
Chapter 8
Dynamic intelligence through Artificial

Neural Networks (ANNs)

The concept of Artificial Neural Networks (ANNs) is derived from research into the work-

ing of the brain. The models of ANNs are algorithms for cognitive tasks such as learning

and optimization (Müller et al., 1995). The use of neural networks in the broader field of

operations research is reviewed by Burke and Ignizio (1992).

Potvin and Smith (2003) provide a brief historic review of the first introduction of Arti-

ficial Neural Network (ANN) in the late 1940s. After a devastating blow by counter-proving

research in the 1960s, the field only reemerged in the early 1980s, with successes in the field

of pattern recognition. The first attempt to solve combinatorial optimization problems using

neural networks was made by Hopfield and Tank (1985) — solving only small instances of

the TSP. Potvin (1993) later solved problems with 200 nodes. One of the first attempts to

solve a VRP using an ANN was made by Matsuyama (1991).

The objective of employing ANNs in this thesis is not to compete with existing meta-

heuristics to solve a variation of the VRP. The emphasis is on employing ANNs to predict

the best solution algorithm to use, given a new and unknown data set. Also, to learn from

experience so that better predictions can be made in future. The candidate proceeds in

this chapter to use a learning structure for predicting the best solution algorithm, and the

approach can easily be extended to include parametric variations of an algorithm.

8.1 Learning structures

Russell and Norvig (2003) comprehensively address a number of learning structures. The
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first, and simplest form of learning, is done from observation alone. A decision tree is

established from known results, and can be employed in making future decisions. The task

of learning a function from example inputs and outputs is referred to as inductive learning,

or supervised learning.

8.1.1 Bayesian networks

A hypothesis, in the learning context, is a probabilistic theory describing the problem domain.

To use an example from the vehicle routing domain, a hypotheses would be to solve the given

problem using the TS. On the other hand, data is the available evidence used to sustain a

specific hypothesis. Again, using the vehicle routing example, evidence would be the fact

that customer input data is classified as a c1 problem — geographically clustered with tight

time windows.

Acid et al. (2004) used Bayesian networks to predict patient stays in an emergency med-

ical service, and answer related management questions with regards to staff redistribution

and possible reinforcement of both staff and equipment. Bayesian learning simply calculates

the probability of each hypothesis, given the input data, and makes predictions on that ba-

sis (Russell and Norvig, 2003). Predictions are therefore made by using all the probabilities,

albeit in a weighted manner, instead of just the single best hypothesis.

8.1.2 Artificial Neural Networks (ANNs)

According to Potvin and Smith (2003) the original objective of artificial neural networks were

to provide a fundamentally new and different approach to information processing, especially

when an algorithmic procedure for solving the problem was not known. But it is the ability

that ANNs have to learn arithmetic or logical functions, due to McCulloch and Pitts (1943),

that is of value to this thesis. Russell and Norvig (2003) confirm that ANNs are mostly used

for classification, in the case of discrete hypotheses, or regression for continuous hypotheses.

ANNs are powerful at finding nonlinear relationships in data without known structure, but

require a lot of data to find such relationships.

This thesis attempts to algorithmically implement the ability of human decision makers

to choose an appropriate solution algorithm when solving scheduling problems. The desire to

understand the principles on which the human brain work is one of the motivating factors why

researchers became interested in neural networks. Another motivation is the wish to build

machines that are capable of performing complex, parallel processing of tasks for which the
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sequentially operating computers are not well-suited. Technology has changed dramatically

and consequently made the motivating factors for ANNs a possibility.

8.2 Basic mechanisms of an ANN

Müller et al. (1995) defines a neural network in mathematical terms as a directed graph with

the following properties:

• A state variable ni associated with each node i in the graph. Nodes are also referred

to as neurons.

• A real-valued weight wik associated with each edge between nodes i and k. Links are

also referred to as synapses. The weight wik is interpreted as the influence that node

k’s output will have on node i.

• A real-valued bias νi associated with each node i, also referred to as the activation

threshold.

• A transfer function fi [nk, wik, νi, (k 6= 1)] is defined for each node i. The function

determines the state of the node as a function of its bias, the weights of incoming links,

as well as the states of the nodes connected to it by the links. The transfer function

usually takes the form f (
∑

k wiknk − νi) and is either a discontinuous step function,

or a smoothly increasing generalization known as a sigmoidal function. Examples of

these shapes are illustrated in Figure 8.1.

The concept of binary switching was first proposed in the decision element theory of Mc-

Culloch and Pitts (1943). Each one of the decision elements (neurons) i = 1, . . . , n can only

take the output values ni ∈ {0, 1}, where ni = 0 represents the resting state, and ni = 1 the

active state of the neuron. The new input state of a neuron i, denoted by hi(t) at time t, is

influenced by all other neurons. The initial combination was originally expressed linearly as

hi(t) =
∑

j

wijnj(t)

using the same notation presented earlier with the exception of a time-dependent nj(t)

denoting the state of neuron j at time t. If ni(t) denotes the output state of a neuron,

the properties of the neural network is governed by the functional relation between hi(t)

and ni(t + 1). The simplest case sees a neuron become active if its input exceeds a certain
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Figure 8.1: Typical transfer function shapes

threshold νi which may be unique to each neuron i. The law

ni(t+ 1) = θ (hi(t)− νi)

governs the network with θ (x) being the step function indicated in Figure 8.1(a), i.e. θ(x <

1) = 0, and θ(x ≥ 1) = 1.

But it was Caianello (1961) that addressed learning through an algorithm that allow

the determination of the synaptic strengths, wij , of the neural network. Rosenblatt (1962)

introduced the perceptron, a layered neural network. The neurons of the output layer receives

synaptic signals from the input layer, as illustrated in Figure 8.2.

Whereas the clustering of input data discussed in Chapter 7 was unsupervised, learning

is supervised in the ANN suggested here. Dermuth et al. (2005) state that the event of

training a neural network can be illustrated using Figure 8.3. The network is trained, or

adjusted, until a particular input leads to a specific target output. This iterative process is

referred to as error back-propagation, and minimizes the Mean Square Error (MSE), where
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Figure 8.2: Simple layered perceptron (Müller et al., 1995)
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Figure 8.3: Training a neural network(Dermuth et al., 2005)

the error is the difference between the actual output and the target output. If tk denotes

the target output of an input element pk, and ak denotes the actual output of the network,

then, for a training session with K input elements, the MSE is calculated as

MSE =
1
K

K∑
k=1

(tk − ak)
2.

Karayannis and Venetsanopoulos (1993) divide ANN architectures into three basic cate-

gories, of which the first is the category most widely researched, and henceforth adopted in

this thesis:

Feed-forward One of the earliest architectures consisting of one or more layers of pro-

cessing units. Units belonging to neighboring layers are connected by sets of synaptic

weights. The name feed-forward is illustrative of output layers of the network feeds the

next layer of units in the network. Networks of this type can be trained to provide a

desired response (solution algorithm) to a given input (customer data set).
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Feed-back In this type of ANN, the input information defines the initial activity state

of a feed-back system.

Self-organizing Humans’ ability to use their past experience in order to adapt to unpre-

dictable changes in their environment has lead to self-organizing — an adaption to the

environment without the involvement of an external teacher.

8.3 Representation conventions

The notation used to express the ANN is due to Dermuth et al. (2005), and requires a brief

introduction.

8.3.1 Network architectures

The architecture of a network describes how many layers a network has, the number of

neurons in each layer, each layer’s transfer function, and how layers are connected to each

other (Dermuth et al., 2005). The challenge is to find the most appropriate architecture

for the problem of identifying the most appropriate routing algorithm, and predicting the

objective function value. As a general rule, the more neurons in a hidden layer, the more

powerful the network.

Consider Figure 8.4 to be a simple neuron i with vector input

∑ f a

b
Rw

n
1p
2p

Rp

2w
1w

Input Neuron

Figure 8.4: A basic neuron

ppp = {p1, p2, . . . , pj , . . . , pR} where R is number of input elements. Associated with each edge

between input element j and neuron i is the real-valued weightwww = {wi,1, wi,2, . . . , wij , . . . , wi,R}.

The summing junction indicated by
∑

has as its input the dot product of the single row

matrix www and the input vector ppp, wpwpwp, as well as the scalar bias, b. In this thesis the bias is
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initially set to zero, and is adapted during training. The net input to the transfer function,

n, is calculated as

ni =
∑

j

wijpj + b.

The transfer function is indicated by f , and may be either a discontinuous step function,

pure linear function, or the sigmoidal function indicated in Figure 8.1. An abbreviated

notation is suggested for a single neuron by Dermuth et al. (2005), and is provided in

Figure 8.5.

f
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n
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w

b
+

1

1×R
R×1

11 ×

11 ×

11 ×

Input Neuron

Figure 8.5: A basic neuron using the abbreviated notation

The benefit of the abbreviated notation becomes apparent when s neurons are combined

in a single layer. The layer is illustrated in its basic form by Figure 8.6, and in its abbreviated

form by Figure 8.7.

A class of problems, referred to as linearly inseparable problems, for example the exclusive-

or (xor) function, cannot be represented by a single perceptron. It was the identification

of such inseparable problems that halted neural network research during the 1960s. The

introduction of multiple layers of neurons avoids nonrepresentable problems. Hence, the last

notational introduction is the existence of multiple layers. To distinguish between the weight

matrices, output vectors, etc., for each layer, the layer’s number is indicated as a superscript

to the variable of interest. Figures 8.8 and 8.9 provides the basic, and abbreviated notation

for a three-layered network. The weight w2,1
4,3 is interpreted as being the weight of the 3rd

output neuron from layer 1 to the 4th neuron from layer 2. In Figure 8.9 the layer between

the input layer 1 and the output layer 3 is referred to as the hidden layer. Russell and Norvig

(2003) state the advantage of hidden layers as the ability to enlarge the hypothesis space

that the network can represent.
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Figure 8.6: A layer of neurons
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Figure 8.7: A layer of neurons using the abbreviated notation
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Figure 8.8: A three-layer network

f

1a
1n

p

R

1,1w

1b
+

1

1×R
Rs ×1

11 ×s

11 ×s

Input Layer 1

1s

f
2n+

1

Rs ×2

12 ×s

Layer 2

2s

f

3a

3n+
1

Layer 3

3s

11 ×s

2b

1,2w
12 ×s

12 ×s

2a

3b

2,3w
13 ×s

13 ×s

13 ×s

13 ×s

Figure 8.9: A three-layer network using the abbreviated notation

The concept of back-propagation determines which hidden layer is responsible for the

error. Each hidden node j is believed to be responsible for some fraction of the error,

denoted by ∆i, in each of the output nodes to which it connects. Thus, the ∆i values are

divided according the the strength of the connection between the hidden node and the output

node. The error portions are propagated back to provide the ∆j for the hidden layer. The

back-propagation is repeated until the first (earliest) hidden layer is reached.

8.3.2 Data structures

The first type of input vector, denoted by ppp, occurs concurrently without a particular se-

quence of the elements of the vector, as is the case in this thesis. All inputs (geographical

dispersion, time windows, and demand characteristics) occur concurrently, and need not be

presented to the network in a specific order. On the other hand, a network for sequentially
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input vectors contains delays to ensure that input vectors are received in a specific order by

the network.

8.4 Proposed network structure

The proposed network is illustrated in its abbreviated form in Figure 8.10. The network

1n
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1,1w
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+

1

16 ×
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150 ×
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Input Hidden layer

50

Output layer

2n

1,1w

2b
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2

1

1a
150 ×

2a
12 ×

Figure 8.10: Proposed network in abbreviated form

consists of an input layer with six input elements, each depicting a specific characteristic of

the problem set:

Number of clusters The optimal number of clusters when using fuzzy c-means cluster-

ing and the Xie-Beni index. The index value is the same as the extended Xie-Beni

index, V +
XB, with a fuzzy factor of m = 2.

Validation index The Xie-Beni validation index vlaue, VXB, calculated using (7.7).

Time window width (mean) The arithmetic mean width of customer time windows

expressed as a fraction of the time window width of the depot.

Time window width (stdev) The standard deviation of the customer time window

widths when expressed as a fraction of the depot’s time window width.

Demand (mean) The mean customer demand.

Demand (stdev) The standard deviation in the data set containing all customer de-

mands.
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The network boasts a single hidden layer with arbitrary quantity of 50 neurons and a tan-

sigmoid transfer function as indicated in 8.1(d) generating outputs in the range (−1, 1). The

output layer has two elements and a pure linear transfer function a indicated in Figure 8.1(b).

The linear transfer function in the output layer allows outputs to take on any value. The first

output element is equal to 1 if TS is the proposed solution algorithm to be used, and 2 if the

GA is proposed. The second output element is the predicted objective function value when

using the proposed solution algorithm. The actual training set is provided in Appendix F.

8.5 Training the neural network

One of two training styles can be used. In batch training, weights and biases are only

updated once all inputs have been presented to the network. In this thesis all training data

is presented to the network before weights are adjusted. The second incremental training

style sees weights and biases of the network updated each time an input is presented to the

network.

The convergence of the error during training is illustrated with Figure 8.11. As the
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Figure 8.11: Convergence of the objective function error towards zero

training progresses, the network’s ability to accurately predict the objective function value

increases. It can be seen in the figure that the error converges towards zero.

Properly trained backpropagation networks tend to give reasonable answers when repre-

sented with inputs that they have never seen. Typically when an input is presented that is

similar to an input on which the network was trained, the output will be similar to the cor-

rect output provided during training. This generalization makes it possible to train a neural
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network on a representative set of input/target pairs and get good results without training

the network on all possible input/output pairs, as this will not be possible in practice. All

possible customer location and demand configurations in the vehicle routing context cannot

be solved in reasonable time to train the network.

According to Dermuth et al. (2005), an epoch is the time allowed to present the set of

training data to the network and the calculation of new weights and biases. The regression

analysis result after training the network for 500 epochs is indicated in Figure 8.12. Even
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Figure 8.12: Regression results for the trained network

with training data that is not very rich, i.e. only a single instance occurs suggesting the

use of GA as a solution algorithm, the network’s ability to attain the target is fair, with a

correlation coefficient of R = 0.9245.

8.6 Integrating the neural network

Neural networks require rich training sets to ensure a well-trained network with accurate

prediction rates. A structure for the integrated intelligent agent is proposed in Algorithm 8.1.

Due to the computational burden being in excess of 1500 seconds, a problem set is only

evaluated every ϑ instance. During the evaluation, a problem is solved using both the TS

and the GA solution approaches. The problem is analyzed as per the original training of

the network. The target for the problem is established as the best of either the TS or GA

result. While the target is reported as the problem set’s solution, the problem set’s analysis,

as well as the target, is added to the training set, and the network is retrained on the newly

adapted training set.
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Algorithm 8.1: The intelligent agent
Input: Network update frequency function, f (θ)

Input: Problem set, P

load global iteration number, θ1

ϑ← f (θ) = max
{
1,
⌊
ln
(

θ
10

)⌋}
2

if θ
ϑ =

⌊
θ
ϑ

⌋
then3

x1 ← Solve P using TS4

x2 ← Solve P using GA5

x? ← min
i={1,2}

{xi}6

report solution x?7

load training set8

training set← training set ∪ {P ⊕ x?}9

retrain neural network with updated training set10

save neural network11

save training set12

else13

load neural network14

x̂← simulated output from neural network with input P15

Report solution x̂16

endif17

θ ← θ + 118

save θ19
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The network update frequency, ϑ, is a parameter that is dynamically adjusted as a

function of the global iteration number, θ. This ensures that the network is initially retrained

after every iteration, and the update frequency is decreased as the network becomes more

adapted to the environment. In this thesis the candidate assumes that an intelligent routing

agent is implemented in an environment in which customer demand characteristics are fairly

stable. A network update frequency function, denoted by f (θ), is proposed in (8.1).

ϑ = max
{

1,
⌊
ln
(
θ

10

)⌋}
(8.1)

The update frequency, ϑ, is illustrated in Figure 8.13 as a function of the global iteration

number, θ.
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Figure 8.13: Update frequency function

8.7 Conclusion

Planning, according to Russell and Norvig (2003), is the task of coming up with a sequence

of actions that will achieve a goal. In the context of this thesis, the goal is to solve any

given real life vehicle routing and scheduling problem as best possible. In this chapter, an

intelligent agent is proposed in the form of an algorithm that utilizes an Artificial Neural

Network (ANN) to predict the best solution algorithm to use to solve a given routing problem.

Strategies and results from previous chapters in this thesis, i.e. the Tabu Search (TS) and

Genetic Algorithm (GA) metaheuristics, fuzzy c-means clustering, and the current neural

network were all integrated within the proposed agent. A conclusive discussion on the value

of this contribution, as well as suggested future endeavors are indicated in the next chapter.

132

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoouubbeerrtt,,  JJ  WW  ((22000077))  


	00Front
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Dynamic intelligence through ArtificialNeural Networks (ANNs)
	8.1 Learning structures
	8.2 Basic mechanisms of an ANN
	8.3 Representation conventions
	8.4 Proposed network structure
	8.5 Training the neural network
	8.6 Integrating the neural network
	8.7 Conclusion

	Chapter 9
	Bibliography
	Appendices



