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SUMMARY

Fluidised-bed Chlorination of Titania Slag
by
Johannes Theodorus Ferreira Le Roux, Project Leader — Prof P.C. Pistorius, Department of Materials
Science and Metallurgical Engineering. Master’s degree in Metallurgical Engineering.

Iscor Heavy Minerals is planning to install an ilmenite smelter at Empangeni, which
will yield a TiO,-rich slag as one of its products. The behaviour of the slag during
fluidised bed chlorination would be a good quality-control test of the slag. The
chlorination involves the reaction of TiO, slag with coke or CO and Cl, at
approximately 1000°C to yield TiCls4 as product. The aim of this project was to build
a laboratory-scale chlorinator, comparing the chlorination behaviour of this slag to
literature data on rutile. When the chlorinator operated as expected, the aim was to
test the effect of Ti>*/Ti** ratios in the slag on the subsequent chlorination behaviour.
The reactor for these tests was a 5cm-diameter vertical quartz tube with a porous
disk in the middle, inserted in a furnace at 1000°C whereafter the product gas was

water-cooled and the TiCl, extracted with CCla.

Keywords: chlorination, fluidised bed, titanium dioxide, chloride process, reductant,

titania slag.




SAMEVATTING

Sweefbedchlorinering van Titaandioksied Slak

deur
Johannes Theodorus Ferreira Le Roux, Projekleier — Prof P.C. Pistorius, Departement
Mineraalwetenskappe en Metallurgiese Ingenieurswese. Magister in Metallurgiese Ingenieurswese.

“|scor Heavy Minerals” is van plan om ‘n iimeniet smelter op te rig by Empangeni wat
‘n hoé TiO; slak sal produseer as een van hulle produkte. Die gedrag van die slak
gedurende sweefbedchlorinering sal ‘n goeie aanduiding van die kwaliteit van die
slak wees. Die chlorineringsreaksie kan beskryf word as die reaksie tussen die TiO>
slak en kooks of CO en Cl, gas by ongeveer 1000 °C om TiCl4 te produseer. Die
doel van hierdie projek was om ‘n laboratorium-skaal chlorineerder te bou en dan die
gedrag van die slak te vergelyk met die data vir rutiel in die literatuur. Daar is ook
gepoog om die invioed van die Ti*"/Ti* verhouding in die slak op die
chlorineringsgedrag te bepaal. Die reaktor vir die eksperimente was ‘n vertikale
kwartsbuis met ‘n diameter van 5cm. Daar was ‘n poreuse skyf in die middel van die
reaktor gemonteer wat as die basis van die sweefbed gedien het. Die produkgasse

is met water verkoel en die TiCls is in CCl4 opgelos.

Sleutelwoorde: chlorinering, gefluidiseerde bed, titaandioksied. chloried proses,

reduseermiddel, titaandioksied slak.




LIST OF SYMBOLS
Symbol Description
a Reaction order w.r.t. particle size
b Constant to be determined by experiments
B Constant to be determined by experiments
c Constant to be determined by experiments
Ag Cross-sectional area of bed
p Particle diameter
P Minimum particle diameter
o ¥ Diameter of the denser (heavier) particle
do Diameter of the less dense (lighter) particle
der Shape corrected diameter ratio, ¢pndu/dLdL
d; Inside diameter of reactor tube
D Bed diameter
Eapp Apparent Activation Energy
Acceleration due to gravity
AHg Heat of reaction
H Bed height
H Reduced aspect ratio, 1-exp(-H/D)
<] A temporary constant used to determine
experimental data
Ko Constant to be determined from
experimental data
Kapp Apparent rate constant
L Depth of fluidised bed
Lmf Depth of bed at point of minimum
fluidisation
m Reaction order with ref. to CO partial pressure
M Mixing index
n Reaction order with ref. to Cl, partial pressure
N Molar ratio of Ti**/Ti* in the slag
Pci, Partial Cl, pressure

cm
mm
J/mol
cm/s®
kJ/mol

mm
min™.um= kPa ™"
min’

cm
cm

kPa, atm
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Pco Partial CO pressure kPa, atm
AP Pressure drop across depth L Pa
Qcl, Volumetric Cl flow £Imin
Qco Volumetric CO flow ¢/min
Qe Minimum fluidising velocity cm®/s or £/min
Qn, Volumetric N2 flow £imin
Qo Volumetric flow at operating temperature £limin
Q Volumetric flow at room temperature £imin
Qt Elutriation velocity cm®/s or £/min
R Ideal gas constant J/mol.K
Regy Reynolds Number for elutriation velocity -
S Constant to be determined by experiments -
t Time min
to Initiation period min
T Temperature K, °C
Ty Final temperature K, °C
To Operating temperature K, °C
Tp Peak temperature K, °C
T, Room temperature K, °C
Umnf Minimum fluidising velocity cm/s
Umf The u,,s of the component with the lower Uy m/s
Ui The ums of the component with the higher ups m/s
Uo Superficial gas velocity or cm/s
Operating gas velocity
(volumetric flow/bed cross-sectional area)
Uro The velocity above which mixing takes over m/s
Ut Elutriation velocity cm/s
Worio,) Initial sample mass g
Wiio,) Sample mass at time t g
X Mass fraction of jetsam in the upper uniform part -
of the bed
X Average mass fraction of jetsam in the bed -
X Conversion of a compound fraction or %
Xrio, Conversion of TiO, fraction or %

Vi



XIS X,
Xr
Z

Greek Symbols

Symbol

Emf

(o
oL
bs
Pg
PH
PL
PR
Ps

Abbreviations

EDS, EDX
WDS
EPMA

MM

RBM

QIT

SEM

XRD

XRF

Initial conversion of TiO,

Total conversion of a TiO,
Constant to be determined by o, Unf and uro

Description

Porosity of the bed

Bed voidage at point of minimum

fluidisation

Shape factor, sphericity of the heavier particle
Shape factor, sphericity of the lighter particle
Particle shape factor

Gas density

Density of the heavier particle

Density of the lighter particle

Density ratio, pu/pL

Density of solid particles

Gas viscosity

Energy-Dispersive X-ray Spectroscopy
Wave-Dispersive X-ray Spectroscopy
Electron Probe Micro Analysis
Molecular Mass

Richardsbay Minerals

Quebec Iron and Titanium

Scanning Electron Microscope

X-Ray Powder Diffraction

X-Ray Fluorescence Spectroscopy

fraction or %

fraction or %

C
3
=
7

g/cm
kg/m
kg/m

glem®

g/cm.s
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