
Chapter 2
The Vehicle Routing Problem : origins and

variants

Rardin (1998) states that the organizing of a collection of customer locations, jobs, cities,

or points, into sequences and routes are among the most common discrete optimization

problems. The first of the two review chapters focus on the origins and the mathematical

formulation of the VRP and its variants.

2.1 The origins of the basic VRP

2.1.1 The Traveling Salesman Problem (TSP)

The simplest, and probably most famous of routing problems known to researchers is the

TSP that seeks a minimum-total-length route visiting every one of N points in a given

set V = {1, 2, . . . , N} exactly once across an arc set A. The distance between all point

combinations in A, (i, j), where (i, j) ∈ V |i 6= j, is known. In the notation introduced

by Rardin (1998), the symbol ‘,’ denotes defined to be. With the decision variable xij

defined as:

xij ,


1 if a salesman travels from node i to node j, where i, j = {1, 2, . . . , N}

0 otherwise
(2.1)

we formulate the problem as

min z =
∑

(i,j)∈A

cijxij (2.2)
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subject to

N∑
i=1

xij = 1 ∀j ∈ {2, . . . , N} (2.3)

N∑
j=1

xij = 1 ∀i ∈ {2, . . . , N} (2.4)

∑
i∈S

∑
j∈S

xij ≤ |S| − 1 ∀S ⊂ V (2.5)

xij ∈ {0, 1} ∀i, j ∈ {2, . . . , N} (2.6)

The objective of the problem minimizes the total distance traveled in (2.2). Each node must

be visited exactly once according to (2.3) and (2.4), also referred to as degree constraints.

Subtours are eliminated through the introduction of (2.5). The |S| denotes the number of

elements in the subset S. Schrage (2002) states that there are of the order 2n constraints of

type (2.5), as opposed to the alternative in (2.7)

uj ≥ ui + 1− (1− xij)n ∀j ∈ {2, . . . , N}|j 6= i (2.7)

of which there are of the order N − 1 constraints. Only a few of the former type constraints

will be binding in the optimum. Padberg and Rinaldi (1987) therefor propose an efficient

and effective iterative process of adding violated constraints of type (2.5) as needed.

Although a number of TSP variations exist, our interest is in the variant where multiple

salesmen are routed simultaneously.

2.1.2 The Multiple Traveling Salesman Problem (MTSP)

The MTSP is similar to the notoriously difficult TSP that seeks an optimal tour of N

cities, visiting each city exactly once with no sub-tours. In the MTSP, the N cities must

be partitioned into M tours, with each tour resulting in a TSP for one salesperson. The

MTSP is more difficult than the TSP because it requires determining which cites to assign

to each salesperson, as well as the optimal ordering of the cities within each salesperson’s

tour (Carter and Ragsdale, 2005; Kara and Bektas, 2005). Consider a complete directed

graph G = (V,A) where V is the set of N nodes (or cities to be visited), A is the set of arcs

and C = (cij) is the cost (distance) matrix associated with each arc (i, j) ∈ A. The cost

matrix can be symmetric, asymmetric, or Euclidean. The latter refers to the straight-line

distance measured between the two geographically dispersed nodes. There are M salesmen

based at the depot, denoted as node 1. The single depot MTSP consists of finding tours
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for the M salesmen subject to each salesman starting and ending at the depot, each node

is located in exactly one tour, and the number of nodes visited by a salesman lies within a

predetermined time (or distance) interval. The objective is to minimize the cost of visiting

all the nodes. We define the decision variable, xij , in (2.1). For any salesman, ui denotes

the number of nodes visited on that salesman’s route up to node i, with corresponding

parameters K and L denoting the minimum and maximum number of nodes visited by any

one salesman, respectively. We can therefor state that 1 ≤ ui ≤ L when i ≥ 2, and when

xi1 = 1, then K ≤ ui ≤ L. The following Integer Linear Program (ILP) formulation is

proposed by Kara and Bektas (2005).

min z =
∑

(i,j)∈A

cijxij (2.8)

subject to

N∑
j=2

x1j = M (2.9)

N∑
i=2

xi1 = M (2.10)

N∑
i=1

xij = 1 ∀j ∈ {2, . . . , N} (2.11)

N∑
j=1

xij = 1 ∀i ∈ {2, . . . , N} (2.12)

ui + (L− 2)x1i − xi1 ≤ L− 1 ∀i ∈ {2, . . . , N} (2.13)

ui + x1i + (2−K)xi1 ≥ 2 ∀i ∈ {2, . . . , N} (2.14)

x1i + xi1 ≤ 1 ∀i ∈ {2, . . . , N} (2.15)

ui − uj + Lxij + (L− 2)xji ≤ L− 1 ∀i, j ∈ {2, . . . , N}|i 6= j (2.16)

xij ∈ {0, 1} ∀i, j ∈ {2, . . . , N} (2.17)

The objective in (2.8) minimizes the total cost of traveling to all nodes, while constraints (2.9)

and (2.10) ensures that all M salesmen are allocated routes. Degree constraints are imposed

by (2.11) and (2.12). The MTSP-specific constraints (2.13) and (2.14) are referred to as

bounding constraints and Kara and Bektas (2005) introduce these as the upper and lower

bound constraints on the number of nodes visited by each salesman. The value of ui is initial-

ized to 1 if and only if node i is the first node on the tour of any salesman. Inequality (2.15)

forbids a salesman to only visit a single node on its tour. The formation of subtours be-

tween all nodes in V \ {1} (all nodes except the depot) are eliminated by (2.16) as it ensures
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that uj = ui + 1 if and only if xij = 1. They are also referred to as Subtour Elimination

Constraints (SEC).

Next we consider a variant where each of the M salespeople has a predefined, yet similar,

capacity. An analogy is having salespeople traveling with samples in their vehicles. Not only

do their cars have limited space for the samples, but each customer visited may require a

different number of the samples. As a variant of the MTSP it is referred to as the Capaci-

tated Multiple Traveling Salesman Problem (CMTSP), but in the context of this thesis the

vehicular related name, Vehicle Routing Problem (VRP), is preferred.

2.1.3 The Vehicle Routing Problem (VRP)

The distribution problem in which vehicles based at a central facility (depot) are required to

visit — during a given time period — geographically dispersed customers in order to fulfill

known customer requirements are referred to as the VRP (Christofides, 1985). The main

objective of the VRP is to minimize the distribution costs for individual carriers, and can be

described as the problem of assigning optimal delivery or collection routes from a depot to a

number of geographically distributed customers, subject to constraints (?). The most basic

version of the VRP have also been called vehicle scheduling, truck dispatching, or simply

the delivery problem. A number of different formulations appear in the authoritative work

of Christofides (1985). The basic problem can be defined with G = (V,A) being a directed

graph where V = {v1, . . . , vN} is a set of vertices representing N customers, and with v1

representing the depot where M identical vehicles, each with capacity Q, are located (?).

E = {(vi, vj)|vi, vj ∈ V, i 6= j} is the edge set connecting the vertices. Each vertex, except

for the depot (V \{v1}), has a non-negative demand qi and a non-negative service time si.

A matrix C = (cij) is defined on A. In some contexts, cij can be interpreted as travel cost,

travel time, or travel distance for any of the identical vehicles. Hence, the terms cost, time,

and distance are used interchangeably, although tij denotes the travel time between nodes i

and j in the formulation provided below. The basic VRP is to route the vehicles one route

per vehicle, each starting and finishing at the depot, so that all customers are supplied with

their demands and the total travel cost is minimized. Although Christofides (1985) presents

three different formulations from the early 1980s, the following mathematical formulation of

the VRP is adapted from Bodin et al. (1983) and Filipec et al. (1998). During this period

little changes were made to the formulation of the problem. The decision variable, xk
ij is

14

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoouubbeerrtt,,  JJ  WW  ((22000077))  



defined as

xk
ij ,


1 if vehicle k travels from node i to j, where

i, j ∈ {1, 2, . . . , N}|i 6= j, and k ∈ {1, 2, . . . ,K}

0 otherwise

(2.18)

min z =
N∑

i=0

N∑
j=0
j 6=i

K∑
k=1

cijx
k
ij (2.19)

subject to

N∑
i=0

K∑
k=1

xk
ij = 1 ∀j ∈ {1, . . . , N} (2.20)

N∑
j=0

K∑
k=1

xk
ij = 1 ∀i ∈ {1, . . . , N} (2.21)

N∑
i=0

xk
ip −

N∑
j=0

xk
pj = 0 ∀p ∈ {1, . . . , N}, k ∈ {1, . . . ,K} (2.22)

N∑
j=0

qj

(
N∑

i=0

xk
ij

)
≤ Q ∀k ∈ {1, . . . ,K} (2.23)

N∑
i=0

N∑
j=0

tijx
k
ij ≤ D ∀k ∈ {1, . . . ,K} (2.24)

N∑
j=1

xk
0j ≤ 1 ∀k ∈ {1, . . . ,K} (2.25)

N∑
i=1

xk
i0 ≤ 1 ∀k ∈ {1, . . . ,K} (2.26)

xk
ij ∈ {0, 1} ∀i, j ∈ {1, . . . , N}, k ∈ {1, . . . ,K} (2.27)

The degree constraints are represented by (2.20) and (2.21). Route continuity is enforced

by (2.22) as once a vehicle arrived at a node, it must also leave that node. No one vehicle

can service customer demands that exceeds the vehicle capacity in (2.23). A maximum

route length is limited by (2.24). Constraints (2.25) and (2.26) ensures that each vehicle is

scheduled no more than once.

2.2 Variants of the VRP

The basic VRP makes a number of assumptions, including utilizing a homogeneous fleet, a

single depot, one route per vehicle, etc. These assumptions can be eliminated by introducing
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additional constraints to the problem. This implies increasing the complexity of the prob-

lem, and, by restriction, classifies the extended problem as an np-hard problem. It should be

noted that most of these additional constraints are often implemented in isolation, without

integration, due to the increased complexity of solving such problems. In the next few sec-

tions, these variants are introduced in isolation, before proposing an integrated formulation

in Section 2.3.

2.2.1 The concept of time windows

A time window can be described as a window of opportunity for deliveries. It is an extension

of the VRP that has been researched extensively (Ibaraki et al., 2005; Taillard, 1999; Taillard

et al., 1997; Tan et al., 2001c). A time window is the period of time during which deliveries

can be made to a specific customer i, and has three main characteristics:

• Earliest allowed arrival time, ei, also referred to as the opening time

• Latest allowed arrival time, li, also referred to as the closing time

• Whether the time window is considered soft or hard

Consider the example, illustrated in Figure 2.1, where customer i requests delivery between

07:30 and 17:00. To distinguish between the actual and the specified times of arrival, the

18:0016:0006:00 08:00

ei li

Figure 2.1: Double sided hard time window

variable ai denotes the actual time of arrival at node i. Should the actual arrival time at

node i, denoted by ai, be earlier than the earliest allowed arrival at the node, ei, then the

vehicle will incur a waiting time, wi, which can be calculated as wi = max{0, ei − ai}. The
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introduction of time windows to the basic VRP sees the introduction of three new constraints.

a0 = w0 = s0 = 0 (2.28)
K∑

k=1

N∑
i=0;i6=j

xk
ij(ai + wi + si + tij) ≤ aj ∀j ∈ {1, 2, . . . , N} (2.29)

ei ≤ (ai + wi) ≤ li ∀i ∈ {1, 2, . . . , N} (2.30)

Constraint (2.28) assumes that vehicles are ready and loaded by the time the depot opens,

which is indicated as time 0 (zero). Constraint (2.29) calculates the actual arrival time,

while (2.30) ensures that each customer i is serviced within its time window.

When both an earliest and latest allowed arrival is stipulated, the time window is referred

to as double sided. If no arrivals are allowed outside of the given parameters, the time window

is said to be hard, as is the case in Figure 2.1. When delivery is allowed outside the specified

time window, the time window is said to be soft, and customer i may penalize lateness at a

cost of αi (Koskosidis et al., 1992). Customer i may specify a maximum lateness, Lmax
i . The

example illustrated in Figure 2.2 sees customer i specifying a time window between 07:30

and 15:30. The customer will, however, allow late deliveries until 17:00. A hard time window

18:0016:0006:00 08:00

ei li Li
max

Figure 2.2: Soft time window

is therefor a special type of soft time window where Lmax
i = 0. Should a vehicle arrive after

the latest allowed arrival time, li, but prior to the maximum lateness, Lmax
i , the lateness at

node i, Li, can be calculated as Li = max{0, ai − li}|ai ≤ Lmax
i . The lateness is penalized

by introducing a penalty term to the VRP objective function (2.19), resulting in(2.31).

min z =
N∑

i=0

N∑
j=0,j 6=i

K∑
k=1

cijx
k
ij +

N∑
i=1

αi ×max{0, Li} (2.31)

The time window for the depot, node 0, can be specified. The case illustrated in Figure 2.3

sees the depot specifying operating hours (time window) from 06:00 to 18:00, while the first

customer on the route, customer 1, specifies a time window between 07:00 and 09:00, and

the last customer, customer N , requests delivery between 15:00 and 17:00.
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18:0016:0006:00 08:00

e0 l0

e1 l1 en ln

Figure 2.3: Time window for the depot, node 0

Should a customer specify multiple time windows, an indexing symbol, a, is intro-

duced as superscript to the earliest and latest allowed arrival times, respectively, where

a ∈ {1, 2, . . . , A} in which A indicates the maximum number of time windows allowed for

each customer. Consider the example where customer n requests delivery either between

06:30 and 09:00, or between 16:00 and 17:30 as illustrated in Figure 2.4. This example is

18:0016:0006:00 08:00

en
1 ln

1 en
2 ln

2

Figure 2.4: Multiple time windows

typical of residents requesting home shopping deliveries outside business hours. The formu-

lation changes with the introduction of the decision variable

ψa
i ,


1 if the ath time window of customer i is used, where i ∈ {1, 2, . . . , N},

a ∈ {1, 2, . . . , A}

0 otherwise.

To ensure that the decision variable is appropriately enforced in the formulation, we change

constraint (2.30) to distinguish between different time windows, as proposed in (2.32)

eai − (1− ψa
i )M ≤ (ai + wi) ≤ lai + (1− ψa

i )M ∀i ∈ {1, 2, . . . , n}, a ∈ {1, 2, . . . , A}

(2.32)

where M is a sufficiently large number, typically greater than the scheduling horizon. An

enforcement of a single time window for each customer is required, and is subsequently

introduced in (2.33).

A∑
a=1

ψa
i = 1 ∀i ∈ {1, 2, . . . , N} (2.33)
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2.2.2 Capacity constraints and vehicle characteristics

Gendreau et al. (1999) propose a solution methodology for cases where the fleet is hetero-

geneous, that is, where the fleet is composed of vehicles with different capacities and costs.

Their objective is to determine what the optimal fleet composition should be, and is referred

to as either a Heterogeneous Fleet Vehicle Routing Problem (HVRP) or a Fleet Size and

Mix Vehicle Routing Problem (FSMVRP). Liu and Shen (1999b) adds time windows in their

problem application and refer to the problem as a Fleet Size and Mix Vehicle Routing Prob-

lem with Time Windows (FSMVRPTW). In yet another paper, Liu and Shen (1999a) refers

to the heterogeneous fleet variant as the Vehicle Routing Problem with Multiple Vehicle

Types and Time Windows (VRPMVTTW). Taillard (1999) formulates the Vehicle Routing

Problem with a Heterogeneous fleet of vehicles (VRPHE) where the number of vehicles of

type t in the fleet is limited; the objective being to optimize the utilization of the given fleet.

Salhi and Rand (1993) incorporate vehicle routing into the vehicle composition problem, and

refer to it as the Vehicle Fleet Mix problem (VFM).

The implication of a heterogeneous fleet on the standard VRP is that T type of vehicles

are introduced, with t ∈ {1, 2, . . . , T}. The vehicle capacity parameter p is changed. The new

parameter, pt, represents the capacity of vehicles of type t, resulting in each vehicle k having

a unique capacity, pk. The use of one vehicle of type t implies a fixed cost ft. A unique fixed

cost, fk, is introduced for each vehicle k, based on its vehicle type. The objective function

changes to

min z =
n∑

i=0

n∑
j=0
j 6=i

K∑
k=1

cijx
k
ij +

K∑
k=1

n∑
j=1

fkx
k
0j (2.34)

while (2.23) changes to indicate the new capacity parameter

n∑
i=1

qi

 n∑
j=0

xk
ij

 ≤ pk ∀k = {1, 2, . . . ,K} (2.35)

Taillard (1999) introduces a variable cijt to represent the cost of traveling between nodes

i and j, using a vehicle of type t. It is possible to introduce the variable portion of the vehicle

cost into the objective function proposed in (2.34). The introduction will lead to (2.36)

min
n∑

i=0

n∑
j=0
j 6=i

K∑
k=1

T∑
t=1

cijtx
k
ijξ

k
t +

K∑
k=1

n∑
j=1

fkx
k
0j (2.36)
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where

ξk
t ,


1 if vehicle k is of type t, where k = {1, 2, . . . ,K}, and t = {1, 2, . . . , T}

0 otherwise

2.2.3 Uncertainty in vehicle routing

The statements in Section 2.1.3 do not adequately describe a variety of practical VRP situ-

ations where one or several parameters are uncertain. Powell (2003) confirms that research

into routing and scheduling algorithms, which explicitly captures the uncertainty of future

decisions made now, is extremely young. Laporte et al. (1992), Lambert et al. (1993), and

Ong et al. (1997) provide examples including vehicles collecting random quantities at vari-

ous customers; and customers being visited on a random basis. A vehicle incurs a penalty

proportional to the duration of its route in excess of a predetermined constant B — typical

of applications where drivers are paid overtime for work done after normal hours. Laporte

et al. (1992) propose an attractive and relatively simple chance constrained model (from a

computational point of view). However, as the expected cost related to excess route duration

needs to be taken into account, this thesis reverts to proposing a stochastic programming

model with recourse.

First stage decisions made are the number of vehicles required, as well as their respective

routes. Once the random travel time and service time variables are realized in the second

stage, penalties are incurred for the excess duration. The following variables are defined.

xk
ij ,


1 if vehicle k travels from node i to j, where

i, j = {1, 2, . . . , n}|i 6= j, and k = {1, 2, . . . ,K}

0 otherwise

zk
i ,


1 if node i is visited by vehicle k, where i = {1, . . . , n}, k = {1, . . . ,m}

0 otherwise

ξ̃ , a vector of random variables corresponding to travel and service times.

Each realization r of ξ̃, denoted by ξr, is referred to as a state of the

world (Kall and Wallace, 1994)

Ξ , the finite support of ξ̃ such that Ξ =
{
1, 2, . . . , ξr, . . . , ξR

}
where R is the

total number of states in the problem world

yk(ξ̃) , the excess duration of route k as a function of the realization of ξ̃
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ckij , the travel cost from node i to j with vehicle k, where i, j = {1, . . . , n}, k =

{1, . . . ,K}

tkij(ξ̃) , the travel time from node i to j with vehicle k, where i, j = {1, . . . , n}, k =

{1, . . . ,K} expressed as a function of the realization of ξ̃

τk
i (ξ̃) , the service time at node i with vehicle k, where i = {1, . . . , n}, k =

{1, . . . ,K}, expressed as function of the realization of ξ̃

βk , the positive unit penalty cost for excess duration traveled by vehicle k,

where k = {1, . . . ,m}

fk , the fixed cost of vehicle k, where k = {1, . . . ,K}

Bk , the maximum time for route k over which a penalty is incurred, where

k = {1, . . . ,K}

The model is then

min z =
K∑

k=1

fkzk
0 +

n∑
i=1

n∑
j=1
j 6=i

K∑
k=1

ckijx
k
ij + Eξ̃

(
K∑

k=1

βkyk(ξ̃)

)
(2.37)

subject to

K∑
k=1

zk
i = 1 ∀i ∈ {1, . . . , n} (2.38)

n∑
j=1

(
xk

0j + xk
j0

)
= 2zk

0 k ∈ {1, . . . ,K} (2.39)

n∑
j=1

(
xk

ij + xk
ji

)
= 2zk

i ∀i ∈ {1, . . . , n}, k ∈ {1, . . . ,K} (2.40)

∑
i∈S

∑
j∈S
j 6=i

xk
ij ≤ |S| − 1 S ⊂ V, 3 ≤ |S| ≤ n− 3, k = {1, . . . ,K} (2.41)

Bk −
n∑

i=1

n∑
j=1
j 6=i

tkij(ξ̃)x
k
ij −

1
2

n∑
i=1

n∑
j=1
j 6=i

(
τk
i (ξ̃) + τk

j (ξ̃)
)
xk

ij + yk(ξ̃) ≥ 0 (2.42)

∀k ∈ {1, . . . ,K}, ξ̃ ∈ Ξ

xk
ij ∈ {0, 1} ∀i, j ∈ {1, . . . , n}, k ∈ {1, . . . ,K} (2.43)

zk
i ∈ {0, 1} ∀i ∈ {1, . . . , n}, k ∈ {1, . . . ,K} (2.44)

yk
(
ξ̃
)
≥ 0 ∀k ∈ {1, . . . ,K}, ξ̃ ∈ Ξ (2.45)
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The objective function minimizes total cost in (2.37) that includes fixed vehicle costs, travel

costs, as well as the expected penalty costs as a result of exceeded route duration. All vehicles

must be routed according to (2.38), while (2.39) calculates the number of routed vehicles.

Degree constraints are introduced in (2.40). Subtours are eliminated through (2.41) where

the reader may infer that n > 6. Constraint (2.42) combined with (2.45) implies a penalty to

be calculated for vehicle k, but only if the total route length including service times exceed

Bk.

2.2.4 Time-dependent travel time

Although unpredictable events such as accidents and vehicle breakdowns render travel times

as stochastic, the candidate postulates that the subtle, yet partially predictable event of

congestion during peak hours of the day requires more attention. The assumption is made

that by addressing the time-dependent nature of travel times, a modeling approach that is a

stronger approximation of the actual real-world conditions of vehicle routing and scheduling

than by catering for stochastic travel times, will be achieved.

Hill and Benton (1992) review the two main approaches in estimating travel distance

between two nodes i and j, denoted by dij , namely Minkowski distance and Pythagorean

distance. The former is presented in (2.46).

dij = [|xi − xj |ω + |yi − yj |ω]
1
ω (2.46)

When ω is 2, the Minowski distance, denoted by dij , is the Pythagorean distance. When ω is

1, the Minowski distance is the city-block right-angled distance. In (2.46) the coordinate pair

(xi, yi) of each node i is required. A similar approach can be followed if only latitude and

longitude data is available, i.e. from a Geographical Information System (GIS) database.

The problem, however, is that researchers often reduce vehicle travel speed to an approximate

speed, denoted by rc, and simply apply the scalar transformation of distance in (2.47) to

find the travel time between the two nodes,

tij =
dij

rc
(2.47)

without cognisance of an acceleration stage to get onto the road, the cruising stage, and

the deceleration stage at the destination node (Assad, 1988). If the three stages were to be

acknowledged, dc denotes the distance required for the vehicle to reach its cruising speed,

and α denotes the acceleration, a more appropriate way of calculating the travel time is given
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in (2.48).

tij =


2
(

dij

α

) 1
2 if dij ≤ 2dc

dij

rc
+ rc

α if dij > 2dc

(2.48)

In most metropolitan areas, travel times are much longer during the start and end of

workday rush hours, especially on main arterial routes. If one were to inflate all route

times equally during peak periods, one would be able to route and schedule vehicles without

taking time-dependent travel times into consideration, and not compromise optimality of

routes. However, road networks are unevenly congested, i.e. traveling from A to B during

the morning rush hour traffic might be more congested than when traveling from B to A at

the same time.

Malandraki and Daskin (1992) state that the travel time is not only a function of the

distance, but should take the time of day into account as well. Ichoua et al. (2003) state that

research on time-dependent problems started towards the end of the 1950s with references

to the time-dependent shortest path problem, the time-dependent path choice problem, and

the Time Dependent Traveling Salesman Problem (TDTSP). Of the earliest research found

on the Time Dependent Vehicle Routing Problem (TDVRP) is Hill et al. (1988), followed

by Hill and Benton (1992). In their papers customer nodes were assigned time-dependent

piecewise constant speeds — these speeds reflect the traveling speed surrounding the nodes.

The edge travel time between two nodes were derived as the average speed of the two nodes

concerned. At the time Hill and Benton (1992) attribute the lack of time-dependent travel

time research to:

• Immense efforts to estimate travel time parameters

• Prohibitive data storage requirements

• Inefficient solution algorithms

Malandraki and Daskin (1992) formulate an elegant variant of the Vehicle Routing Prob-

lem with Time Windows (VRPTW) with the introduction of piecewise constant travel times

on the edges. Approaches to accommodate time-dependent travel times mentioned so far

all allow passing : the event where one vehicle my pass another vehicle on the same edge al-

though it started later than the vehicle it passed, but in a different time period with shorter

traveling time.

Ahn and Shin (1991) use similar notation as used in the introduction of the VRPTW,

and also introduce:
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τij (x) , travel time from node i to node j via arc (i, j) ∈ A, given that the trip

starts from node i at time x

si , the constant service time at node i

ti , the time at which service begins at node i

Aij (ti) , arrival time at node j through arc (i, j) ∈ A given ti, that is Aij(y) =

y + si + τij (ti + si)

di , the effective latest service start time at node i that allows us to maintain

the feasibility of a current route

Each customer i is to be serviced within its time window [ei, li]. The internode travel

time τij (·) and the arrival time Aij (·) are functions of the departure time representing time-

dependent congestion levels. In this thesis multiple links are not considered. The non-passing

property can be expressed as:

For any two nodes i and j, and any two service start times x and y at node i

such that x < y, Aij(x) < Aij(y) must hold, that is, earlier departure from node

i guarantees earlier arrival at node j.

Raw travel time data in the form of a step function is not appropriate for use in the

routing of vehicles, as it only provides average travel time data for specific time periods. In

such data sources, let:

τijk , the shortest travel time from node i to node j if the start time at node i

is in time slot Zk, where i, j ∈ A, and k ∈ {1, 2, . . . ,K},

where the day (planning horizon) is divided into time slots such that

Zk = [zk−1, zk] ∀k ∈ {1, 2, . . . ,K},

where the interval [z0, zK ] reflects the full day, or planning horizon under consideration.

Figure 2.5 is used for illustrative purposes. The travel time, being a function of the time of

day, is not continuous in the point zk and may lead to passing if travel time decrease for the

k + 1th segment. To obtain a smoothed travel time function, let:

τij(t) , the travel time from node i to node j given that the travel started at time

t from node i
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Figure 2.5: Travel time function

A parameter δijk is introduced for each breakpoint zk, where k ∈ {1, 2, . . . ,K}, be-

tween two consecutive time slots Zk−1 and Zk. The values of δij0 = δijK = 0. The jump

between two consecutive travel times segments Zk−1 and Zk is linearized in the interval

[zk − δijk, zk + δijk] provided the parameter δijk and determining the slope

sijk =
τij,k+1 − τijk

2δijk
(2.49)

The travel time function, as illustrated by Figure 2.5(b), is expressed as

τij (t) =


τijk for zk−1 + δij,k−1 ≤ t ≤ zk − δijk

τijk + (t− zk + δijk) sijk for zk − δijk < t < zk + δijk

(2.50)

The travel time function holds for all k ∈ {1, 2, . . . ,K}. Fleischmann et al. (2004) prove that

if δijk > 0 for all intermediate breakpoints and the slope sijk > −1, that the arrival time

function

Aij(t) = t+ τij(t) (2.51)

is continuous and monotonic1, i.e. adheres to the non-passing property. The papers by

Ichoua et al. (2003) and Potvin et al. (2006) also refer to the non-passing property as the

First-In-First-Out (FIFO) property. As Aij (·) is a strictly increasing function, it possesses
1There is a designated sequence such that successive members are either consistently increasing or de-

creasing with no oscillation in relative value, i.e. each member of a monotone increasing sequence is greater

than or equal to the preceding member; each member of a monotone decreasing sequence is less than or equal

to the preceding member.
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the inverse function A−1
ij (·). A−1

ij (x) is interpreted as the departure time at node i so that

node j can be reached at time x. Let (i0, i1, i2, . . . , im, i0) denote a partially constructed

feasible route with m customer nodes where i0 denotes the depot. The partial route could

be simplified for illustration purposes to (0, 1, 2, . . . ,m, 0).

In the presence of the non-passing property, the effective latest service start time at node

i on the partial feasible route, denoted by di, could then be given by the backward recursive

relation given in (2.52).

di =


min

{
li, A

−1
i0 (l0)

}
for i = m

min
{
li, A

−1
i,i+1 (di+1)

}
for 0 ≤ i ≤ m− 1

(2.52)

The actual service start time for each node i can be determined by the forward recursion

given in (2.53).

ti =


max {ei, A01 (t0)} for i = 1

max {ei, Ai−1,i (ti−1)} for 2 ≤ i ≤ m
(2.53)

The computation of both di and ti is fairly elementary. The advantage is only apparent when

route improvements are made, and subsequent feasibility check routines are eased.

The formulation used in this thesis refers to both travel and service times as uncertain

and dependent on the realization of uncertain events. A principle distinction, however, is

made between stochastic service times and time-dependent travel times. The implications

of such a distinction will become apparent in the calculations and feasibility checks when

solution algorithms are developed in later chapters, as only time-dependent travel time is

considered. In the majority of applications, demand is assumed to be known at the time of

establishing the actual route.

2.2.5 Multiple scheduling

It is often not viable to assume that each vehicle will only complete a single route. Multiple

scheduling is concerned with the case where a vehicle could complete deliveries on a scheduled

route, return to the depot where its capacity is renewed, after which a second, or consecutive

trip is executed with the renewed capacity. Taillard et al. (1996) refer to this type of problem

as the Vehicle Routing Problem with Multiple use of vehicles (VRPM). Butt and Ryan (1999)

consider the Multiple Tour Maximum Collection Problem (MTMCP) and assumes that the

routes are constrained in such a way that all of the customers cannot be visited. Their

approach aims to maximize the number of customers serviced. Brandão and Mercer (1997)
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introduce the Multi-Trip Vehicle Routing Problem (MTVRP) and address the combination

of multiple trips with time windows. The special case of multiple scheduling where only trips

are considered is referred to as Double Scheduling.

This thesis considers a vehicle that starts and ends its tour at the depot. A tour consists

of one or more routes, each starting and ending at the depot. The same vehicle can only

be used for two or more routes if the routes do not overlap. As opposed to (2.28) multiple

routes require a service time to be specified for the depot. Consider the example illustrated

in Figure 2.6. The depot has a time window from 06:00 to 18:00. A vehicle fills its capacity

18:0016:0006:00 08:00

s0
Route 1

10:00 12:00 14:00

s0
Route 2

e0 l0

Figure 2.6: Double scheduling

at the depot for a time period of s0 = 0.5 hours. It leaves the depot at 06:30, services the

first route, and returns to the depot at 11:00, where its capacity is renewed. A second route,

of five hours, is serviced before the vehicle returns to the depot.

Taillard et al. (1996) state that the multiple scheduling type of problem has received

very little attention in literature. This thesis proposes a way to deal with multiple routes.

The proposed solution involves a time verification process. If a vehicle arrives back at the

depot at time am, and the service time is specified as s0, then the vehicle is considered for

an additional route on its current tour if, after the capacity has been renewed, the depot’s

time window is still open. The case is presented in (2.54).

am + s0 ≤ l0 (2.54)

The mathematical formulation of the VRPM requires a redefinition of the decision variables,

as well as the constraints. The VRPM is addressed in the next section where the complete

problem is defined and formulated.
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2.3 The integrated problem at hand

An extended variant of the VRP, where multiple soft time windows, a heterogeneous fleet,

and multiple scheduling are considered in an environment with uncertain travel and service

times, is presented. Due to the complexity associated when concatenating elements from

various variant acronyms, we revert to using a simple reference, the Thesis Problem (TP).

To formulate the complex problem, we will redefine some of the variables and parameters used

earlier, and introduce a few additional variables. We define the following basic parameters.

N , total number of customers to be serviced

qi , deterministic demand for customer i, where i = {1, 2, . . . , N}

K , total number of vehicles available

zk
i ,


1 if node i is visited by vehicle k, where i = {1, . . . , N}, k = {1, . . . ,K}

0 otherwise

ξ̃ , a vector of uncertain variables corresponding to travel and service times.

Each realization γ of ξ̃, denoted by ξγ , is referred to as a state of the

world (Kall and Wallace, 1994)

Ξ , the finite support of ξ̃ such that Ξ =
{
1, 2, . . . , ξγ , . . . , ξΓ

}
where Γ is the

total number of states in the problem world

tkij

(
ξ̃
)

, the travel time from node i to j with vehicle k, where i, j = {1, . . . , N}, k =

{1, . . . ,K} expressed as a function of the realization of ξ̃

τk
i

(
ξ̃
)

, the service time at node i with vehicle k, where i = {1, . . . , N}, k =

{1, . . . ,K}, expressed as function of the realization of ξ̃

To expand the formulation and to include a heterogeneous fleet, we let:

T , number of different types of vehicles available

cijt , travel cost if a vehicle of type t travels from customer i to customer j,

where t = {1, 2, . . . , T}, and i, j = {0, 1, 2, . . . , N}

pt , capacity of a vehicle of type t, where t = {1, 2, . . . , T}

ft , fixed cost of a vehicle of type t, where t = {1, 2, . . . , T}

φk
t ,


1 if vehicle k is of type t, where k = {1, 2, . . . ,K}, and

t = {1, 2, . . . , T}

0 otherwise
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Multiple soft windows will be addressed by introducing the following parameters:

Ai , number of time windows for customer i, where i = {0, 1, 2, . . . , N}

ai

(
ξ̃
)

, the actual arrival time at customer i, where i = {0, 1, 2, . . . , N}, expressed

as a function of the realization of ξ̃

eai , earliest allowed arrival time for customer i’s ath time window, where i =

{0, 1, 2, . . . , N} and a = {1, 2, . . . , Ai}

lai , latest allowed arrival time for customer i’s ath time window, where

i = {0, 1, 2, . . . , N} and a = {1, 2, . . . , Ai}

Lmax
i , maximum lateness allowed by customer i, where i = {0, 1, 2, . . . , N}

αi , lateness penalty at customer i in cost per time unit, where

i = {0, 1, 2, . . . , N}

λi

(
ξ̃
)

, actual lateness at customer i, where i = {0, 1, 2, . . . , N}, expressed as a

function of the realization of ξ̃

wi

(
ξ̃
)

, waiting time at customer i, where i = {0, 1, 2, . . . , N}, expressed as a

function of the realization of ξ̃

To ensure that multiple scheduling is considered, we let:

Rk , number of routes scheduled for vehicle k, where k = {1, 2, . . . ,K}

Q , maximum number for routes allowed for any one vehicle

Mk , maximum tour time (all routes) allowed for vehicle k, where k =

{1, 2, . . . ,K}

dkr
(
ξ̃
)

, vehicle k’s departure time from the depot as it embarks on servicing its

rth route, where k = {1, 2, . . . ,K} and r = {1, 2, . . . , Rk}, expressed as a

function of the realization of ξ̃

gkr
(
ξ̃
)

, vehicle k’s return time at the depot after servicing its rth route, where

k = {1, 2, . . . ,K} and r = {1, 2, . . . , Rk}, expressed as a function of the

realization of ξ̃

δk
(
ξ̃
)

, the amount by which vehicle k exceed its allowable tour time, where k =

{1, 2, . . . ,K}, expressed as a function of the realization of ξ̃

βk , the positive unit penalty cost for vehicle k when exceeding its allowable

tour time, where k = {1, . . . ,K}

With the notation established the decision variables for the TP are defined as:
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xkr
ij ,


1 if vehicle k travels from customer i to customer j on its rth route,

where i, j = {1, 2, . . . , N}, k = {1, 2, . . . ,K}, r = {1, 2, . . . , Rk}

0 otherwise

ψa
i ,


1 if the ath time window of customer i is used, where i ∈ {1, 2, . . . , N},

a ∈ {1, 2, . . . , A}

0 otherwise.

The mathematical formulation of the TP is provided.

min z =
N∑

i=0

N∑
j=0
j 6=i

K∑
k=1

T∑
t=1

Rk∑
r=1

cijtx
kr
ij φ

k
t +

N∑
j=1

K∑
k=1

Rk∑
r=1

fkxkr
0j

Rk

+ Eξ̃

[
N∑

i=1

αiλi

(
ξ̃
)

+
K∑

k=1

βkδk
(
ξ̃
)]

(2.55)

subject to

N∑
j=1

Q∑
r=1

xkr
0j = Rk ∀k ∈ {1, 2, . . . ,K} (2.56)

N∑
j=1

Q∑
r=1

xkr
j0 = Rk ∀k ∈ {1, 2, . . . ,K} (2.57)

N∑
i=1
i6=j

K∑
k=1

Rk∑
r=1

xkr
ij = 1 ∀j ∈ {1, 2, . . . , N} (2.58)

30

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoouubbeerrtt,,  JJ  WW  ((22000077))  



N∑
j=1
j 6=i

K∑
k=1

Rk∑
r=1

xkr
ij = 1 ∀i ∈ {1, 2, . . . , N} (2.59)

N∑
q=1

qi

N∑
j=0
j 6=i

xkr
ij ≤ pk ∀k ∈ {1, 2, . . . ,K},

r = {1, 2, . . . , Rk} (2.60)

eai − (1− ψa
i )M ≤ ai

(
ξ̃
)

+ wi

(
ξ̃
)

∀i ∈ {1, 2, . . . , N},

∀a ∈ {1, 2, . . . , Ai} (2.61)

Lmax
i + (1− ψa

i )M ≥ ai

(
ξ̃
)

+ wi

(
ξ̃
)

∀i ∈ {1, 2, . . . , N},

∀a ∈ {1, 2, . . . , Ai} (2.62)
Ai∑

a=1

ψa
i = 1 ∀i ∈ {1, 2, . . . , N} (2.63)

max

{
0, ej −

(
dkr
(
ξ̃
)

+ t0j

) K∑
k=1

Rk∑
r=1

xkr
0j

}
= wj

(
ξ̃
)

∀j ∈ {1, 2, . . . , N} (2.64)

max
{

0,
(
ai

(
ξ̃
)
− lai

)}
= λa

i

(
ξ̃
)

∀i ∈ {1, 2, . . . , N},

∀a ∈ {1, 2, . . . , Ai} (2.65)

dk1 ≥ e0 + s0 ∀k ∈ {1, 2, . . . ,K} (2.66)

K∑
k=1

Rk∑
r=1

xkr
0j

(
dkr
(
ξ̃
)

+ t0j

)
≤ aj

(
ξ̃
)

∀j ∈ {1, 2, . . . , N} (2.67)

N∑
i=1
i6=j

K∑
k=1

Rk∑
r=1

xkr
ij

(
ai

(
ξ̃
)

+ wi

(
ξ̃
)

+ τk
i

(
ξ̃
)

+ tkij

(
ξ̃
))
≤ aj

(
ξ̃
)

∀j ∈ {1, 2, . . . , N}

(2.68)

N∑
i=1

xkr
i0

(
ai

(
ξ̃
)

+ τk
i

(
ξ̃
)

+ wi

(
ξ̃
)

+ ti0

)
≤ gkr

(
ξ̃
)

∀k ∈ {1, 2, . . . ,K},

r ∈ {1, 2, . . . , Rk} (2.69)

gk,r−1
(
ξ̃
)

+ s0 = dkr
(
ξ̃
)

∀k ∈ {1, 2, . . . ,K},

r ∈ {2, 3, . . . , Rk} (2.70)
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gkr
(
ξ̃
)

+ s0 ≤ l0 ∀k ∈ {1, 2, . . . ,K},

r ∈ {2, 3, . . . , Rk−1} (2.71)

gkRk
(
ξ̃
)
≤Mk + δk

(
ξ̃
)

∀k ∈ {1, 2, . . . ,K} (2.72)

Rk ≤ Q ∀k ∈ {1, 2, . . . ,K} (2.73)
Q∑

r=Rk+1

N∑
i=1

N∑
j=1
j 6=i

xkr
ij = 0 ∀k ∈ {1, 2, . . . ,K} (2.74)

xkr
ij ∈ {0, 1} ∀i, j ∈ {1, 2, . . . , N},

k ∈ {1, 2, . . . ,K},

r ∈ {1, 2, . . . , Rk} (2.75)

ψa
i ∈ {0, 1} ∀i ∈ {1, 2, . . . , N},

∀a ∈ {1, 2, . . . , Ai} (2.76)

The objective function in (2.55) minimizes a combination of deterministic and stochastic cost

components. The first expression represents the total variable traveling cost, followed by the

total fixed fleet cost. The third expression represents the expected lateness penalties and

constitutes firstly the lateness at each customer, and secondly the lateness for each vehicle.

The combination of (2.56) and (2.57) calculates the total number of routes and ensures

that the same number of routes that starts for each vehicle, also finishes. Each customer

is visited exactly once according to the constraint combination (2.58) and (2.59). Vehicular

capacity is enforced through (2.60) by ensuring that the sum of the demands of all customers

assigned to a specific route of a given vehicle do not exceed the vehicle’s capacity, which may

either by represented as weight or volumetric capacity, or both if additional constraints are

added.

Constraints (2.61) and (2.62) ensure that the multiple soft time windows are adhered to

where the parameter M represents a sufficiently large number, as discussed when multiple

soft time windows were introduced. Actual arrival times and waiting times at any given

customer is a function of the stochastic travel and service times of all customers preceding

that specific customer, hence the stochastic notation. As each customer is visited only once,

(2.63) ensures that only one time window for each customer is considered. The waiting time

and lateness at each customer, both expressed as a stochastic variable, are determined in

(2.64) and (2.65), respectively.

The departure time for each vehicle’s first route is determined by (2.66), while the actual
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arrival time at the first customer on each route is determined by (2.67). Arrival times for

subsequent customers are determined by (2.68).

The return time for each route is determined by (2.69). Consecutive route start times

is determined by (2.70) by taking the service time of the depot into account where vehicles’

capacities are renewed as proposed in (2.54). Constraint (2.71) enforces all routes to fin-

ish within the operating hours of the depot, while (2.72) determines the lateness for each

vehicle when exceeding its allowed tour time. Each vehicle may not execute more than

a predetermined number of routes as provided for in (2.73). Should it be determined in

equations (2.56) and (2.57) that the required number of routes is less than the preset limit

Q, then all allowed routes not required are eliminated through the introduction of (2.74).

Binary decision variables are provided for with the introduction of (2.75) and (2.76).

2.4 Conclusion

This chapter deals with the background of the VRP, as well as the integration of multiple

variants into a single problem instance — each contributing to the already complex nature

of the problem. Although the model formulation is the first step in describing the problem

comprehensively, only very small instances of the problem is currently solvable to optimality.

The following chapter introduces the complexity of the problem at hand, and reviews so-

lution approaches for solving the problem. Exact, heuristic, as well as metaheuristic solution

algorithms are considered.
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