
Chapter 4
An improved initial solution algorithm

Although Ichoua et al. (2003) employ a random insertion heuristic to create initial solutions,

Van Breedam (2001) introduces an initial solution parameter in his evaluation of improve-

ment algorithms, and finds that, in most cases, a good initial solution results in significantly

better final results. This thesis proposes the use of a savings route construction heuristic

based on Joubert (2003)1. Solomon (1987) concludes that, from the five initial solution

heuristics evaluated, the Sequential Insertion Heuristic (SIH) proved to be very successful,

both in terms of the quality of the solution, as well as the computational time required to

find the solution. Section 3.2.1 reviews a number of route construction heuristics.

4.1 A route construction heuristic

An overview of the initial solution algorithm proposed in this thesis is provided in Algo-

rithm 4.1. Initializing the algorithm requires a distance matrix. When using benchmark

data sets only customer coordinates are provided, and the Minkowski distances are calcu-

lated using (2.46). If a Geographical Information System (GIS) is used, the travel distances

can be determined through a process referred to as geocoding and route calibration. The

initial solution algorithm also requires a travel time matrix for all node pairs (i, j).

4.1.1 Time-dependent travel times

Congestion effects become critical when time windows are imposed by customers, because

in routing the temporal issue is of greater concern than the spatial issue. Three valuable

contributions that incorporate both time dependent travel time and time windows are Ahn
1A revised version of this chapter has been published by Joubert and Claasen (2006)

61

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Algorithm 4.1: Initial solution heuristic
Input: Customer data

Input: Fleet data

Initialize algorithm1

repeat Initialize tour2

Establish tour starting time3

Assign vehicle4

repeat Build tour5

Establish route start time6

Identify seed customer7

repeat Expand partial route8

Determine insertion criteria9

Determine selection criteria10

Insert node11

until either all nodes are routed or no node identified for insertion12

Determine multi route feasibility13

until either all nodes are routed or route expansion infeasible14

until either all nodes are routed or vehicles are depleted15

Establish orphans16

Report initial solution s17

62

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

and Shin (1991), Fleischmann et al. (2004), and Ichoua et al. (2003).

Fleischmann et al. (2004) implement their routing algorithm when dynamic travel data

is available through the Berlin traffic management system. Let:

τijk , shortest travel time from node i to node j when the start time is in the

time slot Zk

with the day divided into K time slots Zk = [zk−1, zk] , k ∈ {1, 2, . . . ,K}. The planning

horizon is denoted by the time interval [z0, zK] which may coincide with the time window

for the depot, becoming the time interval [e0, Lmax
0]. The authors propose a smoothing of

the travel time function with the introduction of

τij (t) , travel time from node i to node j for the start time t at node i.

This is similar to the travel time proposed by Ichoua et al. (2003) where real traffic data

is not accessible. A computationally efficient routine is introduced to acquire the travel

time. A distance matrix D = (dij) is created for all i, j ∈ {1, 2, . . . , n} nodes. The planning

horizon is also divided into K planning periods, while the edges are partitioned into C

subsets A = (Ac)1≤c≤C based on, for example, road type. To limit the number of speed

values stored for each edge (i, j) for each time slot t, a travel speed vct is associated with

each edge partition c for each time slot t. The dynamic travel time between nodes i and j

can consequently be determined through Algorithm 4.2, if the travel start time at node i is

denoted by t0 ∈ Zk = [zk−1, zk].

Calculating the travel time matrix, however, is computationally expensive. Instead of

calculating a travel time between each (i, j) pair for each time unit k in the scheduling period,

Algorithm 4.3 introduces Time Window Compatibility (TWC) to only calculate travel time

values for node pairs that have compatible time windows.

4.1.2 Time window compatibility

The introduction of the TWC concept assists in identifying, and eliminating, obvious infea-

sible nodes. This results in a more effective and robust route construction heuristic. The

purpose of TWC is to determine the time overlap of all edges, or node combinations, (i, j),

where i, j ∈ {0, 1, 2, . . . , N}, and N the total number of nodes in the network. During the

route construction phase, time window compatibility can be checked, and obvious infeasible

nodes can be eliminated from the set of considered nodes. The Time Window Compatibility

63

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Algorithm 4.2: Travel time calculation procedure
Input: Distance matrix D = (dij)

Input: Travel speed matrix V = (vct)

t← t01

d← dij2

t′ ← t+ d
vcZk

3

while t′ > zk do4

d← d− vcZk
(zk − t)5

t← zk6

t′ ← t+ d
vcZk

7

k ← k + 18

endw9

tijt = t′ − t010

Algorithm 4.3: Incorporating time window compatibility with time dependent travel

time

foreach node pair (i, j) do1

calculate TWCij2

if TWCij 6= −∞ then3

foreach time period k ∈ {1, . . . ,K} do4

calculate τijk using Algorithm 4.25

endfch6

else7

foreach time period k ∈ {1, . . . ,K} do8

τijk ←∞9

endfch10

endif11

endfch12

64

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Matrix (TWCM) is a non-symmetrical matrix as the sequence of two consecutive nodes, i

and j, is critical. Let:

N , be the total number of nodes

ei , be the earliest allowed arrival time at customer i, where i = {0, 1, . . . , N}

li , be the latest allowed arrival time at customer i, where i = {0, 1, . . . , N}

si , be the service time at node i, where i = {0, 1, . . . , N}

tij , be the travel time from node i to node j, where i, j = {0, 1, . . . , N}

aei
j , be the actual arrival time at node j, given that node j is visited directly

after node i, and that the actual arrival time at node i was ei, where

i, j = {0, 1, . . . , N}

ali
j , be the actual arrival time at node j, given that node j is visited directly

after node i, and that the actual arrival time at node i was li, where

i, j = {0, 1, . . . , N}

TWCij , be the time window compatibility when node i is directly followed by node

j

TWCij indicates the entry in row i, column j of the TWCM. Consider the following five

scenarios that illustrate the calculation of time window compatibility. Each scenario assume

customer j to be serviced directly after customer i, a service time of one hour, and a travel

time of two hours from node i to node j.

Scenario 1: if aei
j > ej and ali

j < lj , illustrated in Figure 4.1. Customer i specifies a time

06:00 08:00 10:00 12:00 14:00 16:00
Time

ei li

ej lj

si + tij TWCij

aj
ei aj

li

node i

node j

18:00

Figure 4.1: Time window compatibility scenario 1

window [ei, li] = [08:00,12:00], while customer j requires service during the time window

[ej , lj] = [09:00,16:00]. If service at customer i starts at the earliest allowed time, ei,

65

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

then the actual arrival time at customer j would be calculated as

aei
j = ei + si + tij (4.1)

In this scenario aei
j = 11:00. Similarly, ali

j would be the actual arrival time at customer

j, given that the actual arrival time at customer i was li, and is calculated as

ali
j = li + si + tij (4.2)

The difference between aei
j and ali

j indicates the time window overlap between the two

nodes. The time window compatibility is calculated as

TWCij = ali
j − a

ei
j (4.3)

For this example, the time window compatibility is four hours (04:00).

Scenario 2: if aei
j > ej and ali

j > lj , illustrated in Figure 4.2. Customer i specifies a time

08:00 10:00 12:00 14:00 16:00
Time

ei li

ej ljaj
ei aj

l i

si + tij TWCij

node i

node j

18:00

Figure 4.2: Time window compatibility scenario 2

window [ei, li] = [08:00,12:00], while customer j requires service during the time window

[ej , lj] = [09:00,13:00]. The calculations for aei
j and ali

j are similar to (4.1) and (4.2),

respectively. The time windows of customer i and customer j only partly overlap, and

the time window compatibility is calculated as

TWCij = lj − aei
j (4.4)

For this example, the time window compatibility is two hours (02:00).

Scenario 3: if aei
j < ej and ali

j < lj , illustrated in Figure 4.3. Customer i specifies a time

window [ei, li] = [08:00,12:00], while customer j requires service during the time window

[ej , lj] = [12:00,16:00]. The calculations for aei
j and ali

j are similar to (4.1) and (4.2),

66

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

06:00 08:00 10:00 12:00 14:00 16:00
Time

ei li

ej ljaj
ei aj

li

si + tij TWCij

node i

node j

18:00

Figure 4.3: Time window compatibility scenario 3

respectively. The time windows of customer i and customer j only partly overlap, and

the time window compatibility is calculated as

TWCij = ali
j − ej (4.5)

For this example, the time window compatibility is three hours (03:00).

Scenario 4: if aei
j and ali

j < ej , illustrated in Figure 4.4. Customer i specifies a time

06:00 08:00 10:00 12:00 14:00 16:00
Time

18:00

ei li

ej ljaj
ei aj

li

si + tij TWCij

node i

node j

Figure 4.4: Time window compatibility scenario 4

window [ei, li] = [08:00,12:00], while customer j requires service during the time window

[ej , lj] = [17:00,18:00]. The calculations for aei
j and ali

j are similar to (4.1) and (4.2),

respectively. The time windows of customer i and customer j do not overlap. Even if

customer i is serviced as late as possible, li, a waiting time is incurred at customer j.

The time window compatibility is calculated as

TWCij = ali
j − ej (4.6)

For this example, the time window compatibility is negative two hours (-02:00). The

significance of the negative time is that it is possible, in this case, to service customer j

after customer i, although the waiting time is penalized.

67

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Scenario 5: if aei
j and ali

j > lj , illustrated in Figure 4.5. Customer i specifies a time

06:00 08:00 10:00 12:00 14:00 16:00
Time

node i

node j

NO

ei li

ej lj

aj
ei aj

li

si + tij
TWCij

18:00

Figure 4.5: Time window compatibility scenario 5

window [ei, li] = [08:00,12:00], while customer j requires service during the time window

[ej , lj] = [07:00,11:00]. The calculations for aei
j and ali

j are similar to (4.1) and (4.2),

respectively. Although the time windows of customer i and customer j partly overlap,

it is impossible to service customer j, even if customer i is serviced as early as possible,

ei. Therefor, no time window compatibility exist.

A generalized equation is proposed that will address all five scenarios illustrated, and is

given by (4.7).

TWCij =


min{ali

j , lj} −max{aei
j , ej} if lj − aei

j > 0

−∞ otherwise
(4.7)

The higher the value, the better the compatibility of the two time windows considered.

Therefore an incompatible time window is defined to have a compatibility of negative infinity.

Example. Consider the following example with five nodes geographical distributed around

a depot in Figure 4.6. In the example, node c has indicated two possible time windows.

To accommodate multiple time windows, the customer is artificially split and treated

as two separate nodes, c1 and c2, respectively, each having a single time windows.

The time windows for each customer, including the depot, as well as the service time

at each node, are given in Table 4.2. The distance matrix, D, is calculated using

the rectangular distance between nodes. With the grid provided in Figure 4.6, the

68

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

0 10 20 30 40 50 60 70 80 90 100 110 120

10

20

30

40

50

60

70

80

90

100

Kilometers

A

B

C

D

E

K
ilo

m
et

er
s

Depot

Figure 4.6: Geographical distribution of nodes around a depot

Table 4.2: Time windows and service times

Service time

Node Time window (in hours)

(i) (ei; li) si

Depot 07:00 – 18:00 0.00

a 08:00 – 12:00 0.50

b 11:00 – 13:00 0.25

c1 08:00 – 09:00 0.25

c2 15:00 – 17:00 0.25

d 08:00 – 12:00 0.50

e 10:00 – 15:00 0.25

69

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

distances can be obtained through inspection.

D =



0 60 60 50 50 70 60

60 0 20 70 70 110 120

60 20 0 50 50 110 120

50 70 50 0 0 80 90

50 70 50 0 0 80 90

70 110 110 80 80 0 70

60 120 120 90 90 70 0


If the average speed is known, the time matrix, T , can be calculated, but in the presence

of time dependent travel time, the travel times are calculated using Algorithm 4.2. For

illustrative purposes in this example only, T is given. Values are in hours.

T =



0 1 1 1 1 1 1

1 0 0.5 1 1 2 2

1 0.5 0 1 1 2 2

1 1 1 0 0 1.5 1.5

1 1 1 0 0 1.5 1.5

1 2 2 1.5 1.5 0 1

1 2 2 1.5 1.5 1 0


With the information at hand, the time window compatibility matrix can be calculated.

For the given example,

TWCM =



11 4 2 1 2 4 5

4 3.5 2 −∞ −1.5 1.5 4

2 0.25 1.75 −∞ −0.75 −∞ 1.75

1 1 −0.75 0.75 −5.75 1 0.75

1.75 −∞ −∞ −∞ 1.75 −∞ −∞

4 1.5 2 −∞ −1 3.5 3.5

5 −∞ 0.75 −∞ 1.75 0.75 4.75


4.2 Improving the initial solution heuristic

Initialization criteria in Algorithm 4.1 refer to the process of finding the seed customer : the

first customer to be inserted into a new route. Joubert (2003) proposes the use of the TWC

concept to identify seed customers. When looking at the TWCM example, it is clear that the

70

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Table 4.3: Number of infeasible time window instances

Number of infeasible time windows

Node as origin as destination Total

Depot 0 0 0

a 1 2 3

b 2 1 3

c1 0 5 5

c2 5 0 5

d 1 2 3

e 2 1 3

incompatibility is distinct for specific nodes. It is therefor possible to identify incompatible

nodes. As opposed to the two most common initialization criteria, namely customer with

earliest deadline, and furthest customer, as suggested by Dullaert et al. (2001), the author of

this thesis proposes the use of the TWCM to identify seed nodes based on their time window

compatibility. Table 4.3 indicates the number of instances where a node has an infeasible

time window with another node, either as origin, or as destination. Both nodes c1 and c2

have five infeasible instances. The two artificial nodes are representing the same customer

c. It can be concluded that customer c is the most incompatible node, and is identified as

the seed customer. Ties are broken arbitrarily. Should two nodes have the same number

of infeasible time window instances, either of the two customers could be selected as seed

customer.

It may be possible to not have any infeasible time window instances. In such a scenario,

a total compatibility value, denoted by Ctotal
a , can be determined for each node a, and is

calculated using either (4.8) or (4.9),

Ctotal
a =

M∑
i=1,i6=a

TWCia +
M∑

j=1,j 6=a

TWCaj + TWCaa ∀a (4.8)

Ctotal
a =

M∑
i=1

TWCia +
M∑

j=1

TWCaj − TWCaa ∀a (4.9)

where M refers to all the unrouted nodes, including all instances of those nodes that are split

artificially. The customer with the lowest total compatibility is selected as seed customer.

Once the seed customer has been identified and inserted, the SIH algorithm considers, for

71

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

all unrouted nodes, the insertion position that minimizes a weighted average of the additional

distance and time needed to include a customer in the current partially constructed route.

This second step is referred to as the insertion criteria. Note that the terms nodes and

customers are used interchangeably. The insertion and selection criteria can be simplified

using the example illustrated in Figure 4.7. The partially constructed route in the example

A

B

C

D

E

Depot

Figure 4.7: Sequential insertion of customers

consists of the depot and three routed nodes, namely B, C, and E. The route can be

expressed as Depot-B-C-E-Depot. Nodes A and D are unrouted. The insertion criteria,

denoted by c1(i, u, j), calculates the best position and associated cost, between two adjacent

nodes i and j on the partial route, to insert a customer u, and is calculated for each of the

unrouted nodes. Consider node A in the example. There are four edges where the node can

be inserted, namely Depot-B, B-C, C-E, or E-Depot, as illustrated in Figure 4.8. Dullaert

et al. (2001) extend Solomon’s heuristic and determines c1(i, A, j) for the unrouted node A

as

c1(i, A, j) = min
p={1,2,...,m}

[c1(ip−1, A, ip)] (4.10)

in which m represents the routed nodes in the partially constructed route. If the expressions

are generalized for all unrouted nodes u, the insertion criteria is calculated as

c1(i, u, j) = α1c11(i, u, j) + α2c12(i, u, j) + α3c13(i, u, j) (4.11)

72

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

A

B

C

D

E

Depot

Figure 4.8: Selection criteria

with

c11(i, u, j) = diu + duj − µdij , µ ≥ 0 (4.12)

c12(i, u, j) = anew
j − aj (4.13)

c13(i, u, j) = ACS, AOOS, or AROS (4.14)

With the extension to Solomon’s heuristic, the weighting factors αi need not add up to 1.

The additional distance, and the additional time needed to serve customer u after customer i,

but before customer j is denoted by c11(i, u, j) and c12(i, u, j), respectively. The new actual

arrival time at node j is denoted by bnew
j in (4.13). The vehicle savings criteria, denoted by

c13(i, u, j), considers any one of three parallel approaches to vehicle cost, where the savings

concepts introduced by Golden et al. (1984) are adapted. Let:

F (z) , the fixed cost of the smallest vehicle that can service a cumulative route

demand of z

F ′(z) , the fixed cost of the largest vehicle whose capacity is less than or equal

to z

P (z) , the capacity of the smallest vehicle that can service a demand of z

Q , be the load of the vehicle currently servicing the route

Q , be the maximum capacity of the vehicle currently servicing the route

73

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Qnew , be the new load of the vehicle after the customer has been inserted into

the route

Q
new

, be the (new) capacity of the vehicle after the customer has been inserted

into the route

The Adapted Combined Savings (ACS) is defined as the difference between the fixed

costs of the vehicles capable of transporting the load of the route after, and before, inserting

customer u, and is calculated by (4.15).

ACS = F (Qnew)− F (Q) (4.15)

The Adapted Optimistic Opportunity Savings (AOOS) extends the ACS by subtracting

the fixed cost of the vehicle that can service the unused capacity, and is calculated by (4.16).

AOOS = [F (Qnew)− F (Q)]− F (Qnew −Qnew) (4.16)

The Adapted Realistic Opportunity Savings (AROS) takes the fixed cost of the largest

vehicle smaller than or equal to the unused capacity, F ′(Qnew − Qnew), into account as an

opportunity saving. It only does so if a larger vehicle is required to service the current route

after a new customer has been inserted. AROS is calculated by (4.17).

AROS = [F (Qnew)− F (Q)]− δ(ω)F ′ (Qnew −Qnew
)

(4.17)

where

δ(ω) =


1 if Q+ qu > Q

0 otherwise.

Any one of these savings criteria can be used as all three outperformed previous best

published results for the initial solution (Dullaert et al., 2001). Once the best position for

each unrouted node has been determined, as illustrated in Figure 4.9, the customer that is

best according to the selection criteria, is selected — the third step in the SIH algorithm.

The procedure can be expressed mathematically as

c2(i, u?, j) = max
u

[c2(i, u, j)], u unrouted and feasible (4.18)

c2(i, u, j) = λ(dou + tou) + su + F (qu)− c1(i, u, j), λ ≥ 0 (4.19)

The best customer, u?, is then inserted into the partially created route between its specific

nodes i and j. From Figure 4.9, consider node D to be the best node. After inserting D into

74

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

A

B

C

D

E

Depot

Figure 4.9: Best insertion position determined for each unrouted node

the current route, node A remains the only unrouted node, and the new route is illustrated

in Figure 4.10, and can be expressed as Depot-B-D-C-E-Depot. The insertion process is

A

B

C

D

E

Depot

Figure 4.10: New route after inserting best customer

repeated until no remaining unrouted nodes have a feasible insertion place. A new route is

then initialized and identified as the current route.

A shortcoming of Solomon’s SIH 1987 is that it considers all unrouted nodes when cal-

culating the insertion and selection criteria for each iteration. The fact that all unrouted

nodes are considered makes it computationally expensive. The occurrence of obvious in-

feasible nodes in a partially constructed route becomes significant in the extended problem

considered in this thesis. In each iteration, these criteria are calculated for each edge on the

partially constructed route, irrespective of the compatibility of the time window of the node

considered for insertion with the time windows of the two nodes forming the edge. For an

75

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

improved case, consider the example where node u is considered for insertion between nodes

i and j. As the TWCM is already calculated, it is possible to check the compatibility of

node u with the routed nodes i and j. If either TWCiu or TWCuj is negative infinity (−∞),

indicating an incompatible time window, the insertion heuristic moves on and considers the

next edge, without wasting computational effort on calculating the insertion and selection

criteria. In the earlier example, eleven instances of infeasible time windows occur. If these

instances are identified and eliminated, a computational saving in excess of 22% is achieved.

The saving is calculated as the percentage of instances with time window incompatibilities

of the total number of travel time instances.

4.3 Initial solutions

Solomon (1987) introduced 54 benchmark problems contained in six distinctive sets for the

VRPTW, denoted by c1, c2, r1, r2, rc1, and rc2, each with 100 customer nodes. Each set

highlights several factors that can affect the behavior of routing and scheduling heuristics.

These factors include the geographical dispersion; the number of customers serviced by a

vehicle, i.e. the relation between customer demand and vehicle capacity; and time window

characteristics such as percentage of time-constrained customers, as well as the tightness and

positioning of time windows.

The geographical data for the first group of problem sets are randomly generated using

a uniform distribution (denote the corresponding problem sets by r1 and r2). The second

group of sets are clustered (denote the corresponding problems sets by c1 and c2). A third

semi-clustered group of sets have a combination of randomly distributed and clustered points

(denote the corresponding problem sets by rc1 and rc2. Problem sets r1, c1, and rc1 have

short scheduling horizons and along with vehicular capacities only allow a few customers to

be serviced by a single vehicle. Problem sets r2, c2, and rc2 have long scheduling horizons,

and when combined with large vehicular capacities, allows for a much higher number of

customers being serviced by a single vehicle.

Homberger and Gehring (1999) extend the original problems to include problem sets

having 200, 400, 600, and 1000 customer nodes. For illustrative purposes, Figure 4.11 shows

the header of one of the Homberger and Gehring (1999) problem sets, as well as the first

few customers. The depot is represented by customer ‘0’. The attributes for each customer

include a customer number, coordinates, the demand, the earliest and latest allowed arrival,

as well as the service time at each customer. The problem sets do unfortunately not accom-

76

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

c1_2_4

VEHICLE

NUMBER CAPACITY

50 200

CUSTOMER

CUST NO. XCOORD. YCOORD. DEMAND READY TIME DUE DATE SERVICE TIME

0 70 70 0 0 1351 0

1 33 78 20 750 809 90

2 59 52 20 0 1240 90

3 10 137 30 0 1172 90

4 4 28 10 0 1183 90

5 25 26 20 128 179 90

Figure 4.11: An excerpt of a problem set (Homberger, 2003)

modate a heterogeneous fleet, and the fleet structure proposed by Liu and Shen (1999b) is

therefor used in this thesis — presented in Table 4.4 for each of the problem classes.

Time windows provided in the problem sets are hard, i.e. they allow neither early nor

late arrivals. To create problem sets that will test the initial solution algorithm with soft

time windows, a maximum lateness of Lmax = 30 time units is associated with each node,

including the depot. Such time windows incur waiting time if arriving early, but allow late

arrivals penalized at a unit cost of α.

Multiple scheduling is achieved through an elementary routine testing whether their is

at least ρ time units between the return time of the current route and the end of the depot’s

time window. In this thesis the author uses an arbitrary value of ρ = 60 minutes.

Tables 4.5a through 4.5f show the results for 60 problem instances executed on an Intelr

Pentiumr4 computer with a 3.6GHz processor (64Bit) and 3.25GB RAM.

Each table indicates the specific Homberger and Gehring (1999) problem instance from

which the 100 customer data set as taken, the numbers of tours (vehicles) used in the

initial solution, the total number of routes, the average time required to generate the initial

solution, and the number of orphans. Orphans are customers from the data set that could not

77

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Table 4.4: Heterogeneous fleet data (Liu and Shen, 1999a)

(a) Set r1

Type Capacity Cost

1 30 50

2 50 80

3 80 140

4 120 250

5 200 500

(b) Set r2

Type Capacity Cost

1 300 450

2 400 700

3 600 1200

4 1000 2500

(c) Set c1

Type Capacity Cost

1 100 300

2 200 800

3 300 1350

(d) Set c2

Type Capacity Cost

1 400 1000

2 500 1400

3 600 2000

4 700 2700

(e) Set rc1

Type Capacity Cost

1 40 60

2 80 150

3 150 300

4 200 450

(f) Set rc2

Type Capacity Cost

1 100 150

2 200 350

3 300 550

4 400 800

5 500 1100

6 1000 2500

78

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Table 4.5a: Initial solution summary for the c1 problem class

Problem Tours Routes Time (sec) Orphans

c1 2 1 33 40 9 3

c1 2 2 27 30 14 1

c1 2 3 29 44 22 2

c1 2 4 19 19 30 1

c1 2 5 27 28 9 2

c1 2 6 28 37 12 2

c1 2 7 23 24 11 1

c1 2 8 23 23 14 0

c1 2 9 21 21 19 0

c1 210 19 20 22 0

Table 4.5b: Initial solution summary for the c2 problem class

Problem Tours Routes Time (sec) Orphans

c2 2 1 39 50 10 11

c2 2 2 29 39 15 8

c2 2 3 27 46 20 7

c2 2 4 17 17 34 6

c2 2 5 24 24 10 6

c2 2 6 25 25 14 2

c2 2 7 27 30 15 3

c2 2 8 25 25 14 1

c2 2 9 28 35 19 2

c2 210 23 24 20 0

79

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Table 4.5c: Initial solution summary for the r1 problem class

Problem Tours Routes Time (sec) Orphans

r1 2 1 34 76 7 0

r1 2 2 37 71 6 0

r1 2 3 40 67 6 0

r1 2 4 59 70 6 0

r1 2 5 39 74 5 0

r1 2 6 42 69 6 0

r1 2 7 42 68 6 0

r1 2 8 57 70 7 0

r1 2 9 36 70 6 0

r1 210 39 68 6 0

Table 4.5d: Initial solution summary for the r2 problem class

Problem Tours Routes Time (sec) Orphans

r2 2 1 13 21 21 1

r2 2 2 9 17 34 1

r2 2 3 6 7 64 0

r2 2 4 6 9 84 0

r2 2 5 9 12 28 0

r2 2 6 9 9 57 0

r2 2 7 8 10 74 0

r2 2 8 6 7 94 0

r2 2 9 9 11 41 0

r2 210 10 11 41 0

80

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

Table 4.5e: Initial solution summary for the rc1 problem class

Problem Tours Routes Time (sec) Orphans

rc1 2 1 30 51 9 0

rc1 2 2 26 48 9 0

rc1 2 3 27 46 10 0

rc1 2 4 34 46 13 0

rc1 2 5 26 47 9 0

rc1 2 6 29 49 9 0

rc1 2 7 30 48 10 0

rc1 2 8 25 47 10 0

rc1 2 9 27 47 10 0

rc1 210 35 48 11 0

Table 4.5f: Initial solution summary for the rc2 problem class

Problem Tours Routes Time (sec) Orphans

rc2 2 1 13 26 16 0

rc2 2 2 11 26 23 0

rc2 2 3 11 24 31 1

rc2 2 4 11 18 31 0

rc2 2 5 12 20 19 0

rc2 2 6 12 18 18 0

rc2 2 7 9 18 21 0

rc2 2 8 11 18 22 0

rc2 2 9 13 18 21 0

rc2 210 13 19 25 0

81

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

feasibly be included in the initial solution. Ten iterations were used to calculate the average

time values. Orphans are a result of the specific problem instance. The time dependent

travel times that were calculated using randomly generated edge types, vcT , may result in

a situation whereby a customer can not be serviced within the time window of the depot,

even if such customers are serviced by a dedicated vehicle.

A sample of an initial solution output file for the r2 2 3 problem set (see Table 4.5d) is

provided in Appendix A. The initial solution indicates the algorithm’s ability to generate

more than one route per vehicle, and indicates the vehicle type assigned to the specific route.

Each line represents a route, with each route starting and ending at the depot. Sequential

numbers in each route represent the customers and the sequence in which customers are

serviced. In the solution for the r2 2 3 problem all nodes are routed, and no orphans exist.

4.4 Conclusion

To establish an initial solution that addresses not only time windows, but also time dependent

travel times and a heterogeneous fleet, requires a computational expensive routine. In this

chapter the author introduced the concept of Time Window Compatibility (TWC) to ease

the computational burden. The concept of TWC is also employed to identify seed customers

as the most incompatible customer nodes.

Data sets from literature were adapted to create test problems for which the initial

solution algorithm found solutions within seconds. The initial solutions generated in this

chapter is used as inputs to the route improvement metaheuristics that are developed in

Chapters 5 through 6.

82

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– JJoouubbeerrtt,, JJ WW ((22000077))

	00Front
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	An improved initial solution algorithm
	4.1 A route construction heuristic
	4.2 Improving the initial solution heuristic
	4.3 Initial solutions
	4.4 Conclusion

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Bibliography
	Appendices A-F

