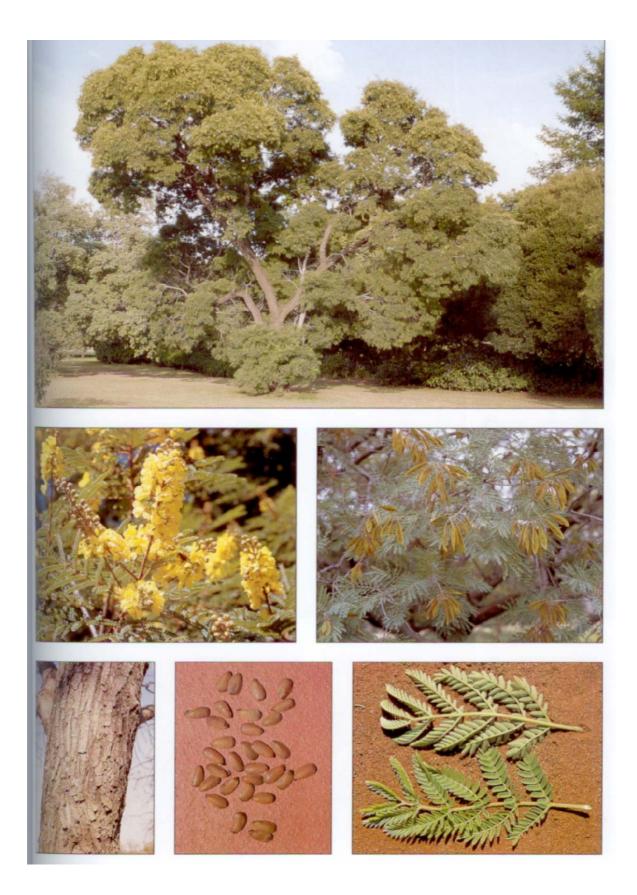


The potential role of antibacterial, antioxidant and antiparasitic activity of *Peltophorum africanum* Sond. (Fabaceae) extracts in ethnoveterinary medicine

Edmund S Bizimenyera

B.V.M (Makerere University, Uganda); M.Sc (University of Nairobi, Kenya)

Submitted in fulfilment of the requirements for the degree of Philosophiae Doctor (PhD)



Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Sciences, University of Pretoria.

> Promoter: **Prof Gerald E Swan** Co-promoter: **Prof Jacobus N Eloff**

> > November 2007

Peltophorum africanum (From Venter & Venter (2002), Making the most of Indigenous Trees)

Declaration

The experimental material and results described in this thesis is my original work (except where the input of others is acknowledged), conducted in the Phytomedicine Programme , Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, and has not been submitted in any other form to any other University or academic institution. I declare the above statement to be true.

Signed:

Edmund S Bizimenyera

Date:

Acknowledgements

This study at the Programme for Phytomedicine, Faculty of Veterinary Sciences, University of Pretoria, was made possible by Makerere University that gave me study leave, and the Makerere University Staff Development Programme (currently Makerere University Human Resources Department) that provided the funding. Additional funding came from National Research Foundation, South Africa and the Faculty of Veterinary Science, University of Pretoria.

This study would not have been possible without the personal role of **Prof. John Ssebuwufu**, the then (2002) Vice Chancellor of Makerere University who, not only provided me with the University of Pretoria contacts for application for study, but also facilitated my getting the funds from the Staff Development Programme (against a background of many applicants) and my getting the generous study leave. My coming for full time study in South Africa for such long time would not have been pleasant without the consent, support and encouragement from my wife **Elios Bizimenyera** and the seven children (**Eve Araduha**, **Edwin Nshuti**, **Elisha Bavakure**, **Erastus Ndakize**, **Enoch Ruhumuriza**, **Esther Mahoro** and **Eunice Mutoni**). My daughter, **Eve Araduha**, bought me a good pair of bifocal tinted lens spectacles.

I would like to express my special thanks to my promoters **Prof Gerald E Swan** and **Prof Jacobus N Eloff** for their invaluable support, guidance and encouragement during the course of the study. Their financial and logistic support enabled my wife to visit and comfort me at Onderstepoort campus (of the University of Pretoria) each year (2003-2005). They also supported me financially to present papers at various scientific conferences, in addition to numerous dinners they organized for the entire Phytomedicine students group. Certainly, God will bless them abundantly.

In addition I wish to express my gratitude to many friends and colleagues who in one way or the other helped me over the course of my study. The advice, support and encouragement by **Prof. Frank Bakunzi** and **Dr. Dibungi Luseba** were helpful in the drawing up of the study protocol. **Dr. John Githiori** assisted in the *in vitro*, whereas **Ms Santa Meyer**, **Drs Jan van Wyk** and **Adriano Vatta** assisted in the *in vivo* anthelmintic work. **Drs Lyndy McGaw**, **Irene Kamara** and **Faga Samdumu** assisted technically in the course of extraction, biological assays, isolation and structural identification of compounds from *Peltophorum africanum*. Not to forget (and their acknowledgements appear in the articles published) **Drs Vinny Naidoo**, **Havana Chikoto**, **Peter Masoko**, **Felix Nchu** and **Mutalib Aderogba** who helped in the statistical or technical aspects. **Ms Jenny Seagreen** assisted in formatting the final draft.

My spiritual life was kept buoyant by my Pastors **David Barbour** and **Lee Hobday** and their congregations at Pretoria North Methodist and Hatfield Acts Fellowship Churches respectively. Thanks to **Dr. James Oguttu** and the Onderstepoort ladies led by **Dr. Mandi Leibbrandt** for the fellowship and for the transportation to and fro now O R Tembo (formerly Johannesburg) International Airport. **Ms Denise Marais** not only made our student life at Onderstepoort pleasant, but she also greatly facilitated my getting on the graduation programme November 2007.

I wish to express my appreciation to **God** for keeping my family healthy; all of us enjoyed good health throughout the period of study. May other members of my family also be encouraged, and succeed in their studies and lives. To **GOD** (who has put **recipes** for many diseases of man and animals in plants) be the Glory and Honour! **Amen**.

List of abbreviations

AOX	Antioxidants
TAA	Total antibacterial activity
MIC	Minimum inhibitory concentration
DPPH	1,1-diphenyl-2-picryl hydrazyl
ANOVA	Analysis of variance
WAAVP	World Association for the Advancement of Veterinary Parasitology
TLC	Thin layer chromatography
FAWE	Formic acid: acetic acid: water: ethyl acetate (3:2:30:70)
BEA	Benzene: ethanol: ammonium hydroxide (18:2:0.2)
CEF	Chloroform: ethyl acetate: formic acid (18:8:2)
EMW	Ethyl acetate: methanol : water (10:1.35:1)
INT	p-iodonitrotetrazolium
NCCLS	National Committee for Clinical Laboratory Standards
DMSO	Dimethyl sulfoxide
UPBRC	University of Pretoria Biomedical Research Centre
MTT	3-[4,5-dimethylthiazol-2yl]-2,5-diphenyl tetrazolium bromide
TEAC	Trolox equivalent antioxidant capacity
SEM	Standard error of mean
EPA	Environment Protection Agency
ABTS	2,2 ⁻ -azinobis (3-ethylbenzothiazoline-6-sulfonic acid)

Publications

Full articles prepared from the thesis:

a) Published: -

Bizimenyera, E. S., Swan, G. E., Chikoto, H., Eloff, J. N., 2005. There is a rationale for using *Peltophorum africanum* (Fabaceae) extracts in veterinary medicine. *Journal of South African Veterinary Association*, **76**: 54-58

Bizimenyera, E. S., Githiori, J. B., Eloff, J. N., Swan, G. E., 2006. *In vitro* activity of *Peltophorum africanum* Sond.(Fabaceae) extracts on the egg hatching and larval development of the parasitic nematode *Trichostrongylus colubriformis*. *Veterinary Parasitology*, **142**: 336-343

Bizimenyera, E. S., Githiori, J. B., Swan, G. E., Eloff, J. N., 2006. *In vitro* ovicidal and larvicidal activity of the leaf, bark and root extracts of *Peltophorum africanum* Sond (Fabaceae) on *Haemonchus contortus. Journal of Animal and Veterinary Advances*, **5**: 606-614.

Bizimenyera, E. S., Aderogba, M.A., Eloff, J. N., Swan, G. E., 2007. Potential of neuroprotective antioxidant-based therapeutics from *Peltophorum africanum* Sond. (Fabaceae). *African Journal of Traditional, Complementary and Alternative Medicines*, 4: 99-106

b) Submitted: -

Bizimenyera, E. S., Meyer, S., Naidoo, N., Eloff, J. N., Swan, G. E.Efficacy of *Peltophorum africanum* Sond. (Fabaceae) extracts on *Haemonchus contortus* and *Trichostrongylus colubriformis* in sheep. *Veterinary Parasitology.*

Bizimenyera, E. S., Swan,G. E., Samdumu, F., McGaw, L. J., Eloff, J. N. Safety profiles of *Peltophorum africanum* Sond. (Fabaceae) extracts. *South African Journal of Science*.

Bizimenyera, E. S., Swan,G. E., Samdumu, F., Kamara , I. B., Eloff, J. N.
Isolation and bioassay characterization of bergenin from the root extract of *Peltophorum africanum* Sond. (Fabaceae). *South African Journal of Science*

Published conference abstracts from the thesis:

Bizimenyera, E. S., Aderogba, M. A., Eloff, J. N., Swan, G. E., 2005. Plants rich in antioxidants warrant study for neurodegenerative diseases. *Emirates Medical Journal*, **23**: 69.

Bizimenyera, E. S., Githiori, J. B., Eloff, J. N., Swan, G. E., 2006. *In vitro* ovicidal and larvicidal activity of *Peltophorum africanum* extracts against parasitic nematodes of small ruminants. *Journal of South African Veterinary Association*), **77**: 93.

Bizimenyera, E.S., Eloff, J. N., Swan, G. E., 2007. The potential of antioxidant-based therapeutics from *Peltophorum africanum* in the treatment of neurodegenerative diseases. *Journal of Environmental Neuroscience and Biomedicine*, **1**: 47

Conference presentations from thesis

a) <u>Local</u>

Bizimenyera, E. S., Swan, G. E., Eloff, J. N., 2003. Antioxidant and antibacterial compounds in *Peltophorum africanum* (Fabaceae)? Faculty Day, Faculty of Veterinary Science, University of Pretoria, pg 29. **Onderstepoort** (25th Sept 2003), South Africa

Bizimenyera, E. S., Githiori, J. B., Eloff, J. N., Swan, G. E., 2005. Anthelmintic activity of *Peltophorum africanum* (Fabaceae) extracts against parasitic gastrointestinal nematodes of livestock. Faculty Day, Faculty of Veterinary Sciences, University of Pretoria, pg.31. **Onderstepoort** (14th Sept 2005), South Africa.

b) National and regional

Bizimenyera, E. S., Swan, G. E., Eloff, J. N., 2004. Justification for use of *Peltophorum africanum* for animal infections. Indigenous Plant Use Forum, pg 20. **Clanwilliam** (5-8th July 2004), South Africa.

Bizimenyera, E. S., Githiori, J. B., Eloff, J. N., Swan, G. E., 2005. *In vitro* anthelminthic activity of *Peltophorum africanum* (Fabaceae) extracts against livestock nematodes. Indigenous Plant Use Forum, pg 18. **Grahamstown** (27-30th June 2005), South Africa.

Bizimenyera, E. S., Githiori , J. B., Eloff, J. N., Swan, G. E., 2005. *In vitro* ovicidal and larvicidal activity of *Peltophorum africanum* (Fabaceae) extracts against parasitic

nematodes of ruminants. 34th Congress of the Parasitological Society of Southern Africa, pg.16. **Magoebaskloof Hotel** (25-28th Sept 2005), Limpopo, South Africa.

Bizimenyera, E. S., Eloff, J. N., Swan, G. E., 2006. Prospects for use of *Peltophorum africanum* Sond. (Fabaceae) extracts in neurodegenerative diseases. Indigenous Plant Use Forum, pg 26. **University of Botswana** (3-6th July 2006), Gaborone, Botswana.

Bizimenyera, E.S., Swan, G.E., Oguttu, J.W., Eloff, J.N, 2007.*Peltophorum africanum* Sond. (Fabaceae) extracts have potential role in medicine. Pharmatox 2007 Conference. **Buffellspoort** (2-5th Oct. 2007), South Africa.

c) International

Bizimenyera, E. S., Swan, G. E., Eloff, J. N., 2003. Antibacterial compounds in *Peltophorum africanum*. Antimicrobial Resistance Congress. **Durban** (27-29th Oct 2003), South Africa.

Bizimenyera, E. S., Swan, G. E., Eloff, J. N., 2004. Is there rationale for use of *Peltophorum africanum* (Fabaceae) extracts in veterinary medicine? Biennial South African Veterinary and Paraveterinary Congress, pg 81. **Cape Town** (27-30th July 2004), South Africa.

Bizimenyera, E. S., Swan, G. E., Githiori, J.B., Eloff, J. N., 2005. Ethnomedical leads as tools in neuroscience. Psychiatry and Neuroscience in Africa (SONA/IBRO), pg 27. Cape Town (18-22 April 2005), South Africa.

Bizimenyera, E. S., Githiori, J. B., Eloff, J. N., Swan, G. E., 2005. Potential sustainable use of *Peltophorum africanum* as anthelmintic by rural communities. 6th Global Conference on conservation of Domestic Animal Genetic Resources, pg.59. **Magalies Park Resort** (9-13th Oct 2005), South Africa.

Bizimenyera, E. S., Aderogba, M. A., Eloff, J. N., Swan, G. E., 2005. Plants rich in antioxidants warrant study for neurodegenerative diseases. International Neuroscience Conference, pg. 69. Al Ain (26-29th Nov. 2005), United Arab Emirates.

Bizimenyera, E. S., Eloff, J. N., Swan, G. E., 2006. The potential of antioxidant-based therapeutics from *Peltophorum africanum* Sond. (Fabaceae) in treatment of

neurodegenerative diseases.1st International Neuroscience Conference, pg 20. **Imo Concorde Hotel** (9-13th July 2006), Owerri, Nigeria.

Bizimenyera, E. S., Swan, G. E., <u>Eloff, J. N.</u>, 2006. Potential of *Peltophorum africanum* Sond. (Fabaceae) extracts in medicine. Ethnoveterinary Medicine Conference, pg. 40. **Essex** (14-15th Sept 2006), United Kingdom.

Bizimenyera, E. S., Eloff, J. N., Swan, G. E., 2006. Prospects for sustainable utilisation of *Peltophorum africanum* Sond. (Fabaceae) for helminthosis by rural farmers. NUFU Biodiversity and Medicinal Plants Joint Conference, pg. 14. Makerere University, Kampala (16-18th Oct 2006), Uganda.

Bizimenyera, E. S., Eloff, J. N., Swan, G. E., 2007. Prospects of antioxidant-based therapeutics from *Peltophorum africanum* Sond. (Fabaceae) against human immunodeficiency virus (HIV). The 5th African conference on child abuse and neglect: HIV-AIDS and children, pg . **Kampala** (27-29th March 2007), Uganda.

Summary

There is an increasing interest in ethnomedical and ethnoveterinary practices, especially as it relates to the use of medicinal plants for treating various ailments. As a result, the current trend in government health authorities is to integrate herbal medicine with primary heath care. This arises because nearly 80% of people in the developing world, particularly those from rural communities where modern drugs are unaffordable, inaccessible or, unavailable, depend on phytomedicine for primary healthcare. Despite this, however, most medical and veterinary professionals distrust herbal medicines due to concerns of scientific evidence of efficacy and safety. Hence, there is need for their validation, before herbal medicines gain wider acceptance and use. Traditional healers and rural farmers use extracts of *Peltophorum africanum* (a medicinal plant wide-spread in southern Africa and other tropical regions), to treat diarrhoea, helminths and abdominal parasites, dysentery, HIV-AIDS, acute and chronic pain, anxiety and depression, infertility, and to promote well-being and resistance to diseases.

To evaluate these ethnobotanical leads, dried leaves, bark and root from mature P. africanum (Fabaceae) trees were extracted with acetone, ethanol, dichloromethane and hexane. Chromatograms were made on silica gel plates. Thin layer chromatograms (TLC) were sprayed with 0.2% 2, 2-diphenyl-1-picryl hydrazyl (DPPH) for qualitative screening for antioxidants. Quantification of antioxidant activity was done in comparison with L-ascorbic acid and Trolox (6-hydroxy-2, 5, 7, 8-tetranethylchromane-2-carboxylic acid). With regard to the extracts, minimum inhibitory concentrations (MIC) were determined for *Staphylococcus aureus*, Escherichia coli, Pseudomonas aeruginosa and Enterococcus faecalis. The total antibacterial activity (TAA), signifying the volume to which active compounds present in 1 g of plant material can be diluted and still inhibit bacterial growth, was also determined. In vitro anthelmintic activity was evaluated by effects of acetone extracts on the egg hatching and larval development of parasitic nematodes Haemonchus contortus and Trichostrongylus colubriformis. The eggs and larvae of the two parasites were incubated in various concentrations of the leaf, bark and root extracts for two and five days respectively. Furthermore the efficacies of the acetone extracts were tested on lambs artificially induced with *H. contortus* and *T. colubriformis* infections. Toxicity was performed in brine shrimp and MTT assay on Vero monkey kidney cells.

The extracts had substantial activity against both Gram-positive and Gram-negative bacteria, with MIC values of 0.08 mg ml⁻¹ for *Staphylococcus aureus* and 0.16 mg ml⁻¹ for *Pseudomonas aeruginosa*; the corresponding TAA values were 1263 and 631 ml g⁻¹. The acetone extracts of

the bark, and root of *P. africanum* had higher antioxidant activity than L-ascorbic acid (Vitamin-C) and Trolox (6-hydroxy-2, 5, 7, 8-tetramethylchromane-2-carboxylic acid), a synthetic vitamin-E analogue, and much higher than *Ginkgo biloba* extract (EGb 761). The standardized extract of *Ginkgo biloba* (EGb 761) is widely employed for its significant benefit in neurological disorders. The respective EC₅₀ for the *P. africanum* root , bark and leaf extracts, L-ascorbic acid, and EGb761 were 3.82 μ g ml⁻¹, 4.37 μ g ml⁻¹, 6.54 μ g ml⁻¹, 5.04 μ g ml⁻¹, and 40.72 μ g ml⁻¹.

The extracts inhibited egg hatchability and larval development (from L₁ to infective stage L₃) of both *H. contortus* and *T. colubriformis* (both parasitic nematodes of ruminants) at concentrations of 0.2-1.0 mg ml⁻¹. The plant extracts, at concentrations of 5-25 mg ml⁻¹ completely lysed larval forms (L₁) and eggs of the nematodes. In all assays, the root extracts had higher antibacterial, antioxidant and anthelmintic activity than the bark and leaf. Although the extracts were safe and non-toxic, the reduction in faecal egg and adult worm counts in lambs infected with *H. contortus* and *T. colubriformis* was not statistically significant (P=0.073).

From the acetone extracts of the root, a brownish crystalline compound, bergenin was isolated. Bergenin was also assayed for toxicity with brine shrimp and Vero monkey kidney cells like the extracts, where the compound was found to be not toxic. In a disc diffusion test, the inhibitory activition of bergenin was determined for the bacteria *E. coli, P. aeruginosa, Mycobacterium vaccae*, and the fungi *Sporobolomyces salmonicolor* and *Penicillium notatum*. Bergenin had reasonable antimicrobial activity against *S. salmonicolor*, moderate activity against *M. vaccae*, *E. coli* and *P. aeruginosa*, but non inhibitory against *P. notatum*.

P. africanum extracts have therefore, potential for treatment of infection-related diseases by either directly inhibiting bacterial growth or by stimulating the immune system of the host. The traditional use of *P. africanum* concoctions against diarrhoea, dysentery and unthriftness, may be also due to anthelmintic activity as these signs are consistent with parasitic gastroenteritis.

Antioxidants are also important in boosting the immunity, critical in the management of helminthosis. There is ample scientific and empirical evidence supporting the use of plantderived antioxidants in the control of human immunodeficiency virus (HIV) and neurological diseases. Synergistic activity of plant antioxidants has been proposed as a mechanism by which viral replication and immune cell killing in HIV infection can be inhibited. Antioxidants may have neuro-protective (preventing apoptosis), as well as neuro-regenerative roles. Due to the high antioxidant activity of its extracts, *P. africanum* has prospects in the chemotherapy of

HIV and management or control of neurodegenerative diseases. Thus there is great potential of *P. africanum* extracts in medicine.

Further isolation and bioassay characterization of bioactive compounds from *P. africanum* is recommended as well as refinement of *in vivo* tests in target livestock, or clinical trials. Better methods of plant extraction easily adaptable to rural communities for sustainable exploitation of the tree, may have to be devised especially those using the leaves instead of bark or root.

Table of contents

Title page	i
Photograph of Peltophorum africanum plant	ii
Declaration	ii
Acknowledgements	iv
List of abbreviations	vi
Publications	vii
Conference presentations	vii
Summary	xi
CHAPTER 1 Introduction	1
1.1 Background	1
1.2 Hypothesis	3
1.3 Aim	3
1.4 Objectives	3
CHAPTER 2 Literature Review	5
2.1 Antibacterials	5
2.2 Antioxidants	5
2.3 Anthelmintics	7
2.4 Peltophorum africanum	8
2.4.1General aspects	8
2.4.2 Ethnomedical and ethnoveterinary use	8
2.4.3 Phytochemistry	9
2.4.4 Biological activity	9
CHADTED 2 Dationals for using <i>D. africanum</i> ovtrasts in veterinary medicine	10
CHAPTER 3 Rationale for using <i>P. africanum</i> extracts in veterinary medicine	10
3.1 Introduction.3.2 Materials and Methods.	10
3.2.1 Collection, preparation and storage of materials	12
3.2.2 Extraction	12
3.2.3 Chromatography	12
3.2.4 Polyphenols	12
3.2.5 Antioxidant screening	13

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA UNIBESITHI VA PRETORIA

3.2.6 Antibacterial screening	13
3.3 Results	14
3.4 Discussion	19
3.5 References	21

CHAPTER 4 In vitro ovicidal and larvicidal activity of the leaf, bark and root extracts of

P. africanum on H.contortus	24
4.1Introduction	24
4.2 Materials and methods	26
4.2.1 Collection, storage and preparation of plant material	26
4.2.2 Preparation of plant extracts	26
4.2.3 Egg recovery and preparation	27
4.2.4 Egg hatch inhibitory (EH) assay	27
4.2.5 Larval development (LD) inhibition assay	28
4.2.6 Calculation and statistical analysis	28
4.3 Results	29
4.4 Discussion and conclusion	31
4.5 References	33

CHAPTER 5 In vitro activity of *P. africanum* extracts on egg hatching and larval

development of the parasitic nematode <i>T. colubriformis</i>	37
5.1 Introduction	37
5.2 Materials and methods	39
5.2.1 Collection, storage and preparation of plant material	39
5.2.2 Plant extract preparation	39
5.2.3 Recovery and preparation of eggs	40
5.2.4 Egg hatch inhibition assay (EH)	40
5.2.5 Larval development assay (LD)	41
5.2.6 Calculations and statistical analysis	41
5.3 Results	42
5.4 Discussion and conclusion	45
5.5 References	47

CHAPTER 6 Efficacy of <i>P.africanum</i> extracts on <i>H. contortus</i> and <i>T. colubriformis</i> in	51
sheep	51
6.1 Introduction	51

6.2 Materials and Methods	53
6.2.1 Collection, storage and preparation of plant material	53
6.2.2 Plant extraction	53
6.2.3 Experimental animals	53
6.2.4 Experimental design	54
6.2.4.1 Preparation and administration of infective larvae	54
6.2.4.2 Treatment procedures	54
6.2.4.3 Full haematology and liver enzymes analysis	55
.6.2.5 Evaluation	5
6.2.5.1 Faecal egg counts	55
6.2.5.2 Larval cultures and identification	56
6.2.5.3 Adult worm counts	56
6.2.6 Calculations and statistical analysis	56
6.3 Results	56
6.4 Discussion	61
6.5 References	62
CHAPTER 7 Safety profiles of <i>P. africanum</i> extracts	67
7.1 Introduction	67
7.2 Materials and methods	69
7.2.1 Plant material	69
7.2.2 Extraction	69
7.2.3 Toxicity tests	69
7.2.3.1 Brine shrimp lethality	69
7.2.3.2 MTT assay	70
7.2.4 Safety of extracts in sheep	71
7.2.5 Statistical analysis	71
7.3 Results	71
7.4 Discussion	73
7.5 References	75
CHAPTER 8 Isolation and bioassay characterization of bergenin from the	
root extract of <i>P. africanum</i>	79
8.1 Introduction.	79
8.2 Methodology	80

8.2.1 Plant material	
8.2.2 Isolation of compounds	80
8.2.3 Toxicity assays with bergenin	
8.2.3.1 Brie shrimp lethality	81
8.2.3.2 Cytotoxicity, MTT assay	81
8.2.3.3 Antiviral assay	82
8.2.4 Bioactive assays	83
8.2.4.1 Antioxidant	83
8.2.4.2 Inhibition of microbial growth	84
8.2.5 Statistical analysis	84
8.3 Results	84
8.4 Discussion	88
8.5 References	
CHAPTER 9 Potential of neuroprotective antioxidant-based	
therapeutics from <i>P. africanum</i>	92

.9.1 Introduction	93
9.2 Methodology	96
9.2.1 Collection, storage and preparation of plant material	96
9.2.2 Chemicals	96
9.2.3 Evaluation of antioxidant activity	96
9.3 Results	98
9.4 Discussion and conclusion	99
9.5 References	101

CHAPTER 10 General discussions and conclusion	105
10.1 <i>P. africanum</i> in traditional medicine	105
10.2 Extraction	105
10.3 Antibacterial activity	106
10.4 Antioxidant activity	106
10.5 Anthelmintic activity	107
10.6 Safety of <i>P. africanum</i>	108
10.7 Conclusions	108
CHAPTER 11 References	110

APPENDICES	125
Annexure 1 Journal of South African Veterinary Association	125
Annexure 2 Journal of Animal and Veterinary Advances	126
Annexure 3 Veterinary Parasitology	127
Annexure 4 African Journal of Traditional, Complementary and Alternative Medicines	128

List of Tables

Table 3.1 Minimum inhibitory concentration (MIC) values of bark, root and leaf extracts	17
Table 3.2 Total antibacterial activity values of bark, root and leaf extracts	18
Table 4.1 Percent mean inhibition of egg hatch and larval development	
of <i>H. contortus</i> by <i>P. africanum</i> extracts	29
Table 4.2 Kruskal-Wallis and ED ₅₀ values of extracts of <i>P. africanum</i> against <i>H. contortus.</i> .	29
Table 4.3 Larvicidal activity of acetone extracts of <i>P. africanum</i> against <i>H. contortus</i>	31
Table 5.1 p-values (Kruskal-Wallis) and ED ₅₀ values of <i>P. africanum</i> extracts against <i>T.</i>	42
colubriformis	
Table 6.1 Treatment groups and individual doses	55
Table 7.1 Cytotoxicity of <i>P. africanum</i> extracts	72
Table 8.1 Cytotoxicity and antioxidant activities of bergenin	86
Table 8.2 Antimicrobial activity of bergenin against five microbial species.	87
Table 9.1 Commercial plants effective in control of nervous or chronic conditions	95
Table 9.2 TEAC and Vit.C equivalent values acetone extracts of leaf, bark and root of P.	99
africanum	

Figure 3.1 Extraction efficiency of ethanol, acetone, dichloromethane and hexane on <i>P. africanum</i>	15
leaf, bark and root	
Figure 3.2 Percentage of polyphenols in bark, root and leaf extracts of <i>P. africanum</i>	15
Figure 3.3 Chromatograms of root, bark and leaf extracts of <i>P. africanum</i> sprayed with DPPH	16
Figure 3.4 TEAC values of bark, root and leaf extracts of <i>P. africanum</i> by various extracts	17
Figure 4.1 Dose-response egg hatch inhibition of <i>H. contortus</i> by <i>P. africanum</i> leaf, bark and root	30
extracts	
Figure 4.2 Dose-response larval development inhibition of <i>H. contortus</i> by <i>P. africanum</i>	30
Figure 5.1 Percent mean inhibition of egg hatch of T. colubriformis by P. africanum leaf, bark and	43
root extracts extracts	
Figure 5.2 Percent mean inhibition of larval development of T. colubriformis by extracts of	43
P. africanum	
Figure 5.3 Dose-response profile for egg hatch inhibition of <i>T. colubriformis</i> by <i>P. africanum</i>	44
extracts	
Figure 5.4 Dose response profile for inhibition of larval development of <i>T. colubriformis</i> by	44
P.africanum extracts	
Figure 6.1 Faecal egg counts	57
Figure 6.2 Mean egg per gram (EPG) per day of trial	58
Figure 6.3 <i>H. contortus</i> adult worm counts	58
Figure 6.4 <i>T. colubriformis</i> adult worm counts	59
Figure 6.5 Daily hay consumption (kg) per group post treatment	60
Figure 7.1 Haemoglobin and liver enzyme analysis	73
Figure 8.1 NMR of bergenin	85
Figure 8.2 MS of bergenin	86
Figure 9.1 Chromatogram of 200 µg acetone extracts of leaf, bark and root extracts of <i>P.africanum</i>	98
separated by EMW and sprayed with DPPH	