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Sustainable growth and development in a society requires energy supply that is 

efficient, affordable, readily available and, in the long term, sustainable without 

causing negative societal impacts, such as environmental pollution and its attendant 

consequences. In this respect, proton exchange membrane (PEM) fuel cells offer a 

promising alternative to existing conventional fossil fuel sources for transport and 

stationary applications due to its high efficiency, low-temperature operation, high 

power density, fast start-up and its portability for mobile applications. However, to 

fully harness the potential of PEM fuel cells, there is a need for improvement in the 

operational performance, durability and reliability during usage. There is also a need 

to reduce the cost of production to achieve commercialisation and thus compete with 
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existing energy sources. The present study has therefore focused on developing novel 

approaches aimed at improving output performance for this class of fuel cell. 

 

In this study, an innovative combined numerical computation and optimisation 

techniques, which could serve as alternative to the laborious and time-consuming 

trial-and-error approach to fuel cell design, is presented. In this novel approach, the 

limitation to the optimal design of a fuel cell was overcome by the search algorithm 

(Dynamic-Q) which is robust at finding optimal design parameters. The methodology 

involves integrating the computational fluid dynamics equations with a gradient-based 

optimiser (Dynamic-Q) which uses the successive objective and constraint function 

approximations to obtain the optimum design parameters. Specifically, using this 

methodology, we optimised the PEM fuel cell internal structures, such as the gas 

channels, gas diffusion layer (GDL) - relative thickness and porosity - and reactant 

gas transport, with the aim of maximising the net power output. Thermal-cooling 

modelling technique was also conducted to maximise the system performance at 

elevated working temperatures. 

 

The study started with a steady-state three-dimensional computational model to study 

the performance of a single channel proton exchange membrane fuel cell under 

varying operating conditions and combined effect of these operating conditions was 

also investigated. From the results, temperature, gas diffusion layer porosity, cathode 

gas mass flow rate and species flow orientation significantly affect the performance of 

the fuel cell. The effect of the operating and design parameters on PEM fuel cell 

performance is also more dominant at low operating cell voltages than at higher 

operating fuel cell voltages. In addition, this study establishes the need to match the 

PEM fuel cell parameters such as porosity, species reactant mass flow rates and fuel 

gas channels geometry in the system design for maximum power output. 

 

This study also presents a novel design, using pin fins, to enhance the performance of 

the PEM fuel cell through optimised reactant gas transport at a reduced pumping 

power requirement for the reactant gases. The results obtained indicated that the flow 
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Reynolds number had a significant effect on the flow field and the diffusion of the 

reactant gas through the GDL medium. In addition, an enhanced fuel cell performance 

was achieved using pin fins in a fuel cell gas channel, which ensured high 

performance and low fuel channel pressure drop of the fuel cell system. It should be 

noted that this study is the first attempt at enhancing the oxygen mass transfer through 

the PEM fuel cell GDL at reduced pressure drop, using pin fin.  

 

Finally, the impact of cooling channel geometric configuration (in combination with 

stoichiometry ratio, relative humidity and coolant Reynolds number) on effective 

thermal heat transfer and performance in the fuel cell system was investigated. This is 

with a view to determine effective thermal management designs for this class of fuel 

cell. Numerical results shows that operating parameters such as stoichiometry ratio, 

relative humidity and cooling channel aspect ratio have significant effect on fuel cell 

performance, primarily by determining the level of membrane dehydration of the 

PEM fuel cell. The result showed the possibility of operating a PEM fuel cell beyond 

the critical temperature ( 80C), using the combined optimised stoichiometry ratio, 

relative humidity and cooling channel geometry without the need for special 

temperature resistant materials for the PEM fuel cell which are very expensive.  

 

In summary, the results from this study demonstrate the potential of optimisation 

technique in improving PEM fuel cell design. Overall, this study will add to the 

knowledge base needed to produce generic design information for fuel cell systems, 

which can be applied to better designs of fuel cell stacks. 

 

Keywords: PEM fuel cell; Computational fluid dynamics; Optimisation algorithm; 

Design parameters; Reactant gas transport; Pin fin; Cooling channel; Higher 

temperatures; Optimal performance.  
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 Objective approximate function 

G Computational domain width (m) 

 xjg  j-th equality constraint function 

 xjg~  j-th inequality constraint approximate function 

h          Enthalpy (J kg-1) 

H Computational domain height (m) 

 xkh  k-th equality constraint function 

 xkh
~

 k-th equality constraint approximate function 

hL      Enthalpy of condensation/vaporisation of water (J kg-1)                          

I    Exchange current density (A m-2)                            

oi       Local current density (Am-2)                             

j Volumetric transfer current 

k      Thermal conductivity (W m-1 K-1)                      

K Permeability 

L Channel axial length (m) 

MW Molecular weight 

M Molar mass (g/mol) 

  Channel mass flow rate (kg/s) 

n   Electron number 
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nd Electro-osmotic drag coefficient 

 

P              Pressure (Pa)                                  

  Wetted perimeter  

cP  Capillary pressure (Pa) 

Po Poiseuille constant 

Ppump Pumping power (W) 

P[k] Successive sub-problem 

Q Volume flow rate (m3/s) 

rp Mean pore radius 

wr  Water condensation rate (s-1) 

R               Universal gas constant (8.314 J mol-1 K-1)                       

Re Reynolds number 

Rf Dimensionless flow resistance 

Rohm Resistance of proton transfer through electrolyte membrane (  

RH Relative humidity 

S                 Liquid saturation or source term 

S Pin spacing (m) 

Sh Sherwood number 

Sh Volumetric heat source term 

sw Water saturation 

n�  n-dimensional real space 
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T Time (s) 

T               Temperature (K)              

                     

U Overall heat transfer coefficient 

Uo Average velocity at inlet (m/s) 

U0 Thermodynamic equilibrium potential 

u, v Velocities in the x- and y- directions (m/s) 

u Velocity vector [ms-1] 

V Volume (m3) 

V  Cell potential (V) 

Vavg Mass-averaged velocity (m/s)  

Vd Volume ratio in diffusion layer 

Vs Surface ratio in diffusion layer 

x, y, z        Cartesian coordinate (m)                                  

w Water 

w Mean velocity (m/s) 

W Molar mass fraction of oxygen 

Vw Convective velocity 

x* Design variables 

xk Design points 

j,k, m,n,r Positive integer 

 

Greek  
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  Difference operator 

              Permeability (m2)                               

 

  Porosity 

  Viscosity of flow [kg m-1 s-1] 

              Fluid viscosity (kg m-1 s-1)                      

 Penalty parameter value 

an             Electrical transfer coefficient (anode) 

cat             Electrical transfer coefficient (cathode)  

                 Membrane water content 

  Tip clearance ratio 

V Kinematic viscosity [m2 s-1] 

                 Ionic conductivity [S/m] 

  Pitch 

  Solid fraction 

             Over-potential (V)                                   

             Phase potential function (V)                                   

         Density (kg m-3)                           

  Tortuosity 

  Electrical conductivity 
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Subscripts  

a Air 

an               Anode 

avg Average 

c  Capillary 

 

cat               Cathode 

ch Channel 

D Porous diffusion layer 

e Electrolyte 

eff Effective 

f Fuel 

G Gas 

H Hydraulic 

k species 

L Liquid water 

m                 Mass moment source 

m Membrane 

max Maximum 

min Minimum 

opt Optimum 

px, py, pz Momentum source terms 
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react Electrochemical reaction 

ref               Reference value 

s                  Electronic conductive solid matrix  

sat  Saturation 

T Energy source term 

w  Liquid water source 

v  Vapor phase 

x,y,z Components in the x-, y-  and z- directions 

  

  

AC Alternating current 

BPP Bipolar plate 

BTU British thermal unit 

CESFF Convection-enhanced serpentine flow field 

CL Catalyst layer 

CO Carbon monoxide 

CO2 Carbon dioxide 

CFD Computational fluid dynamics 

CHP Combined heat and power 

DC Direct current 

EMF Electromotive force 

FEM Finite element method 

GDL Gas diffusion layer 



 
Nomenclature  
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H2 Hydrogen gas 

HOR Hydrogen oxidation reaction 

HT Higher temperature 

ICE Internal combustion engine 

LFOPC Leapfrog optimization program for constrained problems 

MEA Membrane electrode assembly 

MFPM Multi-facilitated proton membrane 

NOx Nitrogen oxides 

O2 Oxygen 

ORR Oxygen reduction reaction 

PEM Proton exchange membrane  

PEMFC Proton exchange membrane fuel cells 

Pt Platinum 

SQP Sequential quadratic programming 
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