

THE EFFICIENCY OF TROPICAL RELEVANT MAJOR GENES IN A DUAL PURPOSE LAYER STRAIN IN THE SUBTROPICAL COASTAL REGION OF SOUTH-EAST AFRICA

ALICE P.D.J.T. GARCES

Submitted in partial fulfilment of the requirement for the degree

Doctor of Philosophy (Ph.D.) Animal Sciences

Department of Animal and Wildlife Sciences Faculty of Natural and Agricultural Sciences University of Pretoria

2000

© University of Pretoria

CONTENTS

.

	Page
Acknowledgements	i
Summary	ii
List of Tables	iii
List of Figures	vi
List of Abbreviations	vii

1 INTRODUCTION

1.1	Poultry production in Mozambique	2
1.1.1	The prospects for developing the rural poultry sector	3
1.1.2	The prospects for increased peri-urban egg production	4
1.2	Strategies for poultry development in tropical countries	5
1.2.1	Major genes that affect heat tolerance	6
1.2.2	Use of major genes in breeding for resistance to heat stress	8
1.3	The scope of the study	9

2 LITERATURE REVIEW

2.1	Growth of pullets	12
2.1.1	Multiphasic growth theory	12
2.1.2	Hormones and growth	13
2.2	Sexual maturity	14
2.2.1	Physiological pathways to sexual maturity	14
2.2.2	Interacting influences of light and nutrition	15
2.3	Stress physiology in poultry	16
2.3.1	Heat stress and the maintenance of body temperature	17
2.3.2	Heat loss mechanisms	18
2.3.3	Consumption of feed and water	19
2.3.4	Temperature and humidity interaction	20
2.4	Productive penalties of heat stress	21

2.5	The efficiency of feed utilisation in hot environments	22
2.6	Major genes for improved tolerance to heat stress	24
3	MATERIALS AND METHODS	
3.1	Experimental birds and management	27
3.2	Experimental design	28
3.3	Data collection and experimental procedures	29
3.4	Calculated traits	30
3.5	Statistical analysis	33
4	RESULTS	
4.1	Climate and photoperiod within experiments	36
4.1.1	Growing phase	36
4.1.2	Laying phase	36
4.2	The path to sexual maturity	37
4.2.1	Growth to sexual maturity	37
4.2.2	Sexual maturity	39
	Age at first egg	39
	Onset body weight	40
	Initial egg weight	41
4.3	Natural moult	41
4.4	Productive performance	43
4.4.1	Egg number	43
4.4.2	Laying rate and persistence	45
	Laying rate	45
	Persistence	46
4.4.3	Egg weight	47
4.4.4	Egg mass	48
4.4.5	Biological efficiency and productivity	49
4.4.6	Feed intake per BW ^{0.75}	50
4.4.7	Feed efficiency	51
4.4.8	Body weight gain	52

4.4.9	Liveability	54
4.4.10	Egg quality	55
4.5	The penalties of heat stress on production and survival	56
4.6	Economic analysis	57
4.6.1	Feed conversion	57
4.6.2	Egg size classification	58
4.6.3	Economic evaluation of the genetic groups	58
	Economic indicators	59
	Comparative financial analysis	60
	Tables & Figures	62
5	DISCUSSION	
5.1	Productive adaptability of major genes	112
5.2	Growth and sexual maturity	115
5.3	Climatic season	119
5.4	Dietary protein	122
5.5	Natural moult	126
5.6	Egg quality	128
5.7	Economic efficiency of the genetic groups	129
6	CONCLUSION	133
7	RECOMMENDATIONS	135
	LITERATURE CITED	137
	ANNEXES	150

ACKNOWLEDGEMENTS

I owe the existence of this study to the personal intervention, timely support and encouragement of Dr. Dr. Frank Otto, at the time coordinator of the GTZ project of technical assistance to the Veterinary Faculty of Maputo, which funded most of this work. The idea of doing a project using tropical poultry genes was born in discussions with Prof. Eitan Bogin from Israel. Prof. Peter Horst helped me design the research proposal and gave valuable advice and assistance in the different steps of the work.

Prof. Norman Casey, my promoter, backed me in crucial moments before and during the study and helped me focusing on essentials when writing the thesis. The atmosphere of openness he created and the friendly reception I always had at the Department of Animal and Wildlife Sciences gave me the strength to proceed. I acknowledge my other South African friends from this Department for their moral support.

The reliability of the data gathered during such a long experiment, fundamental for a successful outcome, was due in no small measure to the abnegated effort and collaboration of Mr. Damião Kandulo.

Several persons intervened in other ways, and the omission of their names is not a sign that I have forgotten their contribution. I express my appreciation to Dr. Mohamed Harun for the fruitful discussions and the knowledge he shared with me, Prof. Patrocinio da Silva and his team for the post-mortem exams and Mr. Marcos Mabasso for the laboratory assistance. I also appreciate the punctual collaboration of other colleagues from the Veterinary Faculty and Dr. Gilead Mlay from the Faculty of Agriculture.

Finally, I am especially indebted to my husband and sons for their understanding and encouragement, and for the sacrifice of time consented so that I may accomplish.

To them all, my gratitude for helping make this dream a reality.

SUMMARY

Biological and economic efficiencies of major genes for feather reduction (naked neck and frizzle) and body size reduction (dwarf) in a dual purpose layer strain were evaluated in the subtropical coastal region of South-East Africa (Maputo, Mozambique). The experimental material consisted of eight different genetic groups, two diets (14.4 and 16.2 % crude protein) and two climatic seasons. Birds were caged individually in an open-side shelter with natural light. Traits measured were: temperature and relative humidity, body weight, age at first egg, egg weight, egg production, egg quality, feed intake and mortality. The following were calculated: temperature-humidity index (THI), growth rate, persistence, egg mass, feed efficiency, feed conversion, biological efficiency (EM/BW^{0.75}) and productivity (EN/BW^{0.75}).

The main results show that: (1) none of the feather-reduced genes significantly improved egg production or the efficiency of feed utilization, although the naked neck (Na) excelled in terms of the number and mass of eggs produced per metabolic body weight; (2) the dwarf gene (dw) was associated with delayed sexual maturity, production of fewer and lighter eggs, higher persistence, better feed conversion and higher survivability; (3) climatic seasonal effects were observed in all traits analysed, with elevated temperatures restraining body weight gain, the number and weight of the eggs produced, and voluntary feed intake; (4) the lower dietary protein content resulted in decreased egg weight.

It was concluded that the normal feathered dwarf is the most suitable genetic group for peri-urban and rural production systems in this region.

LIST OF TABLES

		Page
Table 3.1	Nutrient composition of the diets	28
Table 3.2	Schedule and main environmental characteristics of the	
	periods studied	29
Table 4.1	Climatic conditions during the laying phase	63
Table 4.2	Probabilities of main and interaction effects on body weight of	
	growing pullets	64
Table 4.3	LS-means of main effects on body weight of growing pullets	64
Table 4.4	LS-means of interaction effects on body weight of growing	
	pullets	65
Table 4.5	LS-means of body weight of growing pullets in the genetic	
	groups	65
Table 4.6	Probabilities of main and interaction effects on traits at sexual	
	maturity	69
Table 4.7	LS-means of main effects on traits at sexual maturity	69
Table 4.8	LS-means of interaction effects on age at sexual maturity and	
	initial egg weight	70
Table 4.9	LS-means of traits at sexual maturity in the genetic groups	70
Table 4.10	Probabilities of main and interaction effects on the proportion	
	of onset body weight at 8 and 38 weeks of age	71
Table 4.11	LS-means of main effects on the proportion of onset body	
	weight at 8 and 38 weeks of age	71
Table 4.12	LS-means of interaction effects on the proportion of onset	
	body weight at 8 and 38 weeks of age	72
Table 4.13	LS-means of the proportion of onset body weight at 8 and 38	
	weeks of age in the genetic groups	72
Table 4.14	Phenotypic correlations between traits at sexual maturity	72
Table 4.15	Probabilities of main and interaction effects on egg number	74
Table 4.16	LS-means of main effects on egg number	74

Table 4.17	LS-means of interaction effects on egg number	75
Table 4.18	LS-means of egg number in the genetic groups	76
Table 4.19	Averaged laying rate by body size group and experiment	77
Table 4.20	Probabilities of main and interaction effects on persistence	78
Table 4.21	LS-means of main effects on persistence	78
Table 4.22	LS-means of interaction effects on persistence	79
Table 4.23	LS-means of persistence in the genetic groups	79
Table 4.24	Probabilities of main and interaction effects on egg weight	80
Table 4.25	LS-means of main effects on egg weight	80
Table 4.26	LS-means of interaction effects on egg weight	81
Table 4.27	LS-means of egg weight in the genetic groups	81
Table 4.28	Parameter estimates of the equation Y=A-Br ^t for combined	
	egg weight by body size group within experiment in the first	
	laying cycle	83
Table 4.29	Probabilities of main and interaction effects on egg mass	84
Table 4.30	LS-means of main effects on egg mass	84
Table 4.31	LS-means of interaction effects on egg mass	85
Table 4.32	LS-means of egg mass in the genetic groups	86
Table 4.33	Probabilities of main and interaction effects on biological	
	efficiency and productivity	87
Table 4.34	LS-means of main effects on biological efficiency and	
	productivity	87
Table 4.35	LS-means of interaction effects on biological efficiency and	
	productivity	88
Table 4.36	LS-means of biological efficiency and productivity in the	
	genetic groups	88
Table 4.37	Probabilities of main and interaction effects on feed intake	90
Table 4.38	LS-means of main effects on feed intake	90
Table 4.39	LS-means of interaction effects on feed intake	91
Table 4.40	LS-means of feed intake in the genetic groups	92
Table 4.41	Probabilities of main and interaction effects on feed efficiency	93
Table 4.42	LS-means of main effects on feed efficiency	93

Table 4.43	LS-means of interaction effects on feed efficiency	94
Table 4.44	LS-means of feed efficiency in the genetic groups	95
Table 4.45	Probabilities of main and interaction effects on body weight	
	gain	96
Table 4.46	LS-means of main effects on body weight gain	96
Table 4.47	LS-means of interaction effects on body weight gain	97
Table 4.48	LS-means of body weight gain in the genetic groups	98
Table 4.49	Probabilities of main and interaction effects on liveability	99
Table 4.50	LS-means of main effects on liveability	99
Table 4.51	LS-means of liveability in the genetic groups	100
Table 4.52	Probabilities of main and interaction effects on egg quality	101
Table 4.53	LS-means of main effects on egg quality	102
Table 4.54	LS-means of interaction effects on egg quality	103
Table 4.55	LS-means of egg quality in the genetic groups	104
Table 4.56	THI values and penalties to performance and survival of	
	laying hens	105
Table 4.57	Probabilities of main and interaction effects on feed	
	conversion	106
Table 4.58	LS-means of main effects on feed conversion	106
Table 4.59	LS-means of feed conversion in the genetic groups	107
Table 4.60	Egg size classification	107
Table 4.61	Summarised economic indicators in the genetic groups	108
Table 4.62	Comparative financial analysis in LC I	110

v

LIST OF FIGURES

		Page
Fig. 4.1	Room maximum and minimum temperatures during the study	62
Fig. 4.2	Room maximum and minimum relative humidity during the	
	study	62
Fig. 4.3	Monthly average daylight length	63
Fig. 4.4	Body weight of growing pullets by genetic group and	
-	environment	66
Fig. 4.5	Body weight curve of growing pullets	66
Fig. 4.6	Relative growth rate of normal and dwarf pullets plotted	
•	against the natural log of body weight and regression lines	67
Fig. 4.7	Growth pattern of normal and dwarf pullets when body weight	
	was expressed as % of body weight at sexual maturity	68
Fig. 4.8	Growth pattern of normal and dwarf pullets when age was	
C	expressed as % of age at sexual maturity	68
Fig. 4.9	Period and incidence of the natural moult on egg production	73
Fig. 4.10	Egg number by genetic group and experiment	76
Fig. 4.11	Laying rate by body size group and experiment	77
Fig. 4.12	Egg weight by genetic group and experiment	82
Fig. 4.13	Egg weight curve by body size group and experiment	83
Fig. 4.14	Egg mass by genetic group and experiment	86
Fig. 4.15	Productivity by genetic group and experiment	89
Fig. 4.16	Feed intake per BW ^{0.75} by genetic group and experiment	92
Fig. 4.17	Feed efficiency by genetic group and experiment	95
Fig. 4.18	Time trend of body weight gain averaged by body size group	98
Fig. 4.19	Liveability of laying hens	100
Fig. 4.20	Profitability of the second laying cycle	109

vi

LIST OF ABBREVIATIONS

BW ^{0.75}	Metabolic body weight
dw	Dwarf gene
EM	Egg mass
F	Frizzle gene
FAO	Food and Agriculture Organisation
FC	Feed conversion (kg:dz eggs)
FE	Feed efficiency (kg:kg EM)
FI	Feed intake
GTZ	Deutsche Gesellschaft für Technische Zusammenarbeit
Na	Naked neck gene
ND	Newcastle disease
HP	High protein diet
LP	Low protein diet
SM	Sexual maturity
RH	Relative humidity
THI	Temperature-humidity index