
Chapter 6
A Genetic Algorithm

In this thesis the approach by Tan et al. (2001c) is followed whereby a Genetic Algorithm

(GA) uses a path representation to code chromosomes (routes). For example, the chromo-

some string 4-5-2-3-1 represents a route that starts at node 4, followed by node 5, then 2, 3,

and 1 before returning to node 4. Each element in the chromosome is referred to as an allele.

For a problem with n customers, each chromosome will be an integer string with n elements.

Although elementary crossover routines often destroy the validity of tours and routes, spe-

cific crossover routines have been developed to ensure that tours and routes remain valid,

and keeps improving.

A slightly adapted version of the GA discussed in Algorithm 3.3 is provided in Algo-

rithm 6.1. The GA requires a generation limit similar to the iteration limit for TS and SA.

The population size determines the number of solutions in a single generation. The pop-

ulation subdivision parameters establishes the fraction of the population that will undergo

specific genetic manipulation. To ensure the natural phenomena of survival of the fittest,

the elitist parameter pe ensures that the pe fittest solutions in a given generation g is exactly

copied to the next generation g + 1. The mutation parameter pm determines the number

of chromosomes that will undergo random changes, or mutation. The crossover parameter,

pc, determines the number of solutions that will produce offspring by sharing elements of its

chromosomes.

The algorithm is initialized with the generation of p solutions, each containing a single

TSP string of nodes. Vas (1999) states that initial solutions can be generated either ran-

domly or heuristically, while Tan et al. (2001c) suggest a combination of solutions: some

generated using an efficient Push Forward Insertion Heuristic (PFIH), and the balance gen-

erated randomly.

92

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Algorithm 6.1: Genetic Algorithm (GA) overview
Input: Generation limit gmax

Input: Population size p

Input: Population subdivisions pe, pm, and pc such that pe + pm + pc = p

g ← 01

begin initialization2

generate feasible TSP solutions x0
1, . . . , x

0
p3

end4

repeat5

g ← g + 16

cluster TSP solutions7

determine fitness of TSP solutions8

begin elite9

Copy pe best solutions from generation g to generation g + 110

end11

begin mutation12

Include pm mutated solutions in generation g + 113

end14

begin crossover15

Choose pc

2 non-overlapping pairs of solutions from generation g16

execute crossover perturbations17

Include new solutions in generation g + 118

end19

until g = gmax20

x? ← min
i∈{1,...,p}

{xg
i }21

x̂← locally optimized x?22

93

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

The GA proceeds for gmax generations. During each generation, the single string solu-

tion, also referred to as a TSP solution, is clustered and assigned to vehicles. Each solution’s

fitness is calculated as the objective function of the specific solution. Based on the fitness, the

algorithm reproduces the next generation through a combination of cloning the pe fittest so-

lutions exactly to the next generation, mutating pm solutions through small changes referred

to as perturbations, and creating pc new offspring by performing crossover perturbations on

a selection of generation g solutions.

The following sections discuss some of the elements of the GA in more detail.

6.1 Initialization

The simplest and computationally most efficient way of generating p initial solutions, each

containing n customers, is to create p random permutations of integers between 1 and n.

Each integer value represents a specific customer. To generate a population of 200 solutions

(chromosomes), each with 200 nodes takes MATLAB on average 0.014 seconds (average ob-

tained from 10,000 independent runs) on a standard Intel Pentium Centrino laptop computer

with a 1.5GHz processor and 512MB of RAM.

As an alternative, initial solutions can be generated using the algorithm presented in

Chapter 4, and adapted for the TS in Algorithm 5.2.

6.2 Clustering

Each chromosome represents a solution in the form of a single integer string, similar to

the TSP strings proposed by Michalewicz (1992). The difficulty with having a single string

to represent multiple tours and routes is that the chromosome needs to be clustered, and

assigned to vehicles.

Although Tan et al. (2001c) simply adds the first allele of the chromosome to the end of

the current tour until vehicle capacity is met, the author of this thesis propose the clustering

routine presented in Algorithm 6.2 to address multiple scheduling. The first allele of the

chromosome is considered for insertion on each edge of each route of the current tour, and

not only at the end of the route. If no position is found for the customer, a new route

on the current tour is considered. If an additional route leads to infeasibilities, a new tour

is initialized, and the customer is inserted. A customer is only orphaned if it can not be

serviced by a dedicated tour.

94

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Algorithm 6.2: GA clustering
Input: population

foreach chromosome in population do1

repeat2

found← 03

forall the routes of current tour do4

forall the edges on current route do5

if feasible insertion then6

found← 17

endif8

endfall9

endfall10

if found = 1 then11

insert customer12

else if multiple routes are feasible then13

insert customer into new route14

else15

create new current tour16

create new first route17

endif18

until all customers are routed, or vehicles are depleted19

report orphans20

endfch21

95

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

6.3 Mutation

A proportion, pm of all chromosomes in a given generation is mutated to ensure that the GA

does not get stuck in a local optimum (Vas, 1999). The proportion is typically very low to

ensure that good chromosomes remain intact. Michalewicz (1992) introduces a non-uniform

mutation rate whereby the number of chromosomes mutated decreases to ensure that the

solution space is searched widely during early generations, and only searched locally in later

generations.

In the majority of applications binary representation is used and mutation involves chang-

ing a 0 value to 1, and vice versa. In this thesis the approach of Tan et al. (2001a) is followed

whereby randomly selected customers are swapped in an integer string representation of a

chromosome.

6.4 Crossover

Crossover operators are concerned with producing offspring solutions for the next generation

from two parent solutions from the current generation. Parents are selected using a biased

roulette wheel. A number of the operators produce only a single offspring from the two

parents, while others produce two offspring. To illustrate the various crossover operators,

the first ten nodes of the C2-2-2 problem set is used.

6.4.1 Enhanced Edge Recombination (EER)

Whitley, Starkweather & Fuquay (as cited by Michalewicz (1992)) developed the Edge

Recombination (ER) crossover technique which they claim transfer more than 95% of the

edges from the parents to a single offspring. To illustrate the ER, consider two single string

TSP solutions, A and B, illustrated in Figures 6.1(a) and 6.1(b) respectively. The edge

table created in Table 6.1(a) lists for each node all the neighbouring nodes from both par-

ent solutions. The single offspring, denoted by C, starts by selecting a starting element.

Starkweather et al. (1991) state that the starting element can be either chosen randomly

from the set of elements which has the fewest entries in the edge table, or a random choice

between the starting element from either parent A or B. The latter option is used in this

thesis. Of the elements that have links to the last element in C, choose the element which

has the fewest number of unassigned links in the edge table entry, breaking ties randomly.

The process is repeated until the new offspring chromosome is complete.

96

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

r1

r2

r
3

r4
r

5

r6

r7

r8

r9
r10

r1

(a) A = [1 2 3 4 5 6 7 8 9 10]

r
5

r6

r7r9 r1
r4

r2
r10

r8

r
3

r
5

(b) B = [5 6 9 1 4 2 10 8 3 7]

r1

r2
r10

r9 r7

r8

r
3

r4
r

5

r6

r1

(c) C′ = [1 2 10 9 7 8 3 4 5 6]

Figure 6.1: Two parent solutions illustrating the ER crossover

Table 6.1: Edge lists

(a) ER edge list

City Links

1 2, 4, 9, 10

2 1, 3, 4, 10

3 2, 4, 5, 8

4 1, 2, 3, 5

5 3, 4, 6

6 5, 7

7 6, 8, 9

8 3, 7, 9, 10

9 1, 7, 8, 10

10 1, 2, 8, 9

(b) EER edge list

City Links

1 2, 4, 9, 10

2 1, 3, 4, 10

3 2, 4, 5, 8

4 1, 2, 3, 5

5 3, 4, -6

6 -5, -7

7 -6, 8, 9

8 3, 7, 9, 10

9 1, 7, 8, 10

10 1, 2, 8, 9

97

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Suppose element 1 is selected from A as starting element in C. Since 1 has been assigned

to C, all occurrences of 1 is removed from the edge list. Element 1 has links to 2, 4, 9 and

10, each having 3 remaining links in the edge table. Element 2 is randomly chosen as next

element in C and all element 2’s occurrences are removed from the edge table. Element 2

has links with 3, 4 and 10, of which 4 and 10 have only 2 remaining links in the edge table.

Element 10 is chosen randomly as the next element in C, having links to elements 8 and 9.

Element 9 has the least (2) number of remaining links in the edge list, and chosen as the

next element in C. The process continues until C = [1 2 10 9 7 8 3 4 5 6].

To enhance the random breaking of ties when selecting among elements, Starkweather

et al. (1991) changed the edge list to indicate common edges. This is achieved by flagging a

common edge by inverting, for example, 3 to −3 if an element has a common edge to element

3 in both parents. Table 6.1(b) indicates the edge list with flagged common edges. When

a tie exist between elements, preference is given to the element with the highest number of

remaining flagged elements. If a tie still exists, it may be broken randomly. Following the

same procedure as for the ER example above, a slightly different offspring C ′ = [1 2 10 9 7

6 5 3 4 8] is obtained. The offspring chromosome is illustrated in Figure 6.1(c). The only

new edge in the offspring is the edge connecting elements 6 and 1. Hence, 90% of the edges

are transferred from the parents to the offspring solution.

6.4.2 Merged Crossover (MX)

The MX was first introduced by Blanton and Wainwright (1993) and is based on the notion

of a global precedence among genes of any chromosome, rather than defining a precedence

among genes specific to parents in a local crossover such as the EER. A number of precedence

vectors have been established in literature.

Latest allowed arrival time

Chen et al. (1998) state that there is a natural precedence relationship among all customers

based on the upper limit of their time windows. The precedence list, denoted by P , for the

example problem is P = [2 8 3 5 7 1 10 6 9 4], based on the time window details provided

in Table 6.2.

To illustrate the crossover, we consider parents A and B from Figure 6.1. The first

elements from both parents are considered: element 5 from B appears before element 1 from

A in the precedence list P , and is selected as first element in offspring C. To maintain

98

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Table 6.2: Time window details for customers from the C2-2-2 problem set

Earliest allowed Latest allowed

Customer, i arrival, ei arrival, li

1 2808 2968

2 668 828

3 1021 1181

4 0 3481

5 1922 2082

6 0 3451

7 2597 2757

8 906 1066

9 0 3475

10 0 3445

validity, elements 1 and 5 are swapped in parent A.

A = [5 2 3 4 1 6 7 8 9 10]

B = [5 6 9 1 4 2 10 8 3 7]

C = [5 ? ? ? ? ? ? ? ? ?]

Next, the second elements of each parent is considered. As element 2 from A appears before

element 6 from B in the precedence list, element 2 is placed in the offspring, and elements 2

and 6 are swapped in parent B.

A = [5 2 3 4 1 6 7 8 9 10]

B = [5 2 9 1 4 6 10 8 3 7]

C = [5 2 ? ? ? ? ? ? ? ?]

The process is repeated until the offspring chromosome is completed with C = [5 2 3 1 4 6

7 8 9 10]. The MX approach is denoted by MX li .

Earliest allowed arrival time

Louis et al. (1999) suggest using the earliest allowed arrival time, given by ei in Table 6.2,

to establish the precedence list, denoted by MX ei . Executing their recommendation results

in a precedence list P = [4 6 9 10 2 8 3 5 7 1]. When using the precedence list on parents A

and B from Figure 6.1, an offspring chromosome C = [5 6 9 4 1 2 10 8 3 7] results.

99

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Time window compatibility

Two novel ways of establishing a precedence list are suggested in this thesis. In the first

novel approach denoted by MX twc, the total compatibility for each customer is calculated

using either (4.8) or (4.9), sorted in ascending order to create the precedence list. Ties are

broken arbitrarily. The resulting precedence list sees incompatible nodes placed earlier in

the chromosome. More compatible nodes are subsequently inserted to fill routes and tours.

Angles

The second novel way to establish the precedence list is to reconsider the fundamental way in

which the the crossover operator is used. The simplicity, yet success of the sweep algorithm

proposed by Gillett and Miller (1974) is incorporated in this MX approach denoted by

MX ∠. The angle for each customer is calculated, and the angles are sorted in ascending

order to determine the precedence list. The resulting crossover ensures that customers that

are located close to one another are assigned to the same route, time windows permitting.

With the depot’s location indicated by an open circle in Figure 6.2, the precedence list

df s1

s2
s10

s9 s7

s8

s
3

s4
s

5

s6

Figure 6.2: Depot and first 10 customers from the C2-2-2 problem set

P = [1 8 2 10 6 9 4 7 5 3] is established.

6.4.3 Partially Matched Crossover (PMX)

PMX is a genetic operator often used with TSP problems using integer string representa-

tion (Goldberg and Lingle, 1985). The operator selects two parent chromosomes using the

biassed roulette wheel, and produces two offspring chromosomes, as opposed to the previous

operators producing only a single offspring. Consider again the two parent chromosomes A

and B given in Figure 6.1. Two crossing positions a and b are randomly selected such that

100

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

1 ≤ a < b ≤ ‖A‖ + 1, where ‖A‖ denotes the number of elements (alleles) in chromosome

A. For illustrative purposes let a = 3 and b = 7. To create offspring 1, denoted by C1, the

strings between the crossing positions from parent 2 is copied to C1.

C1 = [? ? 9 1 4 2 ? ? ? ?]

For each element in A between a and b, starting from position a, look for elements in A that

have not been copied to C1. In the example element 3 is identified. Element 3’s position in

A is occupied by element 9 in C1, and hence element 9 in A’s position is filled in C1 with 3

such that

C1 = [? ? 9 1 4 2 ? ? 3 ?].

Next, element 5 in A is identified, as element 4 has already been copied to offspring C1.

Element 5’s position in A is occupied by 4 in C1, but since element 4 in A’s position is

already occupied in C1 by element 1, element 1’s position in A is identified for element 5 in

C1 such that

C1 = [5 ? 9 1 4 2 ? ? 3 ?].

Element 6 in A is identified next. Element 6’s position in C1 is occupied by element 2, which

in turn, is located in position 2 in A. Hence, element 6 is placed in position 2 in C1 such

that

C1 = [5 6 9 1 4 2 ? ? 3 ?].

As all elements in A between positions a and b have been considered, C1 is completed by

duplicating the remaining elements from A such that

C1 = [5 6 9 1 4 2 7 8 3 10].

The second offspring, denoted by C2, is created in a similar fashion with the resulting off-

spring being C2 = [1 2 3 4 5 6 10 8 9 7].

6.5 Evaluating crossover operators

The proposed GA algorithm is executed to identify appropriate crossover operators for the

varying problem sets. Due to computational time complexity, a single problem is randomly

selected from each problem set. Each crossover operator is then tested using 4 indepen-

dent iterations. The fitness is calculated using an objective function which considers total

101

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

travel time, number of vehicles used, and total lateness at customers. The GA is executed

for a maximum of 200 generations, each having 100 chromosomes. Of every new genera-

tion, 80% of chromosomes were generated through crossover operators. Initially 10% of a

newly created generation is established through mutation to ensure that the solution space

is widely searched. A non-uniform mutation rate introduced by Michalewicz (1992) reduces

the number of mutated chromosomes as the number of generations increases. Hence the so-

lution space is only locally searched towards the end of the algorithm. The balance of a new

generation is created by cloning (copying exactly) the best chromosomes from the previous

generation.

Figure 6.3 illustrates the performance of the various crossover mechanisms for each prob-

lem set. The performances are expressed and calibrated according to the best crossover

operators for the specific problem set. Actual results are provided in Tables 6.3a and 6.3b,

providing the best fitness (objective function value) obtained over the four independent runs,

as well as the average time required (in seconds) to find a solution.

Contrary to Blanton and Wainwright (1993) claiming that most of their MX operators

outperform the PMX operator, the results in this thesis indicates six instances in which

the PMX is either significantly better in terms of fitness, or significantly faster than any

of the other crossover operators. In only two instances, c2 2 3 and rc2 3 8, did MX prove

significantly faster than the other crossover operators, of which one instance is the newly

proposed MX twc.

Using a standard statistical t-test, the EER crossover operators proved to be consistently

worse and slower than other mechanisms, and is consequently omitted from further analysis.

The remaining operators are again subjected to a t-test, resulting in some operators to be

identified as significant, hence labels (e) and (f) in Tables 6.3a and 6.3b.

Self regulation can be achieved through a biased selection of operators based on past

performance. Initially each operator (except EER) is assigned equal probability of being

selected. A parameter λ indicates the frequency (in terms of generations) of testing all

operators, and the probabilities are consequently adjusted based on the relative performance

of each operator, similar to the self organizing mechanism proposed for exchange operators

of the TS algorithm in Chapter 5.

102

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Table 6.3a: Analysis of random problems for each data set

Problem EER MXli MXei MXtwc MX∠ PMX

c1 2 8

Fitness

Value 90026 88895 88510 85272 85043 84607

Relative 1.064 1.051 1.046 1.008 1.005 1.000

t-Value -3.096a -1.916 -1.514 1.865 2.104 2.559

Time

Value 26478 25708 25747 25776 25560 25361

Relative 1.044 1.014 1.015 1.016 1.008 1.000

t-Value -4.569b 0.412 0.160 -0.028 1.369 2.656c

c2 2 3

Fitness

Value 213070 212736 212572 212318 212261 212078

Relative 1.005 1.003 1.002 1.001 1.001 1.000

t-Value -3.821b -1.559e -0.448 1.272 1.658 2.898c

Time

Value 24498 23783 23695 23416 23595 23657

Relative 1.046 1.016 1.012 1.000 1.008 1.010

t-Value -4.725b -0.059 0.516 2.336f 1.168 0.764

r1 2 1

Fitness

Value 37147 36779 36358 36144 35610 34350

Relative 1.081 1.071 1.058 1.052 1.037 1.000

t-Value -2.672a -1.764 -0.724 -0.196 1.123 4.234d

Time

Value 20348 19746 19736 19697 19658 19441

Relative 1.047 1.016 1.015 1.013 1.011 1.000

t-Value -4.650b 0.201 0.282 0.596 0.911 2.659c

a Rejected with 97.5% certainty
b Rejected with 99.0% certainty
c Accepted with 97.5% certainty
d Accepted with 99.0% certainty
e Rejected with 97.5% certainty, EER omitted
f Accepted with 97.5% certainty, EER omitted

103

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Table 6.3b: Analysis of random problems for each data set

Problem EER MXli MXei MXtwc MX∠ PMX

r2 2 5

Fitness

Value 51472 50715 50392 50147 49975 50277

Relative 1.030 1.015 1.008 1.003 1.000 1.006

t-Value -4.434b -0.994e 0.474 1.588 2.369 0.997

Time

Value 17685 17160 17279 17374 17612 17003

Relative 1.040 1.009 1.016 1.022 1.036 1.000

t-Value -3.113a 1.797 0.684 -0.204 -2.430e 3.266c

rc1 2 8

Fitness

Value 42833 42310 41693 41327 41257 40772

Relative 1.051 1.038 1.023 1.014 1.012 1.000

t-Value -3.679b -1.983e 0.018 1.205 1.432 3.005c

Time

Value 61481 60192 60236 60007 59988 60215

Relative 1.025 1.003 1.004 1.000 1.000 1.004

t-Value -4.908b 0.701 0.510 1.507 1.589 0.601

rc2 2 8

Fitness

Value 37348 34763 34433 34294 34271 34045

Relative 1.097 1.021 1.011 1.007 1.007 1.000

t-Value -4.909b 0.189e 0.840 1.114 1.160 1.605

Time

Value 46954 46193 46561 46686 46605 47711

Relative 1.016 1.000 1.008 1.011 1.009 1.033

t-Value -0.803 2.813c 1.064 0.470 0.855 -4.400b

a Rejected with 97.5% certainty
b Rejected with 99.0% certainty
c Accepted with 97.5% certainty
d Accepted with 99.0% certainty
e Rejected with 97.5% certainty, EER omitted
f Accepted with 97.5% certainty, EER omitted

104

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

EER MX with l_i MX with e_i MX with TWC MX a PMX

Fitness Time

(a) c1 2 8

EER MX with l_i MX with e_i MX with TWC MX a PMX

Fitness Time

(b) c2 2 3

EER MX with l_i MX with e_i MX with TWC MX a PMX

Fitness Time

(c) r1 2 1

EER MX with l_i MX with e_i MX with TWC MX a PMX

Fitness Time

(d) r2 2 5

EER MX with l_i MX with e_i MX with TWC MX a PMX

Fitness Time

(e) rc1 2 8

EER MX with l_i MX with e_i MX with TWC MX a PMX

Fitness Time

(f) rc2 2 8

Figure 6.3: Results for a random problem from each set, expressed relative to the best

crossover mechanism for each set.

105

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

6.6 Conclusion

In this chapter a GA with integer string representation is developed to test a variant of

the VRP that uses time-dependent travel time and that accommodates time windows, a

heterogenous fleet, and multiple scheduling. Six crossover mechanisms are tested, two of

which are newly proposed in this thesis.

The results suggest that although there are performance differences among the crossover

operators, few prove to be significant. Therefor, it is suggested that when integrating the

multiple optimization algorithms, namely GA and TS, into the intelligent routing agent,

internal learning or self regulation should be considered.

106

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

	00Front
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	A Genetic Algorithm
	6.1 Initialization
	6.2 Clustering
	6.3 Mutation
	6.4 Crossover
	6.5 Evaluating crossover operators
	6.6 Conclusion

	Chapter 7
	Chapter 8
	Chapter 9
	Bibliography
	Appendices A-F

