∈ {1, 2, . . . ,K} (2.74)

xkr
ij ∈ {0, 1} ∀i, j ∈ {1, 2, . . . , N},

k ∈ {1, 2, . . . ,K},

r ∈ {1, 2, . . . , Rk} (2.75)

ψa
i ∈ {0, 1} ∀i ∈ {1, 2, . . . , N},

∀a ∈ {1, 2, . . . , Ai} (2.76)

The objective function in (2.55) minimizes a combination of deterministic and stochastic cost

components. The first expression represents the total variable traveling cost, followed by the

total fixed fleet cost. The third expression represents the expected lateness penalties and

constitutes firstly the lateness at each customer, and secondly the lateness for each vehicle.

The combination of (2.56) and (2.57) calculates the total number of routes and ensures

that the same number of routes that starts for each vehicle, also finishes. Each customer

is visited exactly once according to the constraint combination (2.58) and (2.59). Vehicular

capacity is enforced through (2.60) by ensuring that the sum of the demands of all customers

assigned to a specific route of a given vehicle do not exceed the vehicle’s capacity, which may

either by represented as weight or volumetric capacity, or both if additional constraints are

added.

Constraints (2.61) and (2.62) ensure that the multiple soft time windows are adhered to

where the parameter M represents a sufficiently large number, as discussed when multiple

soft time windows were introduced. Actual arrival times and waiting times at any given

customer is a function of the stochastic travel and service times of all customers preceding

that specific customer, hence the stochastic notation. As each customer is visited only once,

(2.63) ensures that only one time window for each customer is considered. The waiting time

and lateness at each customer, both expressed as a stochastic variable, are determined in

(2.64) and (2.65), respectively.

The departure time for each vehicle’s first route is determined by (2.66), while the actual
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arrival time at the first customer on each route is determined by (2.67). Arrival times for

subsequent customers are determined by (2.68).

The return time for each route is determined by (2.69). Consecutive route start times

is determined by (2.70) by taking the service time of the depot into account where vehicles’

capacities are renewed as proposed in (2.54). Constraint (2.71) enforces all routes to fin-

ish within the operating hours of the depot, while (2.72) determines the lateness for each

vehicle when exceeding its allowed tour time. Each vehicle may not execute more than

a predetermined number of routes as provided for in (2.73). Should it be determined in

equations (2.56) and (2.57) that the required number of routes is less than the preset limit

Q, then all allowed routes not required are eliminated through the introduction of (2.74).

Binary decision variables are provided for with the introduction of (2.75) and (2.76).

2.4 Conclusion

This chapter deals with the background of the VRP, as well as the integration of multiple

variants into a single problem instance — each contributing to the already complex nature

of the problem. Although the model formulation is the first step in describing the problem

comprehensively, only very small instances of the problem is currently solvable to optimality.

The following chapter introduces the complexity of the problem at hand, and reviews so-

lution approaches for solving the problem. Exact, heuristic, as well as metaheuristic solution

algorithms are considered.
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Chapter 3
Intelligence in solution algorithms

Once a model of the perceived reality is formulated, a process is required to obtain a solution

to the model which, in turn, could be implemented to solve the problem in reality. It should

always be noted that models are solved, not real problems. Rardin (1998) refers to numerical

search as the process of systematically trying different choices for decision variables so that

the best feasible solution could be found. This chapter is dedicated to review the three

primary search strategies used to solve mathematical programming models.

The first of these are exact solution algorithms where one can prove that the best feasible

solution found is in fact the global optimum for the problem. The first section of the chapter

introduces some of the fundamental exact solution algorithms, with reference to further

review articles for interested readers.

Exact solution algorithms are unfortunately not always viable when the size of a problem

increases. To compensate for the time-consuming computational burden, solution seekers opt

for approximate solutions, also referred to as heuristics, where the best solution may, or may

not, be the true optimum for the problem. Yet, heuristics offer solutions that are often

better than the typical industrial solutions obtained through intuition and common sense.

The second section introduces a number of heuristics dating back from the 1950’s, and follows

a few variations of these heuristics.

Heuristics have evolved during the 1990’s to what is referred to as metaheuristics —

intelligent strategies governing the execution of various heuristics in order to find even better

solutions. The third section introduces a number of metaheuristics and its variations, from

where a conclusion is drawn and a motivation is provided for the choice of solution algorithms

for this thesis.
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3.1 Exact solution algorithms

It might at first seem counterintuitive that integer (discrete) linear and combinatorial prob-

lems are more difficult to solve than their continuous counterparts, seeing that the algebra

for Linear Programming Problem (LP) algorithms can be quite daunting. A discrete model

with a finite number of possible decision variable values, on the other hand, seems much

easier. This reasoning holds only for small instances of discrete problems, and Rardin (1998)

confirms that total enumeration of all possible combinations is the most effective method to

find the best solution. Consider a problem with only two binary variables, x1 and x2. There

are only 22 = 4 possible cases. Although ten binary variables will require 210 = 1024 cases to

be enumerated, it is still viable using computers. The exponential growth in the number of

case evaluations when enumerating requires alternative algorithms for problems of practical

size.

This thesis follows the classification proposed by Laporte and Nobert (1987) and Laporte

(1992) whereby exact algorithms are grouped into three primary categories, each covered in

the following subsections.

3.1.1 Direct tree search methods

The analogy of a tree in search methods represents the primary stem being some initial

solution, from where the stem is split into branches, or secondary stems that are related to

the primary stem. These secondary stems, in turn, branch into tertiary stems, etc.

The first step in direct tree search methods is to find the primary, or initial solution.

Because discrete optimization models are typically hard to solve, it is natural to find re-

lated, yet easier formulations of the problem. Auxiliary models are referred to as relaxations

of the original discrete problem and are easier to solve as some of the constraints, or ob-

jective function(s) of the discrete problem are weakened. Solving the relaxations can lead

the modeler to make solution interpretations of the original problems. Various relaxation

techniques vary in strength. Rardin (1998) defines a relaxation as strong or sharp if the

relaxation’s optimal value closely bounds that of the original model, and the relaxation’s so-

lution closely approximates an optimum in the original problem. Various relaxation methods

exist in introductory Operations Research textbooks and include LP relaxations, stronger

Big-M constants and the introduction of valid inequalities (for example the Cutting Plane

algorithm (Jeroslow, 1979)) (Hillier and Lieberman, 2005; Rardin, 1998; Taha, 2003; Win-

ston and Venkataramanan, 2003). An even stronger relaxation, referred to as Lagrangian
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relaxation, do not weaken integrality constraints, but rather relax some of the main linear

constraints after which they are dualised (or weighed) in the objective function with La-

grangian multipliers (Fisher and Jaikumar, 1981). Desrosiers et al. (1988) use Lagrangian

relaxation methods to solve a variant of the MTSP with time windows.

Once a relaxation is solved to optimality, and the solution also conforms to all constraints

in the original problem, the solution is also the optimal solution for the original problem.

If not, various strategies and algorithms are employed to systematically work towards a

relaxation of which the optimal solution is also optimal for the original problem.

The branch-and-bound search algorithms combine relaxations with an enumeration strat-

egy to find optimal candidate solutions, while bounding the search by previous solutions.

Laporte et al. (1989) adapt the branch-and-bound algorithm in solving a class of stochastic

location routing problems with networks of 20 and 30 nodes. Laporte et al. (1986) solve the

asymmetrical Capacitated Vehicle Routing Problem (CVRP) for 260 nodes. The structure of

the VRP and its relationship with one of its relaxations, the MTSP, is exploited by Laporte

(1992) in a similar manner.

The branch-and-bound algorithm has been modified with the introduction of stronger

relaxations prior to the branching of a partial solution. The modified algorithm is referred

to as branch-and-cut as the stronger relaxations are obtained with the inclusion of new

inequalities. The inequalities should hold for all feasible solutions of the original discrete

problem, but should render the last relaxation’s optimum as infeasible, hence the term cut.

Padberg and Rinaldi (1987) illustrate the generation of cuts in a symmetrical TSP with

532 nodes. Laporte et al. (1992) describe a general branch and cut algorithm for the VRP

with stochastic travel times. The authors introduce cuts in the form of subtour elimination

constraints, and introduce lower bounds on penalties if a route exceeds its predetermined

route duration limit.

Van Slyke and Wets (1969) introduce the L-shaped method as a variant of the cut-

ting plane algorithm for specific linear programs. Birge and Louveaux (1988) acknowledge

that the method holds opportunity for stochastic programming applications and modify the

method to create multiple cuts in each major iteration. Laporte and Louveaux (1993) fur-

ther expand the method and refer to their general branch-and-cut procedure as the integer

L-shaped method and apply it to stochastic integer programs and note that fathoming rules

are different than in branch-and-bound trees. In another variation on branching, Christofides

et al. (1979) propose a depth-first tree search in which single feasible routes are generated

as and when required in their VRP formulation based on the TSP.
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In their recent review of exact algorithms based on branch-and-bound, Toth and Vigo

(2002a) state that these types of algorithms remain the state of the art with respect to exact

solutions, especially in the case where asymmetric cost matrices exist. Giaglis et al. (2004)

confirm that exact approaches are applicable to problems of practical size only if they have

low complexity.

3.1.2 Dynamic Programming (DP)

DP determines the optimum solutions of an n-variable problem by decomposing it into n

stages each consisting of a single-variable subproblem (Taha, 2003). The objective is to

divide-and-conquer real-life problems by enumerating in an intelligent way through a state

space of solutions (Brucker, 2004). In solving shortest path problems, Rardin (1998) claims

that DP methods exploit the fact that it is sometimes easiest to solve one optimization

problem by taking on an entire family of shortest path models. DP was first proposed for

solving VRPs by Eilon et al. (as cited by Laporte (1992)).

Hamacher et al. (2000) faced the requirement that the nodes to be routed in a tour must

be chosen from a small region of the map, and motivate their choice by the fact that the truck

drivers have a local knowledge of the environment and is subjected to business constraints.

Although the most natural DP formulation results in a DP with infinite state and action

spaces, an optimality-invariance condition recently introduced by Lee et al. (2006) establishes

leads to an equivalent problem with finite state and action spaces. Their formulation leads

to a new exact algorithm for solving the Multi-Vehicle Routing Problem with Split Pick-ups

(MVRPSP), based on a shortest path search algorithm, which they claim to be conceptually

simple and easy to implement.

Although in a different problem context, Beaulieu and Gamache (2006) present an enu-

meration algorithm based on DP for optimally solving the fleet management problem in

underground mines. Their problem consists of routing and scheduling bidirectional vehicles

on a haulage network composed of one-lane bidirectional road segments.

Li et al. (2005) integrate the machine scheduling problem with a delivery routing problem

and formulate a DP recursion since there are a finite number of time points for the start

time of a trip of the vehicle. They conclude, however, that the problem can be simplified

by limiting deliveries to direct shipments, a situation that is inappropriate if there is a large

number of customers and small shipments across a geographically dispersed network.
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3.1.3 Integer linear programming

The set partitioning formulation is a method that starts by assuming that the totality of

routes which a single vehicle can operate feasibly, can be generated (Christofides et al., 1979).

Let A denote the set of nodes representing customers. Then if S ⊆ A is the subset of nodes

which can be feasibly supplied on a single route by a vehicle vk, it is assumed that the total

variable cost associated with the optimal routing of nodes in S can be calculated. This is not

trivial if |S| is large as it relates to a TSP (one vehicle with a single route). For each vehicle

vk a family Sk of all feasible single routes for that specific vehicle is generated. A matrix

G = [gij ] is produced with row i representing customer xi and M blocks of columns where

the kth block of columns corresponds to vehicle vk and column jk of the block corresponds

to a feasible single route Sjk
of vehicle vk. The VRP now becomes the problem of choosing

at most one column from each block of G so that each row of G has an entry when

gijk
,


1 if customer xi is an element of the single route Sjk

0 otherwise

Balinksi and Quandt (as cited by Laporte (1992)) were among the first to propose such a

set partitioning formulation for VRPs. But combinatorial problems often result in extremely

large arrays of possibilities too complex to be modeled concisely (Rardin, 1998). Column

generation adopt a two-part strategy for such problems. It first enumerates a sequence of

columns representing viable solutions to parts of the problem, often employing DP. Part

two of the strategy solves a set partitioning model to select an optimal collection of these

alternatives fulfilling all problem requirements. It results in a flexible and convenient ap-

proach employing a multitude of schemes to generate columns which are complex. In this

approach it becomes possible to address constraints that are often difficult to model. It

suffers, however, from the shortcoming that the number of columns in G can be enormous.

A variant of the VRPTW is solved by Desrochers et al. (1992) who admit that exact

solution algorithms have lagged considerably behind the development of heuristics. Their

algorithm attempts to use best of breed by solving various subproblems using a branch and

bound scheme, DP, and column generation. The drawback remains that the set partitioning

problem stops being competitive when a large number of customers are to be serviced on a

single route, for example when demands are small in relation to the vehicle capacity. This

results in the LP relaxation to become more dense — leading to possible degeneracy.

The MTMCP is closely related to both the TSP and the VRP with the major difference

that it is not possible to service all nodes in the graph in the allocated time on a given set
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of tours. Hence the objective to maximize the earned reward of those nodes visited. In their

paper Butt and Ryan (1999) combine column generation and constraint branching to achieve

an optimal solution algorithm that solves problems with 100 nodes.

In more recent work Righini and Salani (2004) note that a trade-off remains between

the time spent on the column generation, and the quality of the lower bound achieved,

indicating that research into effective exact algorithms remain active. Choi and Tcha (2006)

use a column generation approach in solving the HVRP with a maximum of 100 nodes in

the test problems used. Column generation, however, is not easily adapted to the stochastic

variant of a routing problem (Lambert et al., 1993).

3.2 A case for heuristics

Maffioli (1979) indicates that real life combinatorial problems have a number of unpleasant

features: problems are usually dimensionally large; problems have integrated constraints;

and problems can not always be decomposed or generalized to simpler subproblems. It is

noteworthy that although researchers attempt to solve real-world problems, complex prob-

lems are already solved in industry where decision makers often settle for good enough solu-

tions (Russell and Norvig, 2003).

3.2.1 Route construction

Savings-based heuristics

Christofides et al. (1979) indicate that the majority of heuristics are constructive in nature in

the sense that at any given stage one or more incomplete routes exist. Incomplete routes are

extended to consecutive stages until a final route exists. The construction of routes may be

either sequential if one route is completed prior to another being started, or parallel where

more than one incomplete route may exist at a particular stage. After routes are created, a

number of local improvements may be initiated to refine a route.

The savings algorithm established by Clarke and Wright (1964) is without doubt the most

widely known heuristic in VRPs and has formed the basis of a substantial number of heuristic

variations. The Clarke-Wright algorithm remains a computationally efficient algorithm, and

deserves attention (Lenstra and Rinnooy Kan, 1981). The algorithm is defined as follows:

Step 1 Calculate the savings for all pairs of customers i and j, denoted by sij , where both

customers are serviced on one route, as opposed to customer i being serviced on a new
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dedicated route from the depot, using (3.1)

sij = c0i − cij + cj0 ∀i, j ∈ {1, 2, . . . , N} (3.1)

where N is the total number of customers in the network, and cij denotes the cost of

traveling from node i to node j, and where i = j = 0 represents the depot.

Step 2 Arrange the savings in descending order of magnitude.

Step 3 Starting from the top, use one of the following approaches:

Sequential approach

1. Find the first feasible link in the list which can be used to extend one of the

two ends of the currently constructed route.

2. If the route cannot be expanded, or no route exist, choose the first feasible

link in the list to start a new route.

3. Repeat (1) and (2) until no more links can be chosen.

Parallel approach

1. If making a given link results in a feasible route according to the constraints

of the VRP, add the given link to the solution. If not, reject the link.

2. Try the next link in the list and repeat (1) until no more links can be chosen.

Step 4 The links form the solution to the VRP.

Christofides et al. (1979) suggest that in the parallel approach a maximum number of routes,

M , be introduced to ensure that vehicle feasibility constraints are adhered to. Mole and

Jameson (1976) motivate why a sequential approach yields more benefit and adapt the

savings procedure to calculate the best insertion position on edge (i, j) of the partially

constructed route C for customer u, denoted by s(i, u?, j), using the expression in (3.2)

s(i, u?, j) = min
i,j∈C

{s(i, u, j)} ∀u ∈ {1, 2, . . . , N}|u 3 C (3.2)

where C is the subset of the N nodes already routed, with

s(i, u, j) = 2d0u + (dij − diu − duj) (3.3)

The criteria used to determine the best edge to insert a specific customer is referred to as

the insertion criteria. Once the best edge for insertion has been identified for each customer,

the customer with the highest saving will be selected and inserted in its best position. The

criteria used to select the best customer is referred to as the selection criteria.
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Although a number of schemes have been suggested by Christofides et al. (1979) to

identify the first customer on a new route, termed the seed customer, such as customer with

earliest time window deadline; unrouted customer furthest from depot; or customer with

largest demand, this thesis will propose a new method for identifying seed customers in

Chapter 4.

Nelson et al. (1985) review and test a number of data structures to employ when imple-

menting the Clarke-Wright algorithm. The authors establish methods of choice for VRPs

with given characteristics of the network topology.

The savings heuristic has since its inception been adapted in quite a number of re-

search contributions. Golden et al. (1984) refer to the basic savings algorithm as Clarke-

Wright (CW), and introduced minor changes through their Combined Savings (CS) algo-

rithm. They proceeded to introduce both the Optimistic Opportunity Savings (OOS) and

Realistic Opportunity Savings (ROS). The latter was extended to the ROS-γ that included

variety into the algorithm. Solomon (1987) not only applied the savings technique in solving

the VRPTW, but also established benchmark problems which have since been used exten-

sively. Paessens (1988), Salhi and Rand (1993) and Tung and Pinnoi (2000) propose various

adaptions to the savings heuristic and apply the algorithms to generate feasible routes prior

to an improvement stage. In a banking application Lambert et al. (1993) use the sav-

ings algorithm on both a deterministic and stochastic variant of the VRPTW. Dullaert

et al. (2001) continue the development and adapt the original criteria for sequential inser-

tion, referred to as the Adapted Combined Savings (ACS), Adapted Optimistic Opportunity

Savings (AOOS), and the Adapted Realistic Opportunity Savings (AROS).

Liu and Shen (1999b) challenge the prior research by stating that a parallel approach to

route construction actually yields superior results, and use the savings algorithm in solving

the VRPMVTTW.

Ong et al. (1997) introduce new selection criteria and use the sequential approach on a

variant of the Multi Period Vehicle Routing Problem (MPVRP) with time windows, specific

vehicle type constraints, multiple depots and stochastic demand constraints. Liu and Shen

(1999a) considered the FSMVRPTW and introduced some modifications on the savings

expressions with added route shape parameters.

The basic Clarke-Wright algorithm is adapted by Hill et al. (1988), Ahn and Shin (1991),

Hill and Benton (1992) and Malandraki and Daskin (1992) to accommodate forward schedul-

ing where time-dependent travel times are modeled. Fleischmann et al. (2004) test three

saving algorithms on a time-dependent travel time variant of the VRPTW.
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Sweep algorithm

A different approach was introduced by Gillett and Miller (1974). Their proposed algorithm

divides the locations into a number of routes. The following notation is introduced to explain

the algorithm. Let:

N , number of locations including the depot (where the depot is always referred

to as location 1)

qi , the demand at location i, where i ∈ {2, 3, . . . , N}

(xi, yi) , rectangular coordinates of the ith location, where i ∈ {1, 2, . . . , N}

C , the capacity of each vehicle

dij , the distance between locations i and j, where i, j ∈ {1, 2, . . . , N}

∠i , the polar coordinate angle (measured from the depot) of the ith location,

where i ∈ {2, 3, . . . , N}

ri , the radius from the depot to location i, where i ∈ {2, 3, . . . , N}

The polar coordinate angle is calculated through (3.4).

∠i = arctan
[
yi − y1

xi − x1

]
(3.4)

This results in −π < ∠i < 0 if yi − y1 < 0, and 0 ≤ ∠i ≤ π if yi − y1 ≥ 0. The locations

are renumbered in ascending order according to the size of their polar coordinate angle such

that

∠i < ∠i+1 ∀i ∈ {2, 3, . . . , N − 1}

The forward sweep portion of the algorithm partitions locations into routes beginning with

the location with the smallest angle. Locations are added until the vehicle’s capacity is

reached, or a preset distance constraint on a route is reached. Subsequent routes are gener-

ated in a similar manner until all locations are routed. Each route is then optimised using

either exact or heuristic algorithms for the TSP. The minimum distance traveled is then the

sum of the distances of each optimised route.

The x-y axis is then rotated counterclockwise so the first location becomes the last, the

second becomes the first, the third the second, etc. The minimum distance is calculated

again. The rotation of the x-y axis and the calculation of the distance traveled is repeated

for all possible axis configurations. The minimum forward sweep distance is the least total

distance traveled taken from all axis configurations that was calculated.
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The backward sweep portion is similar to the forward portion except that it forms the

routes in reverse order, i.e. it start with the last reordered entry based on the polar coordinate

angle.

Gillett and Miller (1974) state that the two portions often produce different routes and

minimum distances traveled, hence the sweep algorithm’s result is the route with the lowest

distance traveled of the two portions.

Generalized assignment

Where assignment problems involve the optimal pairing of objects of two distinct types, for

example exactly one job order to exactly one machine, or exactly one customer to exactly

one sales representative, the generalized assignment problem allows for each object i to be

assigned to some j, and each j being allowed to receive a number of i (Rardin, 1998). Fisher

and Jaikumar (1981) reformulate the VRP in a two-stage approach. First customers are

assigned to vehicles, hence the relation to generalized assignment problems. Secondly, for

each vehicle the customers assigned to that vehicle is sequenced using the TSP formulation

or some other route construction algorithm. The approach is heuristic as the assignment

problem’s objective function is a linear approximation of the second stage’s distance traveled.

A number of methodological variants are provided in Nygard et al. (1988). Koskosidis et al.

(1992) extend the approach to solve a time window variant of the routing problem.

Giant tours

In the VRP version, a giant tour, including the depot, is first created. A giant tour is a

single tour that starts from the depot, passes through all customer sites and returns to the

depot. A directed cost network is then constructed. Define the tour Tab as a tour beginning

with an arc from the depot to customer a, then following the giant tour between customers

a and b (which might include other nodes), finishing with an arc from customer b to the

depot. There exist a directed edge in the cost network from a to b if and only if the tour Tab

is feasible in terms of vehicle capacity and distance restriction. The length of the edge ab

in the cost network is the length of Tab. The shortest path problem is subsequently solved

using Dijkstra’s (1959) algorithm, providing a partitioning of the giant tour.

The procedure is repeated starting from different giant tours and the overall least cost

solution is chosen. In their experiments Nagy and Salhi (2005) constructed 5 giant tours;

one using the nearest neighbor, another using the least insertion cost rule, and the remaining
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three tours are generated randomly. A detailed description on how to generate these giant

tours and how to construct the associated cost networks can be found in Salhi et al. (1992).

3.2.2 Route improvement

Numerical search is the process of systematically trying different values for the decision vari-

ables in an attempt to find a better solution. The process keeps track of the feasible solution

with the best objective function value found thus far, referred to as the incumbent solution.

Rardin (1998) states that most optimization procedures can be thought of as variations of

a single theme: improving search. Synonyms of the theme include local improvement, hill

climbing, local search, and neighborhood search.

An improving search heuristic for vehicle routing and scheduling usually starts with a

feasible solution created through the route construction heuristics suggested in Section 3.2.1.

A characteristic, and unfortunately a drawback of an improving search heuristic is that it

advances along its search path of feasible solutions only while the objective function value

improves. The search space in which new solutions are investigated is best explained through

the analogy of a neighborhood: nearby points of the current solution, each within a small

distance from the current solution.

Slight modifications to the current route are referred to as perturbations, and are ac-

cepted if they yield feasible solutions with an improved objective function value. Although

the discussion in this section is by no means exhaustive, it introduces some of the basic

mechanisms for creating perturbations. Authors such as Nagy and Salhi (2005) apply com-

binations of these perturbations sequentially to obtain improved solutions. For purposes of

this discussion nodes will be denoted by a, b, c, etc., and routes by bolded characters xxx, yyy,

zzz, etc.

Route reversal

A procedure introduced by Nagy and Salhi (2005) in their Vehicle Routing Problem with

Pickups and Deliveries (VRPPD). They observed that changing the direction of a route does

not lead to an increase in the route length, and may lead to increased feasibility. In their

application the objective is to minimize the infeasibilities when integrating both pickups and

deliveries simultaneously, as opposed to sequentially.
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2-Opt

A routine introduced by Lin (1965) based on interchanging two edges, say ab and cd, to form

two new edges ac and bd.

3-Opt

A modification of the 2-Opt routine. In this case three arcs are exchanged with three other

edges.

Shifting node

Similar to the 3-Opt routine involving two routes. A single node a is removed from a route

xxx and inserted into another route yyy.

Exchanging nodes

An extension of the Shifting node routine. A node a is identified on route xxx, and node b on

route yyy. The two nodes a and b are exchanged in their respective positions.

λ-Interchange

When an equal number of nodes, λ, are exchanged between two routes, the perturbation

is referred to as λ-Interchange (Tan et al., 2001c; Thompson and Psaraftis, 1993). The

Exchanging nodes perturbation is therefor a special case where λ = 1.

Double shift

A more complex extension of the Shifting node routine where two nodes, a and b, and three

routes, xxx, yyy, and zzz, are considered. Node a is removed from route xxx and inserted into route

yyy, while node b is removed from route yyy and inserted into route zzz. This is different from

performing the Shifting routine twice, as after the first Shift the resulting route may be

infeasible. It should be noted that this routine is computationally more complex as the

possible combinations to consider increases substantially.

Splitting a route

According to Mosheiov (as cited by Nagy and Salhi (2005)) a route can be improved if the

depot is reinserted into the route, resulting in two routes being created from the original one

route considered.
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Combining routes

If feasible, two routes xxx and yyy are combined, considering both orders xyxyxy and yxyxyx.

3.3 Metaheuristics

The improving search heuristics discussed in the previous section are applied until there are

no solutions in the immediate neighborhood hat include a solution that is both feasible and

improving. The incumbent solution is then referred to as a local optimum. The advantage

of heuristics is that good feasible solutions can still be found even though optimality can

not be guaranteed; the disadvantage is that uncertainty exists about how close the solutions

actually came to the optimal. Herein lies the drawback of heuristics, as the initial solution

may negatively influence the optimality of the local optimum found. Refer to the overly

simplified illustration in Figure 3.1 and note that if the heuristic starts with a solution at
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Figure 3.1: Local vs. global optimum

a, it can only improve until it reaches the local optimum at A. If the same heuristic starts

with a solution at b it can reach the local optimum at B which also happens to be the global

optimum: a feasible solution such that no other solution has a superior objective function

value.

The interested reader is referred to the TOP Program (2006) research group within the

Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology

(SINTEF). The group has an extensive bibliography of research contributions in the field of

vehicle routing, with the majority being on metaheuristics and future research opportunities.
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Metaheuristics are master strategies which uses intelligent decision making techniques

to guide algorithms to find global optimal solutions by temporarily allowing moves in the

neighborhood that result in solutions with inferior objective function values compared to the

incumbent solution. Such a deteriorating move is illustrated in Figure 3.1 with a solution

starting at a, and deteriorating towards b along the dotted line before improving towards

B. A problem arises with accepting temporarily deterioration moves. Consider a and b

to be neighbor solutions. Each solution can thus be reached from the other with a single

perturbation. A move from a to b may be accepted as a temporarily deteriorating move.

However, a move from b to a will always be accepted as it improves the objective function.

This may lead to indefinite cycling around a single solution. All metaheuristics follow a

similar process, although their specific naming conventions, analogies and detailed routines

may vary.

Initialization The process of finding an initial solution. Some metaheuristics, such as the

Genetic Algorithm performs well with randomly generated initial solutions that need

not be feasible, while the Tabu Search is highly sensitive to the quality of the initial

solution.

Diversification The mechanism that ensures that the underlying heuristics are searching

a diversified neighborhood, and thus not getting trapped within local optima.

Intensification A mechanism that ensures the heuristic starts zooming in towards a single

solution. The most promising neighborhoods are identified and those areas of the

solution space are searched more thoroughly.

The diversification and intensification can repeat indefinitely, and hence requires a stop-

ping criteria to terminate the metaheuristic (Van Breedam, 2001). The longer the meta-

heuristic is run, the higher the probability of converging to the global optimum.

An elementary metaheuristic would entail running the improving search heuristic with

multiple initial solutions, each yielding a single local optimum. The best of these local optima

is the incumbent solution, denoted by x̂. Such a process would be highly reliant on the choice

of initial solutions and may yield inferior local optima if initial solutions are not selected and

generated carefully.

Four promising metaheuristics are introduced, and interested readers can refer to Gen-

dreau et al. (1998) for a general review of metaheuristics for the VRP.
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3.3.1 Tabu Search (TS)

The TS is a memory-based local search metaheuristic introduced by Glover (1986) that

searches the neighboring solution space (neighborhood) in search of an improving solution,

updating the incumbent solution when improving moves are made. Deteriorating moves

are allowed and the metaheuristic deals with cycling by declaring moves to recently visited

solutions as tabu, hence the name. A thorough and recent review of the TS can be found in

Bräysy and Gendreau (2001), where the authors focus on time window variants of the VRP.

A general TS approach is presented in Algorithm 3.1. An initial solution x0 and a

Algorithm 3.1: Tabu Search
Input: Initial feasible solution x0; Iteration limit tmax

t← 01

x̂← xt2

Clear Tabu-list, T = {·}3

Generate feasible move set Mxt
4

while either (4x ∈M and 4x 3 T and t < tmax ) or (4x satisfies aspiration) do5

xt+1 ← xt +4x6

T ← T ∪ {xt+1}7

if c
(
xt+1

)
< c (x̂) then8

x̂← xt+19

endif10

t← t+ 111

Generate feasible move set Mxt
12

endw13

stopping criteria is required. In this case the stopping criteria is determined to be a preset

maximum iteration count tmax. The algorithm is initialized by setting the iteration count

to zero, setting the initial solution to be the incumbent solution, and clearing the tabu list.

The objective function value c(x) is expressed as a function of the solution x. A feasible

move set Mxt
that represents the neighborhood around the current solution xt is generated.

The neighborhood is established through any of the perturbations discussed in Section 3.2.2.

If either no non-tabu move 4x ∈ M leads to a feasible neighbor of the current solution

xt within the preset iteration limit, or some aspiration criteria1 is met, the metaheuristic
1The aspiration criteria may override the tabu list, or the iteration limit criteria.
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terminates and the incumbent solution x̂ is the approximate optimum. If not, the new

neighbor becomes the current solution and is added to the tabu list. The current solution

replaces the incumbent if it has a superior objective function value c
(
xt+1

)
. The iteration

count is incremented, a move set is generated for the new current solution, and the process

is repeated.

In a comparison of heuristics and metaheuristics, Van Breedam (2001) identifies TS as

a dominant improvement heuristic with the certainty of achieving at least a local optimum.

Their observation is confirmed by Lee et al. (2006). Ichoua et al. (2003) implement the

TS in both a static and dynamic setting, and claim that the model provides substantial

improvements over a model based on fixed travel times. Recent developments include dras-

tically reducing the size of the search neighborhood, so called granular neighborhoods (Toth

and Vigo, 2003). Results obtained when using promising moves, as proposed by granular

neighborhoods, yielded good solutions within short computing times.

3.3.2 Simulated Annealing (SA)

As opposed to a local search method, SA is a randomized search method (Brucker, 2004).

To understand the concept of simulated annealing in optimization, one has to look at its

analogy to the physical annealing system as first introduced by Kirkpatrick et al. (1983).

The ground state of a solid, for example steel, is that state in which its atoms or particles

are arranged into a minimum energy configuration – the most stable state of the solid. The

ground state of a metal can be obtained through the process of physical annealing. The

metal is first heated to a high temperature to induce its transformation from a solid to a

liquid. This temperature is called the melting point of the metal. In its liquid state the

metal is unstable, the particles move about freely, exhibiting high energy, since they are not

arranged in any set configuration. The temperature is then carefully reduced to allow the

particles to gradually settle into the arrangement of minimum energy and the ground state

is obtained.

Similarly, SA is aimed at obtaining the minimum value of the objective function of an

optimization problem which corresponds to the ground state of the solid (Tan et al., 2001c).

Any other state of the solid corresponds to a feasible solution for the optimization problem,

and the energy of a state of the solid is equivalent to the objective function value of a

solution. A control parameter q, analogous to the temperature of the physical system, is

used to control the gradual convergence of the SA algorithm towards the global optimum by
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regulating the acceptance of moves that deteriorates the objective function value. Similar to

a small displacement of the atoms of the solid, the current solution at stage t, xt, undergoes

small perturbations 4x as it converges towards the optimum solution.

The general SA metaheuristic provided in Algorithm 3.2 requires an initial solution x0,

and a stopping criteria. Alfa et al. (1991) indicate that the computational time required for

finding good solutions are sensitive to the quality of initial solutions. As for the TS algorithm,

an iteration limit count tmax is used. The algorithm also requires an initial temperature q0

and a cooling parameter δ that reduces the temperature of the system after a sufficient

number of iterations, denoted by qmax.

Initializing the SA algorithm entails setting both the iteration count and the temperature

control count to zero, setting the temperature to the initial temperature, and assigning the

initial solution as the incumbent x̂. The neighborhood is established through any of the

perturbations discussed in Section 3.2.2.

If either the iteration count limit tmax is reached, or there are no more feasible moves

4x in the neighborhood move set Mxt
for the current solution xt, the algorithm terminates.

Otherwise the move is tested for acceptance. If the move is improving the objective function

value, it is accepted with a probability of 1. If the move is deteriorating, it will still be

accepted with probability

P [accept] = e

„
c(x̂)−c(x′)

q

«

Returning to the analogy between the physical annealing of a solid and the simulated anneal-

ing algorithm, the acceptance criterion for the SA algorithm is deducted from the Metropolis

criterion. The Metropolis algorithm, as introduced by Metropolis et al. (as cited by Aarts

and Korst (1989)) is a simple algorithm for simulating the physical annealing of a solid. It

states that, given a current state i of the solid with energy Ei, a subsequent state j, with

energy Ej is generated via a small displacement of the atoms of the solid. If the resulting

energy difference, Ej − Ei, is less than or equal to zero, j is accepted as the new current

state. If, however, the energy difference should be greater than zero, the state j will only be

accepted with probability

P [accept] = e

“
Ei−Ej

kBT

”

where T is the current absolute temperature of the solid and kB is known as the physical

Boltzmann constant. Kirkpatrick et al. (1983) noted that since the temperature is merely

a control parameter, the Boltzmanns constant can be omitted. The control parameter is
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Algorithm 3.2: Simulated Annealing
Input: Initial feasible solution x0; Iteration limit tmax

Input: Initial temperature q0 � 0; Temperature limit qmax; Cooling factor 0 < δ ≤ 1

t← 01

qcount ← 02

q ← q03

x̂← xt4

Generate feasible move set Mxt
5

while 4x ∈Mxt
and t < tmax do6

x′ ← xt +4x7

if qcount = qmax then8

q ← δq9

qcount ← 010

else11

qcount ← qcount + 112

endif13

if either c (x′) < c (x̂) or Probability
(
e

c(x̂)−c(x′)
q

)
then

14

xt+1 ← x′15

if c
(
xt+1

)
< c (x̂) then16

x̂← xt+117

endif18

else19

xt+1 ← xt20

endif21

t← t+ 122

Generate feasible move set Mxt
23

endw24
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formulated so as to allow virtually all deteriorating moves during the initial stages of the

algorithm. As the control parameter is gradually decreased, the probability of accepting

deteriorating moves also decreases, and the algorithm converges to the global optimum.

Robusté et al. (1990) indicate in their application of SA that a human can actually out-

perform the algorithm for large problems in terms of the quality of the solution. Development

of the SA have since continued with Van Breedam (1995) reviewing and comparing variants

of the SA. Tan et al. (2001c) attribute a number of advantages to the SA metaheuristic:

• Deals with arbitrary systems and cost functions.

• Statistically guarantees an optimal solution (provided sufficient processing time).

• Relatively easy to code, even for complex problems.

• Generally gives a good solution within reasonable processing time.

The latter point has been supported by Van Breedam (2001) stating that the difference in so-

lution quality between TS and SA never exceeded 4% in his evaluation. In their comparative

analysis of three metaheuristics, Tan et al. (2001c) conclude that SA is a good compromise

between computational effort and quality of solution.

3.3.3 Genetic Algorithm (GA)

GAs were developed and published by John Holland in 1975. GAs are algorithms that

search for global optimal solutions by intelligently exploiting random search methods, emu-

lating biological evolution (Rardin, 1998). The relationships between genetic evolution and

optimization are:

• Populations are represented by groups, each representing a feasible solution.

• In a population, parents mate according to natural selection. This is analogous to

randomly selected feasible parent solutions.

• Offspring are produced by the mating of the selected parents and represent newly

created solutions.

• In nature, offspring exhibit some characteristics of each parent since chromosomes are

exchanged to form new chromosome strings. The algorithm draws on the analogy by

creating two new offspring solutions using perturbations such as swapping, on parts of

the parent solutions. In GAs the perturbations are often referred to as crossovers.
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• Survival of the fittest is also incorporated as the fitness of a solution can be related to

its objective function value. The fittest solutions will typically reproduce to ensure the

survival of the fittest solution in the next generation.

• Mutation for diversity is represented in the metaheuristic by the random modification

of chromosomes, i.e. possible solutions.

Goldberg (1989) reviews GA applications in search strategies an optimization. The general

GA metaheuristic provided in Algorithm 3.3 indicates p unique feasible initial solutions

Algorithm 3.3: Genetic Algorithm
Input: Generation limit tmax

Input: Population size p; Initial feasible solutions x0
1 . . . x

0
p

Input: Population subdivisions pe, pi, and pc such that pe + pi + pc = p

t← 01

while t < tmax do2

begin elite3

Copy pe best solutions from generation t to generation t+ 14

end5

begin immigrant6

Include pi new solutions in generation t+ 17

end8

begin crossover9

Choose pc

2 non-overlapping pairs of solutions from generation t10

Perform crossover perturbations11

Include new solutions in generation t+ 112

end13

t← t+ 114

endw15

x? ← min
i∈{1,...,p}

{
xt

i

}
16

x̂← locally optimized x?17

required to constitute generation 0. Filipec et al. (1998) test their GA with various population

sizes and conclude that too small a population may terminate the algorithm prematurely as

diversification is compromised, while too large populations slows down the convergence rate

as more generations are required (increased computational effort) to initiate dominance of
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quality solutions. Initial solutions are created either randomly or using route construction

heuristics as discussed in Section 3.2.1 (Vas, 1999). Skrlec et al. (1997) and Tan et al. (2001c)

suggest using only heuristics so as to improve the rate of convergence.

The algorithm only terminates when a sufficient number of generations have existed.

Survival of the fittest is ensured as the pe best solutions of generation t is cloned exactly into

generation t + 1. A number, pi, of new immigrant solutions are generated and included in

generation t+1. The balance of generation t+1 is made up by performing various crossover

perturbations on a random selection of pc

2 solutions from generation t.

Two distinct approaches are found in literature to solve constrained VRPs with GAs.

Cluster first, route second

This approach was popular in early writings. Thangiah et al. (1991) developed GIDEON, a

GA program used to solve the VRPTW. At the time it was the best algorithm available for

the VRPTW as it produced the best known solutions for 41 of the 56 benchmark problems

introduced by Solomon (1987). GIDEON has two distinct modules:

Clustering This module assigns customers to specific vehicles in a process called genetic

clustering. It uses a GA to sector customers into clusters, with each cluster serviced by

one vehicle. Figure 3.2 shows the sweeping motion that is is used together with seed

angles to create clusters. Each vehicles cluster is routed to minimize route cost, not

taking into account vehicle capacities or time windows. The first customer per route,

referred to as the seed customer, is randomly selected out of the cluster, the rest of

the route is formed by determining which customer, when inserted in the route, will

produce the lowest route cost, i.e. using a savings heuristic. The best set of clusters

obtained by this module is transferred to the next module.

Local route optimization Customers are exchanged between clusters to ensure the feasi-

bility of the solution — taking into account time windows and vehicle capacities. To

change a customers cluster, its angle is artificially altered. When a cluster is changed,

a cheapest insertion algorithm is used to improve the cluster route.

Nygard and Kadaba (1991), Thangiah and Gubbi (1993), Malmborg (1996), Filipec et al.

(1997), Skrlec et al. (1997) and Karanta et al. (1999) were among the contributors using the

cluster first, route second approach. Nygard and Kadaba (1991) found that GAs for VRPs

tend not to perform well when customers are geographically clustered and a small fleet is
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Seed angle 1

Seed angle 2

Seed angle 3

Seed angle 5

Seed angle 4

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Depot

Figure 3.2: Division of customers using seed angles (Thangiah et al., 1991)

used. For all other problem instances the GA performs well. Tan et al. (2001c) claims that

the approach “is only a hybrid heuristic that constitutes some GA element”.

Route first, cluster second

Recently, path representations are implemented more often for all VRP variations (Filipec

et al., 1998; Hwang, 2002; Maeda et al., 1999; Ochi et al., 1998; Prins, 2004; Tan et al.,

2001b,c; Zhu, 2003). To indicate separate routes in a chromosome, extra partitioning char-

acters need to be inserted into the chromosome. These extra characters may render the GA

useless. GAs use two phases to solve VRP variations, with each chromosome representing a

specific path through all the customers. In the first routing phase, the GA improves the long

chromosome string by solving a TSP for all customers. The second clustering phase creates

a route for each vehicle out of the long route. This is done by another algorithm that adds

customers to a vehicle only if time windows are not violated, until the vehicle is full. The
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following customer in the single route chromosome is then assigned to the next vehicle.

Tan et al. (2001c) were the first to compare three popular metaheuristics, TS, SA and

GA for VRP variants. They conclude that GAs were successful in solving the VRPTW,

but deduce that there is still no single metaheuristic generic enough to solve all routing

problems.

3.3.4 Ant Colony Optimization (ACO)

ACO algorithms are classified as iterative, probabilistic metaheuristics for finding solutions to

combinatorial optimization problems. ACO is a general term proposed by Dorigo and Stützle

(2002) that includes all ant algorithms. The ant algorithm is an evolutionary approach where

several generations of artificial ants search for good solutions. Every ant of a generation

builds a solution in a step by step manner, going through several decisions. Ants that found

good solution(s) mark their paths through the decision space by placing pheromone on the

edges of the path. The ants of the next generation are attracted to pheromone and they are

more likely to search the solution space near good solutions (Middendorf et al., 2002).

Ant algorithms are inspired by the foraging mechanism employed by real ants attempting

to find a shortest path from their nests to food sources. A foraging ant will mark its path

by distributing an amount of pheromone on the trail, thus encouraging, but not forcing,

other foraging ants to follow the same path (Dorigo et al., 1999). Pheromone is the generic

name for any endogenous chemical substance secreted by an organism to incite reaction in

other organisms of the same specie. This principle of modifying the environment to induce

a change in the ants’ behavior via communication is known as stigmergy. The effect of

stigmergy provides the basis for the ant foraging behavior and artificial ant metaheuristics.

Dorigo et al. (1999) discuss the experiments conducted that suggest that the social structure

of ant colonies can determine shortest paths between the nest and food sources. A formal

proof, however, is absent.

There are a number of direct relationships between real foraging ants and artificial ants

used in the ACO metaheuristic.

Colony of cooperating individuals Similar to real ants, artificial ants are composed of

a population (or colony) of concurrent and asynchronous entities cooperating to find

food timeously. The artificial food are good solutions to the optimization problem

under consideration. Although the complexity of each artificial ant is such that it can

build a feasible solution, high quality solutions are the result of the cooperation among
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the individuals of the whole colony. This is analogous to a real ant that can by chance

find a path between the nest and the food. But only the cooperation of the whole

colony can ensure that sufficient food sources are located as close as possible to the

nest. Ants cooperate by means of the information they concurrently read and write on

the problems states.

Pheromone trail and stigmergy Artificial ants modify some aspects of their environ-

ment as real ants do. While real ants deposit a chemical substance, pheromone, on the

world state they visit, artificial ants change some numeric information locally stored

in the problem state they visit. This information takes into account the ants current

history or performance and can be read and written by any ant accessing the state. By

analogy, this numeric information is called the artificial pheromone trail, pheromone

trail for short. In ACO algorithms local pheromone trails are the only communication

channels among the ants. This stigmergetic form of communication plays a major role

in the utilization of collective knowledge. Its main effect is to change the way the

environment (the problem landscape) is locally perceived by the ants as a function of

all the past history of the whole ant colony.

Usually, in ACO algorithms an evaporation mechanism is employed, similar to real

pheromone evaporation, that modifies pheromone information over time. Pheromone

evaporation allows the ant colony slowly to forget its past history so that it can direct its

search toward new directions without being over-constrained by past decisions, hence

addressing the diversification issue raised for metaheuristics in general.

Shortest path searching and local moves Artificial and real ants share the common

task of finding a shortest (minimum cost) path joining an origin (nest) and destination

(food). Real ants systematically walk through adjacent terrains’ states. Similarly,

artificial ants move step-by-step through the neighborhood of solutions of the problem.

The exact definitions of state and neighborhood are problem specific.

Stochastic and myopic state transition policy Artificial ants, as does real ants, build

solutions applying a probabilistic decision policy to move through adjacent states. As

for real ants, the artificial ants’ decision policy makes use of local information only

and it does not make use of lookahead to predict future states. Therefore, the applied

policy is completely local, in space and time. The policy is a function of both the a

priori information represented by the problem specifications (equivalent to the terrains
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structure for real ants), and of the local modifications in the environment (pheromone

trails) induced by past ants.

Artificial ants also have some characteristics that do not have counterparts in real ants.

Artificial ants live in a discrete world and their moves consist of transitions from discrete

states to discrete states. Artificial ants have an internal state. This private state contains

the memory of the ants’ past actions. Artificial ants deposit an amount of pheromone that

is a function of the quality of the solution found. Timing in pheromone laying is problem

dependent and often does not reflect real ants behavior. For example, in many cases artificial

ants update pheromone trails only after having generated a solution. To improve overall

system efficiency, ACO algorithms can be enriched with extra capabilities such as the ability

to forecast, local optimization, and backtracking that cannot be found in real ants.

An ant is a simple computational agent, which iteratively constructs a solution for the

instance to solve. Partial problem solutions are seen as states. At the core of the ACO

algorithm lies a loop, where at each iteration, each ant moves (performs a step) from a state

i to another one j, corresponding to a more complete partial solution.

Algorithm 3.4 is based on Maniezzo et al. (2004) and requires an a priori desirability

Algorithm 3.4: Ant Colony Optimization
Input: Attractiveness ηij ; Trail level τij

Input: Number of ants k

while t < tmax do1

for each ant k do2

repeat3

choose in probability the state j to move to4

append ant k’s set tabuk5

until ant k’s solution is complete6

endfor7

for each ant move (i, j) do8

compute 4τij9

update trail matrix10

endfor11

t← t+ 112

endw13
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of the route referred to as the attractiveness, ηij , for each origin-destination pair (i, j). The

attractiveness is often also referred to as the heuristic information (Meuleau and Dorigo,

2002). The trail level τij of the move from i to j is required and indicates how beneficial it

has been in the past to make that particular move. The trail level therefore represents an a

posteriori indication of the desirability of the move. As in previous metaheuristics discussed,

an iteration limit tmax terminates the ACO.

For each ant k a solution is incrementally built using both the attractiveness and the

trail level, weighted with preset parameters. Each ant’s memory of tabu moves are updated

accordingly to ensure only feasible solutions are created. Once all ants have their solutions,

the pheromone trail matrix is updated by determining how many ants (solutions) traversed

specific edges (i, j). The iteration number is incremented, and the process repeated until the

maximum number of iterations have been reached.

Although Bullnheimer et al. (1999) could not improve on the best solutions found for sets

of benchmark problems, the competitiveness of ACO is applaudable, given the immaturity of

the approach to VRP variants compared to established, and well-researched metaheuristics.

Detailed algorithmic approaches are provided by Dorigo and Gambardella (1997a,b), and

Meuleau and Dorigo (2002) for the TSP and Gambardella et al. (1999) for the VRPTW

which should stimulate and accelerate research in the respective fields and its variants. A

robust algorithm presented by Reimann et al. (2004) is able to solve a number of VRP

variants.

3.4 Conclusion

In the first review article of ACO theory, Dorigo and Blum (2005) comprehensively state that

research contributions using metaheuristics as new as the ACO focus on proof-of-concept.

This, however, is still true for the majority of theoretical papers on heuristics and meta-

heuristics. Solution quality and computational burden of various algorithm contributions

are compared using benchmark problems (Van Breedam, 2001). The state-of-the-art for

generic variants of the VRP are often implemented in commercial software applications. In

such applications the parameter values for the specific metaheuristic are usually fixed, and

are based on experiments with the benchmark data.

The majority of literature reviewed in this chapter either suggest parameter values that

perform well in the majority of cases, or confirm that parameter settings are inherently

problem specific. This review concludes with the observation that an intelligent routing
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system is required that will be able to observe the problem environment in which it is

implemented, and dynamically adjust parameter settings in order to improve future solutions.
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Chapter 4
An improved initial solution algorithm

Although Ichoua et al. (2003) employ a random insertion heuristic to create initial solutions,

Van Breedam (2001) introduces an initial solution parameter in his evaluation of improve-

ment algorithms, and finds that, in most cases, a good initial solution results in significantly

better final results. This thesis proposes the use of a savings route construction heuristic

based on Joubert (2003)1. Solomon (1987) concludes that, from the five initial solution

heuristics evaluated, the Sequential Insertion Heuristic (SIH) proved to be very successful,

both in terms of the quality of the solution, as well as the computational time required to

find the solution. Section 3.2.1 reviews a number of route construction heuristics.

4.1 A route construction heuristic

An overview of the initial solution algorithm proposed in this thesis is provided in Algo-

rithm 4.1. Initializing the algorithm requires a distance matrix. When using benchmark

data sets only customer coordinates are provided, and the Minkowski distances are calcu-

lated using (2.46). If a Geographical Information System (GIS) is used, the travel distances

can be determined through a process referred to as geocoding and route calibration. The

initial solution algorithm also requires a travel time matrix for all node pairs (i, j).

4.1.1 Time-dependent travel times

Congestion effects become critical when time windows are imposed by customers, because

in routing the temporal issue is of greater concern than the spatial issue. Three valuable

contributions that incorporate both time dependent travel time and time windows are Ahn
1A revised version of this chapter has been published by Joubert and Claasen (2006)
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Algorithm 4.1: Initial solution heuristic
Input: Customer data

Input: Fleet data

Initialize algorithm1

repeat Initialize tour2

Establish tour starting time3

Assign vehicle4

repeat Build tour5

Establish route start time6

Identify seed customer7

repeat Expand partial route8

Determine insertion criteria9

Determine selection criteria10

Insert node11

until either all nodes are routed or no node identified for insertion12

Determine multi route feasibility13

until either all nodes are routed or route expansion infeasible14

until either all nodes are routed or vehicles are depleted15

Establish orphans16

Report initial solution s17
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and Shin (1991), Fleischmann et al. (2004), and Ichoua et al. (2003).

Fleischmann et al. (2004) implement their routing algorithm when dynamic travel data

is available through the Berlin traffic management system. Let:

τijk , shortest travel time from node i to node j when the start time is in the

time slot Zk

with the day divided into K time slots Zk = [zk−1, zk] , k ∈ {1, 2, . . . ,K}. The planning

horizon is denoted by the time interval [z0, zK ] which may coincide with the time window

for the depot, becoming the time interval [e0, Lmax
0 ]. The authors propose a smoothing of

the travel time function with the introduction of

τij (t) , travel time from node i to node j for the start time t at node i.

This is similar to the travel time proposed by Ichoua et al. (2003) where real traffic data

is not accessible. A computationally efficient routine is introduced to acquire the travel

time. A distance matrix D = (dij) is created for all i, j ∈ {1, 2, . . . , n} nodes. The planning

horizon is also divided into K planning periods, while the edges are partitioned into C

subsets A = (Ac)1≤c≤C based on, for example, road type. To limit the number of speed

values stored for each edge (i, j) for each time slot t, a travel speed vct is associated with

each edge partition c for each time slot t. The dynamic travel time between nodes i and j

can consequently be determined through Algorithm 4.2, if the travel start time at node i is

denoted by t0 ∈ Zk = [zk−1, zk].

Calculating the travel time matrix, however, is computationally expensive. Instead of

calculating a travel time between each (i, j) pair for each time unit k in the scheduling period,

Algorithm 4.3 introduces Time Window Compatibility (TWC) to only calculate travel time

values for node pairs that have compatible time windows.

4.1.2 Time window compatibility

The introduction of the TWC concept assists in identifying, and eliminating, obvious infea-

sible nodes. This results in a more effective and robust route construction heuristic. The

purpose of TWC is to determine the time overlap of all edges, or node combinations, (i, j),

where i, j ∈ {0, 1, 2, . . . , N}, and N the total number of nodes in the network. During the

route construction phase, time window compatibility can be checked, and obvious infeasible

nodes can be eliminated from the set of considered nodes. The Time Window Compatibility
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Algorithm 4.2: Travel time calculation procedure
Input: Distance matrix D = (dij)

Input: Travel speed matrix V = (vct)

t← t01

d← dij2

t′ ← t+ d
vcZk

3

while t′ > zk do4

d← d− vcZk
(zk − t)5

t← zk6

t′ ← t+ d
vcZk

7

k ← k + 18

endw9

tijt = t′ − t010

Algorithm 4.3: Incorporating time window compatibility with time dependent travel

time

foreach node pair (i, j) do1

calculate TWCij2

if TWCij 6= −∞ then3

foreach time period k ∈ {1, . . . ,K} do4

calculate τijk using Algorithm 4.25

endfch6

else7

foreach time period k ∈ {1, . . . ,K} do8

τijk ←∞9

endfch10

endif11

endfch12
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Matrix (TWCM) is a non-symmetrical matrix as the sequence of two consecutive nodes, i

and j, is critical. Let:

N , be the total number of nodes

ei , be the earliest allowed arrival time at customer i, where i = {0, 1, . . . , N}

li , be the latest allowed arrival time at customer i, where i = {0, 1, . . . , N}

si , be the service time at node i, where i = {0, 1, . . . , N}

tij , be the travel time from node i to node j, where i, j = {0, 1, . . . , N}

aei
j , be the actual arrival time at node j, given that node j is visited directly

after node i, and that the actual arrival time at node i was ei, where

i, j = {0, 1, . . . , N}

ali
j , be the actual arrival time at node j, given that node j is visited directly

after node i, and that the actual arrival time at node i was li, where

i, j = {0, 1, . . . , N}

TWCij , be the time window compatibility when node i is directly followed by node

j

TWCij indicates the entry in row i, column j of the TWCM. Consider the following five

scenarios that illustrate the calculation of time window compatibility. Each scenario assume

customer j to be serviced directly after customer i, a service time of one hour, and a travel

time of two hours from node i to node j.

Scenario 1: if aei
j > ej and ali

j < lj , illustrated in Figure 4.1. Customer i specifies a time

06:00 08:00 10:00 12:00 14:00 16:00
Time

ei li

ej lj

si + tij TWCij

aj
ei aj

li

node i

node j

18:00

Figure 4.1: Time window compatibility scenario 1

window [ei, li] = [08:00,12:00], while customer j requires service during the time window

[ej , lj ] = [09:00,16:00]. If service at customer i starts at the earliest allowed time, ei,
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then the actual arrival time at customer j would be calculated as

aei
j = ei + si + tij (4.1)

In this scenario aei
j = 11:00. Similarly, ali

j would be the actual arrival time at customer

j, given that the actual arrival time at customer i was li, and is calculated as

ali
j = li + si + tij (4.2)

The difference between aei
j and ali

j indicates the time window overlap between the two

nodes. The time window compatibility is calculated as

TWCij = ali
j − a

ei
j (4.3)

For this example, the time window compatibility is four hours (04:00).

Scenario 2: if aei
j > ej and ali

j > lj , illustrated in Figure 4.2. Customer i specifies a time

08:00 10:00 12:00 14:00 16:00
Time

ei li

ej ljaj
ei aj

l i

si + tij TWCij

node i

node j

18:00

Figure 4.2: Time window compatibility scenario 2

window [ei, li] = [08:00,12:00], while customer j requires service during the time window

[ej , lj ] = [09:00,13:00]. The calculations for aei
j and ali

j are similar to (4.1) and (4.2),

respectively. The time windows of customer i and customer j only partly overlap, and

the time window compatibility is calculated as

TWCij = lj − aei
j (4.4)

For this example, the time window compatibility is two hours (02:00).

Scenario 3: if aei
j < ej and ali

j < lj , illustrated in Figure 4.3. Customer i specifies a time

window [ei, li] = [08:00,12:00], while customer j requires service during the time window

[ej , lj ] = [12:00,16:00]. The calculations for aei
j and ali

j are similar to (4.1) and (4.2),
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06:00 08:00 10:00 12:00 14:00 16:00
Time

ei li

ej ljaj
ei aj

li

si + tij TWCij

node i

node j

18:00

Figure 4.3: Time window compatibility scenario 3

respectively. The time windows of customer i and customer j only partly overlap, and

the time window compatibility is calculated as

TWCij = ali
j − ej (4.5)

For this example, the time window compatibility is three hours (03:00).

Scenario 4: if aei
j and ali

j < ej , illustrated in Figure 4.4. Customer i specifies a time

06:00 08:00 10:00 12:00 14:00 16:00
Time

18:00

ei li

ej ljaj
ei aj

li

si + tij TWCij

node i

node j

Figure 4.4: Time window compatibility scenario 4

window [ei, li] = [08:00,12:00], while customer j requires service during the time window

[ej , lj ] = [17:00,18:00]. The calculations for aei
j and ali

j are similar to (4.1) and (4.2),

respectively. The time windows of customer i and customer j do not overlap. Even if

customer i is serviced as late as possible, li, a waiting time is incurred at customer j.

The time window compatibility is calculated as

TWCij = ali
j − ej (4.6)

For this example, the time window compatibility is negative two hours (-02:00). The

significance of the negative time is that it is possible, in this case, to service customer j

after customer i, although the waiting time is penalized.
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Scenario 5: if aei
j and ali

j > lj , illustrated in Figure 4.5. Customer i specifies a time

06:00 08:00 10:00 12:00 14:00 16:00
Time

node i

node j

NO

ei li

ej lj

aj
ei aj

li

si + tij
TWCij

18:00

Figure 4.5: Time window compatibility scenario 5

window [ei, li] = [08:00,12:00], while customer j requires service during the time window

[ej , lj ] = [07:00,11:00]. The calculations for aei
j and ali

j are similar to (4.1) and (4.2),

respectively. Although the time windows of customer i and customer j partly overlap,

it is impossible to service customer j, even if customer i is serviced as early as possible,

ei. Therefor, no time window compatibility exist.

A generalized equation is proposed that will address all five scenarios illustrated, and is

given by (4.7).

TWCij =


min{ali

j , lj} −max{aei
j , ej} if lj − aei

j > 0

−∞ otherwise
(4.7)

The higher the value, the better the compatibility of the two time windows considered.

Therefore an incompatible time window is defined to have a compatibility of negative infinity.

Example. Consider the following example with five nodes geographical distributed around

a depot in Figure 4.6. In the example, node c has indicated two possible time windows.

To accommodate multiple time windows, the customer is artificially split and treated

as two separate nodes, c1 and c2, respectively, each having a single time windows.

The time windows for each customer, including the depot, as well as the service time

at each node, are given in Table 4.2. The distance matrix, D, is calculated using

the rectangular distance between nodes. With the grid provided in Figure 4.6, the

68

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoouubbeerrtt,,  JJ  WW  ((22000077))  



0 10 20 30 40 50 60 70 80 90 100 110 120

10

20

30

40

50

60

70

80

90

100

Kilometers

A

B

C

D

E

K
ilo

m
et

er
s

Depot

Figure 4.6: Geographical distribution of nodes around a depot

Table 4.2: Time windows and service times

Service time

Node Time window (in hours)

(i) (ei; li) si

Depot 07:00 – 18:00 0.00

a 08:00 – 12:00 0.50

b 11:00 – 13:00 0.25

c1 08:00 – 09:00 0.25

c2 15:00 – 17:00 0.25

d 08:00 – 12:00 0.50

e 10:00 – 15:00 0.25
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distances can be obtained through inspection.

D =



0 60 60 50 50 70 60

60 0 20 70 70 110 120

60 20 0 50 50 110 120

50 70 50 0 0 80 90

50 70 50 0 0 80 90

70 110 110 80 80 0 70

60 120 120 90 90 70 0


If the average speed is known, the time matrix, T , can be calculated, but in the presence

of time dependent travel time, the travel times are calculated using Algorithm 4.2. For

illustrative purposes in this example only, T is given. Values are in hours.

T =



0 1 1 1 1 1 1

1 0 0.5 1 1 2 2

1 0.5 0 1 1 2 2

1 1 1 0 0 1.5 1.5

1 1 1 0 0 1.5 1.5

1 2 2 1.5 1.5 0 1

1 2 2 1.5 1.5 1 0


With the information at hand, the time window compatibility matrix can be calculated.

For the given example,

TWCM =



11 4 2 1 2 4 5

4 3.5 2 −∞ −1.5 1.5 4

2 0.25 1.75 −∞ −0.75 −∞ 1.75

1 1 −0.75 0.75 −5.75 1 0.75

1.75 −∞ −∞ −∞ 1.75 −∞ −∞

4 1.5 2 −∞ −1 3.5 3.5

5 −∞ 0.75 −∞ 1.75 0.75 4.75


4.2 Improving the initial solution heuristic

Initialization criteria in Algorithm 4.1 refer to the process of finding the seed customer : the

first customer to be inserted into a new route. Joubert (2003) proposes the use of the TWC

concept to identify seed customers. When looking at the TWCM example, it is clear that the
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Table 4.3: Number of infeasible time window instances

Number of infeasible time windows

Node as origin as destination Total

Depot 0 0 0

a 1 2 3

b 2 1 3

c1 0 5 5

c2 5 0 5

d 1 2 3

e 2 1 3

incompatibility is distinct for specific nodes. It is therefor possible to identify incompatible

nodes. As opposed to the two most common initialization criteria, namely customer with

earliest deadline, and furthest customer, as suggested by Dullaert et al. (2001), the author of

this thesis proposes the use of the TWCM to identify seed nodes based on their time window

compatibility. Table 4.3 indicates the number of instances where a node has an infeasible

time window with another node, either as origin, or as destination. Both nodes c1 and c2

have five infeasible instances. The two artificial nodes are representing the same customer

c. It can be concluded that customer c is the most incompatible node, and is identified as

the seed customer. Ties are broken arbitrarily. Should two nodes have the same number

of infeasible time window instances, either of the two customers could be selected as seed

customer.

It may be possible to not have any infeasible time window instances. In such a scenario,

a total compatibility value, denoted by Ctotal
a , can be determined for each node a, and is

calculated using either (4.8) or (4.9),

Ctotal
a =

M∑
i=1,i6=a

TWCia +
M∑

j=1,j 6=a

TWCaj + TWCaa ∀a (4.8)

Ctotal
a =

M∑
i=1

TWCia +
M∑

j=1

TWCaj − TWCaa ∀a (4.9)

where M refers to all the unrouted nodes, including all instances of those nodes that are split

artificially. The customer with the lowest total compatibility is selected as seed customer.

Once the seed customer has been identified and inserted, the SIH algorithm considers, for
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all unrouted nodes, the insertion position that minimizes a weighted average of the additional

distance and time needed to include a customer in the current partially constructed route.

This second step is referred to as the insertion criteria. Note that the terms nodes and

customers are used interchangeably. The insertion and selection criteria can be simplified

using the example illustrated in Figure 4.7. The partially constructed route in the example

A

B

C

D

E

Depot

Figure 4.7: Sequential insertion of customers

consists of the depot and three routed nodes, namely B, C, and E. The route can be

expressed as Depot-B-C-E-Depot. Nodes A and D are unrouted. The insertion criteria,

denoted by c1(i, u, j), calculates the best position and associated cost, between two adjacent

nodes i and j on the partial route, to insert a customer u, and is calculated for each of the

unrouted nodes. Consider node A in the example. There are four edges where the node can

be inserted, namely Depot-B, B-C, C-E, or E-Depot, as illustrated in Figure 4.8. Dullaert

et al. (2001) extend Solomon’s heuristic and determines c1(i, A, j) for the unrouted node A

as

c1(i, A, j) = min
p={1,2,...,m}

[c1(ip−1, A, ip)] (4.10)

in which m represents the routed nodes in the partially constructed route. If the expressions

are generalized for all unrouted nodes u, the insertion criteria is calculated as

c1(i, u, j) = α1c11(i, u, j) + α2c12(i, u, j) + α3c13(i, u, j) (4.11)
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A

B

C

D

E

Depot

Figure 4.8: Selection criteria

with

c11(i, u, j) = diu + duj − µdij , µ ≥ 0 (4.12)

c12(i, u, j) = anew
j − aj (4.13)

c13(i, u, j) = ACS, AOOS, or AROS (4.14)

With the extension to Solomon’s heuristic, the weighting factors αi need not add up to 1.

The additional distance, and the additional time needed to serve customer u after customer i,

but before customer j is denoted by c11(i, u, j) and c12(i, u, j), respectively. The new actual

arrival time at node j is denoted by bnew
j in (4.13). The vehicle savings criteria, denoted by

c13(i, u, j), considers any one of three parallel approaches to vehicle cost, where the savings

concepts introduced by Golden et al. (1984) are adapted. Let:

F (z) , the fixed cost of the smallest vehicle that can service a cumulative route

demand of z

F ′(z) , the fixed cost of the largest vehicle whose capacity is less than or equal

to z

P (z) , the capacity of the smallest vehicle that can service a demand of z

Q , be the load of the vehicle currently servicing the route

Q , be the maximum capacity of the vehicle currently servicing the route
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Qnew , be the new load of the vehicle after the customer has been inserted into

the route

Q
new

, be the (new) capacity of the vehicle after the customer has been inserted

into the route

The Adapted Combined Savings (ACS) is defined as the difference between the fixed

costs of the vehicles capable of transporting the load of the route after, and before, inserting

customer u, and is calculated by (4.15).

ACS = F (Qnew)− F (Q) (4.15)

The Adapted Optimistic Opportunity Savings (AOOS) extends the ACS by subtracting

the fixed cost of the vehicle that can service the unused capacity, and is calculated by (4.16).

AOOS = [F (Qnew)− F (Q)]− F (Qnew −Qnew) (4.16)

The Adapted Realistic Opportunity Savings (AROS) takes the fixed cost of the largest

vehicle smaller than or equal to the unused capacity, F ′(Qnew − Qnew), into account as an

opportunity saving. It only does so if a larger vehicle is required to service the current route

after a new customer has been inserted. AROS is calculated by (4.17).

AROS = [F (Qnew)− F (Q)]− δ(ω)F ′ (Qnew −Qnew
)

(4.17)

where

δ(ω) =


1 if Q+ qu > Q

0 otherwise.

Any one of these savings criteria can be used as all three outperformed previous best

published results for the initial solution (Dullaert et al., 2001). Once the best position for

each unrouted node has been determined, as illustrated in Figure 4.9, the customer that is

best according to the selection criteria, is selected — the third step in the SIH algorithm.

The procedure can be expressed mathematically as

c2(i, u?, j) = max
u

[c2(i, u, j)], u unrouted and feasible (4.18)

c2(i, u, j) = λ(dou + tou) + su + F (qu)− c1(i, u, j), λ ≥ 0 (4.19)

The best customer, u?, is then inserted into the partially created route between its specific

nodes i and j. From Figure 4.9, consider node D to be the best node. After inserting D into
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A

B

C

D

E

Depot

Figure 4.9: Best insertion position determined for each unrouted node

the current route, node A remains the only unrouted node, and the new route is illustrated

in Figure 4.10, and can be expressed as Depot-B-D-C-E-Depot. The insertion process is

A

B

C

D

E

Depot

Figure 4.10: New route after inserting best customer

repeated until no remaining unrouted nodes have a feasible insertion place. A new route is

then initialized and identified as the current route.

A shortcoming of Solomon’s SIH 1987 is that it considers all unrouted nodes when cal-

culating the insertion and selection criteria for each iteration. The fact that all unrouted

nodes are considered makes it computationally expensive. The occurrence of obvious in-

feasible nodes in a partially constructed route becomes significant in the extended problem

considered in this thesis. In each iteration, these criteria are calculated for each edge on the

partially constructed route, irrespective of the compatibility of the time window of the node

considered for insertion with the time windows of the two nodes forming the edge. For an
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improved case, consider the example where node u is considered for insertion between nodes

i and j. As the TWCM is already calculated, it is possible to check the compatibility of

node u with the routed nodes i and j. If either TWCiu or TWCuj is negative infinity (−∞),

indicating an incompatible time window, the insertion heuristic moves on and considers the

next edge, without wasting computational effort on calculating the insertion and selection

criteria. In the earlier example, eleven instances of infeasible time windows occur. If these

instances are identified and eliminated, a computational saving in excess of 22% is achieved.

The saving is calculated as the percentage of instances with time window incompatibilities

of the total number of travel time instances.

4.3 Initial solutions

Solomon (1987) introduced 54 benchmark problems contained in six distinctive sets for the

VRPTW, denoted by c1, c2, r1, r2, rc1, and rc2, each with 100 customer nodes. Each set

highlights several factors that can affect the behavior of routing and scheduling heuristics.

These factors include the geographical dispersion; the number of customers serviced by a

vehicle, i.e. the relation between customer demand and vehicle capacity; and time window

characteristics such as percentage of time-constrained customers, as well as the tightness and

positioning of time windows.

The geographical data for the first group of problem sets are randomly generated using

a uniform distribution (denote the corresponding problem sets by r1 and r2). The second

group of sets are clustered (denote the corresponding problems sets by c1 and c2). A third

semi-clustered group of sets have a combination of randomly distributed and clustered points

(denote the corresponding problem sets by rc1 and rc2. Problem sets r1, c1, and rc1 have

short scheduling horizons and along with vehicular capacities only allow a few customers to

be serviced by a single vehicle. Problem sets r2, c2, and rc2 have long scheduling horizons,

and when combined with large vehicular capacities, allows for a much higher number of

customers being serviced by a single vehicle.

Homberger and Gehring (1999) extend the original problems to include problem sets

having 200, 400, 600, and 1000 customer nodes. For illustrative purposes, Figure 4.11 shows

the header of one of the Homberger and Gehring (1999) problem sets, as well as the first

few customers. The depot is represented by customer ‘0’. The attributes for each customer

include a customer number, coordinates, the demand, the earliest and latest allowed arrival,

as well as the service time at each customer. The problem sets do unfortunately not accom-
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c1_2_4

VEHICLE

NUMBER CAPACITY

50 200

CUSTOMER

CUST NO. XCOORD. YCOORD. DEMAND READY TIME DUE DATE SERVICE TIME

0 70 70 0 0 1351 0

1 33 78 20 750 809 90

2 59 52 20 0 1240 90

3 10 137 30 0 1172 90

4 4 28 10 0 1183 90

5 25 26 20 128 179 90

Figure 4.11: An excerpt of a problem set (Homberger, 2003)

modate a heterogeneous fleet, and the fleet structure proposed by Liu and Shen (1999b) is

therefor used in this thesis — presented in Table 4.4 for each of the problem classes.

Time windows provided in the problem sets are hard, i.e. they allow neither early nor

late arrivals. To create problem sets that will test the initial solution algorithm with soft

time windows, a maximum lateness of Lmax = 30 time units is associated with each node,

including the depot. Such time windows incur waiting time if arriving early, but allow late

arrivals penalized at a unit cost of α.

Multiple scheduling is achieved through an elementary routine testing whether their is

at least ρ time units between the return time of the current route and the end of the depot’s

time window. In this thesis the author uses an arbitrary value of ρ = 60 minutes.

Tables 4.5a through 4.5f show the results for 60 problem instances executed on an Intelr

Pentiumr4 computer with a 3.6GHz processor (64Bit) and 3.25GB RAM.

Each table indicates the specific Homberger and Gehring (1999) problem instance from

which the 100 customer data set as taken, the numbers of tours (vehicles) used in the

initial solution, the total number of routes, the average time required to generate the initial

solution, and the number of orphans. Orphans are customers from the data set that could not
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Table 4.4: Heterogeneous fleet data (Liu and Shen, 1999a)

(a) Set r1

Type Capacity Cost

1 30 50

2 50 80

3 80 140

4 120 250

5 200 500

(b) Set r2

Type Capacity Cost

1 300 450

2 400 700

3 600 1200

4 1000 2500

(c) Set c1

Type Capacity Cost

1 100 300

2 200 800

3 300 1350

(d) Set c2

Type Capacity Cost

1 400 1000

2 500 1400

3 600 2000

4 700 2700

(e) Set rc1

Type Capacity Cost

1 40 60

2 80 150

3 150 300

4 200 450

(f) Set rc2

Type Capacity Cost

1 100 150

2 200 350

3 300 550

4 400 800

5 500 1100

6 1000 2500
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Table 4.5a: Initial solution summary for the c1 problem class

Problem Tours Routes Time (sec) Orphans

c1 2 1 33 40 9 3

c1 2 2 27 30 14 1

c1 2 3 29 44 22 2

c1 2 4 19 19 30 1

c1 2 5 27 28 9 2

c1 2 6 28 37 12 2

c1 2 7 23 24 11 1

c1 2 8 23 23 14 0

c1 2 9 21 21 19 0

c1 210 19 20 22 0

Table 4.5b: Initial solution summary for the c2 problem class

Problem Tours Routes Time (sec) Orphans

c2 2 1 39 50 10 11

c2 2 2 29 39 15 8

c2 2 3 27 46 20 7

c2 2 4 17 17 34 6

c2 2 5 24 24 10 6

c2 2 6 25 25 14 2

c2 2 7 27 30 15 3

c2 2 8 25 25 14 1

c2 2 9 28 35 19 2

c2 210 23 24 20 0
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Table 4.5c: Initial solution summary for the r1 problem class

Problem Tours Routes Time (sec) Orphans

r1 2 1 34 76 7 0

r1 2 2 37 71 6 0

r1 2 3 40 67 6 0

r1 2 4 59 70 6 0

r1 2 5 39 74 5 0

r1 2 6 42 69 6 0

r1 2 7 42 68 6 0

r1 2 8 57 70 7 0

r1 2 9 36 70 6 0

r1 210 39 68 6 0

Table 4.5d: Initial solution summary for the r2 problem class

Problem Tours Routes Time (sec) Orphans

r2 2 1 13 21 21 1

r2 2 2 9 17 34 1

r2 2 3 6 7 64 0

r2 2 4 6 9 84 0

r2 2 5 9 12 28 0

r2 2 6 9 9 57 0

r2 2 7 8 10 74 0

r2 2 8 6 7 94 0

r2 2 9 9 11 41 0

r2 210 10 11 41 0
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Table 4.5e: Initial solution summary for the rc1 problem class

Problem Tours Routes Time (sec) Orphans

rc1 2 1 30 51 9 0

rc1 2 2 26 48 9 0

rc1 2 3 27 46 10 0

rc1 2 4 34 46 13 0

rc1 2 5 26 47 9 0

rc1 2 6 29 49 9 0

rc1 2 7 30 48 10 0

rc1 2 8 25 47 10 0

rc1 2 9 27 47 10 0

rc1 210 35 48 11 0

Table 4.5f: Initial solution summary for the rc2 problem class

Problem Tours Routes Time (sec) Orphans

rc2 2 1 13 26 16 0

rc2 2 2 11 26 23 0

rc2 2 3 11 24 31 1

rc2 2 4 11 18 31 0

rc2 2 5 12 20 19 0

rc2 2 6 12 18 18 0

rc2 2 7 9 18 21 0

rc2 2 8 11 18 22 0

rc2 2 9 13 18 21 0

rc2 210 13 19 25 0
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feasibly be included in the initial solution. Ten iterations were used to calculate the average

time values. Orphans are a result of the specific problem instance. The time dependent

travel times that were calculated using randomly generated edge types, vcT , may result in

a situation whereby a customer can not be serviced within the time window of the depot,

even if such customers are serviced by a dedicated vehicle.

A sample of an initial solution output file for the r2 2 3 problem set (see Table 4.5d) is

provided in Appendix A. The initial solution indicates the algorithm’s ability to generate

more than one route per vehicle, and indicates the vehicle type assigned to the specific route.

Each line represents a route, with each route starting and ending at the depot. Sequential

numbers in each route represent the customers and the sequence in which customers are

serviced. In the solution for the r2 2 3 problem all nodes are routed, and no orphans exist.

4.4 Conclusion

To establish an initial solution that addresses not only time windows, but also time dependent

travel times and a heterogeneous fleet, requires a computational expensive routine. In this

chapter the author introduced the concept of Time Window Compatibility (TWC) to ease

the computational burden. The concept of TWC is also employed to identify seed customers

as the most incompatible customer nodes.

Data sets from literature were adapted to create test problems for which the initial

solution algorithm found solutions within seconds. The initial solutions generated in this

chapter is used as inputs to the route improvement metaheuristics that are developed in

Chapters 5 through 6.
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Chapter 5
A Tabu Search solution algorithm

The TS examines a trajectory sequence of solutions and moves to the best neighbor of the

current solution. To avoid cycling, solutions that were recently examined are forbidden, or

tabu, for a number of iterations (Gendreau et al., 2002). Section 3.3.1 reviews the basic

structure of the TS.

Taillard (1993) introduces a feature whereby the main problem is decomposed into in-

dependent subproblems so that the algorithm can be parallelized on multiple processors.

Each subproblem is solved on a different processor before the tours are grouped together to

construct a solution to the original problem. The new solution is then decomposed, and the

process repeats itself for a given number of times. A random selection of components in the

decomposition process ensures the algorithm produces different solutions from one execution

to the next. In this thesis an approach similar to that of Taillard (1993) and Rochat and

Taillard (1995) is followed, albeit on a single processor. The approach can be parallelized

through the coding structure in future research, but recent software technology, i.e. cluster

scheduling such as the MATLAB Distributed Computing system, provides the software the

ability to automatically determine which segment of an algorithm can be parallelized on

multiple clustered processors without adapting the code.

The chapter starts with a brief discussion of the main elements of a TS algorithm, followed

by the TS proposed in this thesis, and a detailed discussion of each phase of the TS. The

chapter concludes with an analysis of the algorithm’s results for problems based on integrated

data sets of Solomon (1987), Homberger and Gehring (1999), and Liu and Shen (1999a,b).
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5.1 Elements of the tabu algorithm

Tabu list A list of the last few moves (or solutions). The memory of moves can be

recency or frequency-based. Short-term recency-based memory forbids cycling around

a local neighborhood in the solution space through setting the last T moves as Tabu.

Recently made moves are stored in a mechanism that is referred to as the Tabu-Move

list. The number of moves in the list is determined by the tabu list size, denoted by

T . The list operates on a first-in-first-out principle. Other recency information that is

stored in the Tabu list is the solution configurations. The larger the value of T , the

longer the moves and solutions stay tabu. The Tabu-Solution list is a set of solutions

that have been created recently by exchanging segments between routes. The solutions

are coded into an integer string. The total cost of the solution is also attached to the

string.

Long-term frequency-based memory allows searches to be conducted in the most promis-

ing neighborhoods. The frequency-based memory provides additional information of

how many times a tabu move have been attempted. To alleviate time and memory

requirements, it is customary to record an attribute of a tabu solution, and not the

solution itself.

Candidate list TS makes use of a candidate list that provides a list of moves to evaluate.

One move of the candidate list is chosen to proceed with the search. The candidate

list plays an important role in the performance of TS.

Intensification and diversification Two memory-based strategies that form a funda-

mental principle of TS. Gendreau (2003) claims diversification to be the single-most

important issue in designing a TS. With the use of the intensification strategy regions

around attractive solutions are more thoroughly searched, and typically operates by

restarting a search from a solution previously found to yield good results. The restart

is achieved through the candidate list representing attractive regions. Diversification,

on the other hand, encourages the search process to examine unvisited regions and

to generate solutions that differ in various significant ways from previous solutions.

The probabilistic diversification and intensification introduced by Rochat and Taillard

(1995) is also referred to as the Adaptive Memory Procedure (AMP).

Penalized objective function The objective function of a solution s is denoted by f1(s)

and is calculated by (5.1) as the sum of the travel times of all routes and tours, and
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the total lateness at all customers (Ichoua et al., 2003).

f1(s) =
∑
Tours

∑
Routes

t+
∑

Customers

αiyi (5.1)

In the calculation αi denotes the lateness penalty for customer i, while yi = max {0, ai − li}.

The actual arrival time at customer i is denoted by ai, while li denotes the latest allowed

arrival time at customer i. The design of the algorithm ensures that ai ≤ li + Lmax
i ,

where Lmax
i is the maximum allowed lateness at customer i. The objective function

is artificially adapted to incorporate a significant penalty for any unrouted customers,

referred to as orphans. The artificial objective function, f2(s), is expressed in (5.2),

f2(s) = f1(s) + βo (5.2)

where β is a nonnegative penalty factor, and o the number of orphans in the final

solution. Orphans are only created if the time window of the customer is completely

incompatible with that of the depot, even if it is serviced by a dedicated vehicle.

Stopping criteria The search is terminated once a preset maximum number of iterations

of the main TS algorithm have been reached. An alternative stopping criteria could

be a predetermined number of attempts being made to set the same solution in the

Tabu-Solution list as the new current solution. This indicates that the search has been

caught in a local optimum, hence terminating the search.

5.2 Tabu algorithm

The phased approach of the TS algorithm, similar to the implementation of Taillard et al.

(1997) and Gendreau et al. (1999), is illustrated in Algorithm 5.1. Data structures are

indicated with sans serif font, while functional routines are indicated with typewriter font.

5.2.1 Initialization

The initial solution algorithm proposed in Chapter 4 forms the basis of the initialization

phase, but generates only a single initial solution, s. As I, preferably different, initial so-

lutions are required, the routine in Algorithm 5.2 is proposed. For each initial solution

required, a random node I?
i is identified and removed from the problem set P . The remain-

ing nodes in P ′ are used to create an initial solution using the improved initial solution

algorithm proposed in Chapter 4. After the nodes in P ′ have been routed, the identified

node I?
i is reinserted into the first feasible position. The result is a set of initial solutions
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Algorithm 5.1: Tabu Search (TS) Overview
Input: stopping criteria

Input: Adaptive Memory size, M

begin Initialization (Section 5.2.1)1

construct I unique initial solutions sss = {s1, s2, . . . , sI}2

x̂← min
i∈{1,...,I}

{si}3

decompose sss into independent tour set T4

store M best tours of T∪(Adaptive Memory) in the Adaptive Memory5

end6

begin Optimization (Section 5.2.2)7

while stopping criteria is not met do8

construct a biased solution, x from the tours in Adaptive Memory9

xcurrent ← x10

for W iterations do11

x? ← locally optimized xcurrent12

xcurrent ← x?13

if xcurrent < x̂ then14

x̂← xcurrent15

endif16

endfor17

endw18

decompose xcurrent into independent tour set T19

store M best tours of T∪(Adaptive Memory) in the Adaptive Memory20

end21

report incumbent x̂22
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Algorithm 5.2: Tabu Search (TS) Initialization
Input: Problem set P , with |P | = n nodes

Input: Number of initial solutions required, I

identify I? ⊂ P , a randomly identified subset with I nodes from problem set ;1

foreach I?
i ∈ I? do2

P ′ ← P\ {I?
i };3

find initial solution s by executing Initial solution heuristic with P ′ ;4

re-insert I?
i into initial solution to create si5

endfch6

sss = {s1, s2, . . . , sI}. Each initial solution’s tours are stored in the adaptive memory, and

associated with it the objective function value of the initial solution from which the tour

originates. All tours consisting of only a single node are removed from the adaptive mem-

ory.

5.2.2 Optimization

The TS optimization routine listed in Algorithm 5.3 terminates after executing a predefined

number of local optimization iterations, denoted by Imax. A partially constructed tour

is created through iteratively selecting tours from the adaptive memory, and removing all

tours from the adaptive memory that share nodes with the selected tour. The probability

of selecting any tour is based on the objective function associated with the tour, which in

turn is taken from the solution from which the tour originates. Glover (1990) notes that the

use of probabilities, based on past performance, as an underlying measure of randomization

yields efficient and effective means of diversification. The better a solution, the higher the

probability of selecting a tour from that solution. Once a tour is selected from the adaptive

memory, all tours sharing nodes with the selected tour are removed from memory. Removing

tours from the adaptive memory ensures each node is represented only once in the partially

constructed tour. The selection of tours from the adaptive memory, and the removal of

tours with common nodes, is repeated until no more tours remain in the adaptive memory.

As not all nodes are represented, the partially constructed tour denoted by s, is completed

by inserting the remaining unrouted nodes into feasible positions of s. The resulting tour,

denoted by s?, is achieved through either identifying positions on a current route, creating

a new route on a current tour, or creating a new tour with its associated vehicle.
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Algorithm 5.3: Tabu Search (TS) Optimization
Input: Incumbent solution, x̂

Input: Iteration limit for local optimization, Imax

Input: Frequency parameter, ζ

s = {·}1

assign set of tours, A← Adaptive Memory2

repeat3

select a ∈ A4

s← s ∪ a5

A← A	 (a ∩A)6

until A = {·}7

s? ← s⊕ ({1, 2, . . . , N} 	 s)8

i← 09

repeat10

i← i+ 111

if
⌊

i
ζ

⌋
= i

ζ then12

exchange heuristic j = {1, 2}13

else14

select exchange heuristic j ∈ {1, 2} with probability pj15

endif16

s′j ← ej (s?)17

s′ ← min
j

{
s′j

}
18

x′ ← f (s′)19

if x′ < x̂ then20

ŝ← s′21

s? ← s′22

endif23

until i > Imax24
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Two exchange operators are considered. The first operator removes a randomly selected

node from one tour and inserts the node into the best possible position in another tour that

has the same vehicle type. The second operator also removes a randomly selected node from

an origin tour, but selects the best insertion position for the node on a tour having a different

vehicle type than the origin tour.

Initially the probability of selecting either of the operators is equal. A frequency pa-

rameter, ζ, ensures that every ζ iterations both operators are used to create perturbations.

The probability of the operator producing the best solution is then increased relative to its

current probability. Consider, during a general iteration, the first operator having a weight

of α = 30 and the second operator having a weight of β = 60. If both operators are executed,

and the first operator yields a better solution, its weight will be increased by a factor γ. In

this thesis γ is arbitrarily set to 2. The new probability of selecting the first operator is

p1 =
γα

γα+ β

=
2× 30

2× 30 + 60

= 0.50·,

and the probability of selecting the second operator is calculated as

p2 = 1− p1.

5.3 Results and analysis

The TS algorithm proposed in this thesis contains a random component similar to the algo-

rithm proposed by Rochat and Taillard (1995). This means that two runs of the algorithm

will generally produce two different solutions. Figure 5.1 provides graphs for a random se-

lection of problems. Each graph indicates the iteration number on the x-axis, while the

objective function value is represented on the y-axis. The thinner of the two lines on each

graph represent the actual objective function value of the solution for the given iteration,

while the thick line represents the incumbent — the best solution found thus far, at that

iteration.

It is noticeable that the incumbent for the first iteration is frequently lower than the

actual iteration value. This is the result of the incumbent being represented by one of the ten

initial solutions created for the TS, whereas the first iteration’s solution is created through the

solution-building mechanism that selects tours from the adaptive memory. The incumbent,
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Figure 5.1: Selection of TS result graphs

furthermore, is never improved by more than 10% over the 100 iterations, reflecting on the

high quality initial solution proposed in Chapter 4.

Because of the randomness inherent in the structure of the proposed TS, the results pre-

sented in Appendix B sees four independent runs executed, with Tables B.1(a) through B.1(f)

providing the objective function values for each of the runs, as well as the average objective

function value obtained. The last column of the result tables provide the average time (in

seconds) required to obtain a solution. The average time is provided under the assumption

that time-dependent travel time matrices are not available, and that such matrices have to

be established once, and adhere to the triangular inequality

tik + tkj ≥ tij ∀i, j, k ∈ {1, 2, . . . , N}. (5.3)

Although Toth and Vigo (2002b) interpret the triangular inequality as being inconvenient

to deviate from the direct link between nodes i and j, it may be practical to adjust the link
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from i to j to rather pass via node k without actually visiting node k. This occurs when

the direct link is heavily congested during peak times. Adjusting the route selection in

combination with time-dependent travel times are highly dependent on an accurate GIS.

5.4 Conclusion

A Tabu Search (TS) algorithm is proposed that generates a number of initial solutions as

input, from where tours are added to an Adaptive Memory Procedure (AMP). During each

consecutive iteration, tours are selected from the AMP in a biassed manner to construct

a new solution. Non-tabu, feasible solutions are generated in an attempt to escape local

minima.

The algorithm is coded in MATLAB, and tested on 60 benchmark data sets adapted

from literature. The sets are adapted to accommodate multiple routes per tour, as well as a

heterogeneous fleet in an environment where time dependent travel times occur. The results

are promising, yielding solutions between 670 and 4762 seconds on a standard Intel Pentium

Centrino laptop computer with a 1.5GHz processor and 512MB of RAM. Four independent

runs are executed for each of the 60 problems. The Absolute Mean Deviation (AMD) of

the solution quality between the 240 runs is 3.6%, indicating an algorithm that produces

consistent solutions between runs.

In the next chapter, the GA is investigated as an alternative to the TS.
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Chapter 6
A Genetic Algorithm

In this thesis the approach by Tan et al. (2001c) is followed whereby a Genetic Algorithm

(GA) uses a path representation to code chromosomes (routes). For example, the chromo-

some string 4-5-2-3-1 represents a route that starts at node 4, followed by node 5, then 2, 3,

and 1 before returning to node 4. Each element in the chromosome is referred to as an allele.

For a problem with n customers, each chromosome will be an integer string with n elements.

Although elementary crossover routines often destroy the validity of tours and routes, spe-

cific crossover routines have been developed to ensure that tours and routes remain valid,

and keeps improving.

A slightly adapted version of the GA discussed in Algorithm 3.3 is provided in Algo-

rithm 6.1. The GA requires a generation limit similar to the iteration limit for TS and SA.

The population size determines the number of solutions in a single generation. The pop-

ulation subdivision parameters establishes the fraction of the population that will undergo

specific genetic manipulation. To ensure the natural phenomena of survival of the fittest,

the elitist parameter pe ensures that the pe fittest solutions in a given generation g is exactly

copied to the next generation g + 1. The mutation parameter pm determines the number

of chromosomes that will undergo random changes, or mutation. The crossover parameter,

pc, determines the number of solutions that will produce offspring by sharing elements of its

chromosomes.

The algorithm is initialized with the generation of p solutions, each containing a single

TSP string of nodes. Vas (1999) states that initial solutions can be generated either ran-

domly or heuristically, while Tan et al. (2001c) suggest a combination of solutions: some

generated using an efficient Push Forward Insertion Heuristic (PFIH), and the balance gen-

erated randomly.
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Algorithm 6.1: Genetic Algorithm (GA) overview
Input: Generation limit gmax

Input: Population size p

Input: Population subdivisions pe, pm, and pc such that pe + pm + pc = p

g ← 01

begin initialization2

generate feasible TSP solutions x0
1, . . . , x

0
p3

end4

repeat5

g ← g + 16

cluster TSP solutions7

determine fitness of TSP solutions8

begin elite9

Copy pe best solutions from generation g to generation g + 110

end11

begin mutation12

Include pm mutated solutions in generation g + 113

end14

begin crossover15

Choose pc

2 non-overlapping pairs of solutions from generation g16

execute crossover perturbations17

Include new solutions in generation g + 118

end19

until g = gmax20

x? ← min
i∈{1,...,p}

{xg
i }21

x̂← locally optimized x?22
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The GA proceeds for gmax generations. During each generation, the single string solu-

tion, also referred to as a TSP solution, is clustered and assigned to vehicles. Each solution’s

fitness is calculated as the objective function of the specific solution. Based on the fitness, the

algorithm reproduces the next generation through a combination of cloning the pe fittest so-

lutions exactly to the next generation, mutating pm solutions through small changes referred

to as perturbations, and creating pc new offspring by performing crossover perturbations on

a selection of generation g solutions.

The following sections discuss some of the elements of the GA in more detail.

6.1 Initialization

The simplest and computationally most efficient way of generating p initial solutions, each

containing n customers, is to create p random permutations of integers between 1 and n.

Each integer value represents a specific customer. To generate a population of 200 solutions

(chromosomes), each with 200 nodes takes MATLAB on average 0.014 seconds (average ob-

tained from 10,000 independent runs) on a standard Intel Pentium Centrino laptop computer

with a 1.5GHz processor and 512MB of RAM.

As an alternative, initial solutions can be generated using the algorithm presented in

Chapter 4, and adapted for the TS in Algorithm 5.2.

6.2 Clustering

Each chromosome represents a solution in the form of a single integer string, similar to

the TSP strings proposed by Michalewicz (1992). The difficulty with having a single string

to represent multiple tours and routes is that the chromosome needs to be clustered, and

assigned to vehicles.

Although Tan et al. (2001c) simply adds the first allele of the chromosome to the end of

the current tour until vehicle capacity is met, the author of this thesis propose the clustering

routine presented in Algorithm 6.2 to address multiple scheduling. The first allele of the

chromosome is considered for insertion on each edge of each route of the current tour, and

not only at the end of the route. If no position is found for the customer, a new route

on the current tour is considered. If an additional route leads to infeasibilities, a new tour

is initialized, and the customer is inserted. A customer is only orphaned if it can not be

serviced by a dedicated tour.

94

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoouubbeerrtt,,  JJ  WW  ((22000077))  



Algorithm 6.2: GA clustering
Input: population

foreach chromosome in population do1

repeat2

found← 03

forall the routes of current tour do4

forall the edges on current route do5

if feasible insertion then6

found← 17

endif8

endfall9

endfall10

if found = 1 then11

insert customer12

else if multiple routes are feasible then13

insert customer into new route14

else15

create new current tour16

create new first route17

endif18

until all customers are routed, or vehicles are depleted19

report orphans20

endfch21
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6.3 Mutation

A proportion, pm of all chromosomes in a given generation is mutated to ensure that the GA

does not get stuck in a local optimum (Vas, 1999). The proportion is typically very low to

ensure that good chromosomes remain intact. Michalewicz (1992) introduces a non-uniform

mutation rate whereby the number of chromosomes mutated decreases to ensure that the

solution space is searched widely during early generations, and only searched locally in later

generations.

In the majority of applications binary representation is used and mutation involves chang-

ing a 0 value to 1, and vice versa. In this thesis the approach of Tan et al. (2001a) is followed

whereby randomly selected customers are swapped in an integer string representation of a

chromosome.

6.4 Crossover

Crossover operators are concerned with producing offspring solutions for the next generation

from two parent solutions from the current generation. Parents are selected using a biased

roulette wheel. A number of the operators produce only a single offspring from the two

parents, while others produce two offspring. To illustrate the various crossover operators,

the first ten nodes of the C2-2-2 problem set is used.

6.4.1 Enhanced Edge Recombination (EER)

Whitley, Starkweather & Fuquay (as cited by Michalewicz (1992)) developed the Edge

Recombination (ER) crossover technique which they claim transfer more than 95% of the

edges from the parents to a single offspring. To illustrate the ER, consider two single string

TSP solutions, A and B, illustrated in Figures 6.1(a) and 6.1(b) respectively. The edge

table created in Table 6.1(a) lists for each node all the neighbouring nodes from both par-

ent solutions. The single offspring, denoted by C, starts by selecting a starting element.

Starkweather et al. (1991) state that the starting element can be either chosen randomly

from the set of elements which has the fewest entries in the edge table, or a random choice

between the starting element from either parent A or B. The latter option is used in this

thesis. Of the elements that have links to the last element in C, choose the element which

has the fewest number of unassigned links in the edge table entry, breaking ties randomly.

The process is repeated until the new offspring chromosome is complete.
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(c) C′ = [1 2 10 9 7 8 3 4 5 6]

Figure 6.1: Two parent solutions illustrating the ER crossover

Table 6.1: Edge lists

(a) ER edge list

City Links

1 2, 4, 9, 10

2 1, 3, 4, 10

3 2, 4, 5, 8

4 1, 2, 3, 5

5 3, 4, 6

6 5, 7

7 6, 8, 9

8 3, 7, 9, 10

9 1, 7, 8, 10

10 1, 2, 8, 9

(b) EER edge list

City Links

1 2, 4, 9, 10

2 1, 3, 4, 10

3 2, 4, 5, 8

4 1, 2, 3, 5

5 3, 4, -6

6 -5, -7

7 -6, 8, 9

8 3, 7, 9, 10

9 1, 7, 8, 10

10 1, 2, 8, 9
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Suppose element 1 is selected from A as starting element in C. Since 1 has been assigned

to C, all occurrences of 1 is removed from the edge list. Element 1 has links to 2, 4, 9 and

10, each having 3 remaining links in the edge table. Element 2 is randomly chosen as next

element in C and all element 2’s occurrences are removed from the edge table. Element 2

has links with 3, 4 and 10, of which 4 and 10 have only 2 remaining links in the edge table.

Element 10 is chosen randomly as the next element in C, having links to elements 8 and 9.

Element 9 has the least (2) number of remaining links in the edge list, and chosen as the

next element in C. The process continues until C = [1 2 10 9 7 8 3 4 5 6].

To enhance the random breaking of ties when selecting among elements, Starkweather

et al. (1991) changed the edge list to indicate common edges. This is achieved by flagging a

common edge by inverting, for example, 3 to −3 if an element has a common edge to element

3 in both parents. Table 6.1(b) indicates the edge list with flagged common edges. When

a tie exist between elements, preference is given to the element with the highest number of

remaining flagged elements. If a tie still exists, it may be broken randomly. Following the

same procedure as for the ER example above, a slightly different offspring C ′ = [1 2 10 9 7

6 5 3 4 8] is obtained. The offspring chromosome is illustrated in Figure 6.1(c). The only

new edge in the offspring is the edge connecting elements 6 and 1. Hence, 90% of the edges

are transferred from the parents to the offspring solution.

6.4.2 Merged Crossover (MX)

The MX was first introduced by Blanton and Wainwright (1993) and is based on the notion

of a global precedence among genes of any chromosome, rather than defining a precedence

among genes specific to parents in a local crossover such as the EER. A number of precedence

vectors have been established in literature.

Latest allowed arrival time

Chen et al. (1998) state that there is a natural precedence relationship among all customers

based on the upper limit of their time windows. The precedence list, denoted by P , for the

example problem is P = [2 8 3 5 7 1 10 6 9 4], based on the time window details provided

in Table 6.2.

To illustrate the crossover, we consider parents A and B from Figure 6.1. The first

elements from both parents are considered: element 5 from B appears before element 1 from

A in the precedence list P , and is selected as first element in offspring C. To maintain
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Table 6.2: Time window details for customers from the C2-2-2 problem set

Earliest allowed Latest allowed

Customer, i arrival, ei arrival, li

1 2808 2968

2 668 828

3 1021 1181

4 0 3481

5 1922 2082

6 0 3451

7 2597 2757

8 906 1066

9 0 3475

10 0 3445

validity, elements 1 and 5 are swapped in parent A.

A = [5 2 3 4 1 6 7 8 9 10]

B = [5 6 9 1 4 2 10 8 3 7]

C = [5 ? ? ? ? ? ? ? ? ?]

Next, the second elements of each parent is considered. As element 2 from A appears before

element 6 from B in the precedence list, element 2 is placed in the offspring, and elements 2

and 6 are swapped in parent B.

A = [5 2 3 4 1 6 7 8 9 10]

B = [5 2 9 1 4 6 10 8 3 7]

C = [5 2 ? ? ? ? ? ? ? ?]

The process is repeated until the offspring chromosome is completed with C = [5 2 3 1 4 6

7 8 9 10]. The MX approach is denoted by MX li .

Earliest allowed arrival time

Louis et al. (1999) suggest using the earliest allowed arrival time, given by ei in Table 6.2,

to establish the precedence list, denoted by MX ei . Executing their recommendation results

in a precedence list P = [4 6 9 10 2 8 3 5 7 1]. When using the precedence list on parents A

and B from Figure 6.1, an offspring chromosome C = [5 6 9 4 1 2 10 8 3 7] results.
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Time window compatibility

Two novel ways of establishing a precedence list are suggested in this thesis. In the first

novel approach denoted by MX twc, the total compatibility for each customer is calculated

using either (4.8) or (4.9), sorted in ascending order to create the precedence list. Ties are

broken arbitrarily. The resulting precedence list sees incompatible nodes placed earlier in

the chromosome. More compatible nodes are subsequently inserted to fill routes and tours.

Angles

The second novel way to establish the precedence list is to reconsider the fundamental way in

which the the crossover operator is used. The simplicity, yet success of the sweep algorithm

proposed by Gillett and Miller (1974) is incorporated in this MX approach denoted by

MX ∠. The angle for each customer is calculated, and the angles are sorted in ascending

order to determine the precedence list. The resulting crossover ensures that customers that

are located close to one another are assigned to the same route, time windows permitting.

With the depot’s location indicated by an open circle in Figure 6.2, the precedence list

df s1

s2
s10

s9 s7

s8

s
3

s4
s

5

s6

Figure 6.2: Depot and first 10 customers from the C2-2-2 problem set

P = [1 8 2 10 6 9 4 7 5 3] is established.

6.4.3 Partially Matched Crossover (PMX)

PMX is a genetic operator often used with TSP problems using integer string representa-

tion (Goldberg and Lingle, 1985). The operator selects two parent chromosomes using the

biassed roulette wheel, and produces two offspring chromosomes, as opposed to the previous

operators producing only a single offspring. Consider again the two parent chromosomes A

and B given in Figure 6.1. Two crossing positions a and b are randomly selected such that
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1 ≤ a < b ≤ ‖A‖ + 1, where ‖A‖ denotes the number of elements (alleles) in chromosome

A. For illustrative purposes let a = 3 and b = 7. To create offspring 1, denoted by C1, the

strings between the crossing positions from parent 2 is copied to C1.

C1 = [? ? 9 1 4 2 ? ? ? ?]

For each element in A between a and b, starting from position a, look for elements in A that

have not been copied to C1. In the example element 3 is identified. Element 3’s position in

A is occupied by element 9 in C1, and hence element 9 in A’s position is filled in C1 with 3

such that

C1 = [? ? 9 1 4 2 ? ? 3 ?].

Next, element 5 in A is identified, as element 4 has already been copied to offspring C1.

Element 5’s position in A is occupied by 4 in C1, but since element 4 in A’s position is

already occupied in C1 by element 1, element 1’s position in A is identified for element 5 in

C1 such that

C1 = [5 ? 9 1 4 2 ? ? 3 ?].

Element 6 in A is identified next. Element 6’s position in C1 is occupied by element 2, which

in turn, is located in position 2 in A. Hence, element 6 is placed in position 2 in C1 such

that

C1 = [5 6 9 1 4 2 ? ? 3 ?].

As all elements in A between positions a and b have been considered, C1 is completed by

duplicating the remaining elements from A such that

C1 = [5 6 9 1 4 2 7 8 3 10].

The second offspring, denoted by C2, is created in a similar fashion with the resulting off-

spring being C2 = [1 2 3 4 5 6 10 8 9 7].

6.5 Evaluating crossover operators

The proposed GA algorithm is executed to identify appropriate crossover operators for the

varying problem sets. Due to computational time complexity, a single problem is randomly

selected from each problem set. Each crossover operator is then tested using 4 indepen-

dent iterations. The fitness is calculated using an objective function which considers total
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travel time, number of vehicles used, and total lateness at customers. The GA is executed

for a maximum of 200 generations, each having 100 chromosomes. Of every new genera-

tion, 80% of chromosomes were generated through crossover operators. Initially 10% of a

newly created generation is established through mutation to ensure that the solution space

is widely searched. A non-uniform mutation rate introduced by Michalewicz (1992) reduces

the number of mutated chromosomes as the number of generations increases. Hence the so-

lution space is only locally searched towards the end of the algorithm. The balance of a new

generation is created by cloning (copying exactly) the best chromosomes from the previous

generation.

Figure 6.3 illustrates the performance of the various crossover mechanisms for each prob-

lem set. The performances are expressed and calibrated according to the best crossover

operators for the specific problem set. Actual results are provided in Tables 6.3a and 6.3b,

providing the best fitness (objective function value) obtained over the four independent runs,

as well as the average time required (in seconds) to find a solution.

Contrary to Blanton and Wainwright (1993) claiming that most of their MX operators

outperform the PMX operator, the results in this thesis indicates six instances in which

the PMX is either significantly better in terms of fitness, or significantly faster than any

of the other crossover operators. In only two instances, c2 2 3 and rc2 3 8, did MX prove

significantly faster than the other crossover operators, of which one instance is the newly

proposed MX twc.

Using a standard statistical t-test, the EER crossover operators proved to be consistently

worse and slower than other mechanisms, and is consequently omitted from further analysis.

The remaining operators are again subjected to a t-test, resulting in some operators to be

identified as significant, hence labels (e) and (f) in Tables 6.3a and 6.3b.

Self regulation can be achieved through a biased selection of operators based on past

performance. Initially each operator (except EER) is assigned equal probability of being

selected. A parameter λ indicates the frequency (in terms of generations) of testing all

operators, and the probabilities are consequently adjusted based on the relative performance

of each operator, similar to the self organizing mechanism proposed for exchange operators

of the TS algorithm in Chapter 5.
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Table 6.3a: Analysis of random problems for each data set

Problem EER MXli MXei MXtwc MX∠ PMX

c1 2 8

Fitness

Value 90026 88895 88510 85272 85043 84607

Relative 1.064 1.051 1.046 1.008 1.005 1.000

t-Value -3.096a -1.916 -1.514 1.865 2.104 2.559

Time

Value 26478 25708 25747 25776 25560 25361

Relative 1.044 1.014 1.015 1.016 1.008 1.000

t-Value -4.569b 0.412 0.160 -0.028 1.369 2.656c

c2 2 3

Fitness

Value 213070 212736 212572 212318 212261 212078

Relative 1.005 1.003 1.002 1.001 1.001 1.000

t-Value -3.821b -1.559e -0.448 1.272 1.658 2.898c

Time

Value 24498 23783 23695 23416 23595 23657

Relative 1.046 1.016 1.012 1.000 1.008 1.010

t-Value -4.725b -0.059 0.516 2.336f 1.168 0.764

r1 2 1

Fitness

Value 37147 36779 36358 36144 35610 34350

Relative 1.081 1.071 1.058 1.052 1.037 1.000

t-Value -2.672a -1.764 -0.724 -0.196 1.123 4.234d

Time

Value 20348 19746 19736 19697 19658 19441

Relative 1.047 1.016 1.015 1.013 1.011 1.000

t-Value -4.650b 0.201 0.282 0.596 0.911 2.659c

a Rejected with 97.5% certainty
b Rejected with 99.0% certainty
c Accepted with 97.5% certainty
d Accepted with 99.0% certainty
e Rejected with 97.5% certainty, EER omitted
f Accepted with 97.5% certainty, EER omitted
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Table 6.3b: Analysis of random problems for each data set

Problem EER MXli MXei MXtwc MX∠ PMX

r2 2 5

Fitness

Value 51472 50715 50392 50147 49975 50277

Relative 1.030 1.015 1.008 1.003 1.000 1.006

t-Value -4.434b -0.994e 0.474 1.588 2.369 0.997

Time

Value 17685 17160 17279 17374 17612 17003

Relative 1.040 1.009 1.016 1.022 1.036 1.000

t-Value -3.113a 1.797 0.684 -0.204 -2.430e 3.266c

rc1 2 8

Fitness

Value 42833 42310 41693 41327 41257 40772

Relative 1.051 1.038 1.023 1.014 1.012 1.000

t-Value -3.679b -1.983e 0.018 1.205 1.432 3.005c

Time

Value 61481 60192 60236 60007 59988 60215

Relative 1.025 1.003 1.004 1.000 1.000 1.004

t-Value -4.908b 0.701 0.510 1.507 1.589 0.601

rc2 2 8

Fitness

Value 37348 34763 34433 34294 34271 34045

Relative 1.097 1.021 1.011 1.007 1.007 1.000

t-Value -4.909b 0.189e 0.840 1.114 1.160 1.605

Time

Value 46954 46193 46561 46686 46605 47711

Relative 1.016 1.000 1.008 1.011 1.009 1.033

t-Value -0.803 2.813c 1.064 0.470 0.855 -4.400b

a Rejected with 97.5% certainty
b Rejected with 99.0% certainty
c Accepted with 97.5% certainty
d Accepted with 99.0% certainty
e Rejected with 97.5% certainty, EER omitted
f Accepted with 97.5% certainty, EER omitted
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EER MX with l_i MX with e_i MX with TWC MX a PMX

Fitness Time

(a) c1 2 8

EER MX with l_i MX with e_i MX with TWC MX a PMX

Fitness Time

(b) c2 2 3

EER MX with l_i MX with e_i MX with TWC MX a PMX

Fitness Time

(c) r1 2 1

EER MX with l_i MX with e_i MX with TWC MX a PMX

Fitness Time

(d) r2 2 5

EER MX with l_i MX with e_i MX with TWC MX a PMX

Fitness Time

(e) rc1 2 8

EER MX with l_i MX with e_i MX with TWC MX a PMX

Fitness Time

(f) rc2 2 8

Figure 6.3: Results for a random problem from each set, expressed relative to the best

crossover mechanism for each set.
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6.6 Conclusion

In this chapter a GA with integer string representation is developed to test a variant of

the VRP that uses time-dependent travel time and that accommodates time windows, a

heterogenous fleet, and multiple scheduling. Six crossover mechanisms are tested, two of

which are newly proposed in this thesis.

The results suggest that although there are performance differences among the crossover

operators, few prove to be significant. Therefor, it is suggested that when integrating the

multiple optimization algorithms, namely GA and TS, into the intelligent routing agent,

internal learning or self regulation should be considered.
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Chapter 7
Clustering input data

In this chapter the concept of pattern identification on input data is investigated. What is

peculiar about the benchmark problem sets proposed by both Solomon (1987) and Homberger

and Gehring (1999) are the fact that they are preempting specific theoretical characteristics,

unlike problems found in real applications. This is clearly illustrated when the assignment

of time windows is discussed. For the problem sets R1, R2, RC1, and RC2 a percentage of

customers are selected to receive time windows, say 0 < f ≤ 1. Next n random numbers from

the random uniform distributions is generated on the interval (0, 1), and sorted. Customers

i1, i2, . . . , in1 are then assigned time windows, where the number of customers requiring time

windows can then be approximated by n1 ≈ f.n. The center of the time window for customer

ij ∈ {i1, i2, . . . , in1} is a uniformly distributed, randomly generated number on the interval(
e0 + toij , l0 − tij0

)
, where e0 and l0 denotes the opening and closing times of the depot,

respectively, and t0ij and tij0 denotes the travel distance from the depot to customer ij , and

back, respectively.

For clustered problem sets C1 and C2 the process becomes questionable. Customers

in each cluster are first routed using a 3-opt routine as described in the previous chapter.

An orientation is chosen for the route, and time windows are then assigned with the center

being the arrival time at the customer. The width and density are derived in a similar

fashion as for random and semi-clustered data. Although Solomon (1987) states that “this

approach permits the identification of a very good, possibly optimal, cluster-by-cluster solution

which, in turn, provides an additional means of evaluating heuristic performance”, it does

not provide a credible means to evaluate real life problems where customers do not negotiate

their sequence prior to stating a preferred time window.

Literature provides good references to what type of metaheuristics, or metaheuristic
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Appendix A
Initial solution sample

Output for the data set: r2_2_3

Tour: 1, v-type: 1, v-cap: 300

41-23-18-96-88-43-19-59-92-47-77-61-75-67-99-85-70-80

Tour: 2, v-type: 1, v-cap: 300

34-74-33-62-36-63-3-12-4-87-25-73-57-5-45-78

56-65-9-49-81-51-37-1-72-39

Tour: 3, v-type: 1, v-cap: 300

30-83-50-26-11-91-66-64-79-17-89-58-16-14-100-82-2-94-35-28

Tour: 4, v-type: 1, v-cap: 300

60-68-21-40-6-27-32-13-95-38-8-90-84-98-93-10-46

Tour: 5, v-type: 1, v-cap: 300

42-31-15-71-44-48-69-7-55-22-54-52

Tour: 6, v-type: 1, v-cap: 300

29-76-20-24-86-53

Orphans:
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Appendix B
TS results for benchmark data sets
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Table B.1: TS results for benchmark data sets

(a) Problem set c1

Run Average

Problem 1 2 3 4 Average time (sec)

c1 2 1 285935 288999 286108 289065 287526 1630

c1 2 2 176921 176463 176594 176399 176594 2022

c1 2 3 172851 172833 172639 169703 172006 2543

c1 2 4 169016 169138 168894 168966 169003 3167

c1 2 5 282248 282289 281969 282177 282170 1644

c1 2 6 79155 79053 79115 79097 79105 1610

c1 2 7 79694 79625 79383 79290 79498 1697

c1 2 8 75902 76057 76131 76178 76067 1842

c1 2 9 72323 69569 72533 72458 71720 2252

c1 210 72151 72053 72101 71813 72029 2871

(b) Problem set c2

Run Average

Problem 1 2 3 4 Average time (sec)

c2 2 1 913477 923921 923694 913411 918625 1559

c2 2 2 702879 702790 702816 702734 702804 1980

c2 2 3 592152 592167 592208 592229 592189 2457

c2 2 4 581243 581579 581364 581137 581330 3072

c2 2 5 813035 813296 813107 813383 813205 1576

c2 2 6 213958 224152 214001 213512 216405 1706

c2 2 7 313295 313603 303183 313426 310876 1775

c2 2 8 213557 213589 213725 213413 213571 1823

c2 2 9 302713 292452 302834 302695 300173 1960

c2 210 202794 202801 203140 202838 202893 2102
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Table B.1: TS results for benchmark data sets (continued)

(c) Problem set r1

Run Average

Problem 1 2 3 4 Average time (sec)

r1 2 1 26151 26426 26412 26032 26255 1284

r1 2 2 23877 23526 22399 22581 23095 1609

r1 2 3 21496 21152 22026 21549 21555 1909

r1 2 4 20592 20334 20603 20724 20563 2392

r1 2 5 26200 24840 25698 25621 25589 1333

r1 2 6 23569 22398 22877 23272 23029 1630

r1 2 7 22182 21690 20577 22390 21709 1983

r1 2 8 19778 20256 20011 19646 19922 2524

r1 2 9 26807 25207 27937 25603 26388 1646

r1210 27977 29090 28277 28287 28407 1659

(d) Problem set r2

Run Average

Problem 1 2 3 4 Average time (sec)

r2 2 1 45730 41216 41307 41216 42367 670

r2 2 2 40831 40808 41089 40920 40912 1106

r2 2 3 36260 36284 36370 36216 36282 1680

r2 2 4 30522 30531 30605 30629 30571 2142

r2 2 5 40858 36465 36540 36465 37582 766

r2 2 6 31367 36359 36178 36324 35057 1219

r2 2 7 31097 31143 35720 35880 33460 1536

r2 2 8 30468 30634 30359 30466 30481 2010

r2 2 9 35981 35929 36033 36000 35985 880

r2 210 33511 35765 35864 35773 35228 1047
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Table B.1: TS results for benchmark data sets (continued)

(e) Problem set rc1

Run Average

Problem 1 2 3 4 Average time (sec)

rc1 2 1 23671 23352 23579 23447 23512 1618

rc1 2 2 21786 21932 21610 21641 21742 1880

rc1 2 3 18613 19753 19827 19414 19401 3160

rc1 2 4 16317 16151 16250 16314 16258 4762

rc1 2 5 24564 24887 23695 26082 24807 3241

rc1 2 6 26466 26122 27462 26680 26682 3395

rc1 2 7 25750 26178 25615 24741 25571 3802

rc1 2 8 26063 26354 26619 25451 26121 4243

rc1 2 9 25769 24579 23043 25931 24830 3291

rc1 210 23398 23541 25508 24306 24188 3697

(f) Problem set rc2

Run Average

Problem 1 2 3 4 Average time (sec)

rc2 2 1 23912 24225 24349 23949 24108 1912

rc2 2 2 20480 20641 20712 20544 20594 2638

rc2 2 3 18644 18846 18610 18799 18724 3275

rc2 2 4 17039 17181 17279 17026 17131 4605

rc2 2 5 23916 23577 23622 23601 23679 2302

rc2 2 6 24000 24054 23998 23782 23958 2413

rc2 2 7 25284 23595 25133 24284 24574 2770

rc2 2 8 28422 26886 26769 27451 27382 3583

rc2 2 9 29097 28729 28206 28478 28627 3573

rc2 210 26818 25362 26627 25273 26020 4169
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Appendix C
GA crossover performance

Table C.1a: Summary of GA results

Set
EER MX on Li

Min Mean Time Min Mean Time

c1 2 8 90026 92803 26478 88895 89317 25708

c2 2 3 213070 215864 24498 212736 212820 23783

r1 2 1 37147 37441 20348 36779 36898 19746

r2 2 5 51472 57614 17685 50715 50911 17160

rc1 2 8 42833 43066 61481 42310 42450 60192

rc2 2 8 37348 37766 46954 34763 36356 46193

Table C.1b: Summary of GA results (continued)

Set
MX on ei MX on TWC

Min Mean Time Min Mean Time

c1 2 8 88510 88715 25747 85272 85467 25776

c2 2 3 212572 212663 23695 212318 212398 23416

r1 2 1 36358 36493 19736 36144 36206 19697

r2 2 5 50392 50528 17279 50147 50224 17374

rc1 2 8 41693 41972 60236 41327 41441 60007

rc2 2 8 34433 34477 46561 34294 34328 46686
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Table C.1c: Summary of GA results (continued)

Set
MX on angles PMX

Min Mean Time Min Mean Time

c1 2 8 85043 85146 25560 84607 84649 25361

c2 2 3 212261 212272 23595 212078 212132 23657

r1 2 1 35610 35904 19658 34350 34856 19441

r2 2 5 49975 50072 17612 50277 53077 17003

rc1 2 8 41257 41284 59988 40772 41040 60215

rc2 2 8 34271 34274 46605 34045 34102 47711
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Appendix D
Cluster validation results for test sets
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Table D.1: Cluster validation results for test set with two clusters

mmm VPCVPCVPC VPEVPEVPE VXBVXBVXB V +
XBV +
XBV +
XB VFSVFSVFS KKK CWBCWBCWB

1.1 5 5 2 2 10 2 2

1.2 7 7 2 2 10 2 2

1.3 9 9 2 2 10 2 2

1.4 2 2 2 2 10 2 2

1.5 2 2 2 2 9 2 2

1.6 2 2 2 2 10 2 2

1.7 2 2 2 2 10 2 2

1.8 2 2 2 2 10 2 2

1.9 2 2 2 2 10 2 2

2.0 2 2 2 2 10 2 2

2.1 2 2 2 2 10 2 2

2.2 2 2 2 2 10 2 2

2.3 2 2 2 2 10 2 2

2.4 2 2 2 2 8 2 2

2.5 2 2 2 2 10 2 2

2.6 2 2 2 2 10 2 2

2.7 2 2 2 2 10 2 2

2.8 2 2 2 2 10 2 2

2.9 2 2 2 2 10 2 2

3.0 2 2 2 2 10 2 2

5.0 10 2 2 10 10 2 2

10.0 10 2 2 10 10 2 2

20.0 2 2 2 10 4 2 2
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Table D.2: Cluster validation results for test set with three clusters

mmm VPCVPCVPC VPEVPEVPE VXBVXBVXB V +
XBV +
XBV +
XB VFSVFSVFS KKK CWBCWBCWB

1.1 7 7 3 3 10 3 3

1.2 8 8 3 3 10 3 3

1.3 10 1 0 3 3 10 3 3

1.4 4 3 3 3 10 3 3

1.5 3 3 3 3 10 3 3

1.6 3 3 3 3 10 3 3

1.7 3 3 3 3 10 3 3

1.8 3 3 3 3 10 3 3

1.9 3 3 3 3 10 3 3

2.0 3 3 3 3 10 3 3

2.1 3 2 3 3 10 3 3

2.2 3 2 3 3 9 3 3

2.3 3 2 3 3 10 3 3

2.4 3 2 3 3 10 3 3

2.5 3 2 3 3 10 3 3

2.6 10 2 3 3 9 3 3

2.7 10 2 3 3 9 3 3

2.8 10 2 3 3 10 3 3

2.9 10 2 3 3 9 3 3

3.0 10 2 3 3 9 3 3

5.0 10 2 3 10 10 3 3

10.0 10 2 3 10 10 3 3

20.0 2 2 3 9 4 3 3
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Table D.3: Cluster validation results for test set with four clusters

mmm VPCVPCVPC VPEVPEVPE VXBVXBVXB V +
XBV +
XBV +
XB VFSVFSVFS KKK CWBCWBCWB

1.1 4 4 4 4 10 4 3

1.2 4 4 4 4 10 4 3

1.3 4 4 4 4 10 4 4

1.4 4 4 4 4 10 4 4

1.5 4 4 4 4 10 4 4

1.6 4 4 4 4 10 4 4

1.7 4 4 4 4 10 4 4

1.8 4 4 4 4 10 4 4

1.9 4 4 4 4 10 4 4

2.0 4 4 4 4 4 4 4

2.1 4 2 4 4 10 4 4

2.2 4 2 4 4 10 4 4

2.3 4 2 4 4 4 4 4

2.4 2 2 4 4 4 4 4

2.5 2 2 4 4 4 4 4

2.6 2 2 4 4 10 4 4

2.7 2 2 4 4 10 4 4

2.8 10 2 4 4 10 4 2

2.9 10 2 4 4 10 4 2

3.0 10 2 4 4 10 4 2

5.0 10 2 4 4 10 4 3

10.0 10 2 4 4 10 4 3

20.0 2 2 4 8 4 4 3
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Table D.4: Cluster validation results for test set with five clusters

mmm VPCVPCVPC VPEVPEVPE VXBVXBVXB V +
XBV +
XBV +
XB VFSVFSVFS KKK CWBCWBCWB

1.1 5 5 5 5 28 5 3

1.2 5 5 5 5 29 5 3

1.3 5 5 5 5 30 5 4

1.4 5 5 5 5 29 5 4

1.5 5 5 5 5 30 5 4

1.6 5 5 5 5 5 5 4

1.7 5 5 5 5 5 5 4

1.8 5 5 5 5 5 5 4

1.9 5 2 5 5 5 5 4

2.0 5 2 5 5 5 5 4

2.1 5 2 5 5 5 5 4

2.2 30 2 5 5 5 5 4

2.3 30 2 5 5 30 5 4

2.4 30 2 5 5 30 5 4

2.5 30 2 5 5 29 5 4

2.6 30 2 5 5 30 4 4

2.7 30 2 4 5 30 4 4

2.8 30 2 4 5 28 4 4

2.9 30 2 4 5 29 4 4

3.0 30 2 5 5 30 4 4

5.0 30 2 4 30 30 4 4

10.0 2 2 5 20 24 5 2

20.0 2 2 3 30 4 3 2
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Appendix E
Cluster validation results for benchmark

problem sets
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Table E.1: Cluster validation results for benchmark problem sets

(a) Problem set C1

Fuzzy Number of VXBVXBVXB Number of V +
XBV +
XBV +
XB

factor (mmm) clusters (ccc)
(
10−5

)(
10−5

)(
10−5

)
clusters (ccc)

(
10−5

)(
10−5

)(
10−5

)
1.5 4 1.6 4 1.8

1.6 4 1.5 4 1.7

1.7 4 1.4 4 1.6

1.8 4 1.3 4 1.5

1.9 4 1.3 4 1.4

2.0 4 1.3 4 1.3

(b) Problem set C2

Fuzzy Number of VXBVXBVXB Number of V +
XBV +
XBV +
XB

factor (mmm) clusters (ccc)
(
10−5

)(
10−5

)(
10−5

)
clusters (ccc)

(
10−5

)(
10−5

)(
10−5

)
1.5 2 4.6 2 5.3

1.6 2 4.5 2 5.1

1.7 2 4.4 2 4.9

1.8 2 4.4 2 4.8

1.9 2 4.4 2 4.6

2.0 2 4.4 2 4.4

(c) Problem set R1

Fuzzy Number of VXBVXBVXB Number of V +
XBV +
XBV +
XB

factor (mmm) clusters (ccc)
(
10−5

)(
10−5

)(
10−5

)
clusters (ccc)

(
10−5

)(
10−5

)(
10−5

)
1.5 4 2.4 4 2.8

1.6 4 2.2 4 2.7

1.7 4 2.1 4 2.5

1.8 4 2.1 4 2.4

1.9 4 2.1 4 2.3

2.0 4 2.1 4 2.1
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Table E.1: Cluster validation results for benchmark problem sets (continued)

(d) Problem set R2

Fuzzy Number of VXBVXBVXB Number of V +
XBV +
XBV +
XB

factor (mmm) clusters (ccc)
(
10−5

)(
10−5

)(
10−5

)
clusters (ccc)

(
10−5

)(
10−5

)(
10−5

)
1.5 4 2.4 4 2.8

1.6 4 2.2 4 2.7

1.7 4 2.1 4 2.5

1.8 4 2.1 4 2.4

1.9 4 2.1 4 2.3

2.0 4 2.1 4 2.1

(e) Problem set RC1

Fuzzy Number of VXBVXBVXB Number of V +
XBV +
XBV +
XB

factor (mmm) clusters (ccc)
(
10−5

)(
10−5

)(
10−5

)
clusters (ccc)

(
10−5

)(
10−5

)(
10−5

)
1.5 4 2.0 4 2.4

1.6 4 1.9 4 2.2

1.7 4 1.8 4 2.1

1.8 4 1.7 4 1.9

1.9 4 1.7 4 1.8

2.0 4 1.7 4 1.7

(f) Problem set RC2

Fuzzy Number of VXBVXBVXB Number of V +
XBV +
XBV +
XB

factor (mmm) clusters (ccc)
(
10−5

)(
10−5

)(
10−5

)
clusters (ccc)

(
10−5

)(
10−5

)(
10−5

)
1.5 4 2.0 4 2.4

1.6 4 1.9 4 2.2

1.7 4 1.8 4 2.1

1.8 4 1.7 4 1.9

1.9 4 1.7 4 1.8

2.0 4 1.7 4 1.7
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Appendix F
Training set

VVV XB Time window width Demand

Problem Clusters (×10−5×10−5×10−5) (mean) (stdev) (mean) (stdev)

c1 2 1 4 13 0.0442 0.0079 18.00 7.91

c1 2 2 4 13 0.2648 0.3734 18.00 7.91

c1 2 3 4 13 0.4855 0.4268 18.00 7.91

c1 2 4 4 13 0.6803 0.3698 18.00 7.91

c1 2 5 4 13 0.0894 0.0145 18.00 7.91

c1 2 6 4 13 0.1144 0.0644 18.00 7.91

c1 2 7 4 13 0.1333 0.0003 18.00 7.91

c1 2 8 4 13 0.1791 0.0275 18.00 7.91

c1 2 9 4 13 0.2665 0.0005 18.00 7.91

c1 210 4 13 0.3576 0.0639 18.00 7.91

c2 2 1 2 44 0.0445 0.0001 19.20 8.13

c2 2 2 2 44 0.2738 0.3992 19.20 8.13

c2 2 3 2 44 0.4940 0.4610 19.20 8.13

c2 2 4 2 44 0.7225 0.4040 19.20 8.13

c2 2 5 2 44 0.0889 0.0002 19.20 8.13

c2 2 6 2 44 0.1396 0.0236 19.20 8.13

c2 2 7 2 44 0.1721 0.0777 19.20 8.13

c2 2 8 2 44 0.1779 0.0003 19.20 8.13

c2 2 9 2 44 0.2443 0.1002 19.20 8.13
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VVV XB Time window width Demand

Problem Clusters (×10−5×10−5×10−5) (mean) (stdev) (mean) (stdev)

c2 210 2 44 0.2446 0.0004 19.20 8.13

r1 2 1 4 21 0.0158 0.0007 19.04 9.66

r1 2 2 4 21 0.2207 0.3771 19.04 9.66

r1 2 3 4 21 0.4590 0.4460 19.04 9.66

r1 2 4 4 21 0.7074 0.3702 19.04 9.66

r1 2 5 4 21 0.0474 0.0004 19.04 9.66

r1 2 6 4 21 0.2450 0.3638 19.04 9.66

r1 2 7 4 21 0.4748 0.4302 19.04 9.66

r1 2 8 4 21 0.7143 0.3571 19.04 9.66

r1 2 9 4 21 0.0990 0.0303 19.04 9.66

r1 210 4 21 0.1935 0.0441 19.04 9.66

r2 2 1 4 21 0.0480 0.0160 17.08 8.48

r2 2 2 4 21 0.2604 0.3937 17.08 8.48

r2 2 3 4 21 0.4920 0.4674 17.08 8.48

r2 2 4 4 21 0.7417 0.4057 17.08 8.48

r2 2 5 4 21 0.0948 0.0006 17.08 8.48

r2 2 6 4 21 0.2976 0.3730 17.08 8.48

r2 2 7 4 21 0.5177 0.4424 17.08 8.48

r2 2 8 4 21 0.7547 0.3830 17.08 8.48

r2 2 9 4 21 0.1511 0.0682 17.08 8.48

r2 210 4 21 0.1877 0.0245 17.08 8.48

rc1 2 1 4 17 0.0473 0.0003 17.24 8.50

rc1 2 2 4 17 0.2089 0.3355 17.24 8.50

rc1 2 3 4 17 0.4394 0.4274 17.24 8.50

rc1 2 4 4 17 0.6533 0.3901 17.24 8.50

rc1 2 5 4 17 0.1051 0.0484 17.24 8.50

rc1 2 6 4 17 0.0946 0.0005 17.24 8.50

rc1 2 7 4 17 0.1446 0.0478 17.24 8.50
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VVV XB Time window width Demand

Problem Clusters (×10−5×10−5×10−5) (mean) (stdev) (mean) (stdev)

rc1 2 8 4 17 0.1875 0.0516 17.24 8.50

rc1 2 9 4 17 0.1893 0.0006 17.24 8.50

rc1 210 4 17 0.2366 0.0007 17.24 8.50

rc2 2 1 4 17 0.0473 0.0003 17.24 8.50

rc2 2 2 4 17 0.2789 0.4033 17.24 8.50

rc2 2 3 4 17 0.5108 0.4659 17.24 8.50

rc2 2 4 4 17 0.7337 0.4090 17.24 8.50

rc2 2 5 4 17 0.1114 0.0585 17.24 8.50

rc2 2 6 4 17 0.0947 0.0005 17.24 8.50

rc2 2 7 4 17 0.1421 0.0658 17.24 8.50

rc2 2 8 4 17 0.1995 0.0691 17.24 8.50

rc2 2 9 4 17 0.1893 0.0007 17.24 8.50

rc2 210 4 17 0.2366 0.0007 17.24 8.50
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