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Sustainable growth and development in a society requires energy supply that is
efficient, affordable, readily available and, in the long term, sustainable without
causing negative societal impacts, such as environmental pollution and its attendant
consequences. In this respect, proton exchange membrane (PEM) fuel cells offer a
promising alternative to existing conventional fossil fuel sources for transport and
stationary applications due to its high efficiency, low-temperature operation, high
power density, fast start-up and its portability for mobile applications. However, to
fully harness the potential of PEM fuel cells, there is a need for improvement in the
operational performance, durability and reliability during usage. There is also a need

to reduce the cost of production to achieve commercialisation and thus compete with
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existing energy sources. The present study has therefore focused on developing novel

approaches aimed at improving output performance for this class of fuel cell.

In this study, an innovative combined numerical computation and optimisation
techniques, which could serve as alternative to the laborious and time-consuming
trial-and-error approach to fuel cell design, is presented. In this novel approach, the
limitation to the optimal design of a fuel cell was overcome by the search algorithm
(Dynamic-Q) which is robust at finding optimal design parameters. The methodology
involves integrating the computational fluid dynamics equations with a gradient-based
optimiser (Dynamic-Q) which uses the successive objective and constraint function
approximations to obtain the optimum design parameters. Specifically, using this
methodology, we optimised the PEM fuel cell internal structures, such as the gas
channels, gas diffusion layer (GDL) - relative thickness and porosity - and reactant
gas transport, with the aim of maximising the net power output. Thermal-cooling
modelling technique was also conducted to maximise the system performance at

elevated working temperatures.

The study started with a steady-state three-dimensional computational model to study
the performance of a single channel proton exchange membrane fuel cell under
varying operating conditions and combined effect of these operating conditions was
also investigated. From the results, temperature, gas diffusion layer porosity, cathode
gas mass flow rate and species flow orientation significantly affect the performance of
the fuel cell. The effect of the operating and design parameters on PEM fuel cell
performance is also more dominant at low operating cell voltages than at higher
operating fuel cell voltages. In addition, this study establishes the need to match the
PEM fuel cell parameters such as porosity, species reactant mass flow rates and fuel

gas channels geometry in the system design for maximum power output.

This study also presents a novel design, using pin fins, to enhance the performance of
the PEM fuel cell through optimised reactant gas transport at a reduced pumping

power requirement for the reactant gases. The results obtained indicated that the flow
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Reynolds number had a significant effect on the flow field and the diffusion of the
reactant gas through the GDL medium. In addition, an enhanced fuel cell performance
was achieved using pin fins in a fuel cell gas channel, which ensured high
performance and low fuel channel pressure drop of the fuel cell system. It should be
noted that this study is the first attempt at enhancing the oxygen mass transfer through

the PEM fuel cell GDL at reduced pressure drop, using pin fin.

Finally, the impact of cooling channel geometric configuration (in combination with
stoichiometry ratio, relative humidity and coolant Reynolds number) on effective
thermal heat transfer and performance in the fuel cell system was investigated. This is
with a view to determine effective thermal management designs for this class of fuel
cell. Numerical results shows that operating parameters such as stoichiometry ratio,
relative humidity and cooling channel aspect ratio have significant effect on fuel cell
performance, primarily by determining the level of membrane dehydration of the
PEM fuel cell. The result showed the possibility of operating a PEM fuel cell beyond
the critical temperature (<80 C), using the combined optimised stoichiometry ratio,
relative humidity and cooling channel geometry without the need for special

temperature resistant materials for the PEM fuel cell which are very expensive.

In summary, the results from this study demonstrate the potential of optimisation
technique in improving PEM fuel cell design. Overall, this study will add to the
knowledge base needed to produce generic design information for fuel cell systems,

which can be applied to better designs of fuel cell stacks.
Keywords: PEM fuel cell; Computational fluid dynamics; Optimisation algorithm,;

Design parameters; Reactant gas transport; Pin fin; Cooling channel; Higher

temperatures; Optimal performance.
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A Channel width (m)

A Hessian matrix of the objective function
. Cross-sectional area of channel (mz)
A° Fin cross-sectional area (m®)

B Channel depth (m)

B; Hessian matrix of the inequality function
C Constant

a b, c Diagonals of Hessian matrices A, B, C
G Hessian matrix of the equality function
Cr Quadratic drag factor

G Specific heat capacity (J kg™)

c, Condensation rate constant

D Gas diffusivity (m*s™)

Dy, Channel diameter (m)

Dy Diameter of pin fin (m)

Dy Effective diffusivity (m*s™)

Dy, Hydraulic diameter (m)

E Electrolyte

Eocy Open-circuit voltage (V)

e Electron

F Faraday constant (96, 487 C mol™)
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Nomenclature
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Objective function
Objective approximate function

Computational domain width (m)

Jj-th equality constraint function
Jj-th inequality constraint approximate function

Enthalpy (T kg™)
Computational domain height (m)
k-th equality constraint function

k-th equality constraint approximate function

Enthalpy of condensation/vaporisation of water (J kg™")
Exchange current density (A m™)

Local current density (Am™)

Volumetric transfer current
Thermal conductivity (W m™ K
Permeability

Channel axial length (m)
Molecular weight

Molar mass (g/mol)

Channel mass flow rate (kg/s)

Electron number
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|
£
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Re

Rohm

RH

Sh
Sh

Sw

Electro-osmotic drag coefficient

Pressure (Pa)
Wetted perimeter

Capillary pressure (Pa)

Poiseuille constant
Pumping power (W)
Successive sub-problem
Volume flow rate (m’/s)
Mean pore radius

Water condensation rate (s™)

Universal gas constant (8.314 J mol™ K™)
Reynolds number

Dimensionless flow resistance

Resistance of proton transfer through electrolyte membrane (Qm=)

Relative humidity

Liquid saturation or source term
Pin spacing (m)

Sherwood number

Volumetric heat source term
Water saturation

n-dimensional real space
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Nomenclature

Vavg

Greek

Time (s)

Temperature (K)

Overall heat transfer coefficient
Average velocity at inlet (m/s)
Thermodynamic equilibrium potential
Velocities in the x- and y- directions (m/s)
Velocity vector [ms]

Volume (m?)

Cell potential (V)

Mass-averaged velocity (m/s)
Volume ratio in diffusion layer
Surface ratio in diffusion layer
Cartesian coordinate (m)

Water

Mean velocity (m/s)

Molar mass fraction of oxygen
Convective velocity

Design variables

Design points

Positive integer
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Nomenclature

i |

Difference operator

Permeability (m?)

Porosity

Viscosity of flow [kg m™ 5]

Fluid viscosity (kg m™s™)

Penalty parameter value

Electrical transfer coefficient (anode)
Electrical transfer coefficient (cathode)
Membrane water content

Tip clearance ratio

Kinematic viscosity [m?s]

Ionic conductivity [S/m]

Pitch

Solid fraction

Over-potential (V)

Phase potential function (V)

Density (kg m™)

Tortuosity

Electrical conductivity
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Nomenclature

Subscripts
a
an

avg

cat

ch

max
min
opt

px, py, pz

Air
Anode
Average

Capillary

Cathode

Channel

Porous diffusion layer
Electrolyte

Effective

Fuel

Gas

Hydraulic

species

Liquid water

Mass moment source
Membrane
Maximum

Minimum

Optimum

Momentum source terms
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Nomenclature

react

ref

sat

X0,z

AC
BPP
BTU
CESFF
CL
co
CO;
CFD
CHP
DC
EMF
FEM

GDL

Electrochemical reaction
Reference value

Electronic conductive solid matrix
Saturation

Energy source term

Liquid water source

Vapor phase

Components in the x-, y- and z- directions

Alternating current

Bipolar plate

British thermal unit
Convection-enhanced serpentine flow field
Catalyst layer

Carbon monoxide

Carbon dioxide
Computational fluid dynamics
Combined heat and power
Direct current

Electromotive force

Finite element method

Gas diffusion layer
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S’
Nomenclature

H, Hydrogen gas
HOR Hydrogen oxidation reaction
HT Higher temperature
ICE Internal combustion engine
LFOPC Leapfrog optimization program for constrained problems
MEA Membrane electrode assembly
MFPM Multi-facilitated proton membrane
NO; Nitrogen oxides
0; Oxygen
ORR Oxygen reduction reaction
PEM Proton exchange membrane
PEMFC  Proton exchange membrane fuel cells
Pt Platinum
SOP Sequential quadratic programming
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