
Chapter 5
A Tabu Search solution algorithm

The TS examines a trajectory sequence of solutions and moves to the best neighbor of the

current solution. To avoid cycling, solutions that were recently examined are forbidden, or

tabu, for a number of iterations (Gendreau et al., 2002). Section 3.3.1 reviews the basic

structure of the TS.

Taillard (1993) introduces a feature whereby the main problem is decomposed into in-

dependent subproblems so that the algorithm can be parallelized on multiple processors.

Each subproblem is solved on a different processor before the tours are grouped together to

construct a solution to the original problem. The new solution is then decomposed, and the

process repeats itself for a given number of times. A random selection of components in the

decomposition process ensures the algorithm produces different solutions from one execution

to the next. In this thesis an approach similar to that of Taillard (1993) and Rochat and

Taillard (1995) is followed, albeit on a single processor. The approach can be parallelized

through the coding structure in future research, but recent software technology, i.e. cluster

scheduling such as the MATLAB Distributed Computing system, provides the software the

ability to automatically determine which segment of an algorithm can be parallelized on

multiple clustered processors without adapting the code.

The chapter starts with a brief discussion of the main elements of a TS algorithm, followed

by the TS proposed in this thesis, and a detailed discussion of each phase of the TS. The

chapter concludes with an analysis of the algorithm’s results for problems based on integrated

data sets of Solomon (1987), Homberger and Gehring (1999), and Liu and Shen (1999a,b).

83

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

5.1 Elements of the tabu algorithm

Tabu list A list of the last few moves (or solutions). The memory of moves can be

recency or frequency-based. Short-term recency-based memory forbids cycling around

a local neighborhood in the solution space through setting the last T moves as Tabu.

Recently made moves are stored in a mechanism that is referred to as the Tabu-Move

list. The number of moves in the list is determined by the tabu list size, denoted by

T . The list operates on a first-in-first-out principle. Other recency information that is

stored in the Tabu list is the solution configurations. The larger the value of T , the

longer the moves and solutions stay tabu. The Tabu-Solution list is a set of solutions

that have been created recently by exchanging segments between routes. The solutions

are coded into an integer string. The total cost of the solution is also attached to the

string.

Long-term frequency-based memory allows searches to be conducted in the most promis-

ing neighborhoods. The frequency-based memory provides additional information of

how many times a tabu move have been attempted. To alleviate time and memory

requirements, it is customary to record an attribute of a tabu solution, and not the

solution itself.

Candidate list TS makes use of a candidate list that provides a list of moves to evaluate.

One move of the candidate list is chosen to proceed with the search. The candidate

list plays an important role in the performance of TS.

Intensification and diversification Two memory-based strategies that form a funda-

mental principle of TS. Gendreau (2003) claims diversification to be the single-most

important issue in designing a TS. With the use of the intensification strategy regions

around attractive solutions are more thoroughly searched, and typically operates by

restarting a search from a solution previously found to yield good results. The restart

is achieved through the candidate list representing attractive regions. Diversification,

on the other hand, encourages the search process to examine unvisited regions and

to generate solutions that differ in various significant ways from previous solutions.

The probabilistic diversification and intensification introduced by Rochat and Taillard

(1995) is also referred to as the Adaptive Memory Procedure (AMP).

Penalized objective function The objective function of a solution s is denoted by f1(s)

and is calculated by (5.1) as the sum of the travel times of all routes and tours, and

84

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

the total lateness at all customers (Ichoua et al., 2003).

f1(s) =
∑
Tours

∑
Routes

t+
∑

Customers

αiyi (5.1)

In the calculation αi denotes the lateness penalty for customer i, while yi = max {0, ai − li}.

The actual arrival time at customer i is denoted by ai, while li denotes the latest allowed

arrival time at customer i. The design of the algorithm ensures that ai ≤ li + Lmax
i ,

where Lmax
i is the maximum allowed lateness at customer i. The objective function

is artificially adapted to incorporate a significant penalty for any unrouted customers,

referred to as orphans. The artificial objective function, f2(s), is expressed in (5.2),

f2(s) = f1(s) + βo (5.2)

where β is a nonnegative penalty factor, and o the number of orphans in the final

solution. Orphans are only created if the time window of the customer is completely

incompatible with that of the depot, even if it is serviced by a dedicated vehicle.

Stopping criteria The search is terminated once a preset maximum number of iterations

of the main TS algorithm have been reached. An alternative stopping criteria could

be a predetermined number of attempts being made to set the same solution in the

Tabu-Solution list as the new current solution. This indicates that the search has been

caught in a local optimum, hence terminating the search.

5.2 Tabu algorithm

The phased approach of the TS algorithm, similar to the implementation of Taillard et al.

(1997) and Gendreau et al. (1999), is illustrated in Algorithm 5.1. Data structures are

indicated with sans serif font, while functional routines are indicated with typewriter font.

5.2.1 Initialization

The initial solution algorithm proposed in Chapter 4 forms the basis of the initialization

phase, but generates only a single initial solution, s. As I, preferably different, initial so-

lutions are required, the routine in Algorithm 5.2 is proposed. For each initial solution

required, a random node I?
i is identified and removed from the problem set P . The remain-

ing nodes in P ′ are used to create an initial solution using the improved initial solution

algorithm proposed in Chapter 4. After the nodes in P ′ have been routed, the identified

node I?
i is reinserted into the first feasible position. The result is a set of initial solutions

85

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Algorithm 5.1: Tabu Search (TS) Overview
Input: stopping criteria

Input: Adaptive Memory size, M

begin Initialization (Section 5.2.1)1

construct I unique initial solutions sss = {s1, s2, . . . , sI}2

x̂← min
i∈{1,...,I}

{si}3

decompose sss into independent tour set T4

store M best tours of T∪(Adaptive Memory) in the Adaptive Memory5

end6

begin Optimization (Section 5.2.2)7

while stopping criteria is not met do8

construct a biased solution, x from the tours in Adaptive Memory9

xcurrent ← x10

for W iterations do11

x? ← locally optimized xcurrent12

xcurrent ← x?13

if xcurrent < x̂ then14

x̂← xcurrent15

endif16

endfor17

endw18

decompose xcurrent into independent tour set T19

store M best tours of T∪(Adaptive Memory) in the Adaptive Memory20

end21

report incumbent x̂22

86

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Algorithm 5.2: Tabu Search (TS) Initialization
Input: Problem set P , with |P | = n nodes

Input: Number of initial solutions required, I

identify I? ⊂ P , a randomly identified subset with I nodes from problem set ;1

foreach I?
i ∈ I? do2

P ′ ← P\ {I?
i };3

find initial solution s by executing Initial solution heuristic with P ′ ;4

re-insert I?
i into initial solution to create si5

endfch6

sss = {s1, s2, . . . , sI}. Each initial solution’s tours are stored in the adaptive memory, and

associated with it the objective function value of the initial solution from which the tour

originates. All tours consisting of only a single node are removed from the adaptive mem-

ory.

5.2.2 Optimization

The TS optimization routine listed in Algorithm 5.3 terminates after executing a predefined

number of local optimization iterations, denoted by Imax. A partially constructed tour

is created through iteratively selecting tours from the adaptive memory, and removing all

tours from the adaptive memory that share nodes with the selected tour. The probability

of selecting any tour is based on the objective function associated with the tour, which in

turn is taken from the solution from which the tour originates. Glover (1990) notes that the

use of probabilities, based on past performance, as an underlying measure of randomization

yields efficient and effective means of diversification. The better a solution, the higher the

probability of selecting a tour from that solution. Once a tour is selected from the adaptive

memory, all tours sharing nodes with the selected tour are removed from memory. Removing

tours from the adaptive memory ensures each node is represented only once in the partially

constructed tour. The selection of tours from the adaptive memory, and the removal of

tours with common nodes, is repeated until no more tours remain in the adaptive memory.

As not all nodes are represented, the partially constructed tour denoted by s, is completed

by inserting the remaining unrouted nodes into feasible positions of s. The resulting tour,

denoted by s?, is achieved through either identifying positions on a current route, creating

a new route on a current tour, or creating a new tour with its associated vehicle.

87

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Algorithm 5.3: Tabu Search (TS) Optimization
Input: Incumbent solution, x̂

Input: Iteration limit for local optimization, Imax

Input: Frequency parameter, ζ

s = {·}1

assign set of tours, A← Adaptive Memory2

repeat3

select a ∈ A4

s← s ∪ a5

A← A	 (a ∩A)6

until A = {·}7

s? ← s⊕ ({1, 2, . . . , N} 	 s)8

i← 09

repeat10

i← i+ 111

if
⌊

i
ζ

⌋
= i

ζ then12

exchange heuristic j = {1, 2}13

else14

select exchange heuristic j ∈ {1, 2} with probability pj15

endif16

s′j ← ej (s?)17

s′ ← min
j

{
s′j

}
18

x′ ← f (s′)19

if x′ < x̂ then20

ŝ← s′21

s? ← s′22

endif23

until i > Imax24

88

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Two exchange operators are considered. The first operator removes a randomly selected

node from one tour and inserts the node into the best possible position in another tour that

has the same vehicle type. The second operator also removes a randomly selected node from

an origin tour, but selects the best insertion position for the node on a tour having a different

vehicle type than the origin tour.

Initially the probability of selecting either of the operators is equal. A frequency pa-

rameter, ζ, ensures that every ζ iterations both operators are used to create perturbations.

The probability of the operator producing the best solution is then increased relative to its

current probability. Consider, during a general iteration, the first operator having a weight

of α = 30 and the second operator having a weight of β = 60. If both operators are executed,

and the first operator yields a better solution, its weight will be increased by a factor γ. In

this thesis γ is arbitrarily set to 2. The new probability of selecting the first operator is

p1 =
γα

γα+ β

=
2× 30

2× 30 + 60

= 0.50·,

and the probability of selecting the second operator is calculated as

p2 = 1− p1.

5.3 Results and analysis

The TS algorithm proposed in this thesis contains a random component similar to the algo-

rithm proposed by Rochat and Taillard (1995). This means that two runs of the algorithm

will generally produce two different solutions. Figure 5.1 provides graphs for a random se-

lection of problems. Each graph indicates the iteration number on the x-axis, while the

objective function value is represented on the y-axis. The thinner of the two lines on each

graph represent the actual objective function value of the solution for the given iteration,

while the thick line represents the incumbent — the best solution found thus far, at that

iteration.

It is noticeable that the incumbent for the first iteration is frequently lower than the

actual iteration value. This is the result of the incumbent being represented by one of the ten

initial solutions created for the TS, whereas the first iteration’s solution is created through the

solution-building mechanism that selects tours from the adaptive memory. The incumbent,

89

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

0 20 40 60 80 100
1.68

1.7

1.72

1.74

1.76

1.78

1.8

1.82
x 10

5

Iteration

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(a) Problem c1 2 3

0 20 40 60 80 100
6

6.05

6.1

6.15

6.2

6.25

6.3

6.35
x 10

5

Iteration

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(b) Problem c2 2 3

0 20 40 60 80 100
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4
x 10

4

Iteration

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(c) Problem rc1 2 8

0 20 40 60 80 100
2.6

2.8

3

3.2

3.4

3.6

3.8
x 10

4

Iteration

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(d) Problem rc2 2 8

Figure 5.1: Selection of TS result graphs

furthermore, is never improved by more than 10% over the 100 iterations, reflecting on the

high quality initial solution proposed in Chapter 4.

Because of the randomness inherent in the structure of the proposed TS, the results pre-

sented in Appendix B sees four independent runs executed, with Tables B.1(a) through B.1(f)

providing the objective function values for each of the runs, as well as the average objective

function value obtained. The last column of the result tables provide the average time (in

seconds) required to obtain a solution. The average time is provided under the assumption

that time-dependent travel time matrices are not available, and that such matrices have to

be established once, and adhere to the triangular inequality

tik + tkj ≥ tij ∀i, j, k ∈ {1, 2, . . . , N}. (5.3)

Although Toth and Vigo (2002b) interpret the triangular inequality as being inconvenient

to deviate from the direct link between nodes i and j, it may be practical to adjust the link

90

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

from i to j to rather pass via node k without actually visiting node k. This occurs when

the direct link is heavily congested during peak times. Adjusting the route selection in

combination with time-dependent travel times are highly dependent on an accurate GIS.

5.4 Conclusion

A Tabu Search (TS) algorithm is proposed that generates a number of initial solutions as

input, from where tours are added to an Adaptive Memory Procedure (AMP). During each

consecutive iteration, tours are selected from the AMP in a biassed manner to construct

a new solution. Non-tabu, feasible solutions are generated in an attempt to escape local

minima.

The algorithm is coded in MATLAB, and tested on 60 benchmark data sets adapted

from literature. The sets are adapted to accommodate multiple routes per tour, as well as a

heterogeneous fleet in an environment where time dependent travel times occur. The results

are promising, yielding solutions between 670 and 4762 seconds on a standard Intel Pentium

Centrino laptop computer with a 1.5GHz processor and 512MB of RAM. Four independent

runs are executed for each of the 60 problems. The Absolute Mean Deviation (AMD) of

the solution quality between the 240 runs is 3.6%, indicating an algorithm that produces

consistent solutions between runs.

In the next chapter, the GA is investigated as an alternative to the TS.

91

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

	00Front
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	A Tabu Search solution algorithm
	5.1 Elements of the tabu algorithm
	5.2 Tabu algorithm
	5.3 Results and analysis
	5.4 Conclusion

	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Bibliography
	Appendices

