
Chapter 7
Clustering input data

In this chapter the concept of pattern identification on input data is investigated. What is

peculiar about the benchmark problem sets proposed by both Solomon (1987) and Homberger

and Gehring (1999) are the fact that they are preempting specific theoretical characteristics,

unlike problems found in real applications. This is clearly illustrated when the assignment

of time windows is discussed. For the problem sets R1, R2, RC1, and RC2 a percentage of

customers are selected to receive time windows, say 0 < f ≤ 1. Next n random numbers from

the random uniform distributions is generated on the interval (0, 1), and sorted. Customers

i1, i2, . . . , in1 are then assigned time windows, where the number of customers requiring time

windows can then be approximated by n1 ≈ f.n. The center of the time window for customer

ij ∈ {i1, i2, . . . , in1} is a uniformly distributed, randomly generated number on the interval(
e0 + toij , l0 − tij0

)
, where e0 and l0 denotes the opening and closing times of the depot,

respectively, and t0ij and tij0 denotes the travel distance from the depot to customer ij , and

back, respectively.

For clustered problem sets C1 and C2 the process becomes questionable. Customers

in each cluster are first routed using a 3-opt routine as described in the previous chapter.

An orientation is chosen for the route, and time windows are then assigned with the center

being the arrival time at the customer. The width and density are derived in a similar

fashion as for random and semi-clustered data. Although Solomon (1987) states that “this

approach permits the identification of a very good, possibly optimal, cluster-by-cluster solution

which, in turn, provides an additional means of evaluating heuristic performance”, it does

not provide a credible means to evaluate real life problems where customers do not negotiate

their sequence prior to stating a preferred time window.

Literature provides good references to what type of metaheuristics, or metaheuristic
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configurations provide good answers to which of the six benchmark problems. When given a

real data set from industry, however, one is not provided with the classification of “this a C1

problem set”. To therefore determine which solution algorithm to use, and which parameter

setting, the routing agent first needs to classify the input data.

The idea behind learning is not so that an agent can act, but rather to improve an agent’s

ability to act in future. In the context of vehicle routing the agent is the routing system

proposed by this thesis. The acting is the routing of vehicles, given the demand inputs,

using some metaheuristic with its associated parameter settings. For a routing systems to

learn, it must perceive certain characteristics of the inputs, for example the geographical

dispersion of customers or the width of time windows provided by customers, and choose an

appropriate metaheuristic, and know what parameter values to suggest in order to obtain

the best route in the shortest possible time. The execution of the metaheuristic makes up

the performance element of the agent, and have been thoroughly introduced in Chapters 4

through 6. Deciding which metaheuristic to use forms the learning element of the agent.

The concepts of representation of an agents knowledge and its reasoning processes that

brings that knowledge to life are central to the entire field of AI. The design of a learning

element is affected by three distinctive components:

• Which components of the performance element are to be learned?

• What feedback is available to learn these components?

• What representation is used for the components?

The components of the performance element that the agent should learn from input data

provided, are the geographical distribution of customers; the relation between customer

demand and vehicle capacity, and time window characteristics. In order to determine the

nature of learning for the agent, the type of feedback available to the agent is extremely

important. Russell and Norvig (2003) distinguish between three types of feedback:

Supervised learning Learning takes place by providing both input and output exam-

ples. For instance, if an agent is provided with many pictures that he is told contain

buses, the agent learns to recognize a bus. Both the input and the output is provided.

Unsupervised learning Patterns are learned by providing input, but in the absence

of specific outputs. When commuting from home to work, a person might be able

to distinguish between “good traffic days” and “bad traffic days”, without ever being
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given examples of either of the two. A purely unsupervised agent cannot learn as it

has no information as to what constitute a desirable state, or a correct action.

Reinforcement learning The most general of the three types of feedback. Without

being told by a supervisor what to do, a reinforcement learning agent must learn

through reinforcement, for example an action that is not followed by a tip or any

confirmation is interpreted as an undesirable state.

The routing agent in this thesis will typically be given a data set without knowing whether

it is clustered, randomly distributed, or whether the time windows are tight. As a supervisor

also do not know whether it is clustered, or not, it would also not be possible to reinforce

a correct action taken, as the evaluation of correctness would be flawed. The routing agent

would hence have to learn unsupervised.

Knowledge and reasoning are both required for problem solving agents to perform well

in complex environments. The concept of knowledge representation is important as an agent

would require some structure in which to put the information that it has learnt, so as to

be able to revisit its knowledge base in future when decision are made. This is necessary

to improve future decision making. The central component of a knowledge-based agent is

its knowledge base, expressed as sentences in a knowledge representation language. Each

sentence asserts something about the agent’s world. There are ways to add new sentences to

the knowledge base, and ways to query what is already known. In AI these two actions are

referred to as Tell and Ask. Being a logical agent, when ‘Ask’ed a question, the answer would

be related to what the knowledge base has been ‘Tell’ed previously. Also, the two tasks may

involve inference where new sentences are derived from old ones.

7.1 Unsupervised clustering

The clustering problem is defined as partitioning a given data set into groups, or clusters, such

that data points in a cluster are more similar to each other than to other points belonging

to different clusters. According to Gath and Geva (1989) and Xie and Beni (1991) the

criteria for the definition of optimal partition of the data into clusters are based on three

requirements:

• Clear separation between the resulting clusters.

• Minimal volume of the clusters.
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• Maximal number of data points concentrated in the vicinity of the cluster centroid, i.e.

maximum cohesion.

Thus, although the environment is fuzzy, the aim of the classification is the generation of

well-defined subgroups. To solve the clustering problem, a number of clustering algorithms

have been proposed. One of the most important families of clustering techniques are parti-

tioning clustering, with the most commonly used algorithm in this family being the k-means

clustering algorithm and its numerous variants (Xu and Brereton, 2005). A main problem

of the k-means clustering variants is that the algorithms require the number of clusters, c,

as an input so that a data set can be clustered into c partitions.

Unsupervised clustering is the problem of discerning multiple categories in a collection

of objects. The categories referred to are the components of the input data that the agent

should learn, while objects refer to the input data points, i.e. the customers in the network.

The learning process is unsupervised as the agent does not know whether the input data is

randomly distributed, clustered, or a combination of both.

So if the number of clusters, c, is not known when learning should occur, the agent can

perform a number of clustering attempts, each using a different values for c. In such a way

the most appropriate value for c can be determined. Such an approach is defined as cluster

validation. In this chapter, the behavior of a number of validation indices will be tested

on benchmark data sets for the VRPTW. The objective is to establish trends that can be

used to Tell the routing agent how to identify input data as belonging to either the R1, R2,

C1, C2, RC1, or RC2 group of problems. The most appropriate metaheuristic can then be

identified, along with its most appropriate parameter settings.

7.1.1 Fuzzy c-means clustering

One of the variants of the k-means clustering algorithm, fuzzy c-means (FCM) clustering,

attempts to find the most characteristic point in each cluster vi ∈ VVV = {v1, . . . , vc}, which

can be considered as the center of cluster i and then grade the membership for each node

xj ∈ XXX = {x1, . . . , xn} in cluster i. The member allocation is achieved by minimizing the

commonly used membership weighted with-in cluster error objective function defined in (7.1)

Je (UUU,VVV ) =
c∑

i=1

n∑
j=1

um
ijd

2
ij (7.1)

where dij is the Euclidean distance between object j and the ith center, and uij is the

fuzzy membership of object j belonging to the ith cluster. The FCM is then described
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by Algorithm 7.1. The algorithm requires the number of classes, a fuzzy factor and a

Algorithm 7.1: Fuzzy c-means clustering
Input: Number of classes, c

Input: Fuzzy factor, m > 1

Input: Convergence threshold, ε > 0

Randomly select c nodes to initialize centers matrix VVV 0,1

k ← 02

Jk
e ←

∑c
i=1

∑n
j=1 u

m(k)
ij

(
dk

ij

)2

3

repeat4

for i ∈ {1, . . . , c}, j ∈ {1, . . . , n} do5

uk
ij =

(
c∑

r=1

[(
dk

ij

dk
rj

) 2
m−1

])−1

if For any r ∈ {1, . . . , c}, dk
rj = 0 then

6

uk
rj = 17

for i, r ∈ {1, . . . , c}, i 6= r do8

uk
ij = 09

endfor10

endif11

endfor12

for i ∈ {1, . . . , c} do13

VVV k+1
i =

nP
j=i

u
m(k)
ij xj

nP
j=i

u
m(k)
ij14

endfor15

k ← k + 116

Jk
e ←

∑c
i=1

∑n
j=1 u

m(k)
ij

(
dk

ij

)2

17

until
∥∥Jk

e − Jk+1
e

∥∥ < ε18

convergence threshold as input. The centers matrix VVV is then initialized using a random

selection of c nodes from the node set {1, . . . , n}. The iteration count is zeroed before

the membership matrix UUUk is calculated. A new centers matrix is calculated, before the

convergence of the objective function is tested. Xu and Brereton (2005) notes that when the

fuzzy factor m approaches 1, the FCM is similar to the standard k-means clustering. When

m approaches infinity, however, the clustering of the FCM is at its fuzziest: each node is

assigned equally to each cluster. The authors also note that the FCM is but a local search
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algorithm, and at best will find a local minimum, and is therefore sensitive to the random

initial guess for VVV 0. Figure 7.1 illustrates the clustering of one of the C1 problem sets

provided by Gehring and Homberger (1999), C1-2-1, the first of their problem sets with 200

customers. The small circles indicate the customer nodes, while asterisks indicate the center

of the cluster. All nodes clustered together are linked with gray lines. In establishing the

clusters, a fuzzy factor of m = 3, convergence threshold of ε = 1.0× 10−5, and an iteration

limit of kmax = 1000 is used. A number of validation indices are subsequently considered to

evaluate the clustering.

7.1.2 Validation indices

A validation index is a single real value that describes the quality of a cluster partition.

Some of the validation indices are only concerned with the membership value of the final

clustering partition. Although Bolshakova and Azuaje (2003) do not apply the Silhouette

index on fuzzy clusters, this thesis propose that for a given cluster i ∈ {1, . . . , c}, assign to

each node j a quality measure sj , known as the silhouette width, defined in (7.2)

sj =
bj − aj

max {aj , bj}
(7.2)

where aj is the average distance between the jth node and all the other nodes included in

the ith cluster, and bj the average distance between node j and all the other nodes not in

cluster i. Here a node j is assigned to cluster i if uij = max
i∈{1,...,c}

{uij}. The value of sj will

range in the region [−1, 1]. A value close to 1 indicates node j to be well clustered, i.e.

appropriately assigned to cluster i. A value for si in the region of zero indicates that node

j may well be assigned to a neighboring cluster, and a value close to -1 indicates node j to

be misclassified, i.e. assigned to the wrong cluster. For cluster i one may then determine a

silhouette value Si, defined by (7.3)

Si =
1
m

m∑
j=1

sj (7.3)

where m is the number of samples in cluster i. The global silhouette value Vs as defined

by (7.4) is an effective index.

Vs =
1
c

c∑
i=1

Si (7.4)

The Partition Coefficient index is defined by (7.5)

VPC =
1
n

 c∑
i=1

n∑
j=1

u2
ij

 (7.5)
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(a) 5 Clusters

(b) 20 Clusters

Figure 7.1: Clustering the C1-2-1 problem set
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where uij is the fuzzy membership for node j belonging to cluster i, and n the number of

nodes in the input data, excluding the depot. The value of VPC is in the range [1/c, 1]. An

index close to 1 indicates good cluster separation, while a low index value indicates fuzzier

clustering. An index of VPC = 1/c indicates that there is no clustering tendency. The

disadvantages of VPC are the lack of direct connection to a geometrical property, and the

monotonic decreasing tendency with c.

The Partition Entropy index is defined by (7.6)

VPE = − 1
n

 c∑
i=1

n∑
j=1

uij log (uij)

 (7.6)

The value of VPE is in the range [0, log c]. In contrast to PC, a low value of VPE indicates

good cluster separation. Unfortunately the same disadvantages as for VPC hold for VPE in

that there is not direct connection to a geometrical property, and the index has a monotonic

decreasing tendency with c. The following indices involve not only the membership value,

but also the actual data set.

In the following indices the numerical taxonomy of Bezdek (1974) is used. Xie and Beni

(1991) introduced an index that give weight to both compactness, and separation. First

the fuzzy deviation of node j from cluster i, denoted by dij is determined as the Euclidean

distance between node j and cluster i, weighted by the fuzzy membership of node j belonging

to cluster i. The sum of the squares of the fuzzy deviations of each node j is referred to

as the variance of cluster i, denoted by σi. The total variation of the data set with respect

to the given fuzzy c-partition is referred to as σ. The compactness of the partition is the

ratio between the total variation of the data set to the size of the data set, expressed as σ
n .

The centers between all cluster center combinations i, r ∈ {1, . . . , c}, i 6= r is calculated, and

the minimum inter-center distance is denoted by dmin. The separation of clusters is then

determined by s = d2
min. A high value of s indicates well-separated clusters. The index is

the minimum value for σ
n·s , or more explicitly written in (7.7).

VXB =

c∑
i=1

n∑
j=1

u2
ij ‖xxxj − vvvi‖2

n

(
min

i,r∈{1,...,c},i6=r

{
‖vvvi − vvvr‖2

}) (7.7)

Pal and Bezdek (1995) extend the Xie-Beni index for cases where the fuzzy factor m 6= 2,

114

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoouubbeerrtt,,  JJ  WW  ((22000077))  



and the extended index V +
XB is defined in (7.8)

V +
XB =

c∑
i=1

n∑
j=1

um
ij ‖xxxj − vvvi‖2

n

(
min

i,r∈{1,...,c},i6=r

{
‖vvvi − vvvr‖2

}) (7.8)

Kwon (1998) also investigates the Xie-Beni index, and proposes an index that eliminates

the monotonically decreasing tendency as the number of clusters increases and approaches

n, the number of nodes in the data set. The index is denoted by VK and is defined in (7.9).

VK =

c∑
i=1

n∑
j=1

u2
ij ‖xxxj − vvvi‖2 + 1

c

c∑
i=1
‖vvvi − vvv‖2

n

(
min

i,r∈{1,...,c},i6=r

{
‖vvvi − vvvr‖2

}) (7.9)

The second term in the numerator is an ad hoc punishing function used to eliminate the

decreasing tendency when c becomes large and close to n. The center of the data set is

denoted by v.

The Fukuyama-Sugeno index (as cited by Kim et al. (2003); Rao and Srinivas (2006); Xu

and Brereton (2005)) is defined by (7.10)

VFS =
c∑

i=1

n∑
j=1

um
ij

(
‖xxxj − vvvi‖2 − ‖vvvi − vvv‖2

)
(7.10)

The weighted membership value is multiplied by the difference between the distance between

nodes and its cluster centers, and the distance between cluster centers and the data center.

A small value represents a well-separated and compact cluster.

The Compose Within and Between Scattering index was introduced by Rezaee et al.

(1998) and is defined by (7.11).

VCWB = αScat(c) +Dis(c) (7.11)

where

Scat(c) =

1
c

c∑
i=1

[
σ(vvvi)T · σ(vvvi)

] 1
2

[σ(XXX)T · σ(XXX)]
1
2

(7.12)

Dis(c) =
Dmax

Dmin

c∑
i=1

(
c∑

r=1

‖vvvi − vvvr‖

)−1

(7.13)

σ(XXX) =
1
n

n∑
j=1

‖xxxj − vvv‖2 (7.14)

σ(vvvi) =
1
n

n∑
j=1

uij ‖xxxj − vvvi‖2 ∀i ∈ {1, . . . , c} (7.15)
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Dmax = max
i,r∈{1,...,r},i6=r

{vvvi − vvvr} (7.16)

Dmin = min
i,r∈{1,...,r},i6=r

{vvvi − vvvr} (7.17)

α = Dis(cmax) (7.18)

The VCWB tends to find an optimum between compactness and separation. Scat(c) denotes

the average scattering (compactness) for the c clusters, while Dis(c) denotes the distance

between cluster centers (separation). With Scat(c) taking on much smaller values than

Dis(c), a scaling factor α is introduced to balance the two terms’ opposite trends. Dmax and

Dmin are the maximum and minimum distances between clusters. The authors perform the

validation over cluster partitions with values 2 ≤ c ≤ cmax. In the application of this thesis

a cluster is considered to be more than 5 nodes, hence cmax = n
5 .

7.2 Evaluating fuzzy membership parameters

Three test sets for clusters have been found in literature, and one set is proposed in this thesis.

Test sets are used to determine the effectiveness of a clustering algorithm as a function of

the fuzzy factor m.

Kwon (1998) suggests the data sets illustrated in Figures 7.2(a) through 7.2(c) with two,

three, and four clusters, respectively. A fourth data set, having five clusters, is proposed in

this thesis and is illustrated in Figure 7.2(d).

All data sets are validated with an iteration limit of k = 10000 and a convergence thresh-

old of ε = 1 × 10−12. The first three data sets provided by Kwon (1998) were tested for

c = {2, 3, . . . , 10} clusters, while the fourth data set is tested for c = {2, 3, . . . , 30} clus-

ters. Results of the cluster validation is provided in Appendix D in Tables D.1 through D.4.

Incorrect predictions for the number of clusters in a data set are boxed. Through obser-

vation it can be seen that the best results are obtained with the fuzzy factor in the region

1.5 ≤ m ≤ 2.0. The best performing validation indices are the Xi-Beni index, VXB, and

the enhanced Xi-Beni index, V +
XB. As expected, these two indices perform very similar in

close proximity of m = 2.0, and become identical in the value m = 2.0.

It is therefor proposed that either VXB or V +
XB be used when benchmark data sets’

clustering is validated. Furthermore, a fuzzy factor of m ∈MMM = {1.5, 1.6, 1.7, 1.8, 1.9, 2.0} is

proposed.
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(Kwon, 1998)
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(d) Data set with five clusters

7.3 Validation of benchmark data

Cluster validation is performed for each of the ten problems of each of the six benchmark

sets. Although somewhat expected, it is interesting to report that the results for all problems

in a given data set are exactly the same. Table E.1 therefor does not report the results for

each problem, but rather for each class.

Each sub-table shows the optimal number of clusters for a specific fuzzy factor, m, as

well as the corresponding validation index value for both the Xi-Beni index, VXB, and the

extended Xi-Beni index, V +
XB. It is noticeable that the optimal number of clusters is much

lower than expected, especially for data sets C1 (4 clusters) and C2 (2 clusters). One might

have expected a number in the region of 20 when referring to Figure 7.1.

The index values for the problem sets R1 and R2 are also lower than expected, indicating

good clusteredness and separation. The index values are significantly (approximately dou-

ble) higher than the values for clustered problem sets, but one might have expected values

indicating much worse clusteredness.
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7.4 Conclusion

In this chapter, fuzzy c-means clustering is introduced as a mechanism to establish the level

of geographical clusteredness of vehicle routing benchmark problem sets. The two values

of interest in the cluster validation is the optimal number of clusters identified, and the

validation index value. The latter provides insight to the level of clusteredness of a data set,

for example the index values for the set RC1 (semi-clustered) is between that of the set C1

(clustered), and set R1 (random).

In the next chapter, these values will be used, along with a time window width analysis,

to train a neural network so that new data sets could be tested to determine which problem

set it resembles best.
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