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Abstract

This thesis analyses numerical methods used in finding solutions of
differential equations. Numerical methods are viewed as discrete dy-
namical systems that give useful information on continuous dynamical
systems defined by systems of (ordinary) differential equations. We
analyse non-standard finite difference schemes that have no spurious
fixed-points compared to the dynamical system under consideration,
the linear stability/instability property of the fixed-points being the
same for both the discrete and continuous systems. We obtain a sharper
condition for the elementary stability of the schemes. For more com-
plex dynamical systems which are dissipative, we design schemes that
replicate this property.

Furthermore, we investigate the impact of the above analysis on
the numerical solution of partial differential equations. We specifically
focus on reaction-diffusion equations that arise in many fields of engi-
neering and applied sciences. Often their solutions enjoy the follow-
ing essential properties: Stability/instability of the fixed points for the
space independent equation, the conservation of energy for the station-
ary equation, and boundedness and positivity.

We design new non-standard finite difference schemes which repli-
cate these properties. Our construction make use of three strategies:
the renormalization of the denominator of the discrete derivative, non-
local approximation of the nonlinear terms and simple functional rela-
tion between step sizes. Numerical results that support the theory are
provided.

ix

 
 
 



Chapter 1

Introduction

Our main interest in this thesis is the study of numerical methods for
dynamical systems defined by (ordinary) differential equations. Prob-
lems as diverse as the simulation of planetary interactions, fluid flows
[10] and mechanics [43], chemical reactions [16],[40], biological pattern
formulation [2], [18], [33] and economic markets can all be modelled as
dynamical systems [41]. For further applications of dynamical systems
see [44]. In most of the systems modelled, all rates of change are as-
sumed to be time independent, which makes the corresponding system
autonomous.

Dynamical systems are concerned primarily with making qualita-
tive study about the behaviour of systems which evolve in time given
knowledge about the initial state of the system itself. It is important
to know and study essential qualitative properties of the systems or
more precisely their dynamics. Such properties include among others:
the type of fixed points, oscillatory solutions, monotonicity of solutions,
conservation of energy, dissipativity or dispersion of solution, positivity
and boundedness of solutions. Our standard reference for dynamical
systems is Stuart and Humphries [41] while Lambert [22] will also be
used for numerical methods for ordinary differential equations. The
framework of the study will include a wide range of concrete linear and
non-linear models such as: logistic equation, decay equation, Hamil-
tonian system in ordinary differential equations as well as the Fisher
equation, the reaction-diffusion equation in partial differential equa-
tions.
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Existence theory is extensively developed for differential equations.
However, most differential equations have no analytical solutions. As
a result numerical methods are of fundamental importance in gaining
understanding of dynamical systems. For contemporary numerical ana-
lysts, the understanding of differential equations from numerical meth-
ods is often limited to the study of their consistency, (zero-) stability
and convergence. Unfortunately such classical numerical methods do
not guarantee that the dynamics of the systems are replicated. This
explains why we use the monograph [41] as our standard reference on
dynamical systems, since it is one of a few classical books emphasizing
the similar properties of the exact solutions that numerical schemes
exhibit.

To be more explicit in this introduction, we consider the following
differential equation

dy

dt
= y2(1− y) ≡ f(y). (1.0.1)

Equation (1.0.1) is an elementary model for combustion [34]. Despite
the simple nature of (1.0.1), its solution cannot be written in a closed
form. The solution is expressed in the implicit form

ln

( |y|
|y − 1|

)
+

1

y
= t + C, (1.0.2)

where C is a constant. This equation defines a dynamical system on
(−∞, +∞) with an asymptotically stable fixed point y = 1 and an
unstable fixed point y = 0. Full analysis shows that the point y = 0
is attracting the solutions below it and repelling those above it. (The
concepts used here will be made clear in the next chapter). All these
properties that represent the exact solution of (1.0.2) are visualised in
Fig.1.1.

We employ for (1.0.1), the forward Euler method

yn+1 − yn

∆t
= y2

n(1− yn), (1.0.3)
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and the Runge-Kutta method

yn+1 − yn

∆t
= yn +

∆t

2
[f(yn) + f(yn + ∆tf(yn))] . (1.0.4)

The two classical schemes (1.0.3) and (1.0.4) are consistent, zero-
stable and thus convergent. However, the discrepancy between the
numerical solution by these methods and the exact solution is evident
as can be seen in Figs.1.2 and 1.3. We use ∆t = 1.8 in both schemes.

Our aim is to design numerical schemes that give reliable simula-
tions, which preserve as much as possible the intrinsic properties of the
dynamical systems without any limitation on the value of time step
size ∆t. We shall do this by considering the non-standard finite differ-
ence method which was introduced by RE Mickens [26] more than two
decades ago. This approach takes advantage of specific properties of
solutions of involved differential equations.

For the above mentioned combustion model (1.0.1), Fig.1.4 shows
that the non-standard finite difference scheme

yn+1 − yn

1− e−∆t
= y2

n(1 + yn − 2yn+1), (1.0.5)

proposed by Anguelov and Lubuma [8], displays better the properties
of the exact solution.

 
 
 



4

0 1 2 3 4 5 6 7 8

−0.5

0

0.5

1

1.5

t

Figure 1.1: Exact solution
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Figure 1.2: Forward Euler method
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Figure 1.3: Runge-Kutta method

Figure 1.4: Non-standard method
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Non-standard finite difference techniques developed by Mickens, have
laid the foundation for designing methods that preserve the dynamics,
especially the stability property of fixed points of the approximated
differential system. The design of the non-standard finite difference
method starts mostly with the concept of exact scheme. A major ad-
vantage of having an exact scheme for a differential equation is that
questions related to the usual considerations of consistency, stability
and convergence do not arise. It is to be noted that any method that is
not standard could be considered non-standard. However, in this thesis
when we talk about non-standard finite difference schemes, we consider
those that are based on Mickens’ methodology and rules as explained
in the survey paper [35].

Since the publication of the monograph [26], which is the first book
on this exciting topic, several authors have contributed to the study
of non-standard finite difference methods. Anguelov and Lubuma [7]
provided some mathematical justification for the success of empirical
procedures used so far. These authors have unambiguously defined
non-standard finite difference methods using two of Mickens’ rules.

The edited volumes [17], [28] and [29] contain a wide range of ap-
plications of the non-standard finite difference methods, (for example,
mathematical epidemiology, reaction-diffusion equations, non-smooth
mechanics, singular perturbation problems, conservation law, etc). In
addition to these, we mention the following works where the non-
standard finite difference schemes have shown great potential: [1], [6],
[7], [14] and [26].

For this thesis to be relatively self-contained, we dedicate consider-
able time to study classical concepts regarding dynamical systems and
finite difference methods. In particular, the concept of absolute stability
of linear multi-step and Runge-Kutta methods is sufficiently reviewed
in view of the elementary stability which is the minimum qualitative
property that non-standard finite difference methods must satisfy.

The comment made earlier about the reliable scheme (1.0.5) raises
the following concerns which constitute the main focus of the thesis:

• What is a non-standard finite difference method for a dynamical
system?
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• How to construct a non-standard finite difference method for a
dynamical system?

• How powerful are non-standard finite difference methods compared
to standard finite difference methods that are used for dynamical
systems?

• How can numerical methods be viewed as discrete dynamical sys-
tems of the continuous dynamical systems they approximate?

• What is the impact of the non-standard finite difference method
on concrete examples of dynamical system?

• How does the study carry over to dynamical systems related to
partial differential equations for dynamical systems, for example
the reaction-diffusion equations?

This thesis elaborates, with extension in some cases, the author’s
results in the following papers: [3], [4], [5] and [6].

The thesis is organized as follows: Chapter 2 deals with the review of
basic concepts, definitions and notation relating to dynamical systems
which we will be using throughout this thesis. Continuous dynamical
systems defined by ordinary differential equations are presented in Sec-
tion 2.2 and their discrete counterparts are discussed in Section 2.3. In
each case, we present qualitative properties of dynamical systems that
are of interest in our work. These include, inter alia, invariant sets,
fixed points, hyperbolic fixed points, linear stability and dissipativity.

In Chapter 3 we introduce finite difference schemes for ordinary dif-
ferential equations. In Section 3.2, consistency, zero-stability and con-
vergence of finite difference methods are discussed. We give a short
presentation of two classical methods, namely, the linear multi-step
method in Section 3.3 and the Runge-Kutta method in Section 3.4.
The numerical methods are also required to behave asymptotically, like
the solutions of the decay equation. This is the essence of the concept
of absolute stability addressed in Section 3.5. In Section 3.6 we consider
the numerical methods that define discrete dynamical systems. Finally,
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the analysis in Section 3.7 is restricted to theta methods, which will be
the focus for the rest of this thesis.

The first set of the author’s main contribution in this thesis appear
in Chapter 4. Firstly, we extend the classical theta methods. In Sec-
tion 4.2, we analyse non-standard finite difference schemes that have
no spurious fixed-points compared to the dynamical system under con-
sideration, the linear stability/instability property of the fixed-points
being the same for both the discrete and continuous systems. We ob-
tain a sharper condition for the elementary stability of the schemes, a
topic discussed in Section 4.3. For more complex dynamical systems
which are dissipative, we design schemes that replicate this property as
presented in Section 4.4. Lastly, in Section 4.5, we consider a specific
class of dynamical systems which is equivalent to the simplest model
of Hamiltonian systems that occur in classical mechanics. We design
a non-standard finite difference scheme that replicates the underlying
principle of conservation of energy. Here we use Mickens’ rule about
nonlocal approximation of nonlinear terms.

Chapter 5 is dedicated to a detailed analysis of the author’s results
given in [6]. Our point of departure is the Fisher equation, in Sec-
tion 5.2, which enjoys a positivity and boundedness property. Then
we move to general reaction-diffusion equations for which we construct
non-standard theta methods in Section 5.3. In Section 5.4, we design
non-standard finite difference schemes which are elementary stable in
the limit case of space independent variable and which are stable with
respect to the principle of conversation of energy in the stationary case.
Furthermore, we show that our schemes replicate the positivity and
boundedness properties under a more simpler functional relation be-
tween the time and space step sizes (compared to the literature).

As an alternative approach, Section 5.5 deals with approximations
of the space variable by the spectral method, while the time variable
is approximated via non-standard finite difference scheme. This results
in what we call coupled spectral and non-standard methods which
replicates the essential properties of the exact solutions.

In the last chapter, we provide concluding remarks, and a summary
of our findings, a discussion on how our work fits in the literature and
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possible extensions. Throughout the main chapters of the thesis, we
provide numerical tests that support the theory and show superiority
and reliability of our schemes compared to the classical ones.

 
 
 



Chapter 2

Dynamical Systems

2.1 Introduction

Dynamical systems are found in various fields of science. Usually they
are given by an analytical specification or as sampled data. Dynamical
systems are mainly represented by a state that evolves in time. The
input as well as the current state of a dynamical system determine the
evolution of the system.

An important characteristic of a dynamical system is whether it is
continuous or discrete. Continuous systems (often called flows) are
given by differential equations whereas discrete systems (often called
maps) are specified by difference equations.

There are many possible ways to analyse such systems, for example,
analysing their long term behaviour. For the analysis, it is very impor-
tant to know whether a dynamical system is linear or not. Nonlinear
systems typically have intricate dynamical behaviour.

The general setting of this thesis is that of continuous dynami-
cal systems defined by a system of autonomous differential equations.
We present continuous dynamical systems in the next section. After
specifying general concepts and terminology, we give existence results.
Thereafter, we investigate properties of dynamical systems which con-
stitute the main qualitative properties of interest throughout this the-
sis. These are the stability of fixed points and their dissipative nature.
Section 2.3 provides the discrete counterpart of the above study for
discrete dynamical systems.

10
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2.2 Continuous Dynamical Systems

We recall that Stuart and Humphries [41] is our standard reference for
dynamical systems. Most of the classical concepts given below can be
found there.

2.2.1 Generalities

Throughout this thesis, we shall be concerned with the initial-value
problem for an autonomous first-order system of ordinary differential
equations

Dy :=
dy

dt
= f(y); y(0) = y0, (2.2.1)

where y = y(t) = [1y · · · my]T : [0,∞) → Rm is unknown, while
f = [1f · · · mf ]T : Rm → Rm and y0 = [1y0 · · · my0]

T ∈ Rm are given.
Implicitly, we assume that f satisfies the smoothness properties that
are needed. Whenever it is necessary, we will be explicit about the
smoothness of f . The space Rm is equipped with the usual Euclidean
structure through the norm || • || and the inner product 〈•, •〉.

We begin by defining a dynamical system on a subset E ⊆ Rm.

Definition 2.2.1. The equation (2.2.1) is said to define a dynamical
system on a subset E ⊆ Rm if, for every y0 ∈ E, there exists a unique
solution of (2.2.1) which is defined for all t ∈ [0,∞) and y(t) ∈ E for
all t ≥ 0. ¥

The fact that y(t) is a solution of (2.2.1) on [0,∞) implies at least the
following smoothness: y(t) is differentiable on (0,∞) and continuous
on [0,∞).

We now introduce the concept of evolution semigroup operator for
a dynamical system.

Definition 2.2.2. For a dynamical system on E, we define its evolu-
tion semigroup operator or solution operator to be the map S(t) :
E → E such that y(t) = S(t)y0. ¥
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The terminology in Definition 2.2.2 is motivated by the following prop-
erties that can easily be checked:

i. S(t + s) = S(t)S(s) = S(s)S(t) ∀t, s ≥ 0,

ii. S(0) ≡ I, the identity operator.

The evolution semigroup operator S(t) is merely a convenient notation
for advancing the solution through time t. In fact, for y0 ∈ E the set

Γ+(y0) := {S(t)y0; t ∈ [0,∞)} ⊂ E (2.2.2)

is called the (positive or forward) orbit of y0. The terminology trajec-
tory is also used for orbit.

At this stage we need to discuss sufficient conditions for (2.2.1) to
define a dynamical system. Firstly, we consider the commonly known
condition stated in the following definition.

Definition 2.2.3. A function f : Rm → Rm is said to be Lipschitz on
B ⊂ Rm with Lipschitz constant L ≥ 0 if

‖f(x)− f(y)‖ ≤ L||x− y|| ∀x, y ∈ B.

If f is Lipschitz on Rm, then f is said to be globally Lipschitz. If f
is Lipschitz on every bounded subset of Rm, then f is said to be locally
Lipschitz. ¥

The concept of Lipschitzian functions is important in the proof of exis-
tence and uniqueness results for many problems in mathematics (see for
example [48]). In our specific context, we have the following theorem.

Theorem 2.2.4. Let f : Rm → Rm be globally Lipschitz. Then there
exists a unique solution y(t) to (2.2.1) for all t ≥ 0. Hence (2.2.1)
defines a dynamical system on Rm.
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Theorem 2.2.4 and its two corollaries below are well-known results.
Given their importance in this work, we outline, for convenience, their
proofs.

Proof. We employ the Banach contraction principle, see [48]. To this
end, we first introduce the space Ck(0,∞;Rm) consisting of continuous
vector-valued functions y : [0,∞) → Rm such that

||y||Ck(0,∞;Rm) := sup
t≥0

e−kt||y(t)|| < ∞,

where the parameter k > 0 will be specified shortly. It is clear that
Ck(0,∞;Rm) equipped with the norm || • ||Ck(0,∞;Rm) is a Banach space.
Secondly, we consider the operator

φ : Ck(0,∞;Rm) → Ck(0,∞;Rm)

defined by

φ(y)(t) = y0 +

∫ t

0
f(y(s))ds.

It is equally clear that solving (2.2.1) is equivalent to finding fixed-
points of the operator φ:

y = φy.

Using the Lipschitz condition in Definition 2.2.3 with Lipschitz constant
L we have for y, w ∈ Ck(0,∞;Rm):

||φ(y)(t)− φ(w)(t)|| ≤
∫ t

0
||f(y(s))− f(w(s))||ds

≤ L

∫ t

0
ekse−ks||y(s)− w(s)||ds

≤ L||y − w||Ck(0,∞;Rm)

∫ t

0
eksds

= L(
ekt − 1

k
)||y − w||Ck(0,∞;Rm).
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Thus

e−kt||φ(y)(t)− φ(w)(t)|| ≤ L

k
||y − w||Ck(0,∞;Rm)

and

||φy − φw||Ck(0,∞;Rm) ≤
L

k
||y − w||Ck(0,∞;Rm).

For the choice k > L, φ is a contraction and has therefore a unique
fixed-point.

In general, if f is only locally Lipschitz then the most we can achieve
is local existence and uniqueness in the following sense:

Corollary 2.2.5. Assume that f : Rm → Rm is Lipschitz on the ball
B̄ = B̄(y0, r) with Lipschitz constant LB. Consider the finite time

TB :=
r

supx∈B̄ ||f(x)|| .

Then, the initial-value problem (2.2.1) has a unique solution y(t) ∈ B̄

for t ∈ [0, TB].

Proof. We replace Ck(0,∞;Rm) by the set Ck(0, TB; B̄) of continu-
ous functions y : [0, TB] → B̄. Though not being a normed space,
Ck(0, TB; B̄) is a complete metric space under the metric

dk(y, w) = sup
0≤t≤TB

e−kt||y(t)− w(t)||.

For y ∈ Ck(0, TB; B̄), we have

||φ(y)(t)− y0|| ≤
∫ t

0
||f(y(s))||ds

≤ TB sup
x∈B̄

||f(x)||
= r,
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which shows that the mapping φ defined earlier operates from Ck(0, TB; B̄)
into Ck(0, TB; B̄). On the other hand, if y ∈ Ck(0, TB; B̄) and w ∈
Ck(0, TB; B̄), we easily obtain as in the proof of Theorem 2.2.4 that

dk(φ(y), φ(w)) ≤ LB

k
dk(y, w).

Thus, for k > LB, φ is a contraction.

Whenever, some a priori bound holds for the solution, Corollary 2.2.5
permits us to obtain a global existence result in the following precise
way.

Corollary 2.2.6. Let f : Rm → Rm be Lipschitz on an ε-neigbourhood
Eε of a bounded set E ⊆ Rm . If for any y0 ∈ E, the solution y(t) of
(2.2.1) satisfies y(t) ∈ E for each time t ≥ 0 where the solution exists,
then (2.2.1) defines a dynamical system on E.

Proof. For each m = 0, 1, 2, ... define

Tm :=
mε

supx∈Eε
||f(x)||

and consider the complete metric space Ck(Tm, Tm+1; Ēε) of continuous
functions y : [Tm, Tm+1] → Ēε equipped with the metric

dk(y, w) = sup
t∈[Tm,Tm+1]

e−kt||y(t)− w(t)||.

Fix y0 ∈ E. For y ∈ Ck(Tm, Tm+1; Ēε), define the operator φ by

φ(y)(t) = y0 +

∫ t

Tm

f(y(s))ds.

As in the proof of Corollary 2.2.5, one can show that φ operates from
Ck(Tm, Tm+1; Ēε) into Ck(Tm, Tm+1; Ēε) and φ is a contraction for the
choice k > LEε

where LEε
is the Lipschitz constant of f on Eε. This,
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together with the assumption that the solution remains in E whenever
it exists, implies that there exists a sequence {Y m}m≥0 of functions
Y m : [Tm, Tm+1] → E such that each Y m is on [Tm, Tm+1] the unique
solution of the differential equation in (2.2.1) that satisfies the initial
condition given recursively by

Y 0(0) = y0

Y m(Tm) = Y m−1(Tm), m = 1, 2, ....

Since
[0,∞) =

⋃
m≥0

[Tm, Tm+1],

the function
y :=

⋃
m≥0

Y m : [0,∞) → E,

which is well defined in view of the above initial conditions is the unique
solution of (2.2.1). Thus, (2.2.1) defines a dynamical system on E.

The following inequality introduced by Gronwall in 1918, known as
the Gronwall inequality, will be useful in the analysis of continuous
dynamical systems.

Lemma 2.2.7 (Gronwall Inequality). Let z(t) be a real valued func-
tion on [0,∞) that satisfy

zt ≤ az + b, z(0) = z0,

for a,b constants. Then for t ≥ 0

z(t) ≤ z0e
at +

b

a
(eat − 1), a 6= 0

and
z(t) ≤ z0 + bt, a = 0.
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Note that an extension of the Gronwall Inequality that does not allow
an exponential growth of z is known as the uniform Gronwall lemma
and is provided in [44].

Theorem 2.2.8. Suppose that (2.2.1) defines a dynamical system on
Rm and that f : Rm → Rm is locally Lipschitz. Let B ⊂ Rm be a
bounded set with the property

S(t)B ⊂ B for t ∈ [0, T ].

Then there exists a constant c > 0 depending on B and T such that

||S(t)y0 − S(t)z0|| ≤ c||y0 − z0|| ∀t ∈ [0, T ] ∀y0, z0 ∈ B. (2.2.3)

Proof. For y0, z0 ∈ B, put y(t) = S(t)y0 and z(t) = S(t)z0 which
belongs to B for t ∈ [0, T ]. Using (2.2.1) and the Cauchy-Schwarz
inequality, we have

1

2

d

dt
||y(t)− z(t)||2 = 〈yt − zt, y − z〉

= 〈f(y)− f(z), y − z〉
≤ ||y − z||||f(y)− f(z)||
≤ LB||y(t)− z(t)||2

where LB ≥ 0 is the Lipschitz constant of f on B. Application of
Gronwall inequality (Lemma 2.2.7) yields

||y(t)− z(t)||2 ≤ e2LBt||y0 − z0||2 ∀t ∈ [0, T ].

This implies that

||y(t)− z(t)|| ≤ eLBT ||y0 − z0|| ∀t ∈ [0, T ].
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Remark 2.2.9. When f is globally Lipschitz, the inequality (2.2.3)
holds on replacing B by Rm. The inequality (2.2.3) means that the
solution of (2.2.1) depends continuously on the initial data or that
the dynamical system is continuous with respect to initial data. This
motivates the terminology ”Lipschitz continuous dynamical system”.
In fact, in the rest of this thesis we deal with Lipschitz continuous
dynamical systems, though the expression ”Lipschitz continuous” is
sometimes left out. ¥

2.2.2 Qualitative Properties

We will often be interested in the orbits or trajectories initiated at y0
in any set B ⊆ Rm and the action of the evolution semigroup operator
S(t) on B ⊂ Rm.

Definition 2.2.10. For a dynamical system defined by (2.2.1) a set B
is said to be positively invariant under S(•) if S(t)B ⊆ B for all
t ≥ 0. Similarly, B is said to be negatively invariant if S(t)B ⊇ B

for all t ≥ 0. If B is both positively and negatively invariant, so that
S(t)B = B for all t ≥ 0, then B is said to be invariant under S(•). ¥

Certain distinguished orbits play a prominent role in the qualitative
theory of dynamical systems. The simplest of such orbits are fixed
points which turn out to be also the simplest invariant sets.

Definition 2.2.11. A point ỹ ∈ Rm is called a fixed point of the
dynamical system defined by (2.2.1) if f(ỹ) = 0. ¥

Remark 2.2.12. The terminology in Definition 2.2.11 is due to the
fact that ỹ ∈ Rm is a fixed point of (2.2.1) if and only if ỹ is a fixed
point of the evolution semigroup operator, that is S(t)ỹ = ỹ. Other
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terms often substituted for the term fixed point are equilibrium point,
critical point, stationary point, rest point or steady state. We shall
utilize the term fixed point exclusively. ¥

Given the simplicity of fixed-points as invariant sets of the dynamical
system, it is natural to wonder how other trajectories compare to them.
This is captured in the next definition.

Definition 2.2.13. Let ỹ ∈ Rm be a fixed point of the dynamical system
(2.2.1). Then ỹ is said to be

(i) stable if, for any ε > 0, there exists δ = δ(ε) > 0 such that if
y0 ∈ B(ỹ, δ) then y(t) ∈ B(ỹ, ε) for all t ≥ 0;

(ii) asymptotically stable if (i) holds and in addition, ||y(t)− ỹ|| →
0 as t →∞ for all ||y0 − ỹ|| sufficiently small;

(iii) unstable if (i) fails to hold. ¥

Remark 2.2.14. A fixed point ỹ is stable if all nearby solutions stay
nearby. It is asymptotically stable if all nearby solutions not only stay
nearby, but also tend to ỹ or are attracted by ỹ. ¥

We now turn our attention to a special type of fixed point in the
study of dynamical systems, called hyperbolic fixed points. To this end,
we assume that f : Rm → Rm is of class C1. Here and after, we denote
the Jacobian matrix of f at the fixed point ỹ by

J ≡ Jf(ỹ). (2.2.4)

Definition 2.2.15. If the matrix J has no eigenvalues with zero real
parts, then ỹ is called hyperbolic. Otherwise the fixed point is called
non-hyperbolic. ¥
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Suppose that f is a continuously differentiable function such that
(2.2.1) generates a continuous dynamical system on Rm. Moreover,
suppose that ỹ is a hyperbolic fixed point of the dynamical system. If
y solves (2.2.1) and setting u = y − ỹ, we see by Taylor expansion of f
about ỹ that

u′ = f(u + ỹ) = f(ỹ) + Jf(ỹ)u + R(u). (2.2.5)

That is,
u′ = Ju + R(u) (2.2.6)

where R(u)/||u|| → 0 as ||u|| → 0. Because R(u) is small when u is
small, it is reasonable to believe that as t → ∞ solutions of (2.2.6)
behave similarly to solutions of

u′ = Ju (2.2.7)

for u near 0. Equivalently, it is reasonable to believe that solutions of
(2.2.1) behave like solutions of

y′ = J(y − ỹ) (2.2.8)

for y near ỹ. Equation (2.2.7) or (2.2.8) is called the linearisation of
(2.2.1) at ỹ.

The belief expressed earlier is indeed confirmed by the following
Hartman-Grobman theorem or linearisation theorem which is an im-
portant result about the local behaviour of dynamical systems in the
neighbourhood of a hyperbolic fixed point.

Theorem 2.2.16 (Hartman-Grobman). Assume that f : Rm → Rm

is of class C1 and consider a hyperbolic fixed point ỹ of the dynamical
system defined by (2.2.1). Then there exist δ > 0, a neighbourhood
N of the origin, and a homeomorphism h : B(ỹ, δ) → N such that
v(t) := h(u(t)) solves (2.2.7) if and only if u(t) solves (2.2.6).

Basically the theorem states that the behaviour as t → ∞ of the so-
lution of (2.2.1) near a fixed point is the same as the behaviour of the
solution of its linearisation near the origin. Therefore when dealing
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with such fixed points we can use the simpler linearisation of the sys-
tem to analyse its behaviour. This observation leads us to the following
result.

Theorem 2.2.17. Assume that f : Rm → Rm is of class C1 and that
ỹ ∈ Rm is a hyperbolic fixed point of the dynamical system defined by
(2.2.1). Then ỹ is asymptotically stable if and only if for u(t) = etJu0,

solution of (2.2.7) with ||u0|| := ||y0 − ỹ|| small enough, we have

lim
t→∞

u(t) = 0. (2.2.9)

This is equivalent to

Reλ < 0, ∀λ ∈ σ(J), (2.2.10)

where σ(J) is the set of eigenvalues of the matrix J. The fixed-point is
unstable if and only if there exists λ ∈ σ(J) such that

Reλ > 0 or lim
t→∞

u(t) = ∞. (2.2.11)

Remark 2.2.18. Note that Theorem 2.2.16 and Theorem 2.2.17 fail in
the case of non-hyperbolic fixed-point ỹ. At the same time, Theorem
2.2.16 motivates the terminology ”linear stability” and ”linear insta-
bility” that we will often use in place of ”asymptotic stability” and
instability for a hyperbolic fixed-point. ¥

Instead of considering systems for which all trajectories are asymp-
totic to a unique fixed point, a possible generalisation is to consider sys-
tems for which the asymptotic behaviour is confined to some bounded
set, but where no restrictions are imposed on the possible dynamics
within the set. Such systems are said to be dissipative and this consti-
tutes the second type of qualitative property that we will deal with in
this thesis.

Definition 2.2.19. A dynamical system on Rm is dissipative if there
exists a bounded, positively invariant set B with the property that for
any bounded set E ⊆ Rm, there exists t∗ = t∗(B, E) ≥ 0 such that
S(t)E ⊆ B for all t > t∗. The set B is called an absorbing set. ¥
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We now want to investigate when a dynamical system defined by
(2.2.1) is dissipative. To this end, one needs a variety of structural
assumptions on the vector field f(•), which arise naturally in applica-
tions. We will now consider two such structural assumptions.

First consider (2.2.1) under the assumption that there exist constants
α ≥ 0 and β > 0 such that

〈f(y), y〉 ≤ α− β||y||2 for all y ∈ Rm. (2.2.12)

Theorem 2.2.20. Assume that f : Rm → Rm is locally Lipschitz and
satisfies (2.2.12). Then (2.2.1) defines a dynamical system on Rm and
for any ε > 0 and bounded set E ⊂ Rm there exists t∗ = t∗(E, ε) such
that for all t > t∗

||y(t)||2 <
α

β
+ ε, (2.2.13)

where y(t) is the solution of (2.2.1). Hence the dynamical system
(2.2.1) is dissipative with an absorbing set

B = B

(
0,

√
α

β
+ ε

)
(2.2.14)

for any ε > 0.

Proof. Given the importance of this theorem in our work, we prove it
in detail following [41]. We first establish an a priori bound on the
solution y(t) with an initial data y0, whenever it exists. Note that

1

2

d

dt
||y(t)||2 = 〈f(y(t)), y(t)〉

≤ α− β||y(t)||2 by (2.2.12).

Applying the Gronwall inequality, Lemma 2.2.7, we obtain

||y(t)||2 ≤ α

β
+ e−2βt

[
||y0||2 − α

β

]
. (2.2.15)
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Thus for t ≥ 0,

||y(t)|| ≤ max

(
||y0||,

√
α

β

)
. (2.2.16)

The relation (2.2.16) shows that the solution of (2.2.1), if it exists, can-

not blow up for y0 ∈ Rm. More precisely, since Rm =
⋃

ε>0 B
(
0,

√
α
β + ε

)

so that y0 ∈ Rm belongs to some B0 = B
(
0,

√
α
β + ε0

)
, (2.2.16) shows

that the solution y(t) must remain in this B0. By Corollary 2.2.6, a
unique solution exists indeed for all t ≥ 0 and it remains in B0 ⊂ Rm,
which means that (2.2.1) defines a dynamical system on Rm.

From the above use of (2.2.16), we have in passing shown that each
B is positively invariant: S(t)B ⊂ B.

We now show that B is absorbing. In other words for any bounded
set E ⊆ Rm, we want to show that there exists t∗ = t∗(E, ε) ≥ 0 such
that t > t∗ implies that S(t)E ⊆ B. That is, for y0 ∈ E,

||y(t)|| <
√

α

β
+ ε for t > t∗. (2.2.17)

For a bounded set E, y0 ∈ E and from (2.2.15), we have

||y(t)||2 ≤ α

β
+ e−2βt

[
R2 − α

β

]

where
R = sup

y0∈E∪B
||y0||.

Solving for t, the inequality

α

β
+ e−2βt

[
R2 − α

β

]
<

α

β
+ ε,

it is clear that

t∗ =
1

2β
ln

R2 − α
β

ε
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is the required time in (2.2.17). Thus the dynamical system is dissipa-
tive with B as absorbing set.

We generalize (2.2.12) by considering a weaker condition that induces
dissipativity, but for which the decay from infinity can be arbitrarily

slow. Notice that if f satisfies (2.2.12) and R ≥
√

α
β then

〈f(y), y〉 < 0 for ||y|| > R. (2.2.18)

Thus (2.2.12) implies (2.2.18) while the contrary is not true.

The theorem below shows that if f satisfies (2.2.18) then (2.2.1)
defines a dissipative dynamical system.

Theorem 2.2.21. If f : Rm → Rm is locally Lipschitz then (2.2.1),
(2.2.18) defines a dissipative dynamical system and the open ball

B(0, R + ε)

is an absorbing set for any ε > 0.

Proof. Given ε > 0, let B denote the open ball B(0, R + ε). Assume
that (2.2.1) has a unique solution y(t) and that y(t) ∈ Rm\B for t ≥ 0.
Then by (2.2.18), we have

d

dt
||y(t)||2 < 0, (2.2.19)

because
1

2

d

dt
||y(t)||2 ≤ 〈f(y(t)), y(t)〉 . (2.2.20)

By integrating (2.2.19), we obtain

||y(t)||2 ≤ ||y0||2. (2.2.21)
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Combining this with the case when the solution y(t) remains in B, we
have the a priori bound

||y(t)|| ≤ max{R + ε, ||y0||} for t ≥ 0. (2.2.22)

Thus, in view of Corollary 2.2.6, Equations (2.2.1) and (2.2.18) define
a dynamical system on Rm.

To show that this dynamical system is dissipative, we proceed as
follows. Clearly the ball B is positively invariant because of (2.2.22).
For a bounded set E ∈ Rm, let

r = sup
y∈E∪B

||y|| > R + ε

and
E∗ = {y; ||y|| ≤ r}.

Note that E∗ is positively invariant, i.e. S(t)E∗ ⊂ E∗ because of
(2.2.22) and of the relation (2.2.19) that holds for y(t) ∈ E∗\B (see
Figure 2.1).

Furthermore, since E∗\B is compact, and f is continuous we deduce
from (2.2.19) that there exists δ > 0 such that

||y(t)||2 ≤ −δt + ||y0||2.
Now if y0 ∈ E, we have two cases. Either y0 ∈ B in which case, y(t)

remains in B for t ≥ 0 because B is positively invariant, or y0 6∈ B. In
the latter case, using Definition 2.2.2, we have

||S(t)y0||2 = ||y(t)||2
≤ −δt + ||y0||2
≤ −δt + r2

< (R + ε)2
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whenever

t > t∗ :=
r2 − (R + ε)2

δ
.

This shows that the dynamical system is dissipative and that B(0, R+ε)
is an absorbing set.

Figure 2.1: Proof of Theorem 2.2.21
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2.3 Discrete Dynamical Systems

In this section we present dynamical systems generated by mappings
from Rm to Rm. The definitions for discrete dynamical systems are in
some sense analogous to those of continuous systems on the understand-
ing that the time variable t ∈ [0,∞) is now replaced by the discrete
variable n ∈ N. Given this analogy, we shall be concise and focus only
on the main tools that we need. Once again, [41] is our main reference
where most of the concepts below can be found.

2.3.1 Generalities

Let G : Rm → Rm. Consider a sequence {yn}∞n=0 defined recursively by

yn+1 = G(yn). (2.3.1)

We refer to such a map or iterate as explicit mapping since yn+1
is given explicitly in terms of yn. Sometimes yn+1 is not given by an
explicit mapping of the form (2.3.1), but instead yn+1 is obtained from
yn through an implicit mapping of the form

H(yn+1, yn) = 0, (2.3.2)

where H : Rm × Rm → Rm.

Remark 2.3.1. For (2.3.1) uniqueness of the solution sequence {yn} is
guaranteed due to the explicit nature of the map, whereas for (2.3.2)
it is necessary to establish existence and uniqueness of a solution yn+1

when yn is given. ¥

Definition 2.3.2. Equation (2.3.1) defines a discrete dynamical
system on a subset E ⊆ Rm if, for every y0 ∈ E, the sequence {yn}∞n=0
is such that yn remains in E for all n ≥ 0. ¥

To deal with the problem of non-uniqueness when solving certain
classes of implicit numerical methods, we consider (2.3.2) in the case
when there may be multiple solutions. This motivates the following
definition.
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Definition 2.3.3. Equation (2.3.2) defines a generalised discrete
dynamical system on a subset E ⊆ Rm if, for every y0 ∈ E, there
exists at least one sequence {yn} in E that satisfies (2.3.2). ¥

As far as the connection between discrete dynamical systems and
generalised discrete dynamical system is concerned, the Implicit Func-
tion Theorem can be a powerful tool that reads as follows.

Theorem 2.3.4. Assume that H : Rm × Rm → Rm is a function of
class C1 that satisfies the following properties:

(i) H(y∗, y∗) = 0, where (y∗, y∗) ∈ Rm × Rm is given;

(ii) The determinant of the Jacobian matrix
(

∂Hi

∂zj
(y∗, y∗)

)
1≤i,j≤m

is not

zero, where (z1, z2, · · ·, z2m) denotes the variable on Rm×Rm. Then
there exist open neighbourhoods U ⊂ Rm×Rm of (y∗, y∗) and V ⊂
Rm. Furthermore, there exists a C1 function G : V → Rm such
that (y, x) ∈ U solves H(y, x) = 0 if and only if y = G(x), x ∈ V.

Under these conditions and provided that the range of G is con-
tained in V , {yn} satisfying (2.3.2) is a generalised discrete dy-
namical system on V if and only if {yn} given by (2.3.1) is a
discrete dynamical system on V .

The evolution semigroup operator of the dynamical system is an
operator Sn, n ≥ 0, that maps Rm into itself and enjoys the usual
semigroup properties [44]. We define this more precisely.

Definition 2.3.5. We define the evolution semigroup operator
for the discrete dynamical system in Definition 2.3.2 to be the map
Sn : E → E such that yn = Sny0. ¥

The evolution semigroup operator has the properties that

i. yn+m = Snym = Smyn = Sn+my0, ∀n,m ≥ 0,

ii. S0 ≡ I, the identity operator.
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The discrete analogue of Gronwall inequality (Lemma 2.2.7) reads
as as follows:

Lemma 2.3.6 (Gronwall Inequality). Let a positive sequence {yn}N
n=0

satisfy
yn+1 ≤ Cyn + D, ∀n = 0, ..., N − 1

for some constants C and D with C > 0. Then

yn ≤ D

1− C
(1− Cn) + yoC

n, ∀n = 0, ..., N, C 6= 1

and
yn ≤ nD + y0 ∀n = 0, ..., N, C = 1.

Assuming that (2.3.1) generates a discrete dynamical system on Rm

where G : Rm → Rm is locally Lipschitz, the set B ⊂ Rm having the
property S1B ⊂ B, it is easy to check that the discrete dynamical
system is continuous with respect to initial data in the following sense:
there exists a constant c > 0 depending on B such that

||S1y0 − S1z0|| ≤ c||y0 − z0|| ∀y0, z0 ∈ B. (2.3.3)

In this work, we reflect (2.3.3) by using the terminology ”Lipschitz
continuous discrete dynamical system” though the expression ”Lips-
chitz continuous” is often omitted. The continuity with respect to
initial data stated above is to be linked to the zero-stability stated in
Definition 3.2.5 below.

2.3.2 Qualitative Properties

In the results stated below, we deal once and for all with a discrete
dynamical system on Rm defined by (2.3.1) and having evolution semi-
group operator Sn.

Definition 2.3.7. A subset B ⊆ Rm is said to be

(a) positively invariant if SnB ⊆ B for all n ≥ 0,
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(b) negatively invariant if SnB ⊇ B for all n ≥ 0,

(c) invariant if B is both positively and negatively invariant, i.e.
SnB ≡ B for all n ≥ 0. ¥

Definition 2.3.8. A point ỹ ∈ Rm is called a fixed point of the dis-
crete dynamical system (2.3.1) if ỹ = Snỹ for all n ≥ 0 . ¥

Definition 2.3.9. Let ỹ ∈ Rm be a fixed point of the discrete dynamical
system. Then ỹ is said to be

(i) stable if, for any ε > 0, there exists δ = δ(ε) > 0 such that if
||y0 − ỹ|| < δ, then ||yn − ỹ|| < ε for n ≥ 0.

(ii) asymptotically stable if (i) holds and in addition there exists
η > 0 such that, ||y0 − ỹ|| < η implies limn→∞ ||yn − ỹ|| = 0;

(iii) unstable if (i) fails to hold. ¥

In order to easily investigate the stability of a fixed-point ỹ, we
assume that the map G is of class C1 and we denote by J = JG(ỹ) the
Jacobian matrix of G at ỹ.

un+1 = Jun, n = 0, 1, ..., (2.3.4)

is then a linearisation of (2.3.1) around ỹ where the notation u = y− ỹ
is used as in the continuous case (see (2.2.5) - (2.2.7)).

Definition 2.3.10. A fixed-point ỹ of the discrete dynamical system
is said to be hyperbolic if no eigenvalues of the matrix J lie on the
unit circle: |λ| 6= 1, ∀λ ∈ σ(J). Otherwise the fixed-point is called
non-hyperbolic. ¥

Remark 2.3.11. The map G in (2.3.1) is hyperbolic if all fixed points
are hyperbolic. ¥
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Theorem 2.3.12 (Hartman-Grobman). Let G : Rm → Rm of class
C1 have a hyperbolic fixed point ỹ. Then there exist δ > 0, a neigh-
bourhood N of the origin and a homeomorphism h : B(ỹ, δ) → N such
that

h(G(y0)) = Jh(y0) for all y0 ∈ B(ỹ, δ). (2.3.5)

Consequently, by setting

un = h(yn) for all n ≥ 0, (2.3.6)

the mapping (2.3.1) in the neighbourhood B(ỹ, δ) of ỹ is equivalent to
the mapping (2.3.4) in the neighbourhood N of the origin.

In practice, Theorem 2.3.12 is used as follows.

Theorem 2.3.13. Let G : Rm → Rm of class C1 have a hyperbolic
fixed point ỹ. Then ỹ is asymptotically stable if and only if for

un = Jnu0, (2.3.7)

solution of (2.3.4) with ||u0|| := ||y0 − ỹ|| small enough, we have

lim
n→∞

un = 0, (2.3.8)

or equivalently,
|λ| < 1, ∀λ ∈ σ(J). (2.3.9)

The fixed-point is unstable if and only if there exists at least one λ ∈
σ(J) such that

|λ| > 1, or lim
n→∞

||un|| = ∞. (2.3.10)

To conclude this chapter, we present the definition of a discrete
version of a dissipative dynamical system.

Definition 2.3.14. A dynamical system on Rm, is dissipative if there
exists a bounded, positively invariant set B with the property that for
any bounded set E ⊆ Rm, there exists n∗ = n∗(B, E) ≥ 0 such that
SnE ⊆ B for all n > n∗. The set B is called an absorbing set. ¥
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The way the stability and the dissipativity properties regarding dis-
crete dynamical systems are crucial in our work will appear in Chapter
4 where our main contributions are presented.

 
 
 



Chapter 3

Finite Difference Methods

3.1 Introduction

This thesis is devoted to the study of numerical methods for dynamical
systems. In this chapter, we give a short presentation of two classical
methods, namely, the linear multi-step methods in Section 3.3, and the
Runge-Kutta method in Section 3.4. The numerical methods we use
are required to be consistent, zero-stable and thus convergent: this is
discussed in Section 3.2.

The numerical methods are also required to behave asymptotically
like the solutions of the decay equation: this is the essence of the con-
cept of absolute stability addressed in Section 3.5. Finally the numeri-
cal methods are expected to define discrete dynamical systems, a topic
considered in Section 3.6.

The requirements for the linear multi-step methods and the Runge-
Kutta methods to be absolutely stable or to define a discrete dynamical
system that is continuous with respect to initial data is subjected to
a constraint on the step size ∆t. However, the analytical form of this
constraint can be complex for practical use. For this reason, the analysis
in Section 3.7 is restricted to theta methods, which will be the focus
for the rest of this thesis.

33
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The books by Lambert [22] and Stuart and Humphries [41] are our
standard references where the concepts recalled below can be found.

3.2 Basic Concepts

We consider the initial value problem for the autonomous first-order
ordinary differential equations defined by (2.2.1). Numerical methods
of (2.2.1) are obtained by replacing the continuous interval [0,∞) by
equally-spaced grid points tn given by

tn := n∆t, n = 0, 1, 2, ... (3.2.1)

∆t being the stepsize. We denote by yn an approximation to the solu-

tion y(tn) of (2.2.1) at the point tn :

yn ≈ y(tn). (3.2.2)

The sequence {yn}∞n=0 is obtained as solution of a difference equation
of the form

φ(∆t, yn, yn+1, · · ·, yn+k) = 0, k ∈ N, (3.2.3)

coupled with appropriate initial conditions.

Thus to find the approximation yn+k at the time tn+k we make use
of the iterates yn+j, j = 0, 1, ..., k. If k = 1, the numerical method is
called a one-step method, whereas if k > 1 we have a multi-step method
or a k-step method, see for instance [22].

The method (3.2.3) can be explicit in which case yn+k is determined
recursively from the previous iterates as follows:

yn+k = φ(∆t, yn, yn+1, · · ·, yn+k−1). (3.2.4)

Otherwise the method is implicit.

For the scheme (3.2.3) to be useful, the following minimum property of
fixed station convergence is required.
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Definition 3.2.1. The difference method (3.2.3) is said to be conver-

gent if for each fixed t∗ ∈ (0,∞) with t∗ = tn = n∆t, we have

lim
∆t→0

||yn − y(t∗)|| = 0.

¥

Remark 3.2.2. With the notation of Definition 3.2.1 in mind, the

uniform convergence of the scheme (3.2.3) above means that

sup
t∗
||yn − y(t∗)|| → 0 as ∆t → 0.

¥

Since our concern is to approximate the differential equation (2.2.1),
we are mostly interested in difference equations where (3.2.3) takes the
following form:

D∆tyn = F∆t(f ; yn). (3.2.5)

Following the notation in [7], Equation (3.2.5) is more convenient in
that D∆tyn approximates the derivative Dy(tn) of the exact solution
y(t) and F∆t(f ; yn) approximates f(y(tn)). The notation F∆t(f ; yn)
indicates that the dependence of F on yn is through f (see, for example
[22]), with

fn := f(yn). (3.2.6)

With (3.2.5), the following further concepts of interest can be men-
tioned:

Definition 3.2.3. The difference method (3.2.5) is said to be consis-
tent with problem (2.2.1) if the amount by which the exact solution
y(t) fails to satisfy the discrete method is infinitely small. That is,

lim
∆t→0

||D∆ty(tn)− F∆t(f ; y(tn))|| = 0,

for fixed t∗ ∈ [0,∞) with t∗ = tn = n∆t. ¥
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The quantity

Tn(∆t) := D∆ty(tn)− F∆t(f ; y(tn)), (3.2.7)

is called the truncation error of the scheme (3.2.5).

Lemma 3.2.4. The difference method (3.2.5) is consistent with (2.2.1)
if and only if

F0(f ; y) = f(y), y ∈ R, (3.2.8)

where
F0(f ; y) := lim

∆t→0
F∆t(f ; y).

Definition 3.2.5. The difference method (3.2.5) is said to be zero-
stable if there exist K > 0 and ∆t0 > 0 such that for all ∆t ∈ (0, ∆t0],

||zn − z̃n|| ≤ Kε whenever ||δn − δ̃n|| ≤ ε

for a given accuracy ε > 0 and any two perturbations δn and δ̃n of the
data in (2.2.1) resulting in perturbed solutions zn and z̃n. ¥

A more convenient way of proving convergence is contained in the fol-
lowing result:

Theorem 3.2.6. Consistency and zero-stability are necessary and suf-
ficient conditions for the difference method (3.2.5) to be convergent.

3.3 Linear Multi-step Methods

To be more explicit with (3.2.5), let us consider two classical methods.
We first look at the class of linear multi-step methods of order k ≥ 1;
they read as
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k∑
j=0

αjyn+j = ∆t

k∑
j=0

βjfn+j, n = 0, 1, 2, ..., (3.3.1)

where αk = 1 and |α0| + |β0| > 0. The parameters αj and βj define
a particular method. If βk = 0 then the method is explicit, otherwise
it is implicit . In terms of (3.2.7), the associated truncation error of
(3.3.1) is

Tn(∆t) :=
k∑

j=0

αjy(tn+j)−∆t
k∑

j=0

βjf [y(tn+j)]. (3.3.2)

For the multi-step method (3.3.1), consistency and zero-stability can
be expressed in terms of its first and second characteristic polynomials
defined by

ρ(z) =
k∑

j=0

αjz
j, σ(z) =

k∑
j=0

βjz
j. (3.3.3)

Indeed, we have the following result:

Theorem 3.3.1. The method (3.3.1) is consistent if and only if ρ(1) =
0, and σ(1) = ρ

′
(1) 6= 0. It is also zero-stable if and only if all roots

of ρ(z) have modulus less than or equal to 1 and those with modulus 1
are simple.

In the framework of this thesis numerical solutions are required to
preserve the essential properties of the exact solution. The main crit-
icism of linear multi-step methods is that they need extra initial con-
ditions for the method to work. This could create spurious or ghost
solutions, a situation which is not desirable.

For this reason we shall focus on linear one-step schemes. Specifically
the two-stage θ-method that reads as follows,

yn+1 − yn = ∆t(θfn+1 + (1− θ)fn), (3.3.4)

 
 
 



38

where θ ∈ [0, 1] is a given parameter. Note that for θ = 0, we have the

simplest method, which is referred to as the forward Euler method:

yn+1 = yn + ∆tfn. (3.3.5)

3.4 Runge-Kutta Methods

The second type of classical methods we look at are the so-called Runge-
Kutta methods which have the advantage of avoiding the cost of dif-
ferentiation because they do not use derivatives of f and are one-step
methods.

A general k-stage Runge-Kutta method for the solution of (2.2.1) is
defined by

yn+1 = yn + ∆t

k∑
i=1

biki (3.4.1)

where

ki = f(yn + ∆t

k∑
j=1

aijkj), i = 1, 2, .., k.

Runge-Kutta methods are often represented using the Butcher tableau

c A

bT =

c1 a11 a12 . . . a1k

c2 a21 a22 . . . a2k

. . . .

. . . .

. . . .

ck ak1 ak2 . . . akk

b1 b2 . . . bk

(3.4.2)

where we assume that the following holds:

ci =
k∑

j=1

aij, i = 1, 2, ..., k. (3.4.3)
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A more convenient form of (3.4.1) is

yn+1 = yn + ∆t

k∑
i=1

bif(Yi), (3.4.4)

where

Yi = yn + ∆t

k∑
j=1

aijf(Yj), i = 1, 2, ..., k. (3.4.5)

Definition 3.4.1. The numerical method (3.4.1) - (3.4.3) is said to be
explicit if

aij = 0 for all 1 ≤ i ≤ j ≤ k (3.4.6)

and implicit otherwise.

¥

It is clear that the Runge-Kutta method (3.4.1) can be written in the
compact form (3.2.5) with

D∆tyn :=
yn+1 − yn

∆t
.

Consequently all the concepts introduced in Section 3.3 apply to Runge-
Kutta methods. For convenience, we state them below.

In view of Definition 3.2.3 and Lemma 3.2.4, the Runge-Kutta method
is consistent with (2.2.1) if and only if

k∑
i=1

bi = 1. (3.4.7)

We will also use the notation
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A = max
i

k∑

j=1

|aij| = ||A||∞, (3.4.8)

and

||b||1 = B =
k∑

j=1

|bi| ≥ 1. (3.4.9)

The first characteristic polynomial of the Runge-Kutta method (3.4.1)
is

ρ(z) = z − 1 (3.4.10)

and it always satisfies the zero-stability property or the root condi-
tion contained in Theorem 3.3.1. Consequently, Theorem 3.2.6 can be
rephrased as follows:

Theorem 3.4.2. The Runge-Kutta method is convergent if and only if
it is consistent.

A specific Runge-Kutta method that we shall deal with is the one-stage
θ-method that reads as follows:

yn+1 − yn = ∆tf(θyn+1 + (1− θ)yn), (3.4.11)

where θ ∈ [0, 1] is a given parameter.

Note that the two-stage θ-method (3.3.4) that is of interest to us and
was presented in Section 3.3 as a linear multi-step method is also a one-
stage Runge-Kutta method. In both cases the one-stage and two-stage
methods with θ = 0, reduce to the forward Euler method (3.3.5).

3.5 Absolute Stability

A traditional way of testing the efficiency of a numerical method is to
apply it to a single model differential equation. Let us consider the
model differential equation

y
′
= Jy, y(0) = y0, (3.5.1)
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where J is a constant N × N matrix with λs being its eigenvalues
counted with their multiplicity, and satisfying the condition

Reλs < 0. (3.5.2)

The reason for choosing J to be a matrix is the Hartman-Grobman
Theorem (Theorem 2.2.16), which shows that the local behaviour near
a fixed-point which is assumed to be ỹ = 0 of the solution of the
system (2.2.1) is given by the linearised equation (2.2.7) that has the
form (3.5.1).

For simplicity, we assume that J is diagonalizable. Then there exists
a transition matrix Q = [q1 q2 · · · qN ] such that

Q−1JQ = Λ := diag(λ1, λ2, · · ·, λN). (3.5.3)

If we make the change of dependent variable

y = Qz, (3.5.4)

(3.5.1) is equivalent to
z′ = Λz, (3.5.5)

which is an uncoupled system of N equations

sz′j = λs
szj, 1 ≤ j, s ≤ N, (3.5.6)

having the solution
z(t) = szj(0)eλst. (3.5.7)

The behaviour of the solution

y(t) = etJy0, (3.5.8)

of (3.5.1) as t → ∞, is equivalent to that of the functions (3.5.7). In
view of this behaviour of the solution we require the numerical solution
to behave in a similar manner. Schemes producing such numerical solu-
tions are roughly speaking called absolutely stable. Below we make this
concept more precise for linear multi-step and Runge-Kutta methods.
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3.5.1 Linear Multi-step Methods

We first discuss absolute stability in the context of linear multi-step
methods. Following [22], we apply the linear multi-step method (3.3.1)
to the system (3.5.1) to obtain

k∑
j=0

(αjI −∆tβjJ)yn+j = 0. (3.5.9)

Using (3.5.3) - (3.5.4), (3.5.9) is equivalent to

k∑
j=0

(αjI −∆tβjΛ)zn+j = 0. (3.5.10)

Since both I and Λ are diagonal matrices, we may write

k∑
j=0

(αj −∆tβjλs)
szn+j = 0, 1 ≤ s ≤ N. (3.5.11)

The general solution for each of the difference equations in (3.5.11)
takes the form

szn =

p∑
s=1

[
ds,1 +

µs∑

j=2

ds,j n(n− 1) · · · (n− j + 2)

]
rn
s , (3.5.12)

where ds,j are arbitrary complex constants and rs are roots of the dif-
ference equation

k∑
j=0

(αj −∆tβjλs)r
j = 0 (3.5.13)

with multiplicity µs, 1 ≤ s ≤ p and
∑p

s=1 µs = N .

We define the stability polynomial π(r, λs∆t) of the method (3.3.1) to
be

π(r, λs∆t) =
k∑

j=0

[αj − λs∆tβj]r
j. (3.5.14)
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This polynomial can conveniently be written in terms of the first and
second characteristic polynomials ρ and σ as

π(r, ĥ) = ρ(r)− ĥσ(r), (3.5.15)

where ĥ := λs∆t.

The stability polynomial π(r, ĥ) with ĥ := λs∆t permits us to better
compare the solution (3.5.7) or (3.5.8) with the discrete solution (3.5.12)
in the following manner.

Definition 3.5.1. The linear multi-step method (3.3.1) is called ab-
solutely stable for a given ĥ, if for that ĥ all the roots of the stability
polynomials lie within the unit circle. Otherwise the method is abso-
lutely unstable. ¥

3.5.2 Runge-Kutta Methods

We now discuss absolute stability of a k−stage Runge-Kutta method,
following [41]. Applying the Runge-Kutta method (3.4.4) - (3.4.5) to
(3.5.6), for each 1 ≤ j ≤ N , we have

lzj,n+1 = lzj,n + λl∆tbZj (3.5.16)

Zj = lzj,ne + λl∆tAZj, (3.5.17)

where Zj = [Zj,1, Zj,2, ..., Zj,k]
T and e ∈ Rk with e = [1, 1, ..., 1]T .

Solving the above system in Zj gives

lzj,n+1 = lzj,n[1 + λl∆tb(I − λl∆tA)−1e], (3.5.18)

where I is the k × k unit matrix.
Note that the matrix (I−λl∆tA) is nonsingular for ∆t small enough.

Unlike the linear multi-step method where we had a stability polyno-
mial, here we have a stability function, namely

R(λl∆t) = 1 + λl∆tb(I − λl∆tA)−1e. (3.5.19)
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From (3.5.18) we obtain a one-step difference equation of the form

lzj,n+1 = R(λl∆t) lzj,n. (3.5.20)

Coming back to the model equation (3.5.1), we obtain from (3.5.20)
and the change of variable in (3.5.3) and (3.5.4)

yn+1 = R(∆tJ)yn, (3.5.21)

with the matrix function

R(∆tJ) := Qdiag(R(λl∆t))Q−1 (3.5.22)

being the stability function. Clearly, yn → 0 as n →∞ if and only if

||R(∆t)J || < 1. (3.5.23)

The analysis above on Runge-Kutta methods motivates us to state the
definition of absolute stability with R(λl∆t) instead of π(r, λs∆t) as is
the case with linear multi-step method.

Definition 3.5.2. The Runge-Kutta method (3.4.4) - (3.4.5) is said to
be absolutely stable for a given λ∆t, Reλ < 0, if |R(λ∆t)| < 1. ¥

Remark 3.5.3. Our expectation is of course to have both the linear
multi-step and the Runge-Kutta methods absolutely stable for all λl∆t
where {λl}N

l=1 are the eigenvalues of the diagonalizable matrix J in
(3.5.1). ¥

We now give an alternative formula for the stability function which
is more suitable for its calculation as is presented in [12].

Theorem 3.5.4. The stability function of the Runge-Kutta method
(3.4.4) - (3.4.5) is given by

R(λl∆t) =
det(I − λl∆tA + λl∆tbTe)

det(I − λl∆tA)
. (3.5.24)
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Proof. The relation (3.5.16) - (3.5.17) can be written as the algebraic
linear system:




1− λl∆ta11 −λl∆ta12 . . . −λl∆ta1k 0
−λl∆ta21 1− λl∆ta22 . . . −λl∆ta2k 0

. . . .

. . . .

. . . .
−λl∆tak1 −λl∆tak2 . . . 1− λl∆takk 0
−λl∆tb1 −λl∆tb2 . . . −λl∆tbk 1







Zj,1

Zj,2

.

.

.
Zj,k

lzj,n+1




=




lzj,n
lzj,n

.

.

.
lzj,n
lzj,n




(3.5.25)
The denominator in (3.5.24) is given by the determinant of the matrix
in (3.5.25). The numerator in (3.5.24) is the determinant of the matrix




1− λl∆ta11 −λl∆ta12 . . . −λl∆ta1k
lzj,n

−λl∆ta21 1− λl∆ta22 . . . −λl∆ta2k
lzj,n

. . . .

. . . .

. . . .

−λl∆tak1 −λl∆tak2 . . . 1− λl∆takk
lzj,n

−λl∆tb1 −λl∆tb2 . . . −λl∆tbk
lzj,n




.

Indeed subtraction of the last row from the first k rows leaves this
determinant invariant. Cramer’s rule expresses lzj,n+1 as the quotient
of two determinants, so we arrive at

lzj,n+1 =
det(I − λl∆tA + λl∆tbTe)

det(I − λl∆tA)
lzj,n, (3.5.26)

which establishes (3.5.24).

Remark 3.5.5. When A is a strictly lower triangular matrix, the ma-
trix I−λl∆tA is then lower triangular with all the elements of its main
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diagonal being unity. It follows that det(I − λl∆tA) = 1 and for all
explicit Runge-Kutta methods the stability function is a polynomial in
λl∆t. For implicit methods det(I − λl∆tA) 6= 1 so that the stability
function is a rational function of λl∆t. ¥

3.6 Numerical Methods as Dynamical Systems

We now turn our attention to discussing conditions under which numer-
ical methods studied earlier in this chapter generate discrete dynam-
ical systems. If numerical methods are to give useful information on
Lipschitz continuous dynamical systems, it is of paramount importance
that these methods are viewed as discrete dynamical systems which are
continuous with respect to initial data. In this way, we are comparing
dynamical systems of the same nature.

A Runge-Kutta method, applied to (2.2.1), not only defines an ap-
proximation to the solution of (2.2.1), but can also define a discrete
dynamical system. We start with an explicit Runge-Kutta method
(3.4.4)-(3.4.5) which, in view of Definition 3.4.1, can be written recur-
sively as follows

yn+1 = Sn+1
∆t y0,

where

S1
∆ty0 = y0 + ∆t

k∑
j=1

bjf(gj(y0)),

g1(y0) = y0, gi(y0) = y0 + ∆t

i−1∑

j=1

aijf(gj(y0)), i = 2, 3, · · ·, k.

Assuming that {zn} is another sequence generated by the Runge-Kutta
method from z0, it is easy to prove that

||S1
∆ty0 − S1

∆tz0|| ≤ c||y0 − z0||
for some c > 0 whenever f is locally Lipschitz. Consequently, we have
the following result [41].
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Theorem 3.6.1. Let f : Rm → Rm be locally Lipschitz. If the Runge-
Kutta method (3.4.4), (3.4.5) is explicit, then it defines a Lipschitz
continuous discrete dynamical system on Rm.

However, for an implicit method the Runge-Kutta method need not
be uniquely solvable, and hence an implicit Runge-Kutta method need
not define a discrete dynamical system. To overcome this difficulty, we
impose a condition on the step size ∆t as illustrated in the next result
[41].

Theorem 3.6.2. Let f : Rm → Rm be globally Lipschitz with Lipschitz
constant L. Assume that

∆t <
1

LA
, (3.6.1)

where A is defined in (3.4.8). Then the Runge-Kutta method (3.4.4)-
(3.4.5) is uniquely solvable for Yi, i = 1, .., k. More precisely, the
solution can be found as a fixed point of the iteration:

Y s+1
i = yn + ∆t

i−1∑
j=1

aijf(Y s+1
j ) + ∆t

k∑
j=i

aijf(Y s
j ), (3.6.2)

for i = 1, 2, ..., k, s = 0, 1, 2, .... Consequently, the Runge-Kutta method
is a Lipschitz continuous discrete dynamical system on Rm.

Proof. Consider other iterates Zs+1
i of type (3.6.2) initiated at Z0

i . It
can be shown that

||Y s+1 − Zs+1|| ≤ ∆tLA||Y s − Zs||
where Y s and Zs denote vectors in Rmk comprised of the Y s

i , Zs
i ∈ Rm.

The Contraction Mapping Theorem ([48], [49]) and (3.6.1) lead to the
first part of Theorem 3.6.2.
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Assuming that {zn} is another sequence generated by the Runge-
Kutta method from z0, (3.6.1) implies the existence of c > 0 such that

||yn+1 − zn+1|| ≤ c||yn − zn||,
which shows the Lipschitz continuity of {yn} with respect to the initial
data.

Regarding the linear multistep method (3.3.1), we re-write it in the
form

yn+k =
k−1∑
j=0

[∆tβjf(yn+j)− αjyn+j] + ∆tβkf(yn+k). (3.6.3)

In the setting of dynamical systems, we can say that the action of the
evolution semigroup operator S1

∆t on the data vector

Yn := [yn, yn+1, · · ·, yn+k−1]
T ∈ Rmk

is the vector

Yn+1 := [yn+1, yn+2, · · ·, yn+k]
T ∈ Rmk.

That is,
Yn+1 := S1

∆tYn.

Another sequence {zn} of the form (3.6.3), where zn+k is generated
from (zn, zn+1, · · ·, zn+k−1) is equally considered. Proceeding as for the
Runge-Kutta method, we obtain the following result [41].

Theorem 3.6.3. Let f : Rm → Rm be locally Lipschitz. Assume that
the multi-step method (3.3.1) or (3.6.3) is explicit, i.e. βk = 0. Then
(3.3.1) or (3.6.3) defines a Lipschitz continuous discrete dynamical sys-
tem Rmk.
On the other hand, we assume that f is globally Lipschitz with Lipschitz
constant L and that ∆t satisfies the condition

∆t <
1

|βk|L. (3.6.4)
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Then the linear multi-step method (3.6.3) defines a Lipschitz continuous
discrete dynamical system on Rmk for which the solution yn+k generated
from the data (yn, yn+1, · · ·, yn+k−1) can be found as a fixed point of the
iteration

ys+1
n+k =

k−1∑
j=0

[∆tβjf(yn+j)− αjyn+j] + ∆tβkf(ys
n+k), s = 0, 1, 2, ....

(3.6.5)

Remark 3.6.4. For f : Rm → Rm locally Lipschitz, the implicit Runge-
Kutta method and linear multi-step method, define Lipschitz contin-
uous discrete dynamical systems under more restrictive conditions on
∆t, (see for example, [41]). ¥

3.7 Theta Methods

The structure of the Runge-Kutta and linear multi-step methods in the
previous sections has shown that a restriction must be placed on the
step size ∆t if the methods are to provide acceptable approximations
to the solution of the Lipschitz continuous discrete dynamical systems.
The expression of the restriction can be complex. For this reason,
we will as from now focus the rest of the thesis to the theta methods.
Within this choice, it is our aim to better understand the said restriction
in order to design in the next chapters non-standard schemes which are
reliable for any value of ∆t.

For convenience we re-define the theta methods we mentioned in
Sections 3.3 and 3.4. Consider the parameter θ ∈ [0, 1]. The one-stage
theta method for approximating (2.2.1) is defined by

yn+1 − yn

∆t
= f [θyn+1 + (1− θ)yn]; (3.7.1)
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the two-stage theta method reads as follows:

yn+1 − yn

∆t
= θf(yn+1) + (1− θ)f(yn). (3.7.2)

There are two specific values of θ for which both theta methods
reduce to the same scheme. More precisely, for θ = 0, we have the
forward explicit Euler method

yn+1 − yn

∆t
= f(yn), (3.7.3)

while θ = 1 yields the forward implicit Euler method

yn+1 − yn

∆t
= f(yn+1). (3.7.4)

Note that the value θ = 1
2 in (3.7.1) and (3.7.2) corresponds to the

so-called mid-point rule and trapezoidal rule, respectively.

When θ is different from 0 and 1, the one-stage and two-stage theta
methods are still intimately related in the sense of the following theo-
rem.

Theorem 3.7.1. Let {vn}∞n=0 satisfy the one-stage theta method (3.7.1),
then the sequence {yn}∞n=0 given by

yn = (1− θ)vn + θvn+1 (3.7.5)

satisfies the two-stage theta method (3.7.2). Conversely, if {yn}∞n=0
satisfies the two-stage theta method (3.7.2). Then the sequence {vn}∞n=0
given by

vn = yn −∆tθf(yn) (3.7.6)

satisfies the one-stage theta method.
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Proof. We follow the proof by Stuart and Humphries, [41] p 227, but
in more detail. Re-writing (3.7.1) and (3.7.2), we have

vn+1 = vn + ∆tf [θvn+1 + (1− θ)vn] (3.7.7)

yn+1 = yn + ∆tθf(yn+1) + ∆t(1− θ)f(yn) (3.7.8)

respectively. Let us fix θ ∈ [0, 1]. Suppose that {yn}∞n=0 satisfies the
two-stage theta method (3.7.8) and let {vn}∞n=0 be given by (3.7.6) then

vn+1 = yn+1 −∆tθf(yn+1). (3.7.9)

Rearranging terms in (3.7.8) and using (3.7.9) yields

vn+1 = yn + ∆t(1− θ)f(yn) = yn + ∆tf(yn)−∆tθf(yn). (3.7.10)

Substituting the right hand side of (3.7.9) into (3.7.10), we obtain

vn+1 = vn + ∆tf(yn). (3.7.11)

Multiplying throughout by (1− θ) and using (3.7.10) produces

∆t(1− θ)f(yn) = vn+1 − yn. (3.7.12)

Making minor manipulation in (3.7.12) the result (3.7.5) follows.

Replacing yn in (3.7.12) by vn shows that {vn}∞n=0 satisfies the one-
stage θ−method (3.7.7) for n ≥ 0.

Conversely, if {vn}∞n=0 satisfies the one-stage θ−method (3.7.7), it
can easily be shown that {yn}∞n=0 in (3.7.5) satisfies the two-stage
θ−method (3.7.8). Indeed from (3.7.9) we have

yn = θvn+1 + (1− θ)vn = vn + θ(vn+1 − vn). (3.7.13)

From (3.7.7) we have

vn+1 − vn = ∆tf [θvn+1 + (1− θ)vn]. (3.7.14)

Using (3.7.13) and (3.7.14), we get

vn = yn −∆tθf(yn) (3.7.15)

which completes the proof in view of (3.7.5).
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We saw in Section 3.3 that the two-stage theta method is a linear
one-step method. We also saw in Section 3.4 that both the one-stage
and the two-stage theta methods are Runge-Kutta methods with the
Butcher tableau

θ θ

1

and
0 0 0
1 1− θ θ

1− θ θ,

respectively. Consequently, we have the following result.

Theorem 3.7.2. The one-stage and two-stage theta methods for ap-
proximating the initial value problem (2.2.1) are convergent. In the par-
ticular case of the forward Euler method, assuming that f : Rm → Rm

is globally Lipschitz, with Lipschitz constant L, and that the exact solu-
tion y(t) of class C2 with bounded second derivative, we have the error
estimate

||y(tn)− yn|| ≤ K∆t(eLtn − 1) (3.7.16)

for some constant K > 0.

Proof. Although this result is known, we provide the proof here be-
cause we will not come back to convergence issues when dealing later
on with non-standard schemes. The first and the second characteristic
polynomials of the two-stage theta method (3.7.2), viewed as a linear
multi-step method, are ρ(z) = z−1 and σ(z) = (1−θ)+θz, respectively.
In view of Theorem 3.3.1, the two-stage theta method is consistent and
zero-stable and thus convergent. Furthermore, since the two-stage and
one-stage theta methods are equivalent (Theorem 3.7.1) the one-stage
theta method is equally convergent.
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Regarding the forward Euler method

yn+1 − yn = ∆tf(yn), (3.7.17)

we proceed as follows. By (2.2.1) and Taylor expansion of y(tn+1) about
t = tn, we obtain

y(tn+1) = y(tn) + ∆tf(y(tn)) +
(∆t)2

2
y′′(ζn), tn < ζn < tn+1. (3.7.18)

Letting en = y(tn)−yn and subtracting (3.7.17) from (3.7.18), produce:

en+1 = en + ∆t[f(y(tn))− f(yn)] +
(∆t)2

2
y′′(ζn). (3.7.19)

Using the Lipschitz and boundedness assumptions, we have

||en+1|| ≤ ||en||(1 + L∆t) + c(∆t)2. (3.7.20)

By the discrete Gronwall inequality (Lemma 2.3.6), we have

||en|| ≤ c(∆t)2

|1− (1 + L∆t)| [(1 + L∆t)n − 1] + ||e0||(1 + L∆t)n (3.7.21)

from which the estimate (3.7.16) follows.

Remark 3.7.3. One could be a bit more precise about the consistency
of the theta methods used in the proof of Theorem 3.7.2 in the following
way. Assuming that the exact solution y(t) is smooth enough and has
bounded derivatives, the local truncation error

τn =

{
y(tn+1)−y(tn)

∆t − θf(y(tn+1))− (1− θ)f(y(tn))
y(tn+1)−y(tn)

∆t − f [θy(tn+1) + (1− θ)y(tn)]

of the theta methods (3.7.1) and (3.7.2) have the asymptotic behaviour

τn =

{
O(∆t) if θ 6= 1

2

O((∆t)2) if θ = 1
2 .

(3.7.22)

¥
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These are obtained by Taylor expansion of y(tn+1) about t = tn. For
example, for the two-stage method, we have the following.

τn =
[y(tn+1)− y(tn)

∆t
− θf(y(tn+1))− (1− θ)f(y(tn))

=
[y(tn) + ∆tf(y(tn)) + (∆t)2/2f ′(y(tn)) + (∆t)3/6f ′′(y(tn)) + O(∆t4)]− y(tn)

∆t
−θf(y(tn))− θ∆tf ′(y(tn))− θ(∆t)2/2f ′′(y(tn))− f(y(tn)) + θf(y(tn)) + O(∆t3)

= (∆t)/2f ′(y(tn)) + (∆t)2/6f ′′(y(tn))− θ∆tf ′(y(tn))− θ(∆t)2/2f ′′(y(tn)) + O(∆t3)
= (1/2− θ)∆tf ′(y(tn)) + (1/6− θ/2)(∆t)2/2f ′′(y(tn)) + O(∆t3)

and from this (3.7.22) follows.

We conclude this chapter by discussing when the theta methods
replicate some of the qualitative properties targeted in the previous sec-
tions for the underlying differential equation (2.2.1). Firstly, are theta
methods discrete dynamical systems? A positive conditional answer is
given in the next theorem [41].

Theorem 3.7.4. Let f : Rm → Rm be globally Lipschitz with Lipschitz
constant L. Assume that

∆t <
1

θL
. (3.7.23)

Then the one-stage and two-stage theta methods define Lipschitz con-
tinuous discrete dynamical systems on Rm.

Proof. The theorem follows from Theorem 3.6.1 and Theorem 3.6.2.
However, this can be proved directly given the simple structure of these
schemes, as we show now. Let {ys

n+1}s≥0 and {zs
n+1}s≥0 be two iterates

defined through the one-stage theta method by

ys+1
n+1 = yn + ∆tf [θys

n+1 + (1− θ)yn] (3.7.24)

zs+1
n+1 = yn + ∆tf [θzs

n+1 + (1− θ)yn]. (3.7.25)

It is easy to check by using the Lipschitz property of f that

||ys+1
n+1 − zs+1

n+1|| ≤ θ∆tL||ys
n+1 − zs

n+1||. (3.7.26)

 
 
 



55

Under the condition (3.7.23), the Contraction Mapping Theorem
shows that the one-stage theta method (3.7.1) for θ 6= 0 is uniquely
solvable in Rm, with its solution yn+1 ∈ Rm being found as the fixed-
point of the iteration (3.7.24).

Furthermore, if

yn+1 = yn + ∆tf [θyn+1 + (1− θ)yn] (3.7.27)

zn+1 = zn + ∆tf [θzn+1 + (1− θ)zn], (3.7.28)

we have

||yn+1 − zn+1|| ≤ 1 + (1− θ)L∆t

1− θL∆t
||yn − zn||, (3.7.29)

which shows the Lipschitz continuity with respect to initial data. Thus
the one- stage theta method is a discrete dynamical systems on Rm.

Given the equivalence stated in Theorem 3.7.1 between the one-stage
and the two-stage theta methods, we conclude that the two-stage theta
method is equally a Lipschitz continuous discrete dynamical systems
on Rm.

Remark 3.7.5. When θ = 0, there is no restriction on ∆t in (3.7.23).
Thus the forward Euler method is a discrete dynamical systems on Rm.
Actually, the forward Euler method is a discrete dynamical systems
on Rm even when f is locally Lipschitz, (see Theorem 3.6.1). More
generally, the theta methods can be discrete dynamical systems on Rm

under flexible structural assumptions on f (e.g. locally Lipschitz, one-
sided Lipschitz condition, etc). But we will not consider these aspects,
which can be found in [41]. ¥

The next qualitative property is related to the absolute stability of
the theta methods. When applied to the model linear equation (3.5.1),
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both the one-stage and two-stage theta methods reduce to

yn+1 − yn

∆t
= J [θyn+1 + (1− θ)yn]. (3.7.30)

Using the factorization (3.5.3) and the change of variable (3.5.4), (3.7.30)
is equivalent to

yn+1 = Qdiag

[
1 + ∆t(1− θ)λ1

1−∆tθλ1
, · · ·, 1 + ∆t(1− θ)λN

1−∆tθλN

]
Q−1yn.

(3.7.31)
The stability function (Definition 3.5.22 or 3.5.24) of the one-stage and
the two-stage theta methods, viewed as Runge-Kutta methods, is then

R(λ∆t) =
1 + ∆t(1− θ)λ

1−∆tθλ
, (3.7.32)

while the stability polynomial (Definition 3.5.14) of the two-stage theta
method, as a linear multi-step method, is

π(r, λ∆t) = 1 + λ∆t(1− θ)(1− λ∆tθ), (3.7.33)

whose unique root is r = R(λ∆t).

For a complex number λ, with Reλ < 0, we have

|R(λ∆t)|2 =

∣∣∣∣
1 + ∆t(1− θ)λ

1−∆tθλ

∣∣∣∣
2

=
(1−∆t(1− θ)|Reλ|)2 + (∆t)2(1− θ)2|Imλ|2

(1 + ∆tθ‖Reλ|)2 + (∆t)2θ2|Imλ|2

=
1 + 2∆tθ|Reλ| − 2∆t|Reλ|+ (∆t)2(1− θ)2|λ|2

1 + 2∆tθ‖Reλ|+ (∆t)2θ2|λ|2 .

(3.7.34)

Thus we have the following result.
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Theorem 3.7.6. For θ ∈ [12 , 1], the one-stage and the two-stage theta
methods are (unconditionally) absolutely stable for any λ∆t with Reλ <

0: according to the standard terminology the theta methods are A−stable
in this case.
For θ ∈ [0, 1

2), the theta methods are (conditionally) absolutely stable
for λ∆t with Reλ < 0, whenever

∆t <
2|Reλ|

(1− 2θ)|λ|2 . (3.7.35)

The last qualitative property of our interest is the dissipativity of
the theta methods when the underlying dynamical system (2.2.1) is dis-
sipative. Our point of departure is the following classical result proved
in [41].

Theorem 3.7.7. Consider (2.2.1) as a dissipative dynamical system in
the setting of Theorem 2.2.21, where R > 0 is given and let θ ∈ [12 , 1].
Then for any ∆t > 0, the one-stage and the two-stage theta methods de-
fine (generalised) dynamical systems which are dissipative in the sense
of Definition 2.3.3: the closed ball B̄ (0, R + δ + ∆t(1− θ)M) is an ab-
sorbing set for any δ > 0 and M := supv∈B̄(0,R+δ) ||f(v)||.

In the particular case when the setting is that of Theorem 2.2.20 where
α and β are given and θ ∈ (1

2 , 1], the above conclusion holds with any

open ball B(0, 1
2θ−1

√
α
β + δ), δ > 0, being an absorbing set that does

however not depend on the step size ∆t.

Remark 3.7.8. It follows from Theorem 3.7.7 that within the range θ ∈
[0, 1

2), the dissipative property of the theta methods is not guaranteed.
We will try to remedy this in the next chapter. ¥

 
 
 



Chapter 4

Non-standard Finite Difference
Methods

4.1 Introduction

The first set of the main contributions of this thesis appear in this
chapter. The chapter is based on the author’s publications [3], [5], [6],
as well as on the technical report [4] that is under review.

We present in Section 4.2 generalities on the non-standard finite
difference method. In Section 4.3, we analyze non-standard finite dif-
ference schemes that have no spurious fixed-points compared to the
dynamical system under consideration, the linear stability/instability
property of the fixed-points being the same for both the discrete and
continuous systems. The schemes we study are non-standard variants of
the theta methods presented in the previous chapter and they are con-
structed by using Mickens’ rule about the denominator of the discrete
derivatives. We obtain a sharper condition for the elementary stability
of the schemes. For more complex dynamical systems which are dissipa-
tive, we design schemes that replicate this property in Section 4.4. In a
second step in Section 4.5, we consider a specific class of dynamical sys-
tems which is equivalent to the simplest model of Hamiltonian systems
that occur in classical mechanics. We design a non-standard finite dif-
ference scheme that replicates the underlying principle of conversation
of energy. Here we use Mickens’ rules about nonlocal approximation of
nonlinear terms.

58
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4.2 Generalities

The shortcomings of the classical numerical schemes, specifically theta
methods, for being reliable discrete dynamical systems were pointed out
in Chapter 3. It became clear that the time step size ∆t should be small
enough if the schemes were to replicate qualitative properties of the
exact solutions. The non-standard finite difference method introduced
by Mickens [26], aims at preserving the qualitative properties at no cost
with regard to the value of ∆t. The following definition is due to [7]:

Definition 4.2.1. Assume that the solution of (2.2.1) satisfies some
property P. The difference scheme (3.2.5) is called qualitatively sta-
ble with respect to the property P (or P -stable) if for all step sizes
∆t > 0, the discrete solutions for (3.2.5) satisfy the properties P . ¥

The term dynamic consistency with respect to P has been introduced
recently and is sometimes used instead of that in Definition 4.2.1, (see
[29] and [30]).

Significant properties of solutions of differential equations are of
great importance from the practical point of view. Such properties
include among others: types of fixed points, oscillatory solution, mono-
tonicity of solutions, and conservation of energy.
The ideal situation when the discrete scheme is stable with respect to
any property of the exact solution is given in the next definition.

Definition 4.2.2. The numerical method (3.2.5) for approximating
(2.2.1) is called an exact scheme whenever the difference equation
(3.2.5) and the differential equation (2.2.1) have the same general so-
lutions at the discrete time t = tn. In particular, with y(t) being the
solution of the initial value problem (2.2.1), we have yn = y(tn). ¥

At this stage, it is essential to consider exact schemes of two model
scalar equations that come often in this thesis. These are the exponen-
tial growth equation

y′ = λy, y(0) = y0, λ 6= 0 (4.2.1)
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and the logistic equation

y′ = λy(1− y), y(0) = y0, λ > 0. (4.2.2)

Notice that (4.2.1) was the test equation for absolute stability in Chap-
ter 3, while (4.2.2) will appear in the Fisher equation in the next chap-
ter. The solutions at time t = tn+1 of (4.2.1) and (4.2.2) are

y(tn+1) = y0e
λtn+1 (4.2.3)

and
y(tn+1) =

y0

e−λtn+1 + (1− e−λtn+1)y0
, (4.2.4)

respectively. Setting yn := y(tn) permits us to re-write (4.2.3) in an
equivalent form as follows

y(tn+1)− y(tn) = y0e
λtn+1 − y(tn)

= y0e
λ(tn+∆t) − y(tn)

= y(tn)e
λ∆t − y(tn)

= y(tn)e
λ∆t − y(tn)

= λy(tn)(e
λ∆t − 1)/λ

and we have
yn+1 − yn

eλ∆t−1
λ

= λyn. (4.2.5)

In the similar manner from (4.2.4), we have

y(tn+1) =
y0e

λtn+1

1 + y0eλtn+1 − y0

=
y(tn)e

λ∆t

1 + y(tn)eλ∆t − y(tn)
.

Thus

y(tn+1) = y(tn)e
λ∆t − y(tn)y(tn+1)e

λ∆t + y(tn)y(tn+1)

y(tn+1)− y(tn) = (eλ∆t − 1)y(tn)(1− y(tn+1))

y(tn+1)− y(tn)

(eλ∆t − 1)/λ
= λy(tn)(1− y(tn+1))
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which can be written as

yn+1 − yn

eλ∆t−1
λ

= λyn(1− yn+1). (4.2.6)

Equations (4.2.5) and (4.2.6) are exact schemes of (4.2.1) and (4.2.2),
respectively. Mickens [26] established exact schemes for a substantial
number of differential equations of applied sciences. For convenience,
Table 4.1 of exact schemes produced in [24] is incorporated here.
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The simple examples (4.2.1) and (4.2.3), (4.2.2) and (4.2.4) as well
as Table 4.1 illustrate the need for the structure of the right hand side
of the differential equation to be intrinsically reflected in the discrete
schemes if they are required to replicate the qualitative properties of
the solution of the differential equation. Equation (4.2.6) and similar
equations in the table illustrate in addition the need of approximat-
ing nonlinear terms in a nonlocal way. These comments motivate the
following definition due to [7].

Definition 4.2.3. The difference method given by Equation (3.2.5) is
called a non-standard finite difference method if at least one of
the following conditions is satisfied:

• In the first order discrete derivative D∆tyn, the classical denomi-
nator ∆t is replaced by a nonnegative function φ : (0,∞) → (0,∞)
satisfying

φ(∆t) = ∆t + O[(∆t)2]. (4.2.7)

[e.g. φ(∆t) = 1− e−∆t, φ(∆t) = (eλ∆t − 1)/λ].

• In the expression F∆t(f, yn), nonlinear terms are approximated in
a nonlocal way, i.e., by suitable function of several points of mesh.
e.g. y2(tn) ≈ yn+1yn.

¥

In [26], Mickens set the following rules for the design of non-standard
schemes:

Rule 1. The orders of the discrete derivatives should be equal to the orders
of the corresponding derivatives of the differential equation.

Rule 2. Denominator functions for the discrete derivatives must, in gen-
eral, be expressed in terms of more complicated functions of the
step-sizes than those conventionally used.

Rule 3. Nonlinear terms should, in general, be replaced by nonlocal dis-
crete representations.
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Rule 4. Special conditions that hold for the solutions of the differential
equations should also hold for the solutions of the finite difference
scheme.

Rule 5. The scheme should not introduce extraneous or spurious solutions.

Remark 4.2.4. For an overview on non-standard finite difference
schemes, we refer the reader to [24], [35] and the edited volumes [17],
[28]. In the formal Definition 4.2.3 only two of five Mickens rules are
needed because most of the other rules appear as properties of the
differential equation with respect to which a discrete scheme might be
qualitatively stable. ¥

Table 4.2: Non-standard finite difference schemes

Differential Equations Non-standard Finite Difference Schemes

d2y
dt2

+ y + βy3 = 0 yk+1−2yk+yk−1

4 sin2(∆t
2 )

+ yk + β

(
sin2(∆t)

4 sin2(∆t
2 )

)
y3

k = 0

d2y
dt2

+ y + εy2 = 0 yk+1−2yk+yk−1

4 sin2(∆t
2 )

+ yk + ε

(
sin2(∆t)

4 sin2(∆t
2 )

)
y2

k = 0

d2y
dt2

+ y = ε(1− y2)dy
dt

yk+1−2yk+yk−1

4 sin2(∆t
2 )

+ yk = ε

(
sin(∆t)

2 sin(∆t
2 )

)
(1− y2

k)

(
yk−cos(∆t)yk−1

2 sin(∆t
2 )

)

Remark 4.2.5. The above-mentioned schemes were constructed by
Mickens [26], who placed the emphasis on the structure of the discrete
derivative. An indication on how the nonlinear terms could be ap-
proached in a nonlocal way is given in Section 4.5. In the paper [24],
the schemes given in Table 4.2 should have been listed as non-standard
finite difference schemes instead of exact schemes of the corresponding
differential equations. Their exact schemes are not known since these
do not have explicit solutions. ¥
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4.3 Elementary Stable Schemes

As it was mentioned in Chapter 3, the theta methods (3.7.1) and (3.7.2)
are the point of departure of our study. The popularity of the theta
methods, also referred to as the weighted average method, is due in
large part to their simplicity making it easy to program and efficient on
large problems [9]. In this section, we introduce elementary stable non-
standard theta methods and demonstrate their theoretical and practical
power over the standard ones.

The terminologies we use here were clarified in Section 2.2.2 for con-
tinuous dynamical systems and in Section 2.2.3 for discrete dynamical
systems. In particular, we assume, once and for all, that all fixed-
points ỹ of the dynamical systems (2.2.1) are hyperbolic in the sense of
Definition 2.3.10, each Jacobian of f at ỹ being denoted by J .

We would like to design for (2.2.1) numerical methods the solution
of which replicate the qualitative properties of the fixed-points. We
start with the following definition ([7], [26]):

Definition 4.3.1. A difference scheme (3.2.5) for approximating (2.2.1)
is called elementary stable if, for any value of the step size ∆t, its
fixed-points ỹ are exactly those of the differential system (2.2.1), and
these fixed-points for the difference scheme have the same linear stabil-
ity/instability properties as for the differential system. ¥

In view of Definition 2.2.11 and Definition 2.3.8, it is clear that
the theta methods (3.7.1) and (3.7.2) have no spurious fixed-points
compared to the system (2.2.1). Indeed given ỹ ∈ Rm, the constant
sequence yn = ỹ is the solution of (3.7.1) or (3.7.2) if and only if f(ỹ) =
0.

However, Theorem 3.7.6, shows that the classical theta methods are
not elementary stable for θ ∈ [0, 1

2), due to the constraint (3.7.35) on
the value of ∆t when λ is an eigenvalue of J with Reλ < 0. On the
other hand, when λ is an eigenvalue of J with Reλ > 0 and θ ∈ (1

2 , 1],
we have from (3.7.32)
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|R(λ∆t)|2 =
1 + 2∆t(1− θ)|Reλ|+ (∆t)2(1− θ)2|λ|2

1− 2∆tθReλ + ∆t)2θ2|λ|2
< 1

if and only if

∆t >
2|Reλ|

(2θ − 1)|λ|2 . (4.3.1)

Under the condition (4.3.1), the discrete solution {yn} of the lin-
earised theta method (3.7.30) will tend to zero as n → ∞, while the
solution y(t) = etJy0 of the continuous linearization (2.2.7) diverges
as t → ∞. This discrepancy in the linear stability/instability proper-
ties of fixed-points for the theta methods and the differential equation
means that the theta methods are equally not elementary stable for
θ ∈ (1

2 , 1]. For θ = 1
2 , the analysis above shows that the theta methods

(i.e. Trapezoidal rule and mid-point rule) are elementary stable. This
explains why in what follows, we implicitly assume that θ 6= 1

2 .

Coming back to the general framework of the system (2.2.1), its
dynamics will be captured by a fixed nonzero number

q ≥ max

{ |λ|2
2|Reλ| ; λ ∈ E

}
, (4.3.2)

where
E =

⋃
{σ(Jf(ỹ)); ỹ ∈ Rm, f(ỹ) = 0} (4.3.3)

is the finite set of all the eigenvalues of the Jacobian matrix Jf(ỹ)
of f at all fixed-points. We also consider a non-negative function φ
satisfying the asymptotic relation (4.2.7) as well as the property

0 < φ(z) < 1, for z > 0. (4.3.4)

A typical example is
φ(z) = 1− e−z. (4.3.5)

With the number q in (4.3.2) and the function φ in (4.3.4), we asso-
ciate the function

ψ :=
φ(q∆t)

q
, (4.3.6)
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which satisfies (4.2.7). We are now in a position to introduce the fol-
lowing non-standard one-stage and two-stage theta methods:

yn+1 − yn

ψ(∆t)
= f [θyn+1 + (1− θ)yn], (4.3.7)

and
yn+1 − yn

ψ(∆t)
= θf(yn+1) + (1− θ)f(yn), (4.3.8)

respectively. We have the following important result:

Theorem 4.3.2. The non-standard theta method (4.3.7) and (4.3.8),
where ψ is defined by (4.3.6) and (4.3.4), are elementary stable.

Proof. As it was seen earlier for the classical schemes (3.7.1) and (3.7.2),
the non-standard schemes (4.3.7) and (4.3.8) have no spurious fixed-
points compared to the system (2.2.1). The linearisation of the non-
standard schemes (4.3.7) and (4.3.8), about a fixed-point ỹ is

yn+1 − yn

ψ(∆t)
= J [θyn+1 + (1− θ)yn], (4.3.9)

instead of (3.7.30). Thus the stability function in (3.7.32) becomes

R(λ∆t) =
1 + ψ(∆t)(1− θ)λ

1− ψ(∆t)θλ
. (4.3.10)

For λ = λ1 + ıλ2 ∈ E, we have:

|R(λ∆t)|2 ≡
∣∣∣∣
1 + ψ(∆t)(1− θ)λ

1− ψ(∆t)θλ

∣∣∣∣
2

=
1 + 2λ1φ(q∆t)(1− θ)/q + |λ|2(φ(q∆t))2(1− θ)2/q2

1− 2λ1φ(q∆t)θ/q + |λ|2(φ(q∆t))2θ2/q2 .

Let ỹ be a fixed-point of the differential equation (2.2.1). Two cases
are possible. Firstly, ỹ can be linearly stable, which, by Theorem 2.2.16
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and Remark 2.2.18, implies that λ1 < 0 for any eigenvalue λ ∈ σ(J).
Then by (4.3.4) and (4.3.2), we have:

|R(λ∆t)|2 =
1− 2|λ1|φ(q∆t)(1− θ)/q + |λ|2(φ(q∆t))2(1− θ)2/q2

1 + 2|λ1|φ(q∆t)θ/q + |λ|2(φ(q∆t))2θ2/q2

< 1− 2|λ1|φ(q∆t)(1− θ)/q + |λ|2φ(q∆t)(1− θ)/q2

≤ 1.

This shows that the fixed-point ỹ is linearly stable for the scheme (4.3.7)
and (4.3.8) in view of Theorem 2.3.13. Secondly, the fixed-point ỹ of
(2.2.1) can be linearly unstable, i.e., there exists an eigenvalue λ ∈ σ(J)
such that λ1 > 0. Working out the above expression of |R(λ∆t)|2, we
obtain

1 + 2λ1φ(q∆t)(1− θ)/q + |λ|2(φ(q∆t))2(1− θ)2/q2

1− 2λ1φ(q∆t)θ/q + |λ|2(φ(q∆t))2θ2/q2 > 1

if and only if

2λ1 + |λ|2φ(q∆t)/q − 2|λ|2φ(q∆t)θ/q > 0.

But

2λ1 + |λ|2φ(q∆t)/q − 2|λ|2φ(q∆t)θ/q ≥ 2λ1 − |λ|2φ(q∆t)/q

which, in view of (4.3.2) and (4.3.4), shows that

2λ1 − |λ|2φ(q∆t)/q > 0.

Thus the fixed-point ỹ is linearly unstable for the scheme (4.3.7) or
(4.3.8). We have thus proved that the schemes (4.3.7) and (4.3.8) are
elementary stable.

Theorem 4.3.2 is given in [13], [14] in the particular case when θ = 0.
By construction and the way it is involved in the proof of Theorem 4.3.2,
the relation (4.3.2) is the sharpest condition compared to those in the
literature for capturing the dynamics of the differential equation (see
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for example [7], [26]). Thus, Theorem 4.3.2 is theoretically interesting.
However, it is practically difficult to find q that meets the requirement
(4.3.2) since no lower bounds are available in general for the real parts
|Reλ| of the eigenvalues of an arbitrary matrix. We want to overcome
this difficulty. Following the idea in [25], it is convenient to use the
identity Reλ = cos arg λ that, in view of (4.3.2), yields the relation

| cos arg λ| ≥ |λ|
2q

for all λ ∈ E. (4.3.11)

The condition (4.3.2) in its equivalent form (4.3.11), implies a re-
striction on the location of the eigenvalues in the complex plane in the
following precise way:

Theorem 4.3.3. The condition (4.3.2) is equivalent to saying that the
eigenvalues of all the matrices J are contained in some wedge in the
complex plane, i.e.

E ⊂ W j := {λ ∈ C; | cos arg λ| ≥ j

2
} (4.3.12)

for some j ∈ [0, 2].

Proof. If q satisfies (4.3.2) and thus the inequality (4.3.11) holds, then
we have the inclusion (4.3.12) with

j :=
min{|λ|; λ ∈ E}

q
.

Conversely, if (4.3.12) holds, then the number

q :=
max{|λ|; λ ∈ E}

j

satisfies (4.3.2).

In the following result, we present a somewhat refined version of the
inclusion (4.3.12); the particular case when j = 1 was analysed in [6]
and [25].
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Theorem 4.3.4. With a fixed real number 0 < j ≤ 2, we associate the
wedges in the left and right hands complex plane defined by

W 1
l := {λ ∈ C; Reλ < 0 and | cos arg λ| ≥ j

2
} (4.3.13)

and

W 1
r := {λ ∈ C; Reλ > 0 and | cos arg λ| ≥ j

2
}. (4.3.14)

Let the dynamics of the differential equation be captured by a number q
satisfying

q ≥ max{|λ|; λ ∈ E}
j

. (4.3.15)

Then, the non-standard theta methods (4.3.7) and (4.3.8) are elemen-
tary stable whenever we have the inclusions

E ⊂ W 1
l ∪ {λ ∈ C; Reλ > 0} for θ ∈ [0,

1

2
) (4.3.16)

and

E ⊂ W 1
r ∪ {λ ∈ C; Reλ < 0} for θ ∈ (

1

2
, 1]. (4.3.17)

The region of elementary stability on the right hand side of (4.3.16)
and (4.3.17) are shown on Fig 4.1 and Fig 4.2 for j = 1.

Proof. The proof works as that of Theorem 4.3.2, observing that we
have to consider four cases in (4.3.16) and (4.3.17).
More precisely, in view of (4.3.10), we have for λ ∈ C, Reλ < 0,

|R(λ∆t)|2 =
1− 2|λ|φ(q∆t)(1− θ)/q| cos arg λ|+ |λ|2(φ(q∆t))2(1− θ)2/q2

1 + 2|λ|φ(q∆t)θ/q| cos arg λ|+ |λ|2(φ(q∆t))2θ2/q2
(4.3.18)

while for Reλ > 0,

|R(λ∆t)|2 =
1 + 2|λ|φ(q∆t)(1− θ)/q| cos arg λ|+ |λ|2(φ(q∆t))2(1− θ)2/q2

1− 2|λ|φ(q∆t)θ/q| cos arg λ|+ |λ|2(φ(q∆t))2θ2/q2
. (4.3.19)
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Consider now the case when θ ∈ [0, 1
2) and let λ ∈ E be in the right

hand side of (4.3.16). This means that either λ ∈ W 1
l or Reλ > 0. If

λ ∈ W 1
l , then we have from (4.3.18)

|R(λ∆t)|2 < 1− 2|λ|φ(q∆t)(1− θ)/q| cos arg λ|+ |λ|2(φ(q∆t))2(1− θ)2/q2

< 1− 2|λ|φ(q∆t)(1− θ)/q| cos arg λ|+ j|λ|φ(q∆t)(1− θ)/q

= 1 + |λ|φ(q∆t)(1− θ)/q(j − 2| cos arg λ|) by 4.3.15
≤ 1.

If Reλ > 0, then it follows from (4.3.19) and the fact that θ ∈ [0, 1
2)

that
|R(λ∆t)|2 > 1.

Consider finally the case when θ ∈ (1
2 , 1] and let λ ∈ E be in the

right hand side of (4.3.17), which means that either λ ∈ W 1
r or Reλ < 0.

When λ ∈ W 1
r , we use (4.3.19) and (4.3.15) to obtain

|R(λ∆t)|2 >
1

1− 2|λ|φ(q∆t)θ/q| cos arg λ|+ |λ|2(φ(q∆t))2θ2/q2

≥ 1

1− 2|λ|φ(q∆t)θ/q| cos arg λ|+ j|λ|(φ(q∆t))θ/q

=
1

1 + |λ|φ(q∆t)θ/q(j − 2| cos arg λ|)
≥ 1.

For Reλ < 0, we infer directly from (4.3.18) and from θ ∈ (1
2 , 1] that

|R(λ∆t)|2 < 1.

Thus, the non-standard theta methods (4.3.7) and (4.3.8) are elemen-
tary stable .
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Figure 4.1: Region of elementary stability for θ ∈ [0, 1
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Figure 4.2: Region of elementary stability for θ ∈ [1
2
, 1]
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Remark 4.3.5. Unlike (4.3.2), the choice of the number q in (4.3.15)
is not so critical if the system is non-stiff. In practice, we may take
jq := max‖J(g)(ỹ)‖∞ , where ‖·‖∞ is the matrix norm associated with
the supremum norm on Rm. ¥

Remark 4.3.6. With the definition (4.3.13)-(4.3.14) of the wedges, the
inclusions (4.3.16)-(4.3.17) for elementary stability of the scheme un-
der consideration are in line with what is done in the classical theory of
absolute stability of numerical methods for ordinary differential equa-
tions (see [22]). This observation permits us to link the extreme cases
when j = 0 and j = 2 in (4.3.12) to the classical concepts of A/A0-
stable schemes. In [25], the terminology A− and A0-elementary stable
schemes is used when j = 0 and j = 2, respectively.

Furthermore, from the comparative analysis in [25], it follows that
the non-standard theta methods have much larger regions of absolute
elementary stability than the standard ones. Some of the advantages of
the non-standard theta methods over the standard ones are summarised
in Table 4.3 where we recall that the case θ = 1

2 is excluded as the
corresponding standard schemes preserve all the involved properties. ¥

Table 4.3: Comparison between standard and non-standard θ-methods

Explicit θ-method Implicit θ-method
(θ = 0) θ ∈ (0, 1

2
) θ ∈ (1

2
, 1]

Std. Non-std. Std. Non-std. Std. Non-std.
Elementary stability No Yes No Yes No Yes
A-Elementary stability No No No No Yes Yes
A0-Elementary stability No Yes No Yes Yes Yes

Remark 4.3.7. It should be noted that the non-standard theta meth-
ods (4.3.7) and (4.3.8) enjoy the consistency and convergence properties
stated in Theorem 3.7.2 and Remark 3.7.3 for the classical schemes.
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This is due to the property (4.2.7) that the denominator ψ satisfies.
The analogy of the error estimate (3.7.16) is proved in [6]. ¥

To conclude this section, we consider an example that confirms the
superiority of the non-standard approach over the standard one.

Example 4.3.8.

A typical example is the logistic equation

y′ = 25y(1− y), y(0) = y0, (4.3.20)

whose exact solution and exact scheme are

y(t) =
y0

y0 + (1− y0)e−25∆t
, (4.3.21)

and
yn+1 − yn

e25∆t−1
25

= 25yn(1− yn+1). (4.3.22)

The forward Euler difference scheme yields

yn+1 − yn

∆t
= 25yn(1− yn). (4.3.23)

In accordance with (4.3.7) - (4.3.8) for θ = 0, we introduce the non-
standard scheme

yn+1 − yn

1−e−25∆t

25

= 25yn(1− yn). (4.3.24)

The exact solution for the logistic equation, the Euler forward dif-
ference scheme (4.3.23) and the non-standard finite difference schemes
(4.3.24) are visualised in Fig. 4.3 for ∆t = 0.01, Fig. 4.4 for ∆t = 0.067,
and Fig. 4.5 for ∆t = 0.067, respectively using various initial condi-
tions.

On comparing Figures 4.3, 4.4, and 4.5, it is evident that the non-
standard scheme in Fig.4.5 gives a more reliable simulation of the exact
solution in Fig.4.3 than the standard Euler Scheme in Fig. 4.4.
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Figure 4.3: Exact solution for the logistic equation.
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Figure 4.4: Standard Euler scheme for the logistic equation.
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Figure 4.5: Non-standard Euler scheme for the logistic equation.
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4.4 Dissipative Non-standard Theta Methods

This section is a follow up of the concern mentioned in Remark 3.7.8
regarding the dissipativity of theta methods for θ ∈ [0, 1

2). Firstly, when

θ ∈ (1
2 , 1], Theorem 3.7.7 carries over easily to the non-standard setting

and we state it here for convenience.

Theorem 4.4.1. Consider (2.2.1) as a dissipative dynamical system in
the setting specified in Theorem 3.7.7. We approximate this dynamical
system by the non-standard theta methods (4.3.7) or (4.3.8) where the
only requirement on the denominator ψ(∆t) is the asymptotic behaviour
(4.2.7). Then, for θ ∈ (1

2 , 1], these non-standard schemes are dissipative
in the sense of Definition 2.3.3. The absorbing sets are those given
in Theorem 3.7.7 on the understanding that ∆t is replaced by ψ(∆t)
wherever this is applicable.

Regarding the case when θ ∈ [0, 1
2), we managed to deal with the

marginal case θ = 0. More precisely, we show in what follows how
the non-standard approach can help to successfully modify the simple
Euler method so that it is dissipative.

To this end, we suppose that f : Rm → Rm satisfies the structural
assumption (2.2.12) involving α > 0 and β > 0 and we assume without
loss of generality that

β < 1. (4.4.1)

Furthermore, we assume that there exist positive constants γ and
c > 1 such that, for every y ∈ Rm:

||f(y)||2 ≤ γ + c||y||2. (4.4.2)

Remark 4.4.2. The condition (4.4.2) holds if the function f is Lips-
chitz, which is one of the widely used requirement for (2.2.1) to define
a dynamical system on Rm. ¥

We have the following important result:
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Theorem 4.4.3. For θ = 0, the non-standard finite difference scheme
(4.3.7) or (4.3.8) where ψ(∆t) is given by (4.3.6) with q := c

β , is a
dissipative dynamical system.

Proof. From (4.3.7) or (4.3.8) with θ = 0, we have

yn+1 − yn

ψ(∆t)
= f(yn). (4.4.3)

Multiplying (4.4.3) by yn+1, we obtain

〈yn+1 − yn, yn+1〉
ψ(∆t)

= 〈f(yn), yn+1〉 . (4.4.4)

We use (4.4.3) on the left hand side of (4.4.4) and on the right hand
side we apply

〈u− v, u〉 =
1

2
(||u||2 − ||v||2 + ||u− v||2).

1
2ψ(∆t)

(||yn+1||2 − ||yn||2 + ||yn+1 − yn||2) = 〈f(yn), yn〉+ 〈f(yn), yn+1 − yn〉
1

2ψ(∆t)
(||yn+1||2 − ||yn||2 + (ψ(∆t))2||f(yn)||2) = 〈f(yn), yn〉+ ψ(∆t) 〈f(yn), f(yn)〉

= 〈f(yn), yn〉+ ψ(∆t)||f(yn)||2.

From (2.2.12), (4.3.4), (4.4.1) and (4.4.2), we obtain

||yn+1||2 − ||yn||2
ψ(∆t)

≤ 2α− 2β||yn||2 +
β

c
φ(c∆t/β)(γ + c||yn||2)

< 2α +
βγ

c
− β||yn||2.

Thus

||yn+1||2 <

(
2α +

βγ

c

)
ψ(∆t) + [1− βψ(∆t)]||yn||2.

Applying the discrete Gronwall inequality (Lemma 2.3.6) yields

||yn||2 ≤
(

2α

β
+

γ

c

)
[1− (1− βψ(∆t))n] + ||y0||2(1− βψ(∆t))n.
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Thus

lim sup
n→∞

||yn||2 ≤ 2α

β
+

γ

c

and it follows that the discrete dynamical system under consideration

is dissipative, the closed ball B̄

(
0,

√
2α

β
+

γ

c
+ ε

)
being an absorbing

set for every ε > 0.

We have up to this point demonstrated numerically the power of the
non-standard finite difference schemes over the standard ones as far as
elementary stability is concerned. We now turn our attention on the
dissipative property by considering two examples.

Example 4.4.4.

We consider the dynamical system defined by

dy1

dt
= 1 + 5y2 − y1 (4.4.5)

dy2

dt
= 1− 5y1 − y2, (4.4.6)

whose fixed point is ( 3
13 ,

−2
13 ). The right hand-side of the system is the

vector function

f(y) =

(
1 + 5y2 − y1

1− 5y1 − y2

)

which satisfies the structural assumption (2.2.12) and (4.4.1) in the
following precise form:

〈f(y), y〉 = (1 + 5y2 − y1)y1 + (1− 5y1 − y2)y2

= y1 + 5y1y2 − y2
1 + y2 − 5y1y2 − y2

2

≤ 1

2
(1 + y2

1)− y2
1 +

1

2
(1 + y2

2)− y2
2

= 1− 1

2
||y||22.
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Hence α = 1 and β = 1
2 . Furthermore, the norm of f(y) can be

estimated as follows:

||f(y)||22 = (1 + 5y2 − y1)
2 + (1− 5y1 − y2)

2

= 1 + 25y2
2 + y2

1 + 10y2 − 2y1 − 10y1y2 + 1 + 25y2
1 + y2

2

−10y1 − 2y2 + 10y1y2

= 2 + 26(y2
1 + y2

2) + 10y2 − 10y1

≤ 2 + 26(y2
1 + y2

2) + 5(1 + y2
2) + 5(1 + y2

1)

= 12 + 31||y||22.
Hence, the requirement (4.4.2) is met with γ = 12 and c = 31. With
φ(∆t) = 1 − e−∆t, the non-standard scheme considered in Theorem
4.4.3 reads as

yn+1 − yn

1−e−q∆t

q

= f(yn), (4.4.7)

where q =
c

β
= 62. Taking the step size ∆t = 0.1, Fig. 4.6 and Fig. 4.7

give the phase diagrams of the numerical solutions of the system (4.4.5)-
(4.4.6) by the non-standard finite difference scheme (4.4.7) using the
initial conditions y(0) = (10, 10) and y(0) = (±10,±10), respectively.
The dissipativity of the scheme is apparent.

For comparison, we apply to the system (4.4.5)–(4.4.6) the standard
forward Euler method (3.7.17) with the same step size and initial con-
dition y(0) = (10, 10). The phase diagram of the numerical solution
given in Fig.4.8 is not indicative of dissipativity.
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Example 4.4.5.

We consider the dynamical system defined by

y′1 = −y1 − 5y2 +
y1√

y2
1 + y2

2

(4.4.8)

y′2 = 5y1 − y2 +
y2√

y2
1 + y2

2

. (4.4.9)

Once again the conditions (2.2.12) and (4.4.1) hold. Indeed, for the
right hand side

f(y) =




−y1 − 5y2 +
y1√

y2
1 + y2

2

5y1 − y2 +
y2√

y2
1 + y2

2


 ,

we have

〈f(y), y)〉 = (−y1 − 5y2 +
y1√

y2
1 + y2

2

)y1

+(5y1 − y2 +
y2√

y2
1 + y2

2

)y2

=
√

y2
1 + y2

2 − (y2
1 + y2

2)

= ||y|| − ||y||2

≤ 1

2
(1 + ||y||2)− ||y||2

=
1

2
− 1

2
||y||2 ,
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i.e., α = 1
2 and β = 1

2 in (2.2.12). Furthermore,

||f(y)||22 = (−y1 − 5y2 +
y1√

y2
1 + y2

2

)2

+(5y1 − y2 +
y2√

y2
1 + y2

2

)2

= 1 + y2
1 + 10y1y2 + 25y2

2 + 25y2
1 − 10y1y2 + y2

2 −
y2

1 + y2
2√

y2
1 + y2

2

= 1 + 26(y2
1 + y2

2)−
√

y2
1 + y2

2

= 1 + 26||y||2 − ||y||
≤ 1 + 26||y||2

Hence (4.4.2) holds with γ = 1 and c = 26. Then the non-standard

scheme considered in Theorem 4.4.3 is given by (4.4.7) where q =
c

β
=

52. We take ∆t = 0.1 and y(0) = (5, 5) or y(0) = (0.1, 0). On Fig.
4.9 and Fig. 4.10 one can observe that the non-standard numerical
solutions eventually belong to the absorbing set B(0, 1.4277...+ε) given
in Theorem 4.4.3. The ball with radius 1.55 is plotted on the figures
by a dotted line. The numerical solution on Fig. 4.9 originates outside
this ball and enters it after certain number of time steps, while the
numerical solution on Fig. 4.10 originates inside the ball and does not
leave it. We notice from Fig. 4.11 that the standard Euler method with
the same step size and initial condition y(0) = (0.1, 0) is not dissipative.
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Figure 4.9: Dissipative non-standard scheme
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Figure 4.10: Another dissipative non-standard scheme

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

20

y
1

t=0

Figure 4.11: Nondissipative standard scheme
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Remark 4.4.6. The absorbing sets in Examples 4.4.4 and 4.4.5 are
determined by two different kinds of global attractors. In Example
4.4.4 the attractor is a hyperbolic fixed point, a case which can also
be dealt with through the concept of linear stability. More precisely,
equating both (4.4.5) and (4.4.6) to zero we arrive at the fixed point
(y1, y2) = ( 3

13 ,
−2
13 ). The Jacobian matrix of the system (4.4.5)-(4.4.6) is

J(y1, y2) =

[−1 5
−5 −1

]
. (4.4.10)

The eigenvalues of J( 3
13 ,

−2
13 ) are λ = −1 ± j5 with Reλ = −1, ∀λ ∈

σ(J). Since Reλ < 0, we have a linearly stable fixed-point by Theorem
2.2.17.

However, linear stability does not yield results for Example 4.4.5,
since the system does not have fixed points. In fact, it can be shown
that the unit circle is a global attractor for this system. Notice that (see
[41]) a set A is said to be an attractor if it is compact and invariant and
attracts a neighbourhood of itself. Furthermore, a compact invariant
set A is a global attractor for the semigroup operator S(t) if it is
an attractor which attracts every bounded set in Rm. Note also that
the global attractor of a dynamical system is unique if it exists. The
terminology local attractor is sometimes used for attractors which are
not global attractors. ¥

4.5 Energy Preserving Discrete Schemes

So far, our study has been concerned with systems (2.2.1) having only
hyperbolic fixed-points. Non-standard schemes for such systems were
designed by using mainly first part of Definition 4.2.3 on renormaliza-
tion of the denominator ∆t of the discrete derivative.
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In this section, we consider the specific system




dy1
dx = y2

dy2
dx = −r(y1),

(4.5.1)

where it is assumed that (0, 0) is the only fixed-point and that the
smooth function r : R→ R satisfies r(0) = 0 and r′(0) = 1.

The eigenvalues of the corresponding Jacobian matrix

J =

[
0 1
−1 0

]
(4.5.2)

are λ1,2 = ±i and this shows that the fixed-point ỹ = (0, 0) is non-
hyperbolic. Consequently, the analysis of the previous sections does
not apply. Nevertheless, by using the change of dependent variable

{
y1 = u

y2 = u′ ≡ du
dx

(4.5.3)

the system (4.5.1) is equivalent to the scalar equation

d2u

dx2 + r(u) = 0, (4.5.4)

which is the simplest model of Hamiltonian systems that occur in clas-
sical mechanics. Equation (4.5.4) is indeed equivalent to

H(u′(x), x) =
1

2

[
(u′)2 + K(u)

]
= constant (4.5.5)

where

K(u) =

∫
r(u)du. (4.5.6)

Physically, H represents the sum of kinetic energy and potential energy
of the mechanical system and (4.5.5) is the statement of conservation of
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energy ( [41], p 200). Consequently, (4.5.5) is one of the more important
features of the system (4.5.1). Our aim is to derive finite difference
methods which are stable with respect to the principle of conversation
of energy. We will see that the approximation in a non-local way of
nonlinear terms plays an essential role in achieving this aim.

Equation (4.5.4) is coupled with initial conditions

u(0) = u0, and u′ = v0. (4.5.7)

Let u be a solution of (4.5.4) or (4.5.5). Fix a point x∗ that can be
written in the form x∗ = m∆x = xm for different values of m ∈ Z and
of the space step size ∆x. Let γ be a real-valued function on R3 that
meets the consistency condition

lim
∆x→0, m∆x=x∗

γ(u(xm−1), u(xm), u(xm+1)) = r(u(x∗)) (4.5.8)

as well as the symmetry property

γ(um−1,um, um+1) = γ(um+1, um, um−1). (4.5.9)

The notations used here are self explanatory: um is an approximation
of the solution u at the grid point xm.

Theorem 4.5.1. Let ψ be a function satisfying (4.2.7). The non-
standard finite difference scheme

um+1 − 2um + um−1

(ψ(∆x))2 + γ(um−1,um, um+1) = 0, (4.5.10)

for (4.5.4) is equivalent to the discrete principle of conservation of en-
ergy

1

2

(
um+1 − um

ψ(∆x)

)2

+ K∆x(um) =
1

2

(
um − um−1

ψ(∆x)

)2

+ K∆x(um−1),

(4.5.11)
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where the discrete potential energy is given by

K∆x(um) =





0 if m = 0
m∑

i=1

(ui+1−ui−1)γ(ui−1,ui,ui+1)
2 if m > 0

|m|∑
i=1

(um−1+i−um+1+i)γ(um+1+i,um+i,um−1+i)
2 if m < 0.

(4.5.12)

Proof. A discrete principle of conversation of energy has the form

V∆x(um) = V∆x(um−1), ∀m ≥ 1 (4.5.13)

with the discrete energy

V∆x(um) =
1

2

(
um+1 − um

ψ(∆x)

)2

+ K∆x(um) (4.5.14)

and K∆x(um) is given by (4.5.12). Expansion and simple manipulation
of (4.5.11) yields the following equivalent relation

u2
m+1 − u2

m−1 − 2um(um+1 − um−1)

ψ(∆x)
+ 2(K∆x(um)−K∆x(um−1)) = 0

(um+1 − um−1)
um+1 − 2um + um−1

ψ(∆x)
+ 2(K∆x(um)−K∆x(um−1)) = 0

um+1 − 2um + um−1

(ψ(∆x))2 + 2
K∆x(um)−K∆x(um−1)

um+1 − um−1
= 0.

(4.5.15)

Identification of (4.5.10) with (4.5.15) reduce to the expression

K∆x(um)−K∆x(um−1)

um+1 − um−1
+ γ(um−1,um, um+1) = 0 (4.5.16)

which yields

K∆x(um) = K∆x(um−1)+(um+1−um−1)γ(um−1,um, um+1) = 0. (4.5.17)
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By induction on m, with the initial-value K∆x(u0) = 0, we have

K∆x(um) :=
m∑

i=1

(ui+1 − ui−1)γ(ui−1,ui, ui+1) = 0. (4.5.18)

Thus, (4.5.10) is equivalent to the discrete law of conversation of energy
(4.5.11).

Remark 4.5.2. For m > 1 the discrete law of conservation of energy
to which (4.5.10) is equivalent reads as:

1

2

[(
um+1 − um

ψ(∆x)

)2

+
m∑

i=1

(ui+1 − ui−1)γ(ui−1,ui, ui+1)

]
=

1

2

[(
um+1 − um

ψ(∆x)

)2

+
m∑

i=1

(ui+1 − ui−1)γ(ui+1,ui, ui−1)

]
. (4.5.19)

Notice that the scheme (4.5.10) is equally equivalent to the non-
standard finite difference scheme





y1,m+1−y1,m

ψ(∆x) = y2,m+1

y2,m+1−y2,m

ψ(∆x) = −r(y1,m)

(4.5.20)

which is closely related to (4.5.1). ¥

Remark 4.5.3. From (4.5.4) and (4.5.15) the natural choice of γ(·, ·, ·)
is given in terms of ( 4.5.6) by the mean-value theorem:

γ(um−1,um, um+1) ≡ 2
K∆x(um)−K∆x(um−1)

um+1 − um−1
(4.5.21)

=
K(um+1)−K(um−1)

um+1 − um−1
. (4.5.22)
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This is the approach proposed in Anguelov and Lubuma [7]. More
precisely, if r(u) has the form r(u) = ug(u2), these authors worked
simply with G =

∫
g(s)ds instead of K. In this case, the above leads to

the scheme

um+1 − 2um + um−1

(ψ(∆x))2 + um
G(um um+1)−G(um um−1)

um um+1 − um um−1
= 0 (4.5.23)

equivalent to its energy preserving form

1
2

[(
um+1 − um

ψ(∆x)

)2

+ G(umum+1)

]
=

1
2

[(
um − um−1

ψ(∆x)

)2

+ G(umum−1))

]
.

Other non-standard finite difference schemes for conservative oscilla-
tors are investigated in [26]. ¥

Remark 4.5.4. The schemes (4.5.10) and (4.5.23) are non-standard in
the sense of both Mickens rules in Definition 4.2.3. Firstly the exact
scheme (see Table 4.1)

um+1 − 2um + um−1

4 sin ∆x
2

+ um = 0 (4.5.24)

of the simple harmonic oscillator

d2u

dx2 + u = 0, (4.5.25)

motivates the need to renormalise the denominator of the discrete
derivatives in the schemes (4.5.10),(4.5.22) and (4.5.23). Secondly, the
nonlinear terms that arise in r(u) are approximated in a non-local way.
For example, if r(u) = u3, we have by (4.5.22) and (4.5.23) the respec-
tive approximations

r(u(x∗)) ≈ (um+1 + um−1)(u
2
m+1 + u2

m−1)

4

r(u(x∗)) ≈ u2
m(um+1 + um−1)

2
.

¥
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Remark 4.5.5. An advantage of the second choice of γ is that the
three arguments um−1, um and um+1 appear explicitly in the analogue
term of (4.5.23) contrary to (4.5.22). Furthermore, for (4.5.25), the
second choice with g(u2) = 1, yields the exact scheme (4.5.24). But the
first choice yields the scheme

um+1 − 2um + um−1

(ψ(∆x))2 +
um−1 + um+1

2
= 0. (4.5.26)

¥

Remark 4.5.6. For the implementation of (4.5.10) the initial values
u(0) = u0 and u′(0) = v0 are usually given as indicated in (4.5.7).
However, a value for u1 is needed in order to start the scheme. In
analogy with a classical procedure, we utilize the approximation

u′(0) =
u1 − u−1

ψ(∆x)
. (4.5.27)

In (4.5.10), put m = 0 and replace u−1 with the expression obtained
from (4.5.27) and this gives the missing starting value whenever the
structure of γ makes (4.5.10) an explicit scheme. When the scheme
(4.5.10) is not explicit, one could use the less accurate approximation

u′(0) =
u1 − u0

ψ(∆x)
. (4.5.28)

¥

Example 4.5.7.

As an numerical example, we consider the Duffing conservative os-
cillator

d2u

dx2 + 25u(1 + 15u2) = 0, u(0) = 0, u′(0) = 1. (4.5.29)
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With ∆x = 0.1, Fig 4.12 illustrates both the stability of the non-
standard scheme (4.5.23) where ψ(∆x) = 2

5 sin 5∆x
2 and the instability

of the standard scheme

um+1 − 2um + um−1

(∆x)2 + 25um(1 + 15u2
m) = 0 (4.5.30)

with respect to the principle of conservation of energy. Other examples
can be found in [15] where the non-standard scheme discussed in this
section have been extended to more complex problems, namely, vibro-
impact mechanical systems.
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0 0.5 1 1.5 2 2.5 3

Figure 4.12: Discrete energy of the Duffing equation by standard (piecewise constant)
and non-standard (constant) finite difference schemes

 
 
 



Chapter 5

Non-standard Finite Difference
Schemes for Reaction-Diffusion
Equations

5.1 Introduction

This chapter is a dedicated analysis of the author’s results in [6]. We
investigate the impact of the analysis of the previous chapters on the
numerical solution of partial differential equations. We will specifically
deal with the one dimensional reaction-diffusion equations the solutions
u of which enjoy a positivity and boundedness property:

0 ≤ u ≤ 1. (5.1.1)

A typical example is the Fisher equation for which (5.1.1) is proved
in Sections 5.4. In Section 5.3, we design non-standard finite difference
schemes which are elementary stable in the limit case of space inde-
pendent variable and which are stable with respect to the principle of
conservation of energy in the stationary case. Furthermore, we show
in Section 5.4 that our schemes replicate the property (5.1.1) under a
certain functional relation between the time and space step sizes.

As an alternative approach, we approximate in Section 5.5 the space
variable by the spectral method, while the time variable is approxi-
mated via the non-standard finite difference scheme. This results in

92
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what we call coupled spectral and non-standard methods. Numerical
tests that show the reliability of these coupled schemes are provided.

5.2 The Fisher Equation

A classic simplest case of a non-linear reaction-diffusion equation is the
Fisher equation

∂u

∂t
=

∂2u

∂x2 + λu(1− u), λ > 0. (5.2.1)

The material presented in this section is based on the books [23] and
[33]. Equation (5.2.1) is also referred to as the Fisher-Kolmogoroff
equation. It is also the natural extension of the logistic growth model
discussed in Section 4.3. It was suggested by Fisher (1937) as a deter-
ministic version of a stochastic model for the spatial propagation of a
mutant-gene in a population. Equation (5.2.1) can also be used in the
analysis of travelling waves in chemical reactions.

It is indeed well known that when reaction kinetics and diffusion
are coupled, travelling waves of chemical concentration exist and can
effect a biochemical change, very much faster than straight diffusional
processes governed by (5.2.1) without the term λu(1 − u). Thus, we
look for (5.2.1) travelling wave solutions. This means solutions of the
form

u(x, t) = U(z), z = x− ct, (5.2.2)

where, with c being the constant speed of the wave moving in the posi-
tive x−direction, it is assumed that U(z) is non-negative and bounded
for all z ∈ R.

The space independent Fisher equation (5.2.1) has fixed-points u = 0
and u = 1, which are unstable and asymptotically stable respectively.
This suggests that we look for a travelling wave solution which sat-
isfies the boundedness and positivity condition (5.1.1) as well as the
conditions

lim
z→∞

U(z) = 0, lim
z→−∞

U(z) = 1. (5.2.3)
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Substituting this travelling wavefront (5.2.2) into (5.2.1) yields a
second order ordinary differential equation for U(z):

U ′′ + cU ′ + U(1− U) = 0, (5.2.4)

where the range of c ≥ 0 is to be determined. Since this equation
cannot be solved in closed form, we reduce it to a pair of first order
equations by defining V = U ′ leading to the autonomous system

U ′ = V (5.2.5)

V ′ = −cV − U(1− U). (5.2.6)

The Jacobian matrix of the system (5.2.5) - (5.2.6) is

J(U, V ) =

[
0 1

2U − 1 −c

]
. (5.2.7)

The fixed-points of the system (5.2.5) - (5.2.6) are (0, 0) and (1, 0). The
eigenvalues of J(1, 0) are

λ± =
−c±√c2 + 4

2
(5.2.8)

and those of J(0, 0) are

λ± =
−c±√c2 − 4

2
, (5.2.9)

showing that the two fixed-points are hyperbolic. Thus, Hartman-
Grobman theorem (2.2.16) applies. We can therefore conclude that the
fixed-point (1, 0) is a saddle point for any c, while (0, 0) is an asymp-
totically stable node for c ≥ 2 and a stable spiral if c < 2, (see [46]) .

The case c ≥ 2 is of interest as it follows by continuity arguments
or by heuristic reasoning from the phase plane (U, V ), that there exists
a trajectory from the fixed-point (1, 0) to the fixed-point (0, 0) lying
entirely in the quadrant U ≥ 0, V ≤ 0 with 0 ≤ U ≤ 1 and all c ≥ 2,
(see Figs 5.1 - 5.2).

In summary, we have the following result.
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Theorem 5.2.1. For each c ≥ 2 there exists a unique travelling wave
solution u(x, t) = U(x − ct) to the Fisher equation (5.2.1) with the
property that in the wave variable z = x − ct, U(z) is monotonically
decreasing and satisfies (5.2.3).
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Figure 5.1: Phase plane trajectories for (5.2.5) - (5.2.6), c ≥ 2.

Figure 5.2: Travelling wave solution for the Fisher equation, c ≥ 2.
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5.3 Theta Methods for Reaction-Diffusion Equa-

tions

The Fisher equation considered in the previous section motivates that
we now study the general one-dimensional reaction-diffusion equation





∂u

∂t
=

∂2u

∂x2 + r(u),

u(x, 0) = g(x)
(5.3.1)

and we assume that there exists a unique solution satisfying

0 ≤ g ≤ 1 =⇒ 0 ≤ u ≤ 1. (5.3.2)

Equation (5.3.1) is used extensively in many areas of engineering
and applied sciences to model a system on which reaction processes
r(u) lead to the diffusion in time of the quantity u, (see for instance
[19] and [33]). We are interested in numerical schemes that produce
reliable approximations uk

m of the solution u at the time tk = k∆t and
the space grid point xm = m∆x. To achieve this, we use non-standard
finite difference schemes following the methodology of sub-equations in
[7] and [26] to address partial differential equations.

More precisely, we design non-standard schemes for the space inde-
pendent equation on the one hand and for the stationary equation on
the other hand. After that, we assemble them in suitable schemes for
the reaction- diffusion equation.

Energy-preserving schemes for the stationary case of (5.3.1) were
discussed in Section 4.5. Thus, for the equation

d2u

dx2 + r(u) = 0, (5.3.3)

we have in view of (4.5.10) the non-standard scheme

um+1 − 2um + um−1

(ψ(∆x))2 + γ(um−1,um, um+1) = 0. (5.3.4)
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The space independent equation of (5.3.1) is

du

dt
= r(u), u(0) = u0 (5.3.5)

which is the scalar case of (2.2.1). We approximate it using the non-
standard one-stage (4.3.7) and two-stage (4.3.8) theta methods, which
in this case read as follows:

uk+1 − uk

φ(q∆t)
q

= r[θuk+1 + (1− θ)uk], (5.3.6)

uk+1 − uk

φ(q∆t)
q

= θr(uk+1) + (1− θ)r(uk). (5.3.7)

By combining (5.3.4) and (5.3.6)-(5.3.7), we arrive at the following non-
standard finite difference methods for (5.3.1):

uk+1
m − uk

m
φ(q∆t)

q

= θ
uk+1

m+1 − 2uk+1
m + uk+1

m−1

(ψ(∆x))2
+ (1− θ)

uk
m+1 − 2uk

m + uk
m−1

(ψ(∆x))2
+ (5.3.8)

γ
[
θ uk+1

m−1 + (1− θ) uk
m−1, θ uk+1

m + (1− θ) uk
m, θ uk+1

m+1 + (1− θ) uk
m+1

]

uk+1
m − uk

m
φ(q∆t)

q

= θ
uk+1

m+1 − 2uk+1
m + uk+1

m−1

(ψ(∆x))2
+ (1− θ)

uk
m+1 − 2uk

m + uk
m−1

(ψ(∆x))2
(5.3.9)

+θγ(uk+1
m−1,u

k+1
m , uk+1

m+1) + (1− θ)γ(uk
m−1, u

k
m, uk

m+1).

Notice that the denominator functions φ and the number q that
captures the dynamics of the system are chosen in the manner discussed
in Sections 4.3 and 4.4, namely (4.3.2) or (4.3.15) or Theorem 4.4.3
together with (4.3.4) and (4.3.6). Equally the denominator function ψ
and the appropriate forms of the function γ are discussed in Section
4.5.

By construction and assuming that the function r(u) satisfies the
conditions of the relevant theorems in Chapter 4, we have the following
result.
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Theorem 5.3.1. The non-standard finite difference schemes (5.3.8)
and (5.3.9) are qualitatively stable with respect to the principle of con-
servation of energy in the limit case of the stationary equation. Fur-
thermore, these non-standard schemes are elementary stable in the limit
case of space independent variable. In this case, they are also qual-
itatively stable with respect to the dissipativity property for θ = 0 or
θ ∈ (1

2 , 1] whenever the continuous system is in the setting of Theorem
4.4.1 and Theorem 4.4.3.

5.4 Explicit Scheme

We would like to design schemes related in one way or another to
(5.3.8)-(5.3.9) which are stable with respect to the positivity and bounded
property (5.3.2). That is,

0 ≤ u0
m ≤ 1 ⇒ 0 ≤ uk

m ≤ 1. (5.4.1)

We consider the explicit case (i.e. θ = 0) for which (5.3.8) and (5.3.9)
reduce to

uk+1
m − uk

m
φ(q∆t)

q

=
uk

m+1 − 2uk
m + uk

m−1

(ψ(∆x))2 + γ(uk
m−1, u

k
m, uk

m+1). (5.4.2)

It will be necessary to modify (5.4.2) into a new formula resulting from
a somewhat convenient form. A proper choice of the function γ in
(5.4.2) and Theorem 4.5.1 is essential in what follows. To this end, we
assume that the function γ may be represented as

γ(um−1, um, um+1) = (1− um)Γ(um−1, um, um+1) (5.4.3)

for some function satisfying Γ(um−1, um, um+1) ≥ 0 for nonnegative ar-
guments. We also assume that the symmetry property

Γ(um−1,um, um+1) = Γ(um+1,um, um−1)
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holds as in (4.5.9) and that the scheme

uk+1 − uk

φ(q∆t)
q

= (1− uk+1)Γ(uk, uk, uk) (5.4.4)

for (5.3.5) is elementary stable. We can in place of (5.3.4) consider

um+1 − 2um + um−1

(ψ(∆x))2 + (1− um)Γ(um−1, um, um+1) = 0. (5.4.5)

One possible combination of (5.4.4) and (5.4.5) in the spirit of (5.3.9)
is

uk+1
m − uk

m
φ(q∆t)

q

=
uk

m+1 − 2uk
m + uk

m−1

(ψ(∆x))2 + (1− uk+1
m )Γ(uk

m−1, u
k
m, uk

m+1).

(5.4.6)
In classical finite difference methods, the quantities ∆t and ∆x do not
vary independently [32]. It is therefore not suprising to require a certain
functional relation between ∆t and ∆x for the scheme (5.4.6). In view
of our objective to have property (5.4.1), we impose the condition

φ(q∆t)/q

(ψ(∆x))2 =
1

2
. (5.4.7)

Solving (5.4.6) for uk+1
m yields

uk+1
m =

1

2

(
uk

m−1 + uk

m+1

)
+ φ(q∆t)/qΓ(uk

m−1, u
k
m, uk

m+1)

1 + φ(q∆t)/qΓ(uk
m−1, u

k
m, uk

m+1)
. (5.4.8)

If 0 ≤ uk
m ≤ 1, it follows from (5.4.8) and the property of Γ that

0 ≤ uk+1
m ≤ 1. In summary, we have thus shown the following result.

Theorem 5.4.1. Under condition (5.4.7) the non-standard finite dif-
ference scheme (5.4.6) is stable with respect to boundedness and posi-
tivity property (5.3.2). Furthermore, this scheme is elementary stable
in the limit case of the space independent variable and it is also stable
with respect to conservation of energy in the stationary case.
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Remark 5.4.2. An essential feature of the scheme (5.4.6) proposed
here is that it replicates property (5.3.2) under the simple relation
(5.4.7) between step sizes. Other schemes having the property (5.4.1)
may be obtained but at the cost of more complicated functional re-
lations between step sizes. For example, in the particular case of the
Fisher equation (5.2.1), which satisfies property (5.3.2), an alternative
scheme preserving this property is obtained in [27] but at the cost of
the more complicated restriction between step sizes, namely:

φ(q∆t)/q

(ψ(∆x))2 =
1

3

(
1− q(ψ(∆x))2

3

)−1

. (5.4.9)

Furthermore, the relation (5.4.7) is a typical condition of Lax-Richtmyer
stability of finite difference schemes for linear diffusion equation. Let
us clarify this fact with the scheme

uk+1
m − uk

m

φ(q∆t)/q
=

uk

m+1 − 2uk
m + uk

m−1

(ψ(∆x))2 + uk
m (5.4.10)

applied to the linear problem

∂u

∂t
=

∂2u

∂x2 + u.

In the setting of (5.3.9), the scheme (5.4.10) corresponds to

γ(uk
m−1, u

k
m, uk

m+1) = uk
m.

We use the Fourier series method [32]. The amplification factor for the
scheme (5.4.10) is

ρ(ξ) = 1− 4ν sin2 ξ

2
∆x + φ(q∆t)/q, ∀ξ ∈ R,

where ν =
φ(q∆t)/q

(ψ(∆x))2 . The scheme (5.4.10) is stable in the sense of Lax-

Richtmyer whenever the von Neumann condition |ρ(ξ)| ≤ 1 is satisfied.

This condition is met if ν ≤ 1

2
+

φ(q∆t)/q

2
. ¥
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Remark 5.4.3. The strategy of writing the function γ(·, ·, ·) in the form
(5.4.3) and of approximating it in the nonlocal way shown in (5.4.4)
is being used extensively in the literature, specifically in mathematical
biology, when the discrete solution is required to replicate the positivity
property of the exact solution. (See for instance [7], [13], [14], [29], [30]).
¥

To illustrate the analysis of the previous sections, we consider again
the Fisher equation

∂u

∂t
=

∂2u

∂x2 + 25u(1− u), u(x, 0) = 0.5 + 0.5 sin 2x, (5.4.11)

for which the solution satisfies (5.3.2). We apply various non-standard
methods of the form

uk+1
m − uk

m

φ(∆t)
=

uk
m+1 − 2uk

m + uk
m−1

(∆x)2 + 25(1− uk+1
m )

uk
m−1 + uk

m + uk
m+1

3
.

(5.4.12)

With φ(∆t) = 1−e25∆t

25 , the solution of the scheme (5.4.12), which corre-
sponds to (5.4.6), is displayed in Fig.5.3, for ∆t = 0.061 and ∆x = 0.25.

We may choose the denominator φ(∆t) = e25∆t−1
25 which provides the

exact scheme for the logistic equation (Table 4.1)

du

dt
= 25u(1− u). (5.4.13)

The solution of the resulting scheme (5.4.12) is displayed in Fig.5.4,
for ∆t = 0.0231 and ∆x = 0.25.

The discrete scheme

uk+1 − uk

∆t
= 25uk(1− uk+1), (5.4.14)

for (5.4.13) is elementary stable and so we can take φ(∆t) = ∆t in
(5.4.12). The resulting solution is visualised in Fig.5.6 for ∆t = 0.031
and ∆x = 0.25.
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All the results are compared with the standard scheme

uk+1
m − uk

m

∆t
=

uk
m+1 − 2uk

m + uk
m−1

(∆x)2 + 25uk(1− uk
m), (5.4.15)

whose solution is visualised in Fig.5.5 for ∆t = 0.0231 and ∆x = 0.25.
The three figures corresponding to non-standard schemes confirm

elementary stability with respect to the boundedness and positivity
property. On the contrary the standard scheme shown in Fig. 5.6 fails
to replicate any one of these properties.
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Figure 5.3: Non-standard scheme not related to exact scheme.
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Figure 5.4: Non-standard scheme related to exact scheme.
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Figure 5.5: Non-standard scheme with φ(∆t) = ∆t.
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Figure 5.6: Standard scheme.
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5.5 Coupled Spectral and Non-standard Methods

So far, the approximations in the space variable x were obtained by the
finite difference method. In this section, we use the spectral method.
We consider the reaction-diffusion problem

∂u

∂t
− ∂2u

∂x2 + u = R(u), on (0, 2π)× (0, T ) (5.5.1)

u(x, 0) = u0(x) for x ∈ (0, 2π) (5.5.2)

u(0, t) = u(2π, t) for t ∈ (0, T ), (5.5.3)

where the function R(•) as well as the function u0 in the Lebesgue space
L2(0, 2π) with inner product 〈•, •〉 are given. We assume of course that
problem (5.5.1)-(5.5.3) has a unique solution. In view of the numerical
scheme presented below, we assume that

R(0) = R′(0) = 0. (5.5.4)

Thus, (5.5.1) corresponds, in the setting of (5.3.1), to the case when
r(u) := R(u)− u is linearized about u = 0 by −u.

With each integer m ∈ N, we associate the Fourier-Garlekin spectral
approximation of the solution u, which is a semi-discrete solution given
by (see [10])

um(x, t) =
m∑

k=−m

αk(t)wk(x) for (x, t) ∈ (0, 2π)× [0, T ], (5.5.5)

where for k ∈ Z,

wk(x) :=
1√
2π

eikx for x ∈ [0, 2π]. (5.5.6)

The function um(x, t) in (5.5.5) does not satisfy (5.5.1) and (5.5.2).
But this function is an approximation of the solution u in the sense
that, for |k| ≤ m, we have





〈
∂um

∂t
− ∂2um

∂x2 + um, wk

〉
= 〈R(um), wk〉

〈um(0), wk〉 = 〈u0, wk〉 .
(5.5.7)
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Thus, with
λk := k2 + 1 (5.5.8)

the vector function Um = [α−m α−m+1 · · · αm]T of Fourier coefficients
in (5.5.5) is the unique solution of the initial-value problem for the
system of 2m + 1 ordinary differential equations in 2m + 1 unknowns
αk:

dαk

dt
+ λkαk = 〈R(um), wk〉 on (0, T ), (5.5.9)

αk(0) = 〈u0, wk〉 . (5.5.10)

Remark 5.5.1. A motivation of the spectral approximations (5.5.5)
and (5.5.9)-(5.5.10) is that, in many cases, the solution u of (5.5.1)-
(5.5.3) admits in L2(0, 2π) the Fourier series expansion

u(t) ≡ u(•, t) =
∑

k∈Z
αk(t)wk(•). (5.5.11)

This is in particular true for the linear diffusion equation, i.e. R in
(5.5.1) is a function of the independent variables x and t only but not
of the dependent variable u (See, for example [36] ). ¥

To obtain a full discretisation of u, we have to approximate (5.5.9)-
(5.5.10). The main source of difficulty in (5.5.9) comes from its lin-
earised part, which is a stiff system: from (5.5.8), 1 = λ0 ¿ λm for big
values of m. The condition (5.5.4) on the reaction function R(•) guar-

antees that the null vector Ũ = 0̃ ∈ R2m+1 is a hyperbolic fixed-point
of the system (5.5.9). Consequently, by Hartman-Grobman theorem
(Theorem 2.2.16), this system can be qualitatively studied from its lin-

earisation about Ũ = 0 which is

dαk

dt
+ λkαk = 0, |k| ≤ m. (5.5.12)

The approach used in [26] to approximate first-order nonlinear dif-
ferential equations is based on this connection between (5.5.9) and
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(5.5.12). We follow this approach to avoid the above mentioned diffi-
culty by incorporating the stiffness feature of the system (5.5.9) in the
numerical scheme. More precisely, by analogy with the exact scheme

αk,n+1 − αk,n

(1− e−λk∆t)/λk
+ λkαk,n = 0 n = 0, 1, 2, ..., (5.5.13)

of the linearised part of the system (5.5.9), we consider, for the nonlin-
ear system (5.5.9)-(5.5.10), the non-standard forward Euler method

αk,n+1 − αk,n

(1− e−λk∆t)/λk
+ λkαk,n = 〈R(um,n), wk〉0 n = 0, 1, 2, ..., (5.5.14)

where um,0 is obtained from (5.5.10) by taking t = 0 in (5.5.5), i.e.

um,0 =
∑

|k|≤m

〈u0, wk〉wk(x). (5.5.15)

This then provides

um,n(x) =
m∑

k=−m

αk,nwk(x), (5.5.16)

as the spectral non-standard finite difference approximation of the so-
lution u at the point (x, t∗) where t∗ = tn = n∆t is fixed.

Issues pertaining to the consistency, the stability and the conver-
gence, with rates of convergence, of this coupled spectral-non-standard
finite difference methods can be analysed along the lines of [10] and
[36]. We do not do this analysis here. Our interest is rather in test-
ing this approach numerically. To this end, we consider (5.5.1)-(5.5.3)
with R(u) = u2 and u0(x) = x(2π − x)/π2. The result of the non-
standard scheme (5.5.14)-(5.5.16) is visualized in Fig.5.7, for m = 20
and ∆t = 0.1. This is to be compared with Fig.5.8, relative to the
standard scheme (5.5.16) where the traditional denominator ∆t is used
in the discrete derivative in (5.5.14) for the specific values m = 5 and
∆t = 0.075, which satisfy the stability condition λm∆t ≤ 2. One ob-
serves, for instance, that the non-standard scheme is elementary stable
and stable with respect to the monotonicity of solution in the limit case
of space independent equation contrary to the standard scheme.
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Figure 5.7: Spectral non-standard scheme based on the exact scheme.
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Figure 5.8: Spectral standard scheme.

 
 
 



Chapter 6

Conclusion

The non-standard finite difference approach was initiated more than
two decades ago by Mickens. The monograph [26] constitutes a self-
contained and comprehensive treatment of the non-standard finite dif-
ference method. Since the publication of this book, the non-standard
approach has extensively been applied to differential models originat-
ing from problems in engineering, physics, biology, chemistry, etc. With
the great potential that the non-standard finite difference schemes have
been showing in replicating the essential properties of the exact solu-
tions of the involved differential equations, we felt strongly about fo-
cusing on dynamical systems in this thesis. Indeed, dynamical systems
have a wide range of important intrinsic properties, such as fixed-points
and their stability, attracting sets, limit cycles, which ideally should be
preserved by numerical schemes if they are to yield reliable simulations
that provide qualitative information and useful insights on the exact so-
lutions. In particular, the following facts constitute some of the specific
motivations of this thesis, which show where it fits in the literature:

1. A sharper condition given in [14] for the elementary stability of
the non-standard forward Euler method and a claim made therein
that the condition avoids the location of the eigenvalues of the
involved Jacobian matrices in some regions of the complex plane.

2. A follow up to the chapter [24] in order to investigate other types of
dissipative properties of differential models, than the dissipativity
of singular perturbed problems, which has a specific meaning in
terms of the decay/variation of their solutions in layer regions;

110
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3. A result on classical theta methods that restricts their dissipativity
as discrete dynamical systems to the range θ ∈ (1

2 , 1].(see, e.g.,
[41]).

4. The design in [27] of a non-standard finite difference scheme for the
Fisher equation, which is stable with respect to the boundedness
and positivity property of the solution under a certain functional
relation between the time and space step sizes.

For this thesis to be relatively self-contained, we dedicated consid-
erable time to overview classical concepts on finite difference schemes,
continuous dynamical systems and discrete dynamical systems. We also
studied the mathematical foundations of the non-standard finite differ-
ence method summarized in [7] by the triple question below. What is a
non-standard finite difference method? In which way are non-standard
schemes powerful compared to the standard ones? How to construct
systematically non-standard finite difference methods?

However, the main contributions of this thesis are as follows. To
address the issues 1-3, we constructed non-standard one-stage and two-
stage theta methods for stiff and non-stiff systems of ordinary differ-
ential equations. The schemes were obtained by using Mickens’rule
about the denominator of the discrete derivatives. On the one hand, we
showed that the condition in [14] is equally sufficient for the elementary
stability in this general setting of non-standard theta methods. On the
other hand, we proved that the stated condition is equivalent to hav-
ing the eigenvalues of the Jacobian matrices located in some wedges of
the complex plane and we explained how the condition can be used in
practice.

For a particular class of dynamical systems, which have non-hyperbolic
fixed-points and which is equivalent to some specific Hamiltonian sys-
tems, we derived energy-preserving non-standard finite difference schemes.
The schemes were constructed by using Mickens’ rule about the nonlo-
cal approximation of nonlinear terms [26].

Unlike the work in [24], the term dissipative is used in this thesis
to express the fact that the gross asymptotics of a dynamical system
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are independent of initial conditions with everything ending up inside
some absorbing set. We showed that, for θ taking the smallest value
0 in the forbidden interval [0, 1

2), our explicit scheme i.e., the non-
standard forward Euler scheme, replicates the dissipative property of
the continuous dynamical system.

As for the issue no. 4, we used a much simpler functional relation
between step sizes and we proposed a systematic procedure of design-
ing new qualitatively stable schemes for the general reaction-diffusion
equations that involve arbitrary reaction terms. The positivity and the
boundedness of the non-standard discrete solutions was established in
this general setting. Furthermore, we designed for this general case
an alternative method. It consists of a spectral method (in the space
variable) and a non-standard finite difference method (in the time vari-
able) in which the stiffness feature of the linearised system of Fourier
coefficients is exactly incorporated.

Throughout the thesis, we presented numerical tests that support
the theory. The accomplishment of this thesis has raised some concerns
for future research. Among them, we can mention the following:

1. The design of non-standard finite difference schemes for dynamical
systems with non-hyperbolic fixed-points. This is actually an open
problem.

2. The design of non-standard finite difference schemes that preserve
global attractors of continuous dynamical systems.

3. The investigation of the dissipativity of the non-standard theta
methods for any value of the parameter θ.

4. The design of dissipative schemes for evolution partial differential
differential equations.

5. The design of schemes, which display the boundedness and posi-
tivity property of solutions for the convective/advection-reaction-
diffusion equation considered in [21] and for the Burger equation,
as pointed out in [27].
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This thesis is devoted to the study of numerical methods for dynam-
ical systems. The numerical methods are expected to define discrete
dynamical systems that are required to preserve the essential proper-
ties of the exact solution. The shortcomings of the classical numerical
methods, specifically the theta methods, for being reliable discrete dy-
namical systems is that the step size is subjected to a constraint. The
time step size should be small enough if the schemes were to replicate
qualitative properties of the exact solutions.

The schemes we study are non-standard variants of the theta meth-
ods. The non-standard finite difference method aims at preserving the
qualitative properties at no cost with regard to the value of time step
size. We analyse non-standard finite difference schemes that have no
spurious fixed-points compared to the dynamical system under con-
sideration, the linear stability/instability property of the fixed-points
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being the same for both the discrete and continuous systems. We ob-
tain a sharper condition for the elementary stability of the schemes.
For more complex dynamical systems which are dissipative, we design
schemes that replicate this property.

We consider a specific class of dynamical systems which is equivalent
to the simplest model of Hamiltonian systems that occur in classical
mechanics. We design a non-standard finite difference scheme that
replicates the underlying principle of conversation of energy.

We analyse the Fisher equation which enjoys a positivity and bound-
edness property. For the reaction-diffusion equation we obtain non-
standard finite difference schemes that are elementary stable in the
limit case of space independent variable and which are stable with re-
spect to the principle of conservation of energy in the stationary case.
As an alternative approach, we approximate the space variable by the
spectral method, while the time variable is approximated via the non-
standard finite difference scheme.

Throughout the thesis, we provide numerical experiments that sup-
port the theory.

 
 
 




