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Abstract
The conservation of biotic diversity is a growing challenge within southern Africa at the

beginning of the 21 st century. Growing populations and trends toward a questionable Western

development model place demands on the use of land for food, fiber, and fuel production. The

traditional establishment and use of formal conservation areas is being challenged against the

needs of humans and the past unbalances created by colonial rule. Conservation areas, as isolated

islands in a sea of change driven by interconnected economic and social systems, may not be a

basis for sustainable biodiversity conservation. This thesis examines characteristics of avian

species diversity response to abiotic environmental variables and land transformation.

Environmental and land-use correlates of species gradients, species diversity patterns, and the

spatial patterning of bird assemblages varied with location. The findings supported a conceptual

model of multi-scaled controls on bird distribution, and the related notion that local community

structure is the result of both regional environmental and local-scale landscape pattern that must

be taken in to account in regional conservation planning assessments. An analytical framework

including an landscape model, use of complementary-based reserve selection procedures, gradient

analysis, and inclusion of the total spatial economy and development needs of the KwaZulu-Natal

Province proved to be important for developing an integrated conservation plan for sustainable

avian conservation. Pattern recognition results of the spatial economy and landscape pattern

revealed the strong dichotomy in Western economic versus rural African landscapes, which have

lead to strong differences in avian assemblage patterns. The research described in this thesis

targets specific objectives of the Sustainable Biosphere Initiative by addressing requirements for

landscape level analysis of humans and ecosystems in an integrated analytical framework. The

development of a co-evolutionary landscape ecology framework for examining human-ecosystem

interaction provides a strong basis for supporting targeted conservation planning within regions

rather than supporting a generic conservation planning framework.

Keywords: biodiversity, birds, conservation, co-evolution, landscape ecology, gradients, spatial

statistics, sustainability, KwaZulu-Natal Province, South Africa.

 
 
 



This thesis consists of a series of chapters and appendices that have been prepared for submission

to, or publications in, a range of scientific journals. As a result, styles may vary between chapters

and appendices in the thesis and overlap may occur to secure publishable entities.
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The following is from a dialog between the late American journalist Bill Moyers and the late

Joseph Campbell, which seems to me to nicely tie together one of the great issues of society

and sustainable ecological management:

Moyers: Zorba says, "Trouble? Life is Trouble."

Campbell: Only death is not trouble. People ask me, "Do you have optimism
about the world?" And I say, "Yes, it's great just the way it is. And
you are not going to fix it up. Nobody has ever made it any better; it
is never going to be any better. This is it, so take it or leave it. You
are not going to correct or improve it."

Moyers: Doesn't that lead to a rather passive attitude in the face of evil?

Campbell: You yourself are participating in the evil, or you are not alive.
Whatever you do is evil for somebody (or something). This is one
of the ironies of the whole of creation (and the paradox of
management).

Moyers: What about this idea of good and evil in mythology, of life as a conflict
between the forces of darkness and the forces of light?

Campbell: .. .In other traditions, good and evil are relative to the position in
which you are standing. What is good for one is evil for the other.
And you play your part, not withdrawing from the world when you
realize how horrible it is, but seeing that this horror is simply the
foreground of a wonder.

Therefore, for conservationists and others engaged in issues of sustainability though the

situation in the world may look sorrowful, it is necessary to participate in the game. It

wouldn't be life if there were not temporality involved, which is sorrow-loss. It is a

wonderful opera set on a diverse geographic backdrop--except that it hurts. Within

conservation and sustainability circles we must affirm that this is the way it is, the challenges

with re-integrating societies goals with the requirements of ecosystems will not be won or lost,

but will evolve through knowledge to something that is better than it was before but never to

the level that we want it to be.' Affirmation is difficult, and as a discipline, we are always

trying to affirm with conditions (i.e., I will affirm the world on condition that it gets to be the

way Aldo Leopold said it ought to be). By accepting the evolution of societies and ecosystems

and our role as conservationists, landscape ecologists, and geographers as adding components

to its guidance, we will be able to make a difference in creating future landscapes with a level

of ecological integrity acceptable for that time. This may be all we can accomplish, however

this is a tremendous amount to accomplish, and therefore should not be seen as a loss. This

thesis work provides empirical evidence of how the human socio-economic-political and

ecosystem response game has been played so far in the KwaZulu-Natal Province, South

Africa.
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